Oligopolistic Competition, Price Rigidity, and Monetary Policy

Kozo Ueda Kota Watanabe¹

Waseda University and CIGS

2021

Ueda–Watanabe

Olig Comp, Price Rigid, and Mon Pol

2021 1/33

Motivations

Firms' strategic pricing

- one source of real rigidity: strategic complementarity
 - ★ behind low inflation in Japan
- departing from monopolistic competition
- Heterogeneity exists
 - competitiveness and pricing
- Contributions
 - Facts: relationships between the competitive environment and price setting
 - Model: the effects of monetary policy

Empirical Contribution

- Relationships between the competitive environment and price setting
- Two sets of data
 - questionnaire survey of firms
 - scanner data from supermarkets
- Examine
 - relationship between aggregated competitive environment indices (HHI) and pricing behavior for each goods category
 - heterogeneous relationship between each firm's market share and pricing behavior within a goods category

Theoretical Contribution

- Duopolistic competition model with sticky prices
 - A macroeconomic extension of address model, as described by Hotelling (1929)
 - Dynamic strategic complementarity
 - Heterogeneous in competitiveness and Calvo-type price stickiness
- Examine the effects of monetary policy

Findings

- Price changes by firms with low market share tend to be
 - less frequent,
 - smaller in size, and
 - have smaller correlations with other firms' price changes.
- The real effect of monetary policy substantially increases
 - because of the dynamic strategic complementarity and
 - asymmetry in price stickiness.

Literature

- Empirical studies on relationships between firms' position and pricing behavior within a sector.
 - Opposite: Berman, Martin, and Mayer (2012) and Amit, Itskhoki, and Konings (2019)
 - Similar: Dias, Dias, and Neves (2004), Fabiani et al. (2006), Jonker, Folkertsma, and Blijenberg (2004)
 - IO: Berle and Means (1932), Stigler and Kindahl (1970), Domberger (1979), Carlton (1986), and Slade (1991)
 - Sector-level competitive environment: Bils and Klenow (2004), Gopinath and Itskhoki (2010) etc
- Macro models incorporating oligopolistic competition and price stickiness
 - ► Faia (2012), Mongey (2017), Wang and Werning (2020), Ueda (2021)
 - Asymmetry (but not price stickiness), opposite: Atkeson and Burstein (2008) and Wang and Werning (2020)

Empirical Investigations

・ 何 ト ・ ヨ ト ・ ヨ ト

Questionnaire Survey

- "Questionnaire Survey on Companys' Product Pricing," conducted by the University of Tokyo and Intage Inc.
- Targets: consumer-goods (food, beverages, daily necessities) manufacturing firms that are customers of Intage Inc. and have the top 15 market shares in their respective product categories.
- Specified a product category and asked to indicate a brand name with the largest sales value in the category.
- Mailed in February and asked to return it by March 2020.
- A person in corporate planning or product planning department was asked to answer.
- 176 firms in total

< 回 > < 回 > < 回 >

		1	2	3	4
	No of firms	Applicable well	Applicable	Not very applicable	Not at all
(1) Costs are not expected to increase	139	1.4	3.6	45.3	49.6
much.					
(2) Retailers oppose.	138	33.3	46.4	18.1	2.2
(3) Competitors are unlikely to raise their	139	28.1	54.0	13.7	4.3
prices.					
(4) Consumers are price sensitive.	139	26.6	54.7	18.0	0.7
(5) Cost-cutting measures can be taken.	139	1.4	11.5	51.8	35.3
(6) Productivity can be improved.	138	2.2	14.5	54.3	29.0
(7) Products can be downsized.	139	1.4	17.3	49.6	31.7
(8) Others	11	72.7	27.3	0.0	0.0

Table: Reasons for Low Price Increase Expectations (Q12)

Notes: In the preceding question (Q11), we asked firms," In five years' time, how do you expect the shipping price of this product to change compared to the current level?" Then, we asked the firms that answered "the increase will be less than 1 percent annually" "What is the reason why you expect that the level of shipping prices will not increase much compared to the current level, or will decrease?" Unit is percent except for the number of firms.

