Bad Inflation

Takahashi and Takayama Institute of Economic Research, Hitotsubashi University

Click Here for Latest Slide

December 24, 2021

Low Growth, Low Inflation and Low Interest Rate

- 10 years ago, these phenomena were considered to be specific to Japan, but not anymore.
- What are the connections between them?
- In particular, what is the connection between growth and inflation?

 $\pi = \ln \beta + r - g_C$: Euler Eq

- The long-run growth rate, g_C , is determined by the supply side.
- The central bank can achieve any long-run inflation π .
 - Any change in g_C is undone by adjusting the interest rate r.

$$\partial \pi = \underbrace{\partial r}_{=\partial g_C} - \partial g_C = 0.$$

- The dichotomy property breaks down when r is fixed for some reason, $\partial r = 0$.
 - An obvious example is Japan.

Tight Connection Between Inflation & Growth When $\partial r = 0$

 $\pi = \ln \beta + r - g_C$: Euler Eq.

• Then any change in g_C can affect the long-run inflation.

$$\partial \pi = \partial r - \partial g_C = -\partial g_C.$$

- Mechanically speaking, we have:
 - Slowdown of growth, $\partial g_C < 0$, implies inflation, $\partial \pi > 0$. (Bad inflation)
 - Consumption growth, $\partial g_C > 0$, implies deflation, $\partial \pi < 0$. (Good deflation)

What we do:

• (1) build a multi-goods friction model and; (2) argue that this well-known, but under-appreciated, point plays a quantitative role for the Japanese economy in the last decade.

Motivating Evidence : Rise of Consumer Durable

• What are the implications of these changes on growth (∂g_C) and inflation consequently?

• Ex BOJ Governor Hayami pointed out a possibility of good deflationary pressure.

Though it is true that prices of a number of products have been declining, this is against the backdrop of various revolutionary changes including the so-called IT revolution, that is, the progress of technological innovation in information and telecommunications, as well as the revolution in distribution networks represented by the emergence of so-called "category killers." Such phenomena cannot necessarily be regarded as pernicious price declines. [Hayami (2000, Speech to the Research Institute of Japan)]

• Another side of his argument is that we might have bad inflation.

- Provide an accounting model which connects price changes, consumption growth, r, and π .
 - Extend a frictionless monetary model by incorporating many consumption and investment goods.
 - Derive sufficient statistics for change in inflation, and connect to observables.
- Introduce various macroeconomic facts about Japan after 1994.
 - The relative price of durables and ICT have stopped falling completely after 2013.
- Generalize the growth accounting exercises by using relative prices to estimate TFP.
 - The relative price stagnation of these goods translates into their TFP stagnation.
- Quantify the effect of depressed TFP growth on long-run inflation using the sufficient statistics.
 - We find that Inflation became positive after 2014 because of the depressed TFP growth.

Frictionless Monetary Model

Households' Problem

- The utility of the representative household is $U = \sum_{t=0}^{\infty} \beta^t L_t \ln \left(\prod_{i \in \mathcal{C}} \mathcal{D}_{i,t}^{\gamma_i} \right)$.
- Budget constraint is

$$\begin{split} \sum_{i \in \mathcal{C}} p_{i,t}^{\mathcal{C}} \textbf{C}_{i,t} + \sum_{i \in \mathcal{I}} p_{i,t}^{I} \textbf{I}_{i,t} + \frac{B_{t}}{R_{t}} &\leq \sum_{i \in \mathcal{I}} r_{i,t} \textbf{K}_{i,t} + W_{t} L_{t} + B_{t-1} \\ \textbf{D}_{i,t} &= \textbf{C}_{i,t} + \left(1 - \delta_{i}^{D}\right) \textbf{D}_{i,t-1} : \text{Consumption} \\ \textbf{K}_{i,t+1} &= \textbf{I}_{i,t} + \left(1 - \delta_{i}^{K}\right) \textbf{K}_{i,t} : \text{ Capital} \end{split}$$

- $D_{i,t}$ corresponds to $C_{i,t}$ (perishable consumption) if $\delta_i^D = 1$.
- ${\mathcal C}$ is the set of consumption and ${\mathcal I}$ is the set of investment goods.
- L_t is the number of (effective) workers population and inelastically supplied.
- The household maximizes its utility subject to the budget constraints.

