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This appendix proves the existence of the equilibrium in the discrete version of the

model in Kobayashi, Nakajima, and Takahashi (2021).

1 Discretization of the model

Discretization: Denote the set of integers by Z, and define

∆ = {0, δ, 2δ, · · · , Nmaxδ},

∆+1 = {0, δ, 2δ, · · · , nδ[(1 + r)Nmaxδ]}.

Here, δ is the minimum unit of debt, Nmax ∈ Z is a sufficiently large integer, and nδ(x) =

nδ for x > 0, where n is the integer satisfying (n − 1)δ < x ≤ nδ. We assume that the

amount of debt, D, must be an element of ∆:

D ∈ ∆.

For each s ∈ {sL, sH}, the set of possible values of k, ∆k(s), is defined as

∆k(s) =

{
k

∣∣∣∣ ∃n ∈ Z, s.t. F (s, k)−Rk −G(s, k) = n× δ

1 + r

}
.

Then, k∗(s) and knpl(s) are defined as

k∗(s) = arg max
k∈∆k(s)

F (s, k)−Rk,

knpl(sH) = arg max
k∈∆k(sH)

F (sH , k)−Rk −G(sH , k),

knpl(sL) = arg max
k∈∆k(sL)

F (sL, k)−Rk −G(sL, k),

Here, we are assuming that the parameter values are selected such that

Gnpl(sH) > β[πHHG
npl(sH) + πHLG

npl(sL)], (1)

Gnpl(sL) > β[πLLG
npl(sL) + πLHG

npl(sH)], (2)
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where πHH = Pr(st+1 = sH |st = sH), πHL = 1− πHH , πLL = Pr(st+1 = sL|st = sL), and

πLH = 1− πLL. We also let Gnpl(s) ≡ G(s, knpl(s)).

Our arguments in this paper can be easily modified for the case where the inequalities

(1) and/or (2) do not hold.1 For each s ∈ {sL, sH}, the repayment in the NPL equilibrium,

bnpl(s), is defined by

bnpl(s) = F (s, knpl(s))−Rknpl(s)−Gnpl(s) + βE[Gnpl(s+1)|s].

The set of possible values of repayments, ∆b(s,D), depends on D:

∆b(s,D) =

{
b ∈ R

∣∣∣∣ ∃D̃+1 ∈ ∆+1 s.t. b = D − 1

1 + r
D̃+1, and b ≥ 0

}
∪ {bnpl(s)}.

At each state (s,D), b and k must satisfy

b ∈ ∆b(s,D), and k ∈ ∆k(s).

Bank’s problem: Let V e(s,D) denote the bank’s expectation regarding the value of

the firm as a function of the current state (s,D). Then, the bank’s profit maximization is

formulated as the Bellman equation:

d(s,D) = max
b∈Γ(s,D)

b+ βEd(s+1, D+1), (3)

where

Γ(s,D) ={b ∈ ∆b(s,D) | ∃k ∈ ∆k(s) s.t.

D+1 = min{Nmaxδ, nδ[(1 + r)(D − b)]},
F (s, k)−Rk − b+ βEV e(s+1, D+1) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0}.

Here, nδ[(1+r)(D−b)] = n×δ, where n is the integer that satisfies (n−1)δ < (1+r)(D−
b) ≤ nδ.

Let Σ(s,D) denote the set of (b,D+1) that solves the maximization problem in (3).

The bank then decides k and V (s,D) by solving the following problem:

V (s,D) = max
k∈∆k(s), (b,D+1)∈Σ(s,D)

F (s, k)−Rk − b+ βEV e(s+1, D+1), (4)

subject to

F (s, k)−Rk − b+ βEV e(s+1, D+1) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0.

1For this purpose, it suffices to redefine

knpl(sH) = max{k ∈ ∆k(sH)| G(s, kH) ≤ β[πHHG(sH , k) + πHLG(sH , k
npl(sL))]},

and/or

knpl(sL) = max{k ∈ ∆k(sL)| G(s, kL) ≤ β[πLLG(sL, k)+πLHG(sH , k
npl(sH))]}. In the case where knpl(s)

is redefined, bnpl(s) is also redefined as bnpl(s) = F (s, knpl(s))−Rknpl(s).
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Let Λ(s,D) denote the set of (k, b,D+1) that solves the maximization problem in (4).

Given Λ(s,D), the equilibrium values of (k, b,D+1) at (s,D) are selected as follows.

First, b(s,D) and D+1(s,D) are decided as

b(s,D) = max
(k,b,D+1)∈Λ(s,D)

b, (5)

D+1(s,D) = min{Nmaxδ, nδ[(1 + r){D − b(s,D)}]}. (6)

Then, k(s,D) is determined by

k(s,D) = max
(k,b(s,D),D+1(s,D))∈Λ(s,D)

k.

Then, the value of the firm must satisfy

V (s,D) =F (s, k(s,D))−Rk(s,D)− b(s,D) + βEV e(s+1, D+1(s,D)). (7)

Assuming rational expectations, the bank’s belief V e(s,D) should be consistent with

V (s,D) given in (7):

V (s,D) = V e(s,D). (8)

Definition of the threshold, Dmax(s): Given the existence of an equilibrium, we define

Dmax(s) as follows:

Dmax(sH) ≡ max{D ∈ ∆ |D+1(sH , D) < D}, (9)

Dmax(sL) ≡ max{D ∈ ∆ |D+1(sL, D) < Dmax(sH)}. (10)

Thus, if D exceeds Dmax(sH) at sH , the amount of debt in the next period is greater

than or equal to D. Similarly, if D exceeds Dmax(sL) at state sL, the next period’s

debt is greater than or equal to Dmax(sH). The following lemma demonstrates that if

D > Dmax(sL), then D+1(sL, D) ≥ D. As a result, once D exceeds Dmax(s) at each s, D

will never decrease.

Lemma 1. If D > Dmax(sL), then D+1(sL, D) ≥ D.

Proof. Let D > Dmax(sL), and suppose, for the sake of contradiction, that D+1(sL, D) <

D. Then,

D+1(sL, D+1(sL, D)) < D+1(sL, D).

However, since D > Dmax(sL), D+1(sL, D) ≥ Dmax(sH). By the definition of Dmax(sH),

we have

D+1(sH , D+1(sL, D)) ≥ D+1(sL, D).
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We also have

D+1(sH , D+1(sL, D)) ≤ D+1(sL, D+1(sL, D)).

Combining these inequalities, we obtain

D+1(sL, D) ≤ D+1(sH , D+1(sL, D)) ≤ D+1(sL, D+1(sL, D)) < D+1(sL, D),

which is a contradiction.