< □ > < □ > < □ > < □ > < □ > < □ >

Table: Price Change in Response to Depreciation from December 2012

	(1)	(2)	(3)	(4)
	Frequency	Size	Frequency	Size
Log(no. of competitors)	0.001	-0.114	-0.207	-1.739
	(0.064)	(0.630)	(0.131)	(1.804)
Market share	0.009*	0.104	0.017**	0.287**
	(0.005)	(0.063)	(0.007)	(0.094)
Constant	0.376	2.835	0.808	4.485
	(0.281)	(2.533)	(0.448)	(5.834)
N	49	49	21	21
Category fixed effect	no	no	yes	yes
No. of categories	-	-	9	9
R2	0.064	0.095	0.627	0.755
Within R2	0.064	0.095	0.322	0.519

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: In Q19, we asked firms, "In response to the depreciation of yen between December 2012 and June 2015, did your firm actually raise the shipping price of this product?" Firms answered the frequency, size, and timing of price changes.

2021 10 / 33

イロト 不良 トイヨト イヨト

Scanner Data from Retailers

- Retailer-side point-of-sale (POS) scanner data collected by Nikkei Inc.
- March 1, 1988 to December 31, 2019
- Consist of processed food and daily necessities and classified into 218 product categories such as instant cup noodles, tofu, and shampoo.
- Each product and manufacturer (firm) are identified by the Japanese Article Number (JAN) code and the code provided by GS1 Japan.

Market-leading product/firm tends to change prices more frequently

- Identify regular price that is defined as the mode price for 42 days before and after the date
- Calculate the frequency of regular-price changes
- For each category *j*, run the regression (firm/product *i*, year *y*, price up or down *X*, market share *s*):

$$fr_{ijy}^{X} = \alpha \log s_{ijy} + \sum_{y=1}^{31} \beta_y d_y^{year} + \sum_{k=1}^{K-1} m_k d_k^{firm} + \epsilon_{ijy}$$
(1)

• Regression by pooling categories:

$$fr_{ijy}^{X} = \alpha \log s_{ijy} + \sum_{y=1}^{31} \beta_y d_y^{year} + \sum_{k=1}^{K-1} m_k d_k^{year} + \sum_{j=1}^{J-1} c_j d_j^{cat} + \gamma HHI_{jy} + \epsilon_{ijy}.$$
(2)

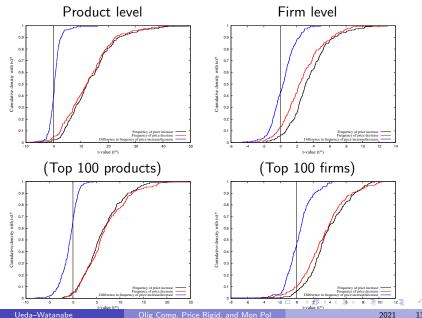


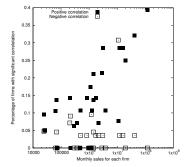
Figure: Cumulative Distribution of t-value for the Coefficient on Market Share

Ueda-Watanabe

13/33

Table: Relationship between the Frequency of Regular-Price Changes and the Competitive Environment

	Frequency of regular price changes:						
		Product leve	el		Firm level		
	fr^+	fr ⁻	$fr^+ - fr^-$	fr ⁺	fr ⁻	$fr^+ - fr^-$	
Market share	0.0004***	0.0004***	-0.00005***	0.0002***	0.0002***	0.000007**	
	(73.55)	(83.41)	(-10.26)	(70.58)	(57.95)	(2.05)	
ННІ	0.0005	0.0008**	-0.0003	-0.0005***	-0.0005***	-0.000059	
	(1.46)	(2.32)	(-0.94)	(-3.71)	(2.32)	(-0.39)	
Observations	262,156	262,156	262,156	323,119	323,119	323,118	
Notes:	*p<0.1; **p<0.05; ***p<0.01. The values in the parenthesis are the t-values Dummies: period, firm, categor						


Use only data from the top 100 products/firms by (market share \times sample period)

< □ > < □ > < □ > < □ > < □ > < □ >

Market leader influences rivals' prices (strategic pricing)

- Calculate
 - Spearman's rank correlation for price changes between firm k and l in each product category j.
 - ► The fraction of firms with the significant correlation at the 5% level.
 - The mean monthly sales of firm k in category j.

