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Abstract

This paper explores a hypothesis that the macroeconomic expectations may af-

fect the aggregate productivity, even in the business cycle frequencies. The economy

consists of the layered markets, in which firms engage in monopolistic competition

with free entry. The firms form the division of labor and produce varieties of goods,

while the number of varieties determines the productivity. The number of varieties

in one market is determined in equilibrium, given the expectations on the number

of varieties in another market. Coordination of the expectations between the layered

markets generates multiple equilibria, corresponding to high and low productivity. A

policy that works on the expectations may change economic organizations and the

observed state of technology.

Key words: Division of labor, monopolistic competition, multiple equilibria.

JEL Classification: E23, E30, O40.

1 Introduction

The division of labor is limited by the

extent of the market.

Adam Smith (1776) Wealth of Nations

What are the sources of productivity shocks in business cycle frequencies? Can pessimistic

and optimistic expectations affect the productivity by changing actions and coordination

of economic agents? We study a theoretical hypothesis of endogenous changes in the

aggregate productivity in response to macroeconomic expectations. We consider the model

of the Dixit-Stiglitz monopolistic competition, where the productivity is determined by

the number of the varieties of goods that can vary in accordance with the number of

∗I thank Tomohiro Hirano, Ryuichiro Izumi, and Yuta Takahashi for their insightful comments. This

is an incomplete version and all errors are mine.
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firms’ entries. Multiple equilibria can emerge in the economy with layered markets of

monopolistic competition.

The number of varieties can be interpreted as a degree of specialization or the division

of labor. The extent of the market in the well-known theorem of Adam Smith quoted in

the above epigraph is also represented by the number of varieties in the demand market.

In this paper, we formalize Smith’s theorem as a two-way interaction that the number

of varieties in the demand market (i.e., the extent of the market) affects the number of

varieties in the supply market (the division of labor) and vice versa. This interaction thus

affects the aggregate productivity.

The key innovation of the model is the layered-market structure in which several mar-

kets with monopolistic competition are layered and agents in one market take the prices

and the numbers of varieties in other markets as given. In the rational expectations equi-

librium in the layered markets, multiple equilibria can emerge. In one equilibrium, a

large number of firms enter, given the expectations that the number of varieties in the

other market is large, because an increase in the number of varieties in the other market

raises the profits of entrants in this market under the layered production. As a result, the

numbers of varieties are large in both markets and the aggregate productivity is high. In

another equilibrium, the numbers of varieties are small in both markets and the produc-

tivity is low. Thus, fluctuations in the macroeconomic expectations in the layered markets

can possibly change the observed productivity frequently over time.

Our theory demonstrates that the equilibrium switching between the multiple equilib-

ria may cause the changes in productivity, and it sheds some new lights on the relation-

ship between the expectations and the productivity: the optimistic expectations on the

prospects of the economy may raise the aggregate productivity, whereas the pessimism

may have the opposite effect.

The rest of the paper is organized as follows. The literature is reviewed in Section

2. The setup of the model is provided in Section 3. The multiplicity and stability of the

equilibria are characterized in Section 4. Section 5 provides the concluding remarks.

2 Literature

Our work is related to the literature of endogenous changes in productivity in the medium-

term business cycles that is analyzed by Evans, Honkapohja, and Romer (1998) and Comin

and Gertler (2006). Evans et al. use the Dixit-Stiglitz model of monopolistic competition

to formulate that an increase in the number of varieties of capital goods increases the ag-

gregate productivity. Multiple equilibria arise from the intertemporal expectations on the

future returns on investments in their model, while in our model multiplicity arises from

the simultaneous expectations on the contemporaneous actions of other agents. “Animal
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spirits” affect the investment decisions in Evans et al., whereas the optimistic or pes-

simistic expectations affect simultaneous division of labor in our model. While Evans et

al. explain the medium-term shift of the trend growth rate as a shift between high and low

growth equilibria, the negative productivity shocks in the short-run are left unexplained.

In our model, a decrease in the productivity in the short-run can be expressed as a shift

from the high to low equilibrium. Comin and Gertler also use the model of Dixit-Stiglitz

monopolistic competition to show that endogenous R&D investment, driven by exogenous

shocks on wage markups, changes the number of varieties, leading to an endogenous pro-

ductivity fluctuations in the medium-term. In their model, productivity is not driven by

the expectations, but by the fundamental shocks, though it is non-technical, while the

productivity is expectations-driven in our model. Though our model does not allow the

(wage) markups to vary as in Comin and Gertler (2006), it would be easily extended so

as to replicate the countercyclical markups.1

The vast literature on the monopolistic competition and the aggregate demand exter-

nality (e.g., Blanchard and Kiyotaki [1987], Farhi and Werning [2016]) is related to this

paper, while the literature focus on the external effect of the nominal rigidities on the ag-

gregate demand, and does not focus on the productivity. Our model is a real model that

does not include nominal rigidities, and focuses on the the external effect of the market

size on the entry decisions of firms in the other markets.