Representative Firm in Sector $n \in C \cup I$

• The representative firm in sector *n* has • Jump

$$Y_{n,t} = A_{n,t} \underbrace{\left(\prod_{i \in \mathcal{I}} \mathcal{K}_{i,n,t}^{\alpha \theta_i}\right) \mathcal{L}_{n,t}^{1-\alpha}}_{C_{n,t}} = \begin{cases} C_{n,t} & n \in \mathcal{C} \\ I_{n,t} & n \in \mathcal{I} \end{cases}$$

Common Parameter across n

• The factor markets and the final good markets are competitive. So,

$$p_{n,t} = MC_{n,t} = \frac{1}{A_{n,t}} \underbrace{\left(\prod_{i \in \mathcal{I}} r_{i,t}^{\theta_{i,\alpha}}\right) w_t^{1-\alpha}}_{\text{Common across } n} \to \left(\frac{p_{n,t}}{p_{m,t}}\right)^{-1} = \frac{A_{n,t}}{A_{m,t}}$$

- Rapid rise of $A_{n,t}$ induces a big price decline of $p_{n,t}$.
 - The model says that the rapid decline of PC prices come from tech improvement.

- The central bank sets its nominal interest rate R_t and try to hit target inflation rate π^* .
 - Abstract from determinacy and discussion about the optimal inflation rate, $\pi^*.$
- The bond is zero net supply.

$$B_t = 0.$$

Market Clearing Conditions

• Good markets clearing conditions are

$$Y_{n,t} = A_{n,t} \left(\prod_{i \in \mathcal{I}} K_{i,n,t}^{\theta_i} \right)^{\alpha} L_{n,t}^{1-\alpha} = \begin{cases} C_{n,t} & n \in \mathcal{C} \\ I_{n,t} & n \in \mathcal{I} \end{cases}.$$

The capital market clearing condition for each asset is

$$K_{i,t} = \sum_{n \in \mathcal{N}} K_{i,n,t} \quad \forall i \in \mathcal{I}.$$

- The labor market clearing condition is $L_t = \sum_{n \in C \cup I} L_{n,t}$.
- The bond market clearing condition is $B_t = 0$.

Equilibrium, BGP, and Macroeconomic Variables

- Competitive equilibrium is defined as usual.
 - We focus our analysis on BGP where all the variables grow at a constant rate.
 - Let g_{X_r} denote the logged growth rate and g_X the associated value along the BGP.
- Suppose the TFPs grow at constant rates: $g_{A_{n,t}} = g_{A_n}$ for all sectors $n \in C \cup I$.
- Define the real GDP growth, $g_{Y_*^*}$, inflation, and hourly wage as follows:

$$egin{aligned} & g_{GDP_t} \equiv \sum_{n \in \mathcal{C} \cup \mathcal{I}} s_{n,t-1} g_{Y_{n,t}}, & g_{C_t} \equiv \sum_{n \in \mathcal{C}} s_{c_n,t-1} g_{Y_{n,t}}, \ & \pi_t \equiv \sum_{i \in \mathcal{C}} s_{c_i,t-1} g_{P_{i,t}}, & w_t \equiv rac{W_t L_t}{H_t}. \end{aligned}$$

- $s_{n,t-1}$ is the GDP share of good n and $s_{c_n,t-1}$ is the nominal consumption share of good $i \in C$.

Euler Equation Along BGP

• In our economy, the logged Euler equation along the BGP is

$$g_c = \sum_{i \in \mathcal{C}} s_{c_i} g_{c_i} = \ln \beta + \underbrace{r - \pi}_{\text{Real Interest Rate}}$$
. $r = \ln R$.