Figure: Relationship between Sales and Price-Change Correlation with Other Firms (Instant Cup-Noodle Category)

Notes: The vertical axis represents the fraction of firms with the significant correlations for price changes between a pair of firms.

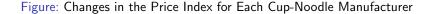
Olig Comp, Price Rigid, and Mon Pol

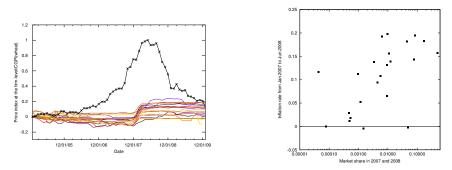
2021 15 / 33

$$n_{jk}^{+} - n_{jk}^{-} = \alpha \log \overline{s}_{jk} + \sum_{j=1}^{J} c_j d_j + \epsilon_{jk}.$$
(3)

Table: Relationship between Sales and Price-Change Correlation with Other Firms

	Dependent variable:				
	$n^+ - n^-$				
Market share	0.011*** (34.41)				
Observations	18,249				
Dummy	category				


Notes: *p<0.1; **p<0.05; ***p<0.01. The value in the parenthesis is the t-value. For the dependent variable, n^+ and n^- represent the fraction of firms with the significant positive and negative, respectively, Spearman's rank correlations for price changes between a pair of firms.


- 4 回 ト 4 ヨ ト 4 ヨ ト

Price Responses to the Aggregate Shock

- Large firms tend to change its price more frequently and have a greater influence on rival firms' pricing than small firms.
- However, this result may not necessarily imply a difference in their reaction functions to costs.
 - It may arise if costs are idiosyncratic, for example, when costs for large firms are more volatile or change earlier than those for small firms.
- Thus, we investigate how firms' output prices change in response to aggregate shocks and how price responses depend on firms' market share.
 - ► First, we look at a particular product category, i.e., instant cup noodle, and an event around 2007.
 - Second, we extend the analysis to other product categories and events.

< 回 > < 回 > < 回 >

Notes: In the left-hand panel, each line represent the changes in the price index for each instant cup noodle manufacturer, whereas the line with the cross represents the changes in the wheat price based on the CGPI. Prices changes from December 2004 are shown. The right-hand panel shows the scatter plot, where each dot represents an instant cup noodle manufacturer.

2021 18 / 33

- Extend the previous analysis to other product categories and events.
- Identify category-level shocks and estimate how firms adjusted their prices to the shocks.
 - Calculate the category-level price index for product category j in month m.
 - Use observations from January 2007 to December 2019.
 - Statistically detect the periods of large price changes, t's, by the local outlier factor for each category.
 - Pool the set of t's.
 - Calculate the price adjustment for firm k in category j over the next twelve months and pool it in all the detected periods and categories.
 - Run the regression

$$\pi_{jkt} = \alpha \log s_{jkt} + \sum_{y=1}^{31} \beta_y d_y^{year} + \sum_{j=1}^{J-1} c_j d_j^{cat} + \gamma HHI_{jy} + \epsilon_{jkt}, \quad (4)$$

<日

<</p>

Table: Relationship	between Pr	ice Increase	and the	Competitive Envi	ronment
					-

		Dependent variable:					
	π fr		π	fr			
	(1)	(2)	(3)	(4)			
Market share	0.071**	0.005***	0.124***	0.005***			
	(0.029)	(0.001)	(0.030)	(0.001)			
HHI	0.084***	-0.002***	0.447	-0.027*			
	(0.015)	(0.001)	(0.462)	(0.016)			
Constant	0.019***	0.003***					
	(0.004)	(0.0001)					
Observations	1741	1741	1741	1741			
Dummy	No	No	period/category	period/category			
Note:			*p<0.1; **p	<0.05; ***p<0.01			

2021 20 / 33

э

<ロト < 四ト < 三ト < 三ト

Two Further Issues

- Changes in Input Prices (Tankan)
- Timing of Announcements on Price Changes
- Both strengthen our estimation results.
 - Large firms respond to shocks more quickly and strongly than small firms.