The literature on coordination failure and multiple equilibria is closely related (Cooper

and John [1988]). There is a strategic complementarity between the numbers of varieties

in the layered markets in our model. In our model, the complementarity in the firm entry

generates multiplicity in productivity, while multiple equilibria in the existing literature,

e.g., Kiyotaki (1988) and Gali (1996), correspond to the multiplicity in investments, not

in productivity.

Finally, our model is related to the long tradition of the literature on the division of

labor and the extent of the market (e.g., Stigler [1951]). The original theorem of Adam

Smith cited in the epigraph is an impressive statement that the size of the demand deter-

mines the productivity of the supply, represented by the division of labor, which must be a

recurrent observation in economic progress in all times and places. The recent literature,

e.g., Becker and Murphy (1992), however, emphasize the importance of coordination costs

and general knowledge in forming the division of labor, implying that the nature of the

supply side is crucial. Our model integrates both insights: the size of the demand affects

1As Comin and Gertler (2006) did, we can assume that the elasticity of substitutions among the

intermediate goods is decreasing in the number of varieties. In this case, the markup is low (high) in the

high (low) productivity equilibrium, which is associated with a large (small) number of varieties. Thus, in

the extended model, the markup would be countercyclical. We could introduce the wage markup in the

similar manner to show it is also countercyclical.
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the division of labor in the supply market, whereas the productivity in the supply mar-

ket, which can be interpreted as reduction in coordination costs or an increase in general

knowledge, raises the division of labor in the demand market.

3 Model

We consider a static model of the following layered production of Dixit-Stiglitz technology.

Given the expectations on prices and the numbers of varieties in the layered markets, firms

decide whether to enter the markets. For clarity of analysis, we assume that there are three

layers of production in the economy: L1, L2, and L3.

L1 is the layer for production of the final goods, Y , from the downstream intermediate

inputs, yi, i ∈ [0, N ], where N is the number of varieties of the downstream intermediate

goods, which is endogenously determined in equilibrium. L2 is the layer for production

of the downstream intermediate goods, yi, from the upstream intermediate inputs, zji,

j ∈ [0,M ], where M is the number of varieties, which is also endogenously determined in

equilibrium. L3 is the layer for production of the upstream intermediate goods, zji, from

labor input, lji. The consumer’s problem is

max lnC + γ ln(1− L), (1)

s.t. C ≤ wL+ Π + c, (2)

where C is consumption, w is the wage rate, L is the labor supply, Π is the total dividend

from the firms, and c is an endowment, which is given exogenously. In equilibrium,

C = Y + c,

L =

∫ N

0

∫ M

0
ljididj,

Π =

∫ N

0
πyidi+

∫ M

0
πzjdj,

where πyi is the profit of a producer of the downstream goods, while πzj is that of the

upstream goods.

3.1 Final goods production (L1)

Production technology is

Y =

(∫ N

0
y
ε−1
ε

i di

) ε
ε−1

.

Cost minimization problem is

min
yi

∫ N

0
piyidi, s.t.

(∫ N

0
y
ε−1
ε

i di

) ε
ε−1

≥ Y,
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where pi is the price of yi. The solution is

yi =
(pi
P

)−ε
Y,

where P ≡
(∫ N

0
p1−εi di

) 1
1−ε

.

By definition, P = N−
1
ε−1 p in the symmetric equilibrium.

3.2 Downstream intermediate goods production (L2)

Production technology for yi is

yi =

(∫ M

0
z
σ−1
σ

ji dj

) σ
σ−1

.

Cost minimization problem is

min
zji

∫ M

0
qjzjidj, s.t.

(∫ M

0
z
σ−1
σ

ji dj

) σ
σ−1

≥ yi,

where qj is the price of the j-th goods, zji. The solution is

zji =

(
qj
Q

)−σ
yi,

where Q ≡
(∫ M

0
q1−σj dj

) 1
1−σ

.