- g_c corresponds to the growth rate of consumption per effective worker, $g_c = g_C g_L$.
- g_{c_i} is the growth rate of per-capita consumption good *i*.
- How does the model work?
 - When the TFP growth rates slow down, the output growth (and consumption) slows down.
 - To discourage high consumption growth, the rental rate of capital should go down.
 - Arbitrage implies that the real interest rate $r \pi$ goes down.

The Long-Run Consumption Growth, g^* , Is Determined by the Supply Side

• Along the BGP, g_C is

$$g_c = \sum_{i \in \mathcal{C}} s_{c_i} g_{c_i} = \underbrace{\sum_{i \in \mathcal{C}} s_{c_i} g_{A_i}}_{\text{Direct Effect}} + \underbrace{\frac{1}{1 - \alpha} \sum_{i \in \mathcal{I}} \alpha \theta_i g_{A_i}}_{\text{Capital Deepening Effect}}$$
.

- The s_{c_i} are the correct weights, not $\{\gamma_i\}_{i\in\mathcal{C}}$. The
- $\alpha \theta_i$ is output elasticity of capital stock *i* (power of capital stock of type *i*). Production
- Technological changes affect the long-run growth rate of consumption:

$$\partial g_{c} = \sum_{i \in \mathcal{C}} s_{c_{i}} \partial g_{A_{i}} + \frac{\alpha}{1 - \alpha} \sum_{a \in \mathcal{I}} \theta_{a} \partial g_{A_{a}} + \underbrace{\sum_{n \in \mathcal{C} \cup \mathcal{I}} \sum_{i \in \mathcal{C}} g_{A_{i}} \frac{\partial s_{i}^{\mathcal{C}}}{\partial g_{A_{n}}}}_{\text{Composition Effect}\approx 0}$$

Sufficient Statistics for the Change of (Long-Run) Inflation When $\partial r = 0$

- The sufficient statistics connects the long-run growth rates of TFP with long-run inflation.
 - Note that (s_{c_i}, α) are observable, and we have an estimate for $(\theta_a)_{a \in \mathcal{I}}$.
- The last term $\partial \ln \beta$ captures all the non-technology effects on inflation.
 - E.g. aging (Fujita and Fujiwara (2021)) or rise of capital income risk (Braun and Nakajima (2012)) affect the discounting factor β endogenously.

Sufficient Statistics for Other Macro Variables When $\partial r = 0$

$$\begin{bmatrix} \text{Inflation} \end{bmatrix} : \quad \partial \pi = \sum_{i \in \mathcal{C}} s_{c_i} \left(-\partial g_{A_i} \right) + \frac{\alpha}{1-\alpha} \sum_{a \in \mathcal{I}} \theta_a \left(-\partial g_{A_a} \right) + \partial \ln \beta$$
$$\begin{bmatrix} \text{Nominal Wage} \end{bmatrix} : \quad \partial g_w = \partial \ln \beta + \underbrace{(\partial g_L - \partial g_H)}_{\text{Quality Improvement}}$$
$$\begin{bmatrix} \text{Consumption Per } L \end{bmatrix} : \quad \partial g_c = \sum_{i \in \mathcal{C}} s_{c_i} \partial g_{A_i} + \frac{\alpha}{1-\alpha} \sum_{i \in \mathcal{I}} \theta_i \partial g_{A_i}$$
$$\begin{bmatrix} \text{ALP} \end{bmatrix} : \quad \partial g_{GDP/L} = \sum_{i \in \mathcal{C} \cup \mathcal{I}} s_i \partial g_{A_i} + \frac{\alpha}{1-\alpha} \sum_{i \in \mathcal{I}} \theta_i \partial g_{A_i}.$$

- When a negative TFP shock hits the economy, our model implies:
 - inflation rises (bad inflation);
 - the growth rate of the wage rate stays constant (so the real wage gets depressed); and
 - the growth of consumption and output declines.
- There is a disconnect between inflation and nominal wage.