Table: Dates of Price Increases and Their Annoucements

Date of Price Revision			Date of Price Revision						
Category	Announcement	Revison	Firm	Market share	Category	Announcement	Revison	Firm	Market share
Coffee	09-Dec-2004	01-Mar-2005	UCC		Pasta	22-Oct-2014	05-Jan-2015	Nisshin Foods	
	10-Feb-2005	01-Mar-2005	Key Coffee			30-Oct-2014	05-Jan-2015	NIPPN	
						12-Nov-2014	05-Jan-2015	Showa Sangyo	
Mayonnaise	08-May-2007	01-Jun-2007	Kewpie			09-Jan-2015	02-Mar-2015	Hagoromo Foods	
	29-May-2007	03-Jul-2007	Ajinomoto						
					Pasta	23-Apr-2015	01-Jul-2015	Nisshin Foods	
Pasta	02-Aug-2007	01-Sep-2007	Nisshin Foods			30-Apr-2015	01-Jul-2015	Showa Sangyo	
	14-Aug-2007	03-Sep-2007	NIPPN			01-May-2015	01-Jul-2015	NIPPN	
Pasta	01-Oct-2007	15-Nov-2007	Nisshin Foods		Chocolate	14-May-2015	07-Jul-2015	Meiji	
	04-Oct-2007	20-Nov-2007	NIPPN			26-May-2015	14-Jul-2015	Morinaga	
	06-Oct-2007	20-Nov-2007	Showa Sangvo			03-Jun-2015	14-Jul-2015	Lotte	
	22-Oct-2007	01-Dec-2007	Hagoromo Foods						
					Potato chips	01-Mar-2019	21-May-2019	Calbee	
Instant noodle	06-Sep-2007	01-Jan-2008	Nisshin Foods			06-Mar-2019	01-Jun-2019	Koikeya	
	25-Sep-2007	01-Jan-2008	Myojo Foods						
	03-Oct-2007	01-Jan-2008	Toyo Suisan		Instant noodle	05-Feb-2019	01-Jun-2019	Nisshin Foods	
	11-Oct-2007	01-Jan-2008	Acecook			13-Feb-2019	01-Jun-2019	Myojo Foods	
	19-Oct-2007	01-Jan-2008	Maruka Foods			19-Feb-2019	01-Jun-2019	Toyo Suisan	
						27-Feb-2019	01-Jun-2019	Sanvo Foods	
Pasta	17-Jan-2008	01-Mar-2008	Nisshin Foods			27-Feb-2019	01-Jun-2019	House Foods	
	24-Jan-2008	01-Mar-2008	NIPPN			28-Feb-2019	01-Jun-2019	Acecook	
	24-Jan-2008	01-Mar-2008	Showa Sangyo			05-Mar-2019	01-Jun-2019	Maruka Foods	
	28-Jan-2008	01-Mar-2008	Hagoromo Foods						
					Pasta	19-May-2021	01-Jul-2021	Nisshin Foods	
Mayonnaise	23-May-2008	01-Aug-2008	Kewpie			26-May-2021	01-Jul-2021	Showa Sangyo	
	20-May-2008	23-Jul-2008	Aiinomoto			17-Jun-2021	01-Sep-2021	NIPPN	
	26-Aug-2008	01-Oct-2008	Otafuku Foods			14-Jul-2021	01-Sep-2021	Hagoromo Foods	
Potato chips	08-Sep-2008	03-Nov-2008	Calbee		Mayonnaise	26-Apr-2021	01-Jul-2021	Kewpie	
Potato crips	25-Sep-2008	17-Nov-2008	Koikeya		wayonnaise	28-Apr-2021	01-Jul-2021	Ajinomoto	
	25-5ep-2006	17-1000-2008	Noikeya			19-May-2021	01-Jul-2021 01-Aug-2021	SSK Foods	
Coffee	27-Dec-2010	01-Mar-2011	Key Coffee			19-10/ay-2021	01-Aug-2021	SON FOODS	
Collee	25-Jan-2011	10-Mar-2011	UCC		Coffee	08-Jul-2021	01-Sep-2021	UCC	
	08-Feb-2011				Conee		01-Oct-2021	Aiinomoto AGF	
	08-Feb-2011	01-Apr-2011	Ajinomoto AGF			03-Aug-2021	01-Oct-2021 01-Oct-2021		
D .	00.14 0011	01 1 1 0011	NO. 11. 17. 1			06-Aug-2021		Key Coffee	
Pasta	23-May-2011	01-Jul-2011	Nisshin Foods			01-Nov-2021	01-Jan-2022	Nestle	
	26-May-2011	01-Jul-2011	Showa Sangyo NIPPN		Pasta	05.0 . 0001	0.4 1 0000	NC 11 E 1	
	27-May-2011	01-Jul-2011	NIPPN		Pasta	25-Oct-2021	04-Jan-2022	Nisshin Foods	
						28-Oct-2021	04-Jan-2022	Showa Sangyo	
Mayonnaise	08-May-2013	01-Jul-2013	Kewpie			10-Nov-2021	04-Jan-2022	NIPPN	
	20-May-2013	01-Aug-2013	Ajinomoto						
	22-May-2013	01-Jul-2013	Kenko Mayonnaise						_
	30-May-2013	01-Aug-2013	SSK Foods			< □	▶ ◀ 🗗 ▶	< E > < E .	이 돈 :