In the symmetric equilibrium, Q = M−
1

σ−1 q by definition, and the profit maximization

for a downstream intermediate producer is

πyi = max
pi

piyi −
∫ M

0
qjzjidj

= max
p

py(p)−Mq

(
q

Q

)−σ
y(p)

= max
p

Y

P ε

[
p1−ε −M q1−σ

Q−σ
p−ε
]
,

which can be denoted as πy by omitting the subscript i in the symmetric equilibrium. The

solution is

p =

(
ε

ε− 1

)
qM

(
q

Q

)−σ
. (3)

The equilibrium value of N is determined by the free entry condition:

πy = κ,

where κ is the fixed cost for establishing a new firm, in terms of the final goods. We

assume for simplicity that the fixed cost κ is not a dead-weight loss, but a transfer to the

houeshold, so that the total output Y is not affected by the total payment of the fixed

cost κN in equilibrium.
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3.3 Upstream intermediate goods production (L3)

Production technology is

zji = lji,

where lji is the labor input. Given the demand zji = (qj/Q)−σyi, an upstream intermediate

producer solves the following problem in the symmetric equilibrium:

πzj = max
qj

qj

∫ N

0
zjidi− w

∫ N

0
ljidi

= max
q

(∫ N

0
yidi

)(
q

Q

)−σ
(q − w),

which can be denoted as πz by omitting the subscript j in the symmetric equilibrium. The

solution in the symmetric equilibrium is q = σ
σ−1w, which implies

Q = M−
1

σ−1
σ

σ − 1
w,

zji = lji =

(
q

Q

)−σ ( p
P

)−ε
Y = M−

σ
σ−1N−

ε
ε−1Y.

Similar to the downstream market, the equilibrium value of M is determined by the free

entry condition:

πz = κ,

where κ is not a dead-weight loss, but is a transfer from the firm to the households.

4 Equilibrium

In the symmetric equilibrium, we have p = PN
1
ε−1 , and q = QM

1
σ−1 . Given the solution

for the upstream firm q = σ
σ−1w, the solution for the downstream firm (3) implies that

the price of downstream intermediate good is

p =

(
ε

ε− 1

)(
σ

σ − 1

)
wM−

1
σ−1 ,

which then implies

P =

(
ε

ε− 1

)(
σ

σ − 1

)
wM−

1
σ−1N−

1
ε−1 . (4)

The profit of the upstream intermediate producer is

πz =
wY

(σ − 1)N
1
ε−1M

σ
σ−1

.

The profit of the downstream intermediate producer is

πy =
σwY

(ε− 1)(σ − 1)N
ε
ε−1M

1
σ−1

.
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The total labor supply is

L =

∫ N

0

∫ M

0
ljidjdi = M−

1
σ−1N−

1
ε−1Y.

Therefore, the aggregate production can be written as

Y = M
1

σ−1N
1
ε−1L, (5)

implying that the aggregate productivity is M
1

σ−1N
1
ε−1 . Consumer’s utility maximization

implies

γ(Y + c)

1−M−
1

σ−1N−
1
ε−1Y

= w (6)

Since P is the unit cost of Y , we impose the restriction:

P = 1, (7)

and use Y as the numeraire. Then, (4) implies that

w =

(
ε− 1

ε

)(
σ − 1

σ

)
M

1
σ−1N

1
ε−1 . (8)

Thus, (6) implies

Y = ξM
1

σ−1N
1
ε−1 − η, (9)

where

φ ≡
(
ε− 1

ε

)(
σ − 1

σ

)
, ξ ≡ φ

φ+ γ
, and η ≡ γc

φ+ γ
.

The profit of upstream producer can be rewritten as

πz =
φξ

σ − 1
N

1
ε−1M

2−σ
σ−1 − ηφ

σ − 1
M−1, (10)

and also the profit of downstream producer can be rewritten as

πy =
σφξ

(ε− 1)(σ − 1)
N

2−ε
ε−1M

1
σ−1 − σηφ

(ε− 1)(σ − 1)
N−1. (11)

The equilibrium values of the varieties, (M, N), are determined by the free entry condition:

πz = κ and πy = κ.

4.1 Multiple equilibria

We set the parameter restrictions on the elasticity of substitution, ε and σ:

ε > 2, σ > 2, and (ε− 2)(σ − 2)− 1 > 0. (12)
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This restriction is plausible as the elasticity of substitution among intermediate goods is

set at around 6 in the New Keynesian literature (Nutahara [2021], Khan, Phaneuf and

Victor [2020]). This value makes the markup rate around 20% in the New Keynesian

models, and the micro evidence shows that the industry-level markup rates are actually

around 20% (De Loecker and Warzynski [2012]).