Other Implication from Sufficient Statistics : Weak Consumption

$$\begin{bmatrix} \mathsf{Inflation} \end{bmatrix} : \quad \partial \pi = \sum_{i \in \mathcal{C}} s_{c_i} \left(-\partial g_{A_i} \right) + \frac{\alpha}{1 - \alpha} \sum_{a \in \mathcal{I}} \theta_a \left(-\partial g_{A_a} \right) + \partial \ln \beta$$
$$\begin{bmatrix} \mathsf{Nominal Wage} \end{bmatrix} : \quad \partial g_w = \partial \ln \beta + (\partial g_L - \partial g_H)$$
$$\begin{bmatrix} \mathsf{Consumption per } L \end{bmatrix} : \quad \partial g_c = \sum_{i \in \mathcal{C}} s_{c_i} \partial g_{A_i} + \frac{\alpha}{1 - \alpha} \sum_{i \in \mathcal{I}} \theta_i \partial g_{A_i}$$
$$\begin{bmatrix} \mathsf{ALP} \end{bmatrix} : \quad \partial g_{GDP/L} = \sum_{i \in \mathcal{C} \cup \mathcal{I}} s_i \partial g_{A_i} + \frac{\alpha}{1 - \alpha} \sum_{i \in \mathcal{I}} \theta_i \partial g_{A_i}.$$

• When a negative TFP shock of consumption good $i \in C$ hits the economy, our model implies:

$$\partial g_{GDP} - \partial g_C = \underbrace{(s_i - s_{c_i})}_{<0} \underbrace{(\partial g_{A_i})}_{<0} > 0.$$

- The growth rate of consumption will be lower than that of GDP. (weak consumption)
- The effect on g_{GDP} is minor since the real GDP aggregates $\{g_{A_i}\}_{i \in I}$ by using nominal GDP shares.

Other Implication from Sufficient Statistics for GDP

$$\begin{bmatrix} \mathsf{Inflation} \end{bmatrix} : \quad \partial \pi = \sum_{i \in \mathcal{C}} s_{c_i} \left(-\partial g_{A_i} \right) + \frac{\alpha}{1-\alpha} \sum_{a \in \mathcal{I}} \theta_a \left(-\partial g_{A_a} \right) + \partial \ln \beta$$
$$\begin{bmatrix} \mathsf{Nominal Wage} \end{bmatrix} : \quad \partial g_w = \partial \ln \beta + \left(\partial g_L - \partial g_H \right)$$
$$\begin{bmatrix} \mathsf{Consumption per } L \end{bmatrix} : \quad \partial g_C = \sum_{i \in \mathcal{C}} s_{c_i} \partial g_{A_i} + \frac{\alpha}{1-\alpha} \sum_{i \in \mathcal{I}} \theta_i \partial g_{A_i}$$
$$\begin{bmatrix} \mathsf{ALP} \end{bmatrix} : \quad \partial g_{GDP/L} = \sum_{i \in \mathcal{C} \cup \mathcal{I}} s_i \partial g_{A_i} + \frac{\alpha}{1-\alpha} \sum_{i \in \mathcal{I}} \theta_i \partial g_{A_i}$$

• When a negative TFP shock of investment good $i \in \mathcal{I}$ hits the economy, our model implies:

$$\partial g_{GDP} - \partial g_C = \underbrace{s_i}_{>0} \times \underbrace{(\partial g_{A_i})}_{<0} < 0.$$

- The growth rate of GDP will be lower than that of consumption.
- Practically speaking, $\partial g_{GDP} \approx \partial g_C$ since s_i is very small for $i \in \mathcal{I}$.

Empirical Context

Main Datasets : JSNA and JIP

- National accounts of Japan (JSNA 2011)
 - Sample Period : 1994-2018.
 - Variables: consumption sequences, capital stock sequences, GDP, and the consumption deflator.
 - The consumption sequences are: (1) food; (2) nondurable; (3) durable; (4) services.
 - The capital stock sequences are: (1) total non-residential investment (structure); (2) transportation equipment; (3) information and communication technology (ICT); (4) other equipment; (5) weapons; (6) Cultivated assets; (7) R&D; (8) Other Intellectual products; (9) Computer software.
- We use the (normalized) consumption deflator, not the CPI. CPI
 - Innocuous adjustment : $\pi_t = \pi_t^{\text{Consumption Deflator}} \pi_{1995}^{\text{Consumption Deflator}} + \pi_{1995}^{\text{CPI}}$
- The labor service sequence in JIP2021 is used as labor input.
 - JIP2021 adjusts the quality of labor by the same method as the EU-KLEMS.
- We exclude housing from our analysis.