We can confirm that Dmax(s) < ∞ as follows. For D > D̄, it is obvious that, for any

b ≤ maxk{F (s, k)−Rk}, the debt never decreases over time, i.e., D+1 = (1+r)(D−b) > D.

Thus, there exists Dmax(sH) such that Dmax(sH) ≤ D̄ <∞. As Dmax(sH) <∞, it follows

from (9)-(10) that Dmax(sL) ≤ Dmax(sH).

2 Equilibrium of the discrete model

In this section, we assume that the interest rate in the debt contract is equal to the market

rate for the risk-free bond:

β =
1

1 + r
. (11)

As discussed in Section ??, it simplifies the analysis on the equilibrium dynamics in our

model. Note, however, that even under assumption (11), the bank can still make the

expected payoff nonnegative, by adjusting the initial amount of the principal of the loan.2

In Sections 2.1, 2.2, and 2.3, we characterize the equilibrium, taking the existence of an

equilibrium as given. In Section 2.4, we prove the existence. In Section ?? we show

numerical results. There, we also consider the case where β > 1
1+r and confirm the

robustness of the results.

2.1 The repayment in the case of small D

Two working assumptions: In Sections 2.1 and 2.2, we proceed by making the fol-

lowing two assumptions. They are verified later in Lemma 12 in Section 2.4. All proofs

are provided in the Appendix.

2 The initial principal of the debt D0 may not be fully repaid in equilibrium, so that the expected PDV

of repayments, d(s0, D0) ≡ E0

∑∞
t=0 β

tbt, may be smaller than D0. Let I0 denote the initial amount of

lending. The zero profit condition for the bank is satisfied if the contractual amount of initial debt, D0, is

set as

I0 = d(s0, D0).
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Assumption 1. For D < Dmax(s), V e(s,D + δ) ≤ V e(s,D)− δ.

Assumption 2. For all s and D ≥ δ, b(s,D) satisfies

b(s,D) ≥ δ. (12)

We first characterize the equilibrium repayment function b(s,D) for D ≤ Dmax(s).

Lemma 2. For all D ≥ 0, d(s,D + δ) ≤ d(s,D) + δ.

Lemma 3. For D ≤ Dmax(s), b(s,D) = b̄(s,D), where b̄(s,D) is the maximum feasible

value, i.e., b̄(s,D) = max{b | b ∈ Γ(s,D)}. It also holds that k(s,D) > knpl(s) for

D ≤ Dmax(s).

Lemma 3 directly implies the following corollary.

Corollary 4. If (s,D) is a state such that k(s,D) = k∗(s), then

b(s,D) = min {D, b∗(s,D)},

where

b∗(s,D) = max
n∈Z

D − βnδ,

s.t. D − βnδ ≤ F (s, k∗(s))−Rk∗(s).

Now, we define

f(s, k) ≡ F (s, k)−Rk −G(s, k),

δf ≡ max
k∈∆k(s), knpl(s)≤k≤k∗(s)

F ′(s, k)−R,

δk ≡ max{k′ − k | k ∈ ∆k(s), k
′ ∈ ∆k(s),

knpl(s) ≤ k < k′ < k∗(s), |f(s, k)− f(s, k′)| = βδ},

δg ≡ max{G(s, k′)−G(s, k) | k ∈ ∆k(s), k
′ ∈ ∆k(s),

knpl(s) ≤ k < k′ < k∗(s), |f(s, k)− f(s, k′)| = βδ}.

Note that δf = O(1), δk = O(δ), and δg = O(δ). Then, the following lemma holds.

Lemma 5. For (s,D) such that knpl(s) < k(s,D) < k∗(s), it holds that 0 ≤ F (s, k(s,D))−
Rk(s,D)− b(s,D) < ξ + βδ, where ξ = δfδk.

As ξ = O(δ), Corollary 4 and Lemma 5 implies that b(s,D) ≈ min{D, F (s, k(s,D))−
Rk(s,D)} for small δ. This means that the optimal contract involves backloaded payment

to the firm; that is, the firm repays debt as fast as possible by setting its dividend at

almost zero, i.e., b ≈ min{D, F (s, k)−Rk}, when D is smaller than or equal to Dmax(s).
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2.2 Equilibrium at large D

Here, we demonstrate that when D is large so that D > Dmax(s), the equilibrium exhibits

the feature that we call the NPL equilibrium. For that, the minimum unit δ is sufficiently

small such that the following assumption is satisfied.

Assumption 3. The value of δ and the function G(s, k) satisfy

min
s

Gnpl(s) >
ξ + β(δ + δg)

1− β
,

where ξ = δfδk.

Lemma 6. For k(s,D) < k∗(s), the binding no-default constraint implies that

V (s,D)− δg < G(s, k(s,D)) ≤ V (s,D).

Proof. The first inequality holds because otherwise the bank can obtain a positive gain by

changing k(s,D) to k′, where k′ > k(s,D) and |f(k(s,D))− f(k′)| = βδ.

Lemma 7. For all D > Dmax(s), it holds that k(s,D) = knpl(s).

Proposition 8. For all (s,D) with D > Dmax(s), d(s,D) = dnpl(s), k(s,D) = knpl(s),

b(s,D) = bnpl(s), and V (s,D) = Gnpl(s).

This proposition3 is similar to Proposition ?? in Section ??, but stronger because

Dmax(s) ≤ D̄. Once D exceeds Dmax(s) at any s, the contractual amount of debt will

keep on growing and the constraint b ≤ D will never bind. Thus, D becomes irrelevant for

the choice of k and b, and the equilibrium variables depend solely on the exogenous state

s, given as the NPL equilibrium. The intuition is that when D is larger than Dmax(s),

it becomes impossible to pay back D in full, and thus the contractual amount of debt

becomes payoff irrelevant. It follows that the lender can no longer commit to any future

repayment plans. The loss of the bank’s credibility leads to an inefficient outcome referred

to as the NPL equilibrium.

3In Proposition 8, we have assumed that the parameter values are restricted such that knpl(s) is defined

by knpl(s) ≡ arg maxk∈∆k(s) F (s, k)−Rk−G(s, k). It is generalized as follows, in the case where knpl(sL)

is defined by knpl(sL) = max{k ∈ ∆k(sL)| G(s, kL) ≤ β[πLLG(sL, k) + πLHG(sH , k
npl(sH))]}: We define

V npl(s) by

V npl(sH) = Gnpl(sH),

V npl(sL) = βE[V npl(s+1)|s = sL].