For simplicity of exposition, we change the variables and define

m ≡M
1

σ−1 ,

n ≡ N
1
ε−1 .

Note that the aggregate productivity is mn, as the aggregate production can be written

as Y = mnL. Free entry conditions, πz = κ and πy = κ, are rewritten as

πz(m,n) ≡ anm2−σ − bm1−σ = κ, (13)

πy(m,n) ≡ σ

ε− 1
[amn2−ε − bn1−ε] = κ, (14)

where

a ≡ φξ

σ − 1
, and b ≡ ηφ

σ − 1
=

γφc

(σ − 1)(φ+ γ)
.

The competitive equilibrium in this economy is the set of prices (P = 1, Q, p, q, w) and

quantities (Y, y, z, l,m, n) such that the quantities solve for the consumer’s problem and

the profit maximization for the firms in the upstream and downstream markets, and all

markets clear. The equilibrium values of all variables are determined, once the pair (m,n)

is given. Thus, for brevity, we call (m,n) the equilibrium in what follows.

Definition 1. The equilibrium is the pair (m,n) that solves (13) and (14).

We have to note that the free entry condition implies that if πz < κ, then no firms

enter the upstream market and m becomes zero, and that if πy < κ, then no firms enter

the downstream market and n becomes zero. Thus, there may exist a singular equilib-

rium, which corresponds to the corner solution, i.e., m = n = 0. To avoid unnecessary

complications in our analysis, we simply exclude the corner solution from the equilibrium

by assuming the following.

Assumption 1. There exists a shared belief in this economy that in equilibrium there

exist non-zero entries both in the upstream and downstream markets, i.e.,

m > 0, and n > 0. (15)

The following proposition demonstrates the multiplicity of the equilibria.
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Proposition 1. Suppose that the parameters satisfy the condition:

H(m̃) < 0, (16)

where

H(m) ≡ b

a
− (ε− 2)(σ − 2)− 1

(ε− 1)(σ − 1)

(
σ

ε− 1

) 1
ε−1

m
ε+σ−2
ε−1 , (17)

m̃ =


(
ε+σ−2
ε−1

)(
σ
ε−1

) 1
ε−1

a

(σ − 1)κ


ε−1

(ε−2)(σ−2)−1

. (18)

Then, there exist two equilibria, (ml, nl) and (mh, nh), where ml < mh and nl < nh. If

H(m̃) = 0, the equilibrium is unique. If H(m̃) > 0 there exists no equilibrium.

The condition for multiplicity (16) is satisfied if the outside endowment, c, is sufficiently

small. As c becomes small, the parameter b becomes small proportionately, while all other

parameter values are fixed, (16) is obviously satisfied.

All proofs of propositions are given in the Appendix. The outline of the proof is

the following. In the Appendix, we define a continuously differentiable function F (m),

where the solution to F (m) = 0 equals the solution to (13) and (14). F (m) satisfies that

F (0) = b
a > 0 and limm→∞ F (m) = ∞. In the Appendix, it is shown that F ′(m) = 0

has two solutions m = 0, m̃, and F ′(m) < 0 for 0 < m < m̃ and F ′(m) > 0 for

m > m̃. Thus we can say that F (m̃) is the minimum value of F (m). It is also shown

that H(m̃) = F (m̃). Thus, the condition H(m̃) < 0 means that the minimum value of

F (m) at m̃ > 0 is negative, which implies, together with the fact that F (0) > 0 and

limm→∞ F (m) =∞, that F (m) = 0 has two solutions.

Intuitive explanation: When the productivity in the downstream market (n) is ex-

pected to be small, then the demand for the upstream goods is expected to be small.

Thus, fewer firms enter the upstream market because the expected profit πz is small, and

division of labor is established to a lesser degree (i.e., m is small). On the other hand,

given the expectations of the low productivity in the upstream market (m) that implies

the scarcity of the upstream goods, fewer firms enter the downstream market (i.e., n is

small), because the expected profit πy is small. Thus, the equilibrium with small m and

n is supported by the rational expectations. As the output Y is produced from labor L

by the aggregate production function (5), i.e., Y = mnL, the aggregate productivity of

the economy (mn) is low in this equilibrium. There exists another equilibrium, which is

described as follows. Given the productivity in the downstream market (n) and hence the

size of the demand is expected to be large, more firms enter the upstream goods market

(i.e., m is large), whereas given the expectations of the high productivity in the upstream
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market (m) and hence the abundance of the upstream goods, more firms enter the down-

stream market (i.e., n is large). Thus, the equilibrium with large m and n is also supported

by the rational expectations. The aggregate productivity is high in this equilibrium.