Aggregate Inflation Has (Weakly) Risen Since Around 2013

• The (consumption-tax-adjusted) inflation rate have risen since around 2013.

$$d\pi = \text{mean}\left((\pi_t)_{t=2014}^{2018}\right) - \text{mean}\left((\pi_t)_{t=1994}^{2013}\right)$$
$$= 1.13\%.$$

Aggressive Monetary Policy, "Kuroda Bazooka", from 2013

- Conventional interpretation is that the recent rise of inflation is due to the aggressive monetary policy. (Hausman and Wieland (2015))
- The rise of inflation was considered to be a (partial) success for the BOJ.

• We re-examine this assessment by using the our frictionless model.

Nominal Interest Rate Has Been Low

• All the interest rates except the 10 year government debt have been constant.

 \rightarrow We conclude that dr = 0.

Relative Prices of ICT and Durables Have Risen

• Here we display

$$g_{\mathcal{P}_{n,t}} - g_{\mathcal{P}_{\text{Nondurable},t}}$$

 $\left(= g_{\mathcal{A}_{\text{Nondurable},t}} - g_{\mathcal{A}_{n,t}}\right).$

- Except for consumer durables and ICT, the relative prices are stable.
 - Important to have this heterogeneity in the model.
- These goods stopped declining relative to non-durable after 2013.

Growth Rate of Relative Prices

Relative Prices of ICT and Durables Have Risen

• We explore the implication of the changes of the relative prices on the aggregate inflation.

Growth Rate of Relative Prices

Wage Does Not Show a Clear Pattern

- The wage rates had depressed significantly after the recessions (1997,2007).
 - Our theory has no prediction for nominal wage growth. Go Back

Weak Consumption Growth after 2013

• Aggregate consumption stopped growing completely after 2013.

$$\underbrace{\frac{dg_{GDP/L}}{-0.63\%}}_{=0.67\%} = \underbrace{\max\left(\left(g_{GDP_t/L_t}\right)_{t=2014}^{2018}\right)}_{=0.67\%} - \underbrace{\max\left(\left(g_{GDP_t/L_t}\right)_{t=1994}^{2013}\right)}_{=0.04\%} - \underbrace{\max\left(\left(g_{C_t/L_t}\right)_{t=1994}^{2013}\right)}_{=0.04\%} - \underbrace{\max\left(\left(g_{C_t/L_t}\right)_{t=1994}^{2013}\right)}_{=-0.71\%} - \underbrace{\max\left(\left(g_{C_t/L_t}\right)_{t=1994}^{$$

GDP and Consumption

Mapping The Model To Data

- JIP estimates the time-series of α (excluding housing) so we use the average.
- Use the real GDP excluding housing in JIP.
- In order to to estimate $(\theta_i)_{i \in \mathcal{I}}$, we use the method by Gourio and Rognlie (2020). Detail

Parameters $(\alpha, (\theta_i)_{i \in \mathcal{I}})$ and Average Shares in GDP s_n

	Capital Share	Rental Share	GDP Share	Consumption Share
	α	θ_i	s _n	s _{cn}
	32%	*	*	*
Services	*	*	34.3%	50.2%
Non Durable	*	*	15.3%	22.4%
Food	*	*	11.8%	17.3%
Durable	*	*	6.9%	10.1%
Structure	*	34.2%	11.8%	*
Other Equipment	*	26.2%	8.0%	*
R&D	*	15.6%	4.7%	*
Software	*	8.6%	2.6%	*
ICT	*	8.1%	2.4%	*
Transportation Equipment	*	6.4%	1.9%	*
Weapons, Cultivated Assets, Other IPP	*	< 0.6%	< 0.2%	*