Then, we redefine bnpl(s) by bnpl(s) = F (s, knpl(s)) − Rknpl(s) − Gnpl(s) + βE[V npl(s+1)|s]. Then, the

modified version of Proposition 8 states: For all (s,D) with D > Dmax(s), d(s,D) = dnpl(s), k(s,D) =

knpl(s), b(s,D) = bnpl(s), and V (s,D) = V npl(s). The proof of the modified version is similar to that of

Proposition 8.
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2.3 Characterization of the equilibrium

Here, we summarize the analytical results obtained for the discrete model with 1+r = β−1.

First, there exist endogenously determined thresholds, Dmax(s), which are defined by (9)

and (10).

Define Dmin(sL) by

Dmin(sL) = max
{
D ∈ ∆ | ∀D′ ≤ D,D+1(sL, D

′) < D′
}
.

Since D+1(sH , D) ≤ D+1(sL, D) for all D, once D becomes sufficiently small that D ≤
Dmin(sL), D declines over time thereafter, regardless of the realization of the exogenous

state s.

Thus, if the initial debt D0 satisfies D0 ≤ Dmin(sL), there is no chance that the

economy will fall into the NPL equilibrium. In this case, the equilibrium dynamics are

qualitatively the same as those of the AH model. The borrower repays as much debt

as possible in every period by setting dividend (almost) zero, i.e., F (s, k) − Rk − b ≈ 0

(Lemma 5), where the qualification “almost” is required because of the discretization.

Functions k(s,D) and V (s,D) are both non-increasing in D.4 As the current debt D

satisfies D ≤ Dmin(sL), the next period debt D+1 is smaller than D. Thus, along the

equilibrium path, Dt+1 = β−1[Dt − b(st, Dt)] converges to 0 within finite periods. When

D = 0, the bank takes 0 because b ≤ D binds at D = 0, and the problem (for the bank) is

to maximize the firm’s profits by selecting k = k∗(s) = arg maxk F (s, k)− Rk. Thus, the

economy converges to a first-best allocation, {D, k} = {0, k∗(s)}, within finite periods. In

this case, the state variable, D, remains payoff-relevant along the whole equilibrium path.

If the initial debt satisfies D0 ≥ Dmax(sH), debt Dt always increases regardless of the

exogenous state s, i.e., Dt+1 ≥ Dt with probability one for all t. Then, Dt is no longer

a payoff-relevant state variable, and the bank is unable to make a commitment to future

repayment plans. As a result, the economy falls into the NPL equilibrium: {k(s,D),

b(s,D), d(s,D), V (s,D)} = {knpl(s), bnpl(s), dnpl(s), V npl(s)}. In the NPL equilibrium,

the firm’s output is “minimized” in the sense that knpl(s) = minD∈∆ k(s,D).

For initial debt D0 in the intermediate region, Dmin(sL) < D0 ≤ Dmax(sH), the

economy may end up with either the first best or NPL equilibrium. Both can occur with a

positive probability. While D is in this region, the dividend to the firm is F (s, k)−Rk−b ≈
0 (Lemma 5). D remains to be payoff-relevant.

2.4 Existence of equilibrium

In this subsection, we demonstrate the existence of an equilibrium, which is characterized

as a fixed point of an operator, T , on the functions of (s,D). As the space for (s,D) is

4First, Lemma 12 in Section 2.4 implies that V (s,D) is non-increasing in D. Second, k(s,D) is non-

increasing in D, because k(s,D) = max{k ∈ ∆k(s) |V (s,D) ≥ G(s, k)} and V (s,D) is non-increasing.
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discrete and finite, the existence of an equilibrium is proved by finding a fixed point of the

operator T in a finite-dimensional vector space.

Define the operator T by

(d(n+1)(s,D), V (n+1)(s,D), D̄(n+1)(s)) = T (d(n)(s,D), V (n)(s,D), D̄(n)(s)),

where (d(n+1)(s,D), V (n+1)(s,D), D̄(n+1)(s)) is generated from (d(n)(s,D), V (n)(s,D), D̄(n)(s)),

as follows. Define Γ(n+1)(s,D) by

Γ(n+1)(s,D) ≡{b ∈ ∆b(s,D) | ∃k ∈ ∆k(s) s.t.

D+1 = min{Nmaxδ, nδ[(1 + r)(D − b)]},
F (s, k)−Rk − b+ βEV (n)(s+1, D+1) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0}.

Given state (s,D) and expectations (V (n)(s,D), d(n)(s,D)), the bank solves

d(n+1)(s,D) = max
b∈Γ(n+1)(s,D)

b+ βEd(n)(s+1, D+1). (13)

Denote by Σ(n+1)(s,D) the set of (b,D+1) that solves the maximization in (13). The bank

decides k and V (n+1)(s,D) by solving the following problem.

V (n+1)(s,D) = max
k∈∆k(s), (b,D+1)∈Σ(n+1)(s,D)

F (s, k)−Rk − b+ βEV (n)(s+1, D+1), (14)

subject to

F (s, k)−Rk − b+ βEV (n)(s+1, D+1) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0.

Let Λ(n+1)(s,D) denote the set of (k, b,D+1) that solves the maximization in (14).

The equilibrium values of (k, b,D+1) are selected as follows. First, b(n+1)(s,D) and

D
(n+1)
+1 (s,D) are determined as

b(n+1)(s,D) = max
(k,b,D+1)∈Λ(n+1)(s,D)

b, (15)

D
(n+1)
+1 (s,D) = min{Nmaxδ, nδ((1 + r)[D − b(n+1)(s,D)])}. (16)

Then, k(n+1)(s,D) is decided as

k(n+1)(s,D) = max
(k, b(n+1)(s,D), D

(n+1)
+1 (s,D))∈Λ(n+1)(s,D)

k,

and D̄(n+1)(s) is provided by

D̄(n+1)(sH) = max
{
D ∈ ∆ |D(n+1)

+1 (sH , D) < D̄(n)(sH)
}
,

D̄(n+1)(sL) = max
{
D ∈ ∆ |D(n+1)

+1 (sL, D) < D̄(n)(sH)
}
.
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Define V ∗H ≡
1

1−β [F (sH , k
∗(sH))−Rk∗(sH)].

We set the initial values (D̄(0)(s), d(0)(s,D), V (0)(s,D)) as follows.

D̄(0)(s) = D̄(0) ≡ V ∗H −Gnpl(sH),

d(0)(s,D) =

{
D for D ≤ D̄(0),

dnpl(s) for D > D̄(0),

V (0)(s,D) =

{
V ∗H −D for D ≤ D̄(0),

Gnpl(s) for D > D̄(0).

Now, the existence of a fixed point of operator T is established by demonstrating the

convergence of the sequence {d(n), V (n), D̄(n)}∞n=0.