4.2 Nash stability of the equilibria

For conveniece of notation, we denote an equilibrium by (me, ne). We have shown the

multiplicity of the equilibria, (me, ne) = (ml, nl) and (me, ne) = (mh, lh). Next, we need

to examine the stability of them. We define the following concept of the Nash stability.

Definition 2. The equilibrium, (me, ne), is Nash stable, if the inequalities, ∂
∂mπz(me, ne) <

0 and ∂
∂nπy(me, ne) < 0, are both satisfied.

This condition means that the firms have no incentive to increase or decrease the

number of firms in the upstream market m from me by changing their entry decisions,

given the number of firms in the downstream market ne, and vice versa. Of course the Nash

stability defined above is connected with the concept of the Nash equilibrium. Although m

or n are not directly chosen by the firms, their choice whether to enter the market decides

m and n indirectly. In this sense, we can say that the firms in the upstream (downstream)

market choose m (n). The intuition of the Nash stability can be explained as follows: The

“equilibrium response” of the upstream (downstream) firms is to choose m = me (n = ne),

in response to the downstream (upstream) firms’ choice ne (me). To clarify this intuition,

we define the equilibrium response of the firms as follows.

The equilibrium response of the firms: Figure 1 shows the graph of πz(m,n) = κ,

or (13), in the (m,n)-space.
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n

πz (m, n) = κ

m

0         

Figure 1

n’
Rm(n’)

We define in what follows the equilibrium response m = Rm(n′) of the upstream firms

to the fixed value of n = n′. We first define lm(n′) and hm(n′) as the two values of m that

solve πz(m,n
′) = κ, where lm(n′) ≤ hm(n′). We show that Rm(n′) = hm(n′) as follows.

Since πz(m,n) is continuously differentiable, we have the following lemma:

Lemma 2. Given a fixed value of n′, the equation πz(m,n
′) = κ has at most two solu-

tions, lm(n′) and hm(n′), with lm(n′) ≤ hm(n′), while there is no solution if κ is large

enough. πz(m,n
′) satisfies that πz(m,n

′) < κ for m < lm(n′) and m > hm(n′), and

πz(m,n
′) > κ for lm(n′) < m < hm(n′). ∂

∂mπz(m,n
′) satisfies that ∂

∂mπz(lm(n′), n′) > 0

and ∂
∂mπz(hm(n′), n′) < 0 if lm(n′) < hm(n′), and ∂

∂mπz(hm(n′), n′) = 0 if lm(n′) =

hm(n′).

Given n′, the free entry condition implies that only m = lm(n′) or m = hm(n′) can be the

equilibrium response of the firms in the upstream market. Under the (implicit) assumption

that a firm is an atomic agent, a firm’s deviation of the entry decision does not affect the

value of m at all and, therefore, both lm(n′) and hm(n′) can be the equilibrium values of

m. Here, to consider the stability in an more realistic environment, we add the following

assumption that a firm’s entry decision infinitesimally affects the value of m:

Assumption 2. If a firm enters the upstream market, the number of firms changes from

m to m + δm, where δm > 0 is an infinitesimally small number. If a firm enters the

11



downstream market, the number of firms changes from n to n + δn, where δn > 0 is an

infinitesimally small number.

Under this assumption, m = lm(n′) is unstable because new entry of firms inevitably occurs

at m = lm(n′) as an entry of a new firm gives the entrant a positive profit: πz(lm(n′) +

δm, n
′)−κ ≈ ∂

∂mπz(lm(n′), n′)× δm > 0. On the other hand, m = hm(n′) is stable because

no new entry occurs at this point as a new entry of a firm would give the entrant a negative

profit: πz(hm(n′)+δm, n
′)−κ ≈ ∂

∂mπz(hm(n′), n′)×δm < 0. Thus, the equilibrium response

of m to the given value of n′ is only hm(n′), under Assumption 2. We have shown that

Rm(n′) = hm(n′),

if there exists the solution to πz(m,n
′) = κ, and Rm(n′) does not exist otherwise. Note

that the free entry implies that there would exist the corner solution that corresponds to

πz < κ, i.e., Rm(n′) = 0, which we eliminate by Assumption 1. Similar argument holds

for the downstream market. Figure 2 shows the graph of πy(m,n) = κ, i.e., (14).

n

πy (m, n) = κ

Rn(m’)