Estimation of Sectoral TFP and Shock

• The model implies:

$$\underbrace{g_{GDP_t}}_{JIP} - \alpha \sum_{i \in \mathcal{I}} \theta_i \underbrace{g_{K_{i,t}}}_{JSNA} - (1 - \alpha) \underbrace{g_{L_t}}_{JIP} = \sum_{n \in \mathcal{C} \cup \mathcal{I}} \underbrace{s_{n,t-1}}_{JSNA} g_{A_{n,t}}$$
$$\underbrace{g_{Pn,t} - g_{P\bar{n},t}}_{JSNA} = g_{A_{\bar{n},t}} - g_{A_{n,t}} \quad \forall n \in n \in \mathcal{C} \cup \mathcal{I} \setminus \{\bar{n}\}.$$

- We use JSNA, JIP, and the estimated parameters.
- We have $\#(\mathcal{C} \cup \mathcal{I})$ equations, and $\#(\mathcal{C} \cup \mathcal{I})$ unknowns, $\{g_{A_{n,t}}\}_{n \in \mathcal{C} \cup \mathcal{I}}$, at each date t.
- Back out d ln β by using a BGP property:

$$\underbrace{\mathsf{d}\pi}_{\mathsf{Data}} = -\sum_{i\in\mathcal{C}} s_{c_i} \underbrace{\mathsf{d}g_{\mathsf{A}_i}}_{\mathsf{Estimated}} - \frac{\alpha}{1-\alpha} \sum_{a\in\mathcal{I}} \theta_a \underbrace{\mathsf{d}g_{\mathsf{A}_a}}_{\mathsf{Estimated}} + \mathsf{d}\ln\beta$$

Estimated TFP Growth Rates for Durables & ICT Stopped Improving

Consumption Goods

Investment Goods

- Since around 2013, the sectoral TFP growth rates have equalized across the sectors.
- We only examine the shift of the productivity growth after 2013, not fluctuation.
 - Let dg_{A_i} denote the change of the average growth rate of good *i* before and after 2013.

Negative Technology Shocks of Consumer Durable and ICT

- In our quantification exercises, we focus on tech stagnation of consumer durable and ICT sectors.
 - That is, we focus on the effect from $dg_{A_{Durable}}$ and $dg_{A_{ICT}}$.

Model Fit Before Quantification

• Compute the model-implied changes:

$$\begin{bmatrix} \mathsf{Inflation} \end{bmatrix} : \quad \mathsf{d}\pi = \sum_{i \in \mathcal{C}} s_{c_i} \left(-\mathsf{d}g_{A_i} \right) + \frac{\alpha}{1-\alpha} \sum_{a \in \mathcal{I}} \theta_a \left(-\mathsf{d}g_{A_a} \right) + \underbrace{\mathsf{d} \ln \beta}_{\mathsf{Chosen to satisfy this eq.}} \\ \begin{bmatrix} \mathsf{Nominal Wage} \end{bmatrix} : \quad \mathsf{d}g_w = \mathsf{d} \ln \beta + \underbrace{(\mathsf{d}g_L - \mathsf{d}g_H)}_{\mathsf{JIP}} \\ \end{bmatrix} \\ \begin{bmatrix} \mathsf{Consumption per } L \end{bmatrix} : \quad \mathsf{d}g_c = \sum_{i \in \mathcal{C}} s_{c_i} \mathsf{d}g_{A_i} + \frac{\alpha}{1-\alpha} \sum_{i \in \mathcal{I}} \theta_i \mathsf{d}g_{A_i} \\ \\ \begin{bmatrix} \mathsf{ALP} \end{bmatrix} : \quad \mathsf{d}g_{GDP/L} = \sum_{i \in \mathcal{C} \cup \mathcal{I}} s_i \mathsf{d}g_{A_i} + \frac{\alpha}{1-\alpha} \sum_{i \in \mathcal{I}} \theta_i \mathsf{d}g_{A_i} \end{bmatrix}$$

- For s_{c_i} (consumption share) and s_i (GDP share), we use their average.
- Compare these changes with their data-counterpart.