Theorem 9. There exists a fixed point (d(s,D), V (s,D), Dmax(s)) of the operator T , that

is, (d, V,Dmax) = T (d, V,Dmax).

This fixed point is an equilibrium of the economy. The proof of this theorem is as

follows. The following lemmas demonstrate that (d(n)(s,D), V (n)(s,D), D̄(n)(s)) satisfies

(dnpl(s), Gnpl(s), dnpl(s)) ≤ (d(n+1)(s,D), V (n+1)(s,D), D̄(n+1)(s))

≤ (d(n)(s,D), V (n)(s,D), D̄(n)(s))

for D > dnpl(s), and that

(0, Gnpl(s), dnpl(s)) ≤ (d(n+1)(s,D), V (n+1)(s,D), D̄(n+1)(s))

≤ (d(n)(s,D), V (n)(s,D), D̄(n)(s))

for D ≤ dnpl(s). Thus, the sequence
{
d(n)(s,D), V (n)(s,D), D̄(n)(s)

}∞
n=0

at any fixed

(s,D) converges pointwise, because it is a weakly decreasing sequence of real numbers,

which is bounded from below: ∃(d(s,D), V (s,D), Dmax(s)) such that

(d(n)(s,D), V (n)(s,D), D̄(n)(s))→ (d(s,D), V (s,D), Dmax(s))

as n→∞. This (d(s,D), V (s,D), Dmax(s)) is a fixed point of the operator T by construc-

tion.

The proof is by induction. The first step of the induction is provided by the following

lemma.

Lemma 10. Denote (d(1)(s,D), V (1)(s,D), D̄(1)(s)) = T (d(0)(s,D), V (0)(s,D), D̄(0)(s)).

Let (b(1)(s,D), k(1)(s,D)) be the value of (b, k) that solves (13) and (14) with n = 0.

Then, (d(1)(s,D), V (1)(s,D), D̄(1)(s), b(1)(s,D), k(1)(s,D)) satisfies

(i) d(1)(s,D + δ) ≤ d(1)(s,D) + δ,
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(ii) dnpl(s) ≤ d(1)(s,D) ≤ d(0)(s,D) for D > dnpl(s), and 0 ≤ d(1)(s,D) ≤ d(0)(s,D)

for D ≤ dnpl(s),

(iii) ∀D > D̄(1)(s), d(1)(s,D) = dnpl(s), V (1)(s,D) = V npl(s), b(1)(s,D) = bnpl(s),

k(1)(s,D) = knpl(s),

(iv) V (1)(s,D + δ) ≤ −δ + V (1)(s,D) for D < D̄(1)(s),

(v) ∀(s,D), Gnpl(s) ≤ V (1)(s,D) ≤ V (0)(s,D),

(vi) dnpl(s) < D̄(1)(s) < D̄(0).

The second step of the induction is provided by the following lemma.

Lemma 11. Denote (d(n+1)(s,D), V (n+1)(s,D), D̄(n+1)(s)) = T (d(n)(s,D), V (n)(s,D), D̄(n)(s)).

Let (b(n+1)(s,D), k(n+1)(s,D)) be the value of (b, k) that solves (13) and (14). Suppose

that (d(n)(s,D), V (n)(s,D), D̄(n)(s), b(n)(s,D), k(n)(s,D)) satisfies

(i’) d(n)(s,D + δ) ≤ d(n)(s,D) + δ,

(ii’) dnpl(s) ≤ d(n)(s,D) ≤ d(n−1)(s,D) for D > dnpl(s), and 0 ≤ d(n)(s,D) ≤ d(n−1)(s,D)

for D ≤ dnpl(s)

(iii’) ∀D > D̄(n)(s), d(n)(s,D) = dnpl(s) and V (n)(s,D) = V npl(s),

(iv’) V (n)(s,D + δ) ≤ −δ + V (n)(s,D) for D < D̄(n)(s),

(v’) ∀(s,D), Gnpl(s) ≤ V (n)(s,D) ≤ V (n−1)(s,D),

(vi’) 0 < D̄(n)(s) ≤ D̄(n−1)(s).

Then, (d(n+1)(s,D), V (n+1)(s,D), D̄(n+1)(s), b(n+1)(s,D), k(n+1)(s,D)) satisfies

(i) d(n+1)(s,D + δ) ≤ d(n+1)(s,D) + δ,

(ii) dnpl(s) ≤ d(n+1)(s,D) ≤ d(n)(s,D) for D > dnpl(s), and 0 ≤ d(n+1)(s,D) ≤
d(n)(s,D) for D ≤ dnpl(s),

(iii) ∀D > D̄(n+1)(s), d(n+1)(s,D) = dnpl(s) and V (n+1)(s,D) = V npl(s),

(iv) V (n+1)(s,D + δ) ≤ −δ + V (n+1)(s,D) for D < D̄(n+1)(s),

(v) ∀(s,D), Gnpl(s) ≤ V (n+1)(s,D) ≤ V (n)(s,D),

(vi) 0 < D̄(n+1)(s) ≤ D̄(n)(s).

In Sections 2.1 and 2.2, we have assumed Assumptions 1 and 2 to establish some

equilibrium properties. The next lemma demonstrates that those assumptions are indeed

satisfied by the equilibrium constructed as the fixed point of T .
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Lemma 12. For D ≤ Dmax(s), V (s,D+δ) ≤ V (s,D)−δ. For all D ≥ δ, b(s,D) satisfies

b(s,D) ≥ δ.

3 Discrete model with stochastic debt restructuring

In the baseline model, debt restructuring is prohibited. We modify the model in this

section such that debt restructuring is feasible with some friction. For simplicity, we

adopt a reduced-form approach: In each period t, the bank may be able to reduce the

contractual amount of debt Dt. However, this option of debt restructuring arrives with

an exogenously given probability p ∈ (0, 1) in each period. With this option in hand, the

bank can reduce Dt to any value D ∈ [0, Dt]. The probability p is a fixed parameter and

represents the friction in debt restructuring.

When the bank with contractual amount of debt Dt restructures debt, it reduces Dt

to D̂(s,Dt) defined by

D̂(s,Dt) = arg max
0≤D≤Dt

d(s,D).

Here, d(s,D) is the PDV of repayments, given as the solution to (20) below. Clearly,

D̂(s,D) = D for a small value of D, because the bank has no incentive to reduce the debt

if it is sufficiently small.

Definitions: Given the possibility of debt restructuring, we modify the formulation of

the discrete model, because the NPL equilibrium, {knpl(s), bnpl(s), dnpl(s), Gnpl(s)} now

depends on when and by how much debt is reduced. The grid points for D, D+1, and k

are the same as in the previous sections, but we modify the grid points for b, ∆b(s,D).