0 m’ m

Figure 2

Lemma 3. Given a fixed value of m′, the equation πy(m
′, n) = κ has at most two solu-

tions, ln(m′) and hn(m′), with ln(m′) ≤ hn(m′), while there is no solution if κ is large

enough. πy(m
′, n) satisfies that πy(m

′, n) < κ for n < ln(m′) and n > hn(m′), and

πy(m
′, n) > κ for ln(m′) < n < hn(m′). ∂

∂nπy(m
′, n) satisfies that ∂

∂nπy(m
′, ln(m′)) > 0

and ∂
∂nπz(m

′, hn(m′)) < 0 if ln(m′) < hn(m′), and ∂
∂nπy(m

′, hn(m′)) = 0 if ln(m′) =

hn(m′).
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Under Assumption 2, the equilibrium response n of the downstream firms to the fixed

value of m′, Rn(m′), is given by

Rn(m′) = hn(m′),

if there exists the solution to πy(m
′, n) = κ, and Rn(m′) does not exist otherwise. Figure

3 combines the graphs of (13) and (14) to show m = Rm(n) and n = Rn(m). There are

two intersections of πz(m,n) = κ and πy(m,n) = κ, which are the equilibria, (me, ne) =

(ml, nl) and (mh, nh).

n                                          πz (m, n) = κ

πy (m, n) = κ

(mh, nh)

(ml, nl)

0                                                            m

Figure 3

The above definition of the Nash stability can be rewritten as follows:

Definition 2′. An equilibrium (me, ne) is Nash stable, if the equilibrium responses in the

both markets satisfy that Rm(ne) = me and Rn(me) = ne.

Proposition 4. In the case of multiple equilibria, both (ml, nl) and (mh, nh) are Nash

stable, if the parameters satisfy the following condition:

(ml)
ε+σ−2
ε−1 >

(σ − 1)b

(σ − 2)
(

σ
ε−1

) 1
ε−1

a

, (19)

(nl)
ε+σ−2
ε−1 >

(ε− 1)b

(ε− 2)
(
ε−1
σ

) 1
σ−1 a

. (20)

Can these conditions, (19) and (20), be satisfied for a reasonable range of parameters?

The answer is yes, and we construct an example of a range of parameters as follows.
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We consider various values for parameter c, the outside endowment, given that all other

parameter values are fixed. Suppose that c is chosen so that the value of parameter b

satisfies H(m̃) = 0. Note that the value of c affects the value of b only, and does not affect

any other parameters. Denote the value of b that satisfies H(m̃) = 0 by bm. For b < bm,

condition (16) is satisfied and the multiple equilibria emerge. We also consider the value

of b (and c) that satisfies (19) and (20), given that the values of all other parameters are

fixed. As we show in the Appendix, there exist bz and by such that (19) is satisfied for

b > bz and (20) is satisfied for b > by. We can prove the following lemma.

Proposition 5. There exists positive real numbers, bm, by, and bz, that satisfy 0 <

max{bz, by} < bm, and for b ∈ (max {bz, by}, bm), there exist two Nash stable equilib-

ria, (ml, nl) and (mh, nh). For b ∈ (0,max{bz, by}), there exists only one Nash stable

equilibrium (mh, nh).

This proposition can be graphically interpreted in the (m,n)-space as follows: For b ∈
(max{bz, by}, bm), the functions m = Rm(n) and n = Rn(m) have two intersections,

which are (ml, nl) and (mh, nh), and both of them are Nash stable (Figure 3); For b ∈
(0,max{bz, by}), the functions m = Rm(n) and n = Rn(m) have only one intersection,

which is (mh, nh).

As the variables (m,n) are flow variables such as consumption in the growth model,

any positive values can be chosen and the economy instantaneously jumps to one of the

possible equilibria. Thus, under Assumption 2, the Nash stable equilibrium is the only

equilibrium that can be realized in the model, and Proposition 5 says that there exist two

equilibria for a range of the parameter values.

Numerical example: The case where ε = σ = 6 is shown in the Appendix. In this

case,

max{by, bz}
bm

= 0.882.

For the outside endowment c that makes b satisfy 0.882 × bm < b < bm, there exist two

Nash-stable equilibria that correspond to high and low productivities.