		Change			
Variable	Description	Data Model (BGP) (Fract			
			Internal		
$d\pi$	Inflation	1.13%	1.13%	(100%)	
$dg_{GDP/L}$	GDP Per L_t	-0.63%	-0.37%	(60%)	
			External		
$dg_{C/L}$	Consumption Per L_t	-1.56%	-0.38%	(25%)	
dg_w	Nominal Wage	NA(-1.00%)	0.22%	(22%)	
$d g_w - d \pi$	Real Wage	NA(-0.13%)	-0.90%	(68%)	

• The real variables are well approximated by BGP.

Quantitative Implication for Long-Run Inflation

Use the sufficient statistics to quantify the effect from the tech slowdown of durables and ICT.
Sufficient Statistics

- d π^{Tech} represents the effect from technology stagnation of durables and ICT on inflation.

• Since $dg_{A_{\text{Durable}}}$, $dg_{A_{\text{ICT}}} < 0$, our model predicts inflation rises, bad inflation.

Quantitative Effect of Technology Stagnation

Quantification			Decomposition				
				Durable		ІСТ	
Variable	Data	Model	(Fraction)	(Weight)	$(-dg_{A_i})$	Weight	$-dg_{A_i}$
dπ 1.13% <mark>0.76%</mark>	0.760/	(67%)	0.51%		0.23%		
	0.70%		(0.10)	(5.1%)	(0.03)	(7.2%)	
dg _{C/L} -1.56% -0	0.76%	(40%)	-0.54%		-0.23%		
	-0.70%	(49%)	(0.10)	(5.1%)	(0.03)	(7.2%)	
dg _{GDP/L} -0.6	0.63%	0.63% -0.59%	(94%)	-0.54%		-0.23%	
	-0.03%			(0.07)	(5.1%)	(0.03)	(7.2%)

• The mere technology stagnation of durable ICT significantly lowers (long-run) inflation.

Quantification

Variable	Data	Model	(Fraction)
$dg_{GDP/L} - dg_{C/L}$	0.92%	0.17%	(18%)
$dg_{w}-d\pi$	NA	-0.77%	*

- The technology stagnation under-predicts weak investment, but the shocks are not sizable enough.
- The technology stagnation predicts sharp real wage stagnation.

• Suppose that the technology stagnation after 2013 had not occurred.

 $\pi_{\text{After 2013}}: 0.77\% \rightarrow 0.01\%.$

- Technology stagnation induced positive inflation after 2013.
- Suppose that the technology improvement before 2013 had not occurred in the first place.

 $\pi_{\text{Before 2013}}:-0.35\% \rightarrow 0.41\%.$

- The mild deflation during 2000s would not have happened.

Robustness Exercises

Cross-Country Evidence

Sample: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, United Kingdom, United States.

• See Takahashi and Takayama (2021) which explores implication for growth.

Cross-Country Evidence : Timing Varies Across Countries

Relative Price of Durable of the US

Relative Price of ICT of the US

- We use t = 2014 as our benchmark for Japan.
 - This benchmark year might not be completely suitable for other countries, e.g. the US.

Robustness : JIP's Estimate of ICT Technology

- Price information might be contaminated. E.g. exchange rate, import...
- JIP (Japanese KLEMS) directly estimates sectoral TFP growth rates with a general CRS production *F*.

 $Y_{n,t} = A_{n,t}F(K_{n,t}, L_{n,t}, M_{n,t}).$

• The ICT TFPs estimated by the KLEMS show more significant technology slowdown than ours.

	KLE	MS	Our Estimate	
Period	СТ	IT	ICT	
1994-2013	5.3%	8.3%	8.1%	
2014-2018	-9.4%	0.0%	1.2%	
Change	-14.7%	-8.3%	-6.9%	

Robustness : Effect From Nominal Exchange Rate

Exchange Rates

PC Prices in PPI

- Policy evaluation of "Kuroda bazooka (2013)" needs to be done carefully.
 - Tech stagnation of durables and ICT happened around the same time, which is something BOJ cannot control.
- Simple judgment of monetary policy is not desired.
 - The cause behind 2% inflation is important.