Take as given the beliefs {V e(s,D), kenpl(s), D̂
e(s,D)}, where V e(s,D) describes the

expected value of the firm, kenpl(s) the expected value of working capital in the NPL

equilibrium, and D̂e(s,D) the expected amount of debt after debt restructuring. We use

the same parameter values as in the baseline model. For the probability p of a certain size,

the candidate for knpl(s) makes the enforcement constraint nonbinding, that is, k̃npl(s) ≡
arg maxk∈∆k(s) F (s, k)−Rk −G(s, k) does not satisfy

G(s, k) > βE[(1− p)V npl(s+1) + pV e(s+1, D̂
e
+1)|s], (17)

where we define V npl(s+1) by

V npl(s) = F (s, knpl(s))−Rknpl(s)− bnpl(s) + βE[(1− p)V npl(s+1) + pV e(s+1, D̂
e
+1)|s],

and De
+1 = D̂e(s+1, D+1).5 Therefore, not as in the baseline case, we define knpl(s) for

5Note that in the NPL equilibrium where D > Dmax(s), D̂(s,D) is independent of D, i.e., D̂(s,D) =

D̂(s), which is defined by D̂(s) ≡ arg maxD∈∆ d(s,D). Thus, for D > Dmax(s), D̂e(s,D) should also be

independent of D.
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the case where k̃npl(s) does not satisfy (17) as

knpl(s) = max{k ∈ ∆k(s)| G(s, k) ≤ βE[(1− p)V npl(s+1) + pV e(s+1, D̂
e
+1)|s]. (18)

Note that knpl(s) depends on the given beliefs {V e(s,D), kenpl(s), D̂
e(s,D)}. Of course,

knpl(s) = kenpl(s) must hold in equilibrium. We define bnpl(s) by

bnpl(s) = F (s, knpl(s))−Rknpl(s) + βE[(1− p)V npl(s+1) + pV e(s+1, D̂
e
+1)|s]−Gnpl(s),

in the case where knpl(s) = k̃npl(s), and by

bnpl(s) = F (s, knpl(s))−Rknpl(s), (19)

in the case where knpl(s) is defined by (18).

Now, we define the grid points for b as

∆b(s,D) =

{
b ∈ R | ∃D+1 ∈ ∆+1 s.t. b = D − 1

1 + r
D+1, and b ≥ 0

}
∪ {bnpl(s)}.

As stated above, the NPL equilibrium, {knpl(s), bnpl(s), dnpl(s), V npl(s)}, is defined given

the beliefs {V e(s,D), kenpl(s), D̂
e(s,D)}.

The bank’s problem: Given beliefs {V e(s,D), kenpl(s), D̂
e(s,D)}, the bank solves

d(s,D) = max
b∈Γ(s,D)

b+ βE[(1− p)d(s+1, D+1) + pd(s+1, D̂
e
+1)], (20)

where

Γ(s,D) = {b ∈ ∆b(s,D) | ∃k ∈ ∆k(s) s.t.

D+1 = min{Nmaxδ, (1 + r)(D − b)},
F (s, k)−Rk − b+ βE[(1− p)V e(s+1, D+1) + pV e(s+1, D̂

e
+1)] ≥ G(s, k),

F (s, k)−Rk − b ≥ 0}.

Let Σ(s,D) denote the set of (b,D+1) that solves the maximization problem in (20). The

bank decides on k and V (s,D) by solving the following problem:

V (s,D) = max
k∈∆k(s), (b,D+1)∈Σ(s,D)

F (s, k)−Rk − b

+ βE[(1− p)V e(s+1, D+1) + pV e(s+1, D̂
e
+1)], (21)

subject to

F (s, k)−Rk − b+ βE[(1− p)V e(s+1, D+1) + pV e(s+1, D̂
e
+1)] ≥ G(s, k),

F (s, k)−Rk − b ≥ 0.

Let Λ(s,D) denote the set of (k, b,D+1) that solves the maximization problem in (21).
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The equilibrium values of (k, b,D+1) are determined as follows. First, b(s,D) and

D+1(s,D) are given by

b(s,D) = max
(k,b,D+1)∈Λ(s,D)

b, (22)

D+1(s,D) = min{Nmaxδ, (1 + r){D − b(s,D)}}. (23)

Then, k(s,D) is determined by

k(s,D) = max
(k,b(s,D),D+1(s,D))∈Λ(s,D)

k,

D̂(s,D) by

D̂(s,D) = arg max
D′≤D

d(s,D′),

and dnpl(s) is

dnpl(s) = bnpl(s) + βE[(1− p)dnpl(s+1) + pd(s+1, D̂
e
+1)].

For consistency, we require that

V (s,D) = V e(s,D), knpl(s) = kenpl(s), and D̂(s,D) = D̂e(s,D). (24)
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A Proof of Lemma 2

There exists D+1 ∈ ∆ such that

d(s,D + δ) = b′ + βEd(s+1, D+1),

b′ = D + δ − βD+1.

Note that Assumption 2 implies that b′ ≥ δ. Consider b = D − βD+1. Then, b ≥ 0,

and therefore, b ∈ ∆b(s,D), while b may not be an element of ∆b(s,D + δ). It is easily

confirmed that b ∈ Γ(s,D). Thus,

d(s,D + δ) = b+ δ + βEd(s+1, D+1)

= δ + [b+ βEd(s+1, D+1)]

≤ δ + max
b̃∈Γ(s,D)

[b̃+ βEd(s+1, β
−1(D − b̃)]

= δ + d(s,D).

B Proof of Lemma 3

Suppose that b(s,D) is not the maximum feasible value. Then, b(s,D)+βδ ∈ Γ(s,D). We

compare d(s,D) and X(b(s,D) + βδ, s,D), where X(b, s,D) ≡ b+ βEd(s+1, β
−1[D − b]).

Lemma 2 implies that

X(b(s,D) + βδ, s,D) = b(s,D) + βδ + βEd(s+1, β
−1(D − b(s,D))− δ)

= b(s,D) + βE{δ + d(s+1, β
−1(D − b(s,D))− δ)}

≥ b(s,D) + βEd(s+1, β
−1(D − b(s,D)))

= d(s,D) = max
b
X(b, s,D).

If X(b(s,D) + βδ, s,D) > d(s,D), it contradicts (3), which defines b(s,D). If X(b(s,D) +

βδ, s,D) = d(s,D), Assumption 1 implies that F (s, k(s,D))− Rk(s,D)− b(s,D)− βδ +

βEV e(s+1, D+1(s,D)− δ) ≥ F (s, k(s,D))−Rk(s,D)− b(s,D) +βEV e(s+1, D+1(s,D)) =

V (s,D). Then, b(s,D) + βδ should be the equilibrium value of b. This is a contradiction.