5 Conclusion

We have theoretically shown that the macroeconomic expectations may affect the aggre-

gate productivity. Changes in economic organizations that determine the productivity

such as the division of labor in one market are induced by changes in the expectations on

the extent of the other markets. These changes can be modeled as switching among the

multiple equilibria due to sunspot shocks that may occur in the business cycle frequencies.
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The economy consists of layered markets, in which firms engage in monopolistic com-

petition with free entry. They form the division of labor that determines the productivity,

which is indicated by the number of varieties of the intermediate goods in the market. The

number of varieties in one market is determined in equilibrium, given the expectations on

the number of varieties in another market. As a result of coordination of the expectations

on the numbers of varieties between the layered markets, there emerge multiple equilibria,

corresponding to high and low productivity, respectively: More (Less) firms engage in the

division of labor and the number of varieties in the market becomes large (small), given

the expectations that the number of varieties in the other market is large (small). This

is because under the layered production, the profits of entrants in the market is larger

(smaller), as the number of varieties in the neighboring market is larger (smaller).

It is confirmed that the multiplicity is robustly observed for a wide range of parameter

values. This model provides a theoretical hypothesis that the technology shocks in the

business cycles may be manifestation of the equilibrium switching due to changes in the

macroeconomic expectations. Policy implications could be broad, since our result implies

that a policy that works on the expectations may change the economic fundamentals and

the observed state of technology. That is, the optimistic or pessimistic expectations may

change the aggregate productivity in a positive or negative directions. Awaiting future

research is to further clarify the nature of the expectations-driven productivity and better

control the business cycles and economic growth.
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Appendix

Proofs of propositions are given in this Appendix.
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Proof of Proposition 1

What is to show is that there exits two solutions to simultaneous equations (13) and (14).

These equations imply mσ−1 = ε−1
σ nε−1, and (13) can be rewritten as F (m) = 0, where

F (m) ≡ κ

a
mσ−1 −

(
σ

ε− 1

) 1
ε−1

m
ε+σ−2
ε−1 +

b

a

The parameter restriction (12) implies that F ′(m) = 0 has two solutions m = 0, and m̃,

and that F ′(m) < 0 for 0 < m < m̃ and F ′(m) > 0 for m > m̃. Therefore, F (m̃) =

minm≥0 F (m). The necessary and sufficient condition for the existence of two solutions

for (13) and (14) is F (m̃) < 0. The first-order condition F ′(m̃) = 0 that holds at m = m̃

implies that F (m̃) = H(m̃).

Proof of Lemma 2

Since

∂

∂m
πz(m,n

′) = m−σ[(σ − 1)b− (σ − 2)an′m],

πz(m,n
′)−κ is increasing in m for m ∈ (0, (σ−1)b

(σ−2)an′ ), and decreasing in m for m > (σ−1)b
(σ−2)an′ .

The lemma follows from this fact straightforwardly.

Proof of Lemma 3

Since

∂

∂n
πy(m

′, n) =
σ

(ε− 1)nε
[(ε− 1)b− (ε− 2)am′n],

πy(m
′, n)− κ is increasing in n for n ∈ (0, (ε−1)b

(ε−2)am′ ), and decreasing in n for n > (ε−1)b
(ε−2)am′ .

The lemma follows from this fact straightforwardly.

Proof of Proposition 4

The condition for the Nash stability is that both ∂
∂mπz(me, ne) < 0 and ∂

∂nπy(me, ne) < 0

are satisfied at the equilibrium values of (me, ne). The definitions of πz(m,n) and πy(m,n)

in (13) and (14), together with mσ−1
e = ε−1

σ nε−1e , imply that these inequalities can be

rewritten as

(me)
ε+σ−2
ε−1 >

(σ − 1)b

(σ − 2)
(

σ
ε−1

) 1
ε−1

a

,

(ne)
ε+σ−2
ε−1 >

(ε− 1)b

(ε− 2)
(
ε−1
σ

) 1
σ−1 a

.

As we know that ml < mh and nl < nh, it is straightforward that (ml, nl) and (mh, nh)

are both Nash stable if (19) and (20) are satisfied.
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Proof of Proposition 5

Here we regard b as a variable and all other parameters are fixed. We redefine F (m) as a

function of m and b, and denote it by F (m, b):

F (m, b) ≡ κ

a
mσ−1 −

(
σ

ε− 1

) 1
ε−1

m
ε+σ−2
ε−1 +

b

a

The condition (16) can be rewritten as

m̃ > m∗(b),

where

m∗(b) ≡

 (ε− 1)(σ − 1)b

[(ε− 2)(σ − 2)− 1]
(

σ
ε−1

) 1
ε−1

a


ε−1

ε+σ−2

.

This condition for b can be rewritten as b < bm, where bm is the solution to m̃ = m∗(b),

that is,

bm =
[(ε− 2)(σ − 2)− 1]

(
σ
ε−1

) 1
ε−1

a

(ε− 1)(σ − 1)
m̃

ε+σ−2
ε−1 .