Additional Slides

- Connect the rental rates with easily measured objects by using the model.
- Assume there are no growth (for simplicity). Arbitrage implies the user cost formula:

$$r_i = \left(r + \delta_i^K\right) p_i \quad r = \beta^{-1} - 1.$$

• Nominal depreciation is related with the new investment:

$$r_i K_i = (r + \delta^K) p_i K_i \Longrightarrow r_i K_i = r p_i K_i + \underbrace{\delta_i^K p_i K_i}_{\text{Investment}} = r p_i K_i + p_i I_i.$$

• The rental rate for *a* is expressed in terms of observables.

$$\theta_{i} = \frac{r_{i}K_{i}}{\sum_{a \in \mathcal{I}} r_{a}K_{a}} = \underbrace{s_{I}}_{\text{Total Investment Share}} / \alpha \underbrace{\frac{p_{i}I_{i}}{\sum_{a \in \mathcal{I}} p_{a}I_{a}}}_{\text{Investment Share of } i} + (1 - s_{I}/\alpha) \underbrace{\frac{p_{i}K_{i}}{\sum_{a \in \mathcal{I}} p_{a}K_{a}}}_{\text{Capital Share of } i}$$

CPI VS Consumption Deflator in National Accounts

- There are transitory differences between consumption deflator and CPI, but not permanent.
- We have:

$$\mathrm{d}\pi^{\mathrm{CPI}}=.94\%$$

 $\mathrm{d}\pi^{\mathrm{JSNA}}=1.1\%.$

Consumption Tax Adjustment •••• Back

CPI		CPI		Consumption Deflator			
Excluding Imputed Rent		Excluding Imputed Rent		Excluding Imputed Rent			
Fixed Weight		Chain-Linked		Chain-Linked			
Year	YoY	VAT-Adjusted	Diff	YoY VAT-Adjusted		YoY	VAT-Adjusted
:	:	:	:				
2013	0.5%	0.5%	0.0%	0.4%	0.4%-0.0%	-0.1%	-0.1%-0.0%
2014	3.3%	1.5%	1.8%	3.4%	3.4%- 1.8%	2.6%	2.6%- 1.8%
2015	1.0%	0.3%	0.7%	1.1%	1.1%-0.7%	0.7%	0.7%-0.7%
2016	-0.1%	-0.1%	0.0%	-0.1%	-0.1%-0.0%	-0.3%	-0.3%-0.0%
÷	÷	:	÷	:	:	÷	:

• Consumption tax was raised in 1997, 2014 (5% \rightarrow 8%), and 2019.

Sectoral Nominal Wage

• There are substantial heterogeneity between the sectors. • Go Back

Time-Series Estimates of $(\alpha, (\overline{\theta_i})_{i \in \mathcal{I}})$

From 1994 to 2018

From 2005 to 2018

- **Braun, R. Anton and Tomoyuki Nakajima**, "Uninsured countercyclical risk: An aggregation result and application to optimal monetary policy," *Journal of the European Economic Association*, 2012, *10* (6), 1450–1474.
- Fujita, Shigeru and Ippei Fujiwara, "Aging and the Real Interest Rate in Japan: A Labor Market Channel," *Working Paper*, 2021.
- Gourio, François and Matthew Rognlie, "Capital Heterogeneity and Investment Prices : How Much Are Investment Prices Declining?," *Working Paper*, 2020, pp. 1–51.
- Hausman, Joshua K. and Johannes F. Wieland, "Overcoming the lost decades? Abenomics after three years," *Brookings Papers on Economic Activity*, 2015, 2015-FALL (April 2013), 385–413.
- Hayami, Masaru, "Price Stability and Monetary Policy," Speech given by Masaru Hayami, Governor of the Bank of Japan, to the Research Institute of Japan in Tokyo on March 21, 2000.
- Takahashi, Yuta and Naoki Takayama, "Tech-Driven Secular Low Growth : Cross-Country Evidence," *Working Paper*, 2021, pp. 1–24.