Therefore, b(s,D) is the maximum feasible value in Γ(s,D), i.e., b(s,D) = b̄(s,D).

Next, we prove k(s,D) > knpl(s) for D ≤ Dmax(s). For D ≤ Dmax(s), we have

V (s,D) ≥ Gnpl(s) + δ, as V (s,D) ≥ V (s,D + δ) + δ from Assumption 1 and V (s,D +

δ) ≥ Gnpl(s) due to Lemma ?? in Appendix ??. Now, we prove k(s,D) > knpl(s) by

contradiction. Suppose that k(s,D) = knpl(s). Then, since (b(s,D), k(s,D)) satisfy the

above inequality and the limited liability constraint, we have

V (s,D) = F (s, knpl(s))−Rknpl(s)− b(s,D) + βEV (s+1, D+1(s,D)) ≥ Gnpl(s) + δ,

F (s, knpl(s))−Rknpl(s)− b(s,D) ≥ 0.
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Pick knpl+(s) (> knpl(s)), which is defined by f(s, knpl(s)) − f(s, knpl+(s)) = βδ, where

f(s, k) ≡ F (s, k)−Rk −G(s, k). Then, knpl+(s) satisfies

F (s, knpl+(s))−Rknpl+(s)− b(s,D) + βEV (s+1, D+1(s,D)) ≥ G(s, knpl+(s)) + (1− β)δ,

F (s, knpl+(s))−Rknpl+(s)− b(s,D) ≥ 0.

Therefore, k(s,D) should be knpl+(s), not knpl(s), because knpl+(s) is feasible without

changing b(s,D) and D+1(s,D). This is a contradiction. Thus, we have demonstrated

that for D ≤ Dmax(s), k(s,D) > knpl(s).

C Proof of Lemma 5

Suppose that F (s, k(s,D)) − Rk(s,D) − b(s,D) ≥ ξ + βδ for k(s,D) ∈ (knpl(s), k∗(s)).

In this case, the bank can choose k̂ < k(s,D), where k̂ ∈ ∆k(s), so that F (s, k̂) −
Rk̂ − b(s,D) ≥ βδ. We know that F (s, k(s,D)) − Rk(s,D) − G(s, k(s,D)) − b(s,D) +

βEV e(s,D+1(s,D)) ≥ 0, where D+1(s,D) = β−1[D − b(s,D)]. As F (s, k)−Rk −G(s, k)

is strictly decreasing in k for k > knpl(s), it must be the case that

F (s, k̂)−Rk̂ −G(s, k̂) ≥ F (s, k(s,D))−Rk(s,D)−G(s, k(s,D)) + βδ.

Thus, b̂ = b(s,D) + βδ satisfies

F (s, k̂)−Rk̂ − b̂ ≥ 0,

F (s, k̂)−Rk̂ − b̂−G(s, k̂) + βEV e(s+1, β
−1(D − b̂)) ≥ 0.

Then, b̂ = b(s,D) + βδ is feasible and Lemma 3 implies that b̂ should be the solution to

(3). This is a contradiction.

D Proof of Lemma 7

For any s and D > Dmax(s), we consider a stochastic sequence {st, kt, bt, Dt}, where

kt = k(st, Dt), bt = b(st, Dt), Dt = nδ[(1 + r)(Dt−1 − bt−1)], s0 = s, and D0 = D, given

that st is an exogenous stochastic variable.

First, we consider the case where s = sH . Suppose there exists D, which satisfies

D > Dmax, such that k(s,D) 6= knpl(s). Then, Lemma ?? implies k(s,D) > knpl(s).

Then, Lemma 5 implies that 0 ≤ F (s, k)−Rk − b < ξ + βδ, which implies, together with

V ≥ G(s, k), that

G(s, k(s,D)) ≤ V (s,D) ≤ ξ + βδ + βEV (s+1, D+1)

As it is obvious that V (sL, D) ≤ V (sH , D), it must be the case that EV (s+1, D+1) ≤
V (sH , D+1). Then,

G(s, k(s,D)) ≤ V (s,D) ≤ ξ + βδ + βV (sH , D+1), (25)
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whereD+1 > D asD > Dmax(s). Lemma 6 implies that V (sH , D+1) < δg+G(sH , k(sH , D+1)).

Thus,

G(sH , k(sH , D)) < ξ + β(δ + δg) + βG(sH , k(sH , D+1)). (26)

Assumption 3 and the inequality (26) imply that G(sH , k(sH , D)) < (1 − β)Gnpl(s) +

βG(sH , k(sH , D+1)) ≤ G(sH , k(sH , D+1)), because Gnpl(s) ≤ G(sH , k(sH , D+1)). Thus,

k(sH , D) < k(sH , D+1). Let us set (s0, D0) = (s,D) and consider the sequence {st, Dt, k(st, Dt)}.
Given (26), we can prove the following inequality:

knpl(sH) < k(sH , Dt) < k(sH , Dt+1), (27)

G(sH , k(sH , D0)) <
{ξ + β(δ + δg)}(1− βt)

1− β
+ βtG(sH , k(sH , Dt)) (28)

The proof is by induction. The above argument has proven (27) and (28) for t = 0.

Suppose that (27) holds for t− 1. (26) applies for Dt and implies that

G(sH , k(sH , Dt)) < ξ + β(δ + δg) + βG(sH , k(sH , Dt+1)), (29)

which, together with Assumption 3, implies that G(sH , k(sH , Dt+1)) > G(sH , k(sH , Dt)),

or k(sH , Dt+1) > k(sH , Dt). Thus, (27) has been proven for t. Suppose that (28) holds

for t. This inequality, together with (29), implies that

G(sH , k(sH , D0)) <
{ξ + β(δ + δg)}(1− βt)

1− β
+ βtG(sH , k(sH , Dt))

<
{ξ + β(δ + δg)}[1− βt + βt(1− β)]

1− β
+ βt+1G(sH , k(sH , Dt+1))

=
{ξ + β(δ + δg)}(1− βt+1)

1− β
+ βt+1G(sH , k(sH , Dt+1)).

Thus, (28) has been proven for t+ 1. We have demonstrated that (27) and (28) hold for

all t.

Assumption 3 and (28) imply that, in the limit of t → ∞, we have V (st, Dt) → ∞.

This is a contradiction because V (s,D) is bounded from above: V (s,D) < Vmax. Thus, it

cannot be the case that k(sH , D) 6= knpl(sH).