Ueda–Watanabe

Olig Comp, Price Rigid, and Mon Pol

2021 22 / 33

Theoretical Investigations

A (10) < A (10) < A (10)</p>

Key Features in Price Setting

- Oligopoly
 - strategic
 - not monopoly
- Asymmetry
- How important are they for the macroeconomy?

ヨト イヨト

Model Setup

- Hotelling model
 - A more general model is under construction.
 - ★ Elasticity, superelasticity, and cross elasticity matter.
- Two firms A and B in one sector
 - Produce one unit of product using one unit of labor, which costs nominal wage W_t.
 - Asymmetry in Calvo-type price stickiness θ_A and θ_B (frequency is exogenous)
 - Asymmetry in competitiveness δ and 1
 - The elasticity of substitution across sectors is one.
- A household
 - comprised of an infinite number of consumers, who are located uniformly.
 - They go shopping, consume, and supply labor.
- Monetary authority supplies money.

2021 25 / 33

• • = • • = •

A head of household maximizes

$$U = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\log C_t - (L_t + \tau D_t) \right]$$
,

where aggregate consumption C_t and shopping distance D_t are given by

log
$$C = \int_0^1 \log c^j dj$$
 and $D = \int_0^1 d^j dj$. (5)

Parameter τ is the transport cost incurred per unit of distance. The budget constraint:

$$M_t + B_t + P_t C_t \le M_{t-1} + R_{t-1} B_{t-1} + W_t L_t + \Pi_t + T_t, \qquad (6)$$

Nominal spending must be equal to the money supply:

$$P_t C_t = M_t \Rightarrow M_t = W_t. \tag{7}$$

Money supply exogenous:

$$\log(M_t/M_{t-1}) = \varepsilon_t = \rho \varepsilon_{t-1} + \mu_t.$$
(8)

- Consumers located uniformly at $x \in [0, 1]$
- Firm A and B located at 0 and δ . (symmetric if $\delta = 1$)
- A consumer at x will buy from firm A if

$$\log p^{A} + \tau x \le \log p^{B} + \tau (\delta - x).$$
(9)

- E > - E >

Log-linearized optimal reset prices:

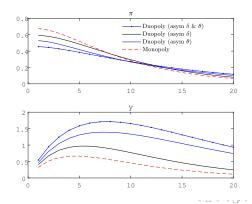
$$p_t^{A*} = \Gamma^{AA} \hat{p}_{t-1}^A + \Gamma^{AB} \hat{p}_{t-1}^B + \Gamma^{A\varepsilon} \varepsilon_t$$
(10)

$$\rho_t^{B*} = \Gamma^{BB} \hat{\rho}_{t-1}^B + \Gamma^{BA} \hat{\rho}_{t-1}^A + \Gamma^{B\varepsilon} \varepsilon_t$$
(11)