The condition (19) can be rewritten as

ml(b) > m∗∗(b),

where ml(b) is the smaller solution to F (m, b) = 0, and

m∗∗(b) ≡

 (σ − 1)b

(σ − 2)
(

σ
ε−1

) 1
ε−1

a


ε−1

ε+σ−2

.

Obviously, m∗∗(b) < m∗(b) for all b > 0. For b = bm, the equation F (m, bm) = 0 has a

unique solution and ml(bm) = mh(bm) = m∗(bm) = m̃ and m∗∗(bm) < m∗(bm) = m̃. Since

F (m̃, b) is the minimum value of F (m, b), given any b, and F (m̃, bm) = 0, we know

F (m∗∗(bm), bm) > 0. (21)

Now we define bz as the solution to F (m∗∗(b), b) = 0. Thus,

bz = [(σ − 2)κ]
−(ε+σ−2)

(ε−2)(σ−2)−1

(σ − 2)
(

σ
ε−1

) 1
ε−1

a

σ − 1


(ε−1)(σ−1)

(ε−2)(σ−2)−1

.

The parameter restriction (12) implies that

F (m∗∗(b), b) > 0 ⇐⇒ b > bz. (22)
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The conditions (21) and (22) implies that

bz < bm. (23)

For b ∈ (bz, bm), we have F (m∗∗(b), b) > 0 and m∗∗(b) < m∗∗(bm) < m∗(bm) = m̃. Since

F (m̃, b) < 0 is the minimum value of F (m, b), the fact that F (m∗∗(b), b) > 0 implies that

m∗∗(b) < ml(b) < m̃. Thus conditions (16) and (19) are satisfied for b ∈ (bz, bm).

The condition (20), together with mσ−1 = ε−1
σ nε−1, can be rewritten as

ml(b) > m∗∗∗(b),

where

m∗∗∗(b) ≡

 (ε− 1)b

(ε− 2)
(

σ
ε−1

) 1
ε−1

a


ε−1

ε+σ−2

.

Obviously, m∗∗∗(b) < m∗(b) for all b > 0. Thus, for b = bm, m∗∗∗(bm) < m∗(bm) = m̃.

Since F (m̃, b) is the minimum value of F (m, b), given any b, and F (m̃, bm) = 0, we know

F (m∗∗∗(bm), bm) > 0. (24)

Now we define by as the solution to F (m∗∗∗(b), b) = 0. Thus,

by =

[
σ

(ε− 1)(ε− 2)κ

] (ε+σ−2)
(ε−2)(σ−2)−1

(ε− 2)
(
ε−1
σ

) 1
σ−1 a

σ − 1


(ε−1)(σ−1)

(ε−2)(σ−2)−1

.

The parameter restriction (12) implies that

F (m∗∗∗(b), b) > 0 ⇐⇒ b > by. (25)

The conditions (24) and (25) implies that

by < bm. (26)

For b ∈ (by, bm), we have F (m∗∗∗(b), b) > 0 and m∗∗∗(b) < m∗∗∗(bm) < m∗(bm) = m̃. Since

F (m̃, b) < 0 is the minimum value of F (m, b), the fact that F (m∗∗∗(b), b) > 0 implies that

m∗∗∗(b) < ml(b) < m̃. Thus conditions (16) and (20) are satisfied for b ∈ (by, bm).

Therefore, the open interval, (max{bz, by}, bm), is not a null set, and the condition

for multiplicity (16) and for the Nash stability for both equilibria, (19) and (20), are all

satisfied for b ∈ (max{bz, by}, bm).

18



Numerical example: In the case where ε = σ = 6, we have that

bz
bm

=
4

3× 2
2
3

= 0.8399,

by
bm

=
4×

(
3
5

) 2
3
(
5
6

) 2
5

3
= 0.8817.

Thus,
max{by ,bz}

bm
= 0.8817.

Finally, we confirm that the high equilibrium (mh, nh) is always Nash stable. For

b that satisfies b < bm, F (m̃) < 0 and there exists the high equilibrium (mh, nh) that

solves F (mh) = 0 and satisfies mh ≥ m̃. As m∗(b) > max{m∗∗(b),m∗∗∗(b)} for all b and

m̃ > m∗(b) for b < bm , it is the case that mh > max{m∗∗(b),m∗∗∗(b)} for b < bm. This

inequality implies that both ∂
∂mπz(mh, nh) < 0 and ∂

∂nπy(mh, nh) < 0 are satisfied for

b < bm, meaning that the high equilibrium (mh, nh) is always Nash stable if it exists.
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