Next, we consider the case where s = sL. Suppose that k(sL, D) 6= knpl(sL). Then,

Lemma ?? implies that k(sL, D) > knpl(sL). In this case, Lemmas 5 and 6 imply that for

D0 = D and the sequence {st, Dt, k(st, Dt)},

G(sL, k(sL, Dt)) < ξ + β(δ + δg) + βEtG(st+1, k(st+1, Dt+1))

= ξ + β(δ + δg) + β[pLG(sL, k(sL, Dt+1)) + (1− pL)Gnpl(sH)],

where pL = Pr(st+1 = sL|st = sL) and G(sH , k(sH , Dt+1)) = Gnpl(sH) for Dt+1 > Dmax,

as shown above. Let k(sL, D) = k0 and define {kt}∞t=0 by the following law of motion,

G(sL, kt) = ξ + β(δ + δg) + β[pLG(sL, kt+1) + (1− pL)Gnpl(sH)].
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Lemma ?? implies that k(sL, Dt) ≥ knpl(sL) for all t ≥ 1. In the case where k(sL, D) =

k0 > knpl(sL), the sequence {kt}∞t=0 is such that limt→∞ kt = ∞. Thus, V (sL, Dt) >

G(sL, k(sL, Dt)) − δg goes to infinity, and eventually violates the condition V (sL, Dt) <

Vmax. This is a contradiction. Thus, k(sL, D) must be knpl(sL).

Therefore, if D > Dmax, then k(s,D) = knpl(s) for all s ∈ {sL, sH}.

E Proof of Proposition 8

The proof consists of two parts. First, we prove the existence of one equilibrium, in which

V e(s,D) = G(s, knpl(s)) ≡ Gnpl(s). Second, we demonstrate that this equilibrium is the

unique equilibrium that maximizes d(s,D) subject to the no-default condition.

Existence: we guess and later verify that V e(s,D) = Gnpl(s). Given this expectation,

the bank solves

d(s,D) = max
b∈∆b(s,D),k∈∆k(s)

b+ βEd(s+1, D+1),

s, t.

{
F (s, k)−Rk − b+ βEG(s+1, k

npl(s+1)) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0.

Given that V e(s,D) = Gnpl(s), it is easily shown that Γ(s,D) = {b | b ∈ ∆b(s,D), 0 ≤
b ≤ bnpl(s)}.

Claim: The solution to the bank’s problem is b(s,D) = bnpl(s) and k(s,D) = knpl(s).

(Proof of Claim)

Because b(s,D) ≤ bnpl(s), there exists a nonnegative integer m and a nonnegative real

number ε, where 0 ≤ ε < βδ, such that b(s,D) = bnpl(s) − ε −mβδ. Then, D+1(s,D) =

min{Nmaxδ, β
−1[D − b(s,D)]} = Dnpl

+1 + m′δ, where 0 ≤ m′ ≤ m and we define Dnpl
+1 =

min{Nmaxδ, nδ(β
−1[D − bnpl(s)])}. Thus,

d(s,D) = b(s,D) + βEd(s+1, D
npl
+1 +m′δ)

= bnpl(s)− ε−mβδ + βEd(s+1, D
npl
+1 +m′δ)

= bnpl(s)− ε− (m−m′)βδ + βE[−m′δ + d(s+1, D
npl
+1 +m′δ)]

≤ bnpl(s)− ε− (m−m′)βδ + βEd(s+1, D
npl
+1 )

≤ bnpl(s) + βEd(s+1, D
npl
+1 ).

The first inequality is from Lemma 2. Therefore, b(s,D) = bnpl(s) and k(s,D) = knpl(s).

(End of Proof of Claim)

Thus, the solution to the bank’s problem is k = knpl(s) and b = bnpl(s). It is also eas-

ily confirmed that V (s,D) = F (s, knpl(s)) − Rknpl(s) − bnpl(s) + βEG(s+1, k
npl(s+1)) =

G(s, knpl(s)), which verifies the expectation.
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Uniqueness: In what follows, we demonstrate that dnpl(s) is the maximum amount

of the present discounted value (PDV) of repayments that satisfies the enforcement con-

straint, and the above equilibrium is the unique equilibrium that attains dnpl(s). We

consider the following planner’s problem, assuming that k(s,D) = knpl(s). We set this

assumption because Lemma 7 shows that k(s,D) = knpl(s) for D > Dmax(sH) in any

equilibrium that exists. Given k(s,D) = knpl(s), the planner’s problem is

d(s,D) = max
b,V (s,D)

b+ βEd(s+1, β
−1(D − b)),

s. t. V (s,D) = F (s, knpl(s))−Rknpl(s)− b+ βEV (s+1, β
−1(D − b)) ≥ Gnpl(s),

F (s, knpl(s))−Rknpl(s)− b ≥ 0.

Define Wnpl(s) = F (s, knpl(s)) − Rknpl(s) + βEWnpl(s+1). Then, d(s,D) = Wnpl(s) −
V (s,D). Thus, the planner’s problem can be rewritten as

max
b,V (s,D)

d(s,D) = Wnpl(s)− V (s,D),

s. t. d(s,D) ≤Wnpl(s)−Gnpl(s),

F (s, knpl(s))−Rknpl(s)− b ≥ 0.

We temporarily omit the limited liability constraint, F (s, knpl(s)) − Rknpl(s) − b ≥ 0,

and later justify that it is satisfied. Without this constraint, it is obvious that the max-

imum PDV of repayments is Wnpl(s) − Gnpl(s) = dnpl(s), and it is attained by set-

ting b = d(s,D) − βEd(s+1, D+1) = Wnpl(s) − Gnpl(s) − βE[Wnpl(s+1) − Gnpl(s+1)] =

Fnpl(s) − Rknpl(s) − Gnpl(s) + βEGnpl(s+1) = bnpl(s). Therefore, the value of the firm

becomes V (s,D) = Gnpl(s). By definition of knpl(s), it is obvious that the limited liability

constraint is satisfied in this equilibrium. Thus, the unique equilibrium that maximizes

the PDV of repayments is the NPL equilibrium.

F On the proof of Theorem 9

F.1 Proof of Lemma 10

We prove Lemma 10 by explicitly deriving {d(1)(s,D), V (1)(s,D), b(1)(s,D), k(1)(s,D)}.
For D < D∗∗(s) ≡ F (s, k∗(s))−Rk∗(s),

d(1)(s,D) = D,

V (1)(s,D) = F (s, k)−Rk + βV ∗H −D,

as d(1)(s,D) = maxb b+β[β−1(D− b)] and b = D is feasible because F (s, k)−Rk+βV ∗H −
D ≥ G(s, k) is satisfied at k = k∗(s). Thus, for 0 ≤ D ≤ D∗∗(s), (d(1)(s,D), V (1)(s,D))

are given as above, with k = k∗(s) and b = D.
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For D ∈ (D∗∗(s), D∗(s)], where D∗(s) is the solution to D∗∗(s)+β[β−1(D−D∗∗(s))] =

D = F (s, k∗(s))−Rk∗(s) + βV ∗H −G(s, k∗(s)),

d(1)(s,D) = D,

V (1)(s,D) = F (s, k)−Rk + βV ∗H −D,

where k = k∗(s) and b = D∗∗(s).