- Dynamic strategic complementarity if Γ^{AB}, Γ^{BA} > 0 (which we denote by Γ* later)
- Price rigidity if $\Gamma^{A\varepsilon}$ and/or $\Gamma^{B\varepsilon}$ decrease whereas Γ^{AB} , $\Gamma^{BA} > 0$

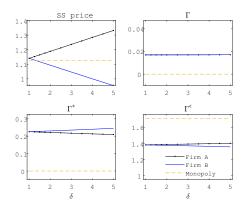
When firm A has a chance to set its price at t, it sets \bar{p}_t^A to maximize

$$\max \sum_{k=0}^{\infty} \theta_{A}^{k} \beta^{k} \mathbb{E}_{t} \left[\left(1 - \frac{M_{t+k}}{\bar{p}_{t}^{A}} \right) \theta_{B}^{k+1} \left(\frac{\delta - \frac{\log \bar{p}_{t}^{A} - \log \bar{p}_{t-1}^{B}}{\tau}}{2} \right) \right] \cdot \frac{\Lambda_{t+k}}{\Lambda_{t}} \frac{P_{t}}{P_{t+k}} \frac{M_{t+k}}{M_{t}} + \sum_{k=0}^{\infty} \theta_{A}^{k} \beta^{k} \mathbb{E}_{t} \left[\left(1 - \frac{M_{t+k}}{\bar{p}_{t}^{A}} \right) \sum_{k'=0}^{k} (1 - \theta_{B}) \theta_{B}^{k-k'} \left(\frac{\delta - \frac{\log \bar{p}_{t}^{A} - \log \bar{p}_{t+k'}^{B}}{\tau}}{2} \right) \right] \cdot \frac{\Lambda_{t+k}}{\Lambda_{t}} \frac{P_{t}}{P_{t+k}} \frac{M_{t+k}}{M_{t}}.$$

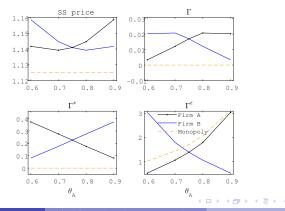

$$(12)$$

Note that \bar{p}_t^A affects $\bar{p}_{t+k'}^B$ for $k' = 1, 2, \cdots$. Steady-state price (markup) increases by dynamic strategic complementarity if $\theta > 0$.

2021 29/33


IRF under asymmetry

- Strategic pricing increases price stickiness, amplifying the real effect of monetary policy.
- Asymmetry of price stickiness further increases it.
 - Not in monopolistic competition
- Asymmetry of competitiveness further increases it, although the asymmetry of competitiveness per se hardly matters.


Policy function under asymmetry in competitiveness δ

- Increase in $\delta \rightarrow$ firm A more competitive
- Firm A cares firm B less ($\Gamma^* \downarrow$), while firm B cares firm A more ($\Gamma^* \uparrow$).
- In aggregate, this asymmetry has almost no effect.

Policy function under asymmetry in price stickiness θ

- Change θ^A and θ^B so that $(\theta^A + \theta^B)/2 = 0.75$.
- Low θ^A (more flexible) and high θ^B (stickier)
 - Firm A cares firm B more $(\Gamma^* \uparrow)$, while firm B cares firm A less $(\Gamma^* \downarrow)$.
 - * Firm A makes staggered pricing. Firm B hardly revises price anyway.
 - Gap of Γ^{ε} between monopoly and firm A increases when θ decreases.
 - * Because firm A cares firm B, while firm B does not care firm A much.
 - In aggregate, this asymmetry increases stickiness.

Olig Comp, Price Rigid, and Mon Pol

Final Thoughts

- Large firm's pricing
- Competitive
 - Large market share
 - Little need to pay attention to rivals. Aggressive price increase.
- However, low nominal price stickiness
 - ▶ When I raise price, rivals may not follow quickly...
 - Greater need to pay attention to rivals. Small price increase.
- In aggregate, nominal stickiness increases.