For D ∈ (D∗(s), D̂(1)(s)], where D̂(1)(s) = F (s, knpl(s)) − Rknpl(s) − G(s, knpl(s)) +

βV ∗H , the solution (d(1)(s,D), V (1)(s,D)) is given as follows.

d(1)(s,D) = D,

V (1)(s,D) = F (s, k(s,D))−Rk(s,D) + βV ∗H −D,

where

k(s,D) = arg max
k∈∆k(s)

F (s, k)−Rk −D + βV ∗H ,

s.t. F (s, k)−Rk −D + βV ∗H ≥ G(s, k). (30)

Then, it is obvious that k(s,D) is decreasing in D. D+1(s,D) is given by

D+1(s,D) = min
D+1∈∆

D+1,

s. t. D − βD+1 ≤ F (s, k(s,D))−Rk(s,D).

Note that if D = D̂(1)(s), then D+1 = V ∗H − β−1Gnpl(s) < D̄(0). Note that if D >

D̂(1)(s), the enforcement constraint (30) is never satisfied for any value of k, if V (1)(s,D) =

F (s, k(s,D))−Rk(s,D) + βV ∗H −D.
For D > D̂(1)(s), it must be the case that D+1 ≥ D̄(0), since otherwise V (1)(s,D)

becomes F (s, k(s,D))−Rk(s,D) +βV ∗H −D and the enforcement constraint (30) is never

satisfied because D̂(1)(s) is the maximum value that is feasible under (30). D+1 ≥ D̄(0)

is feasible for D (> D̂(1)(s)), because β−1D̂(1)(s) > D̄(0) is easily shown. Given that

D+1 > D̄(0), we have d(0)(s,D+1) = dnpl(s) and V (0)(s,D+1) = Gnpl(s). Thus, the

values of (d(1)(s,D), V (1)(s,D), b(s,D), k(s,D)) are given as the solution to the following

problem.

d(1)(s,D) = max
b∈∆b(s,D), k∈∆k(s)

b+ βEdnpl(s),

s.t.

{
F (s, k)−Rk − b+ βEGnpl(s) ≥ G(s, k),

F (s, k)−Rk ≥ b.

Then,

V (1)(s,D) = F (s, k(s,D))−Rk(s,D)− b(s,D) + βEGnpl(s).
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The solution is

b(s,D) = bnpl(s), k(s,D) = knpl(s), d(1)(s,D) = dnpl(s), V (1)(s,D) = Gnpl(s),

for D > D̂(1)(s). It is also easily confirmed that

D̂(1)(s) = D̄(1)(s),

where D̄(1)(s) is defined by

D̄(1)(sH) = maxD,

s.t. D+1(sH , D) < D̄(0),

D̄(1)(sL) = maxD,

s.t. D+1(sL, D) < D̄(0).

Now, we can show the following claim.

Claim 1. D̄(1)(sL) ≤ D̄(1)(sH) < D̄(0).

(Proof of Claim 1)

We have D̄(1)(sL) ≤ D̄(1)(sH), and

D̄(1)(sH) = F (sH , k
npl(sH))−Rknpl(sH)−G(sH , k

npl(sH)) + βV ∗H

< F (sH , k
∗(sH))−Rk∗(sH) + βV ∗H −G(sH , k

npl(sH))

= V ∗H −G(sH , k
npl(sH)) = D̄(0).

(End of proof of Claim 1)

Note that dnpl(s) < D̄(1)(s) because V ∗H > Gnpl(sH) + dnpl(sH) implies that dnpl(s) =

bnpl(s) + βEdnpl(s+1) = F (s, knpl(s))−Rknpl(s)−Gnpl(s) + βE[Gnpl(s+1) + dnpl(s+1)] <

F (s, knpl(s))−Rknpl(s)−Gnpl(s) + βV ∗H = D̄(1)(s).

These explicit solutions directly imply (i)–(vi) of Lemma 10.

F.2 Proof of Lemma 11

Proof of (ii). The assumption (ii′) implies that Ed(n)(s+1, D+1) ≤ Ed(n−1)(s+1, D+1), and

the assumption (v′) implies that Γ(n+1)(s,D) ⊂ Γ(n)(s,D). These facts imply that

d(n+1)(s,D) = max
b∈Γ(n+1)(s,D)

b+ βEd(n)(s+1, D+1) ≤ max
b∈Γ(n)(s,D)

b+ βEd(n−1)(s+1, D+1) = d(n)(s,D).

Since bnpl(s) ∈ Γ(n+1)(s,D) and d(n)(s,D) ≥ dnpl(s) for D > dnpl(s),

d(n+1)(s,D) = max
b∈Γ(n+1)(s,D)

b+ βEd(n)(s+1, D+1) ≥ bnpl(s) + βEdnpl(s+1) = dnpl(s),
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for D > dnpl(s). It is obvious that d(n+1)(s,D) ≥ 0 for D ≤ dnpl(s).

Proof of (iii). Assumption (iii′) implies that forD ≥ D̄(n+1)(s), the values of (d(n+1)(s,D),

V (n+1)(s,D), b(n+1)(s,D), k(n+1)(s,D)) are given as the solution to the following prob-

lem.

d(n+1)(s,D) = max
b∈∆b(s,D), k∈∆k(s)

b+ βEdnpl(s),

s.t.

{
F (s, k)−Rk − b+ βEGnpl(s) ≥ G(s, k),

F (s, k)−Rk ≥ b.

Then,

V (n+1)(s,D) = F (s, k(s,D))−Rk(s,D)− b(s,D) + βEGnpl(s).

It is easily shown that the solution is given by

b(s,D) = bnpl(s), k(s,D) = knpl(s), d(n+1)(s,D) = dnpl(s), V (n+1)(s,D) = Gnpl(s).

Proof of (i). For D ≥ D̄(n+1)(s), it is the case that d(n+1)(s,D + δ) = dnpl(s) ≤
d(n+1)(s,D) + δ by the part (iii) above. Next, we consider the case where D < D̄(n+1)(s).

We can prove the following claim.

Claim 2. For D < D̄(n+1)(s), b(n+1)(s,D + δ) is the maximum feasible value, i.e.,

b(n+1)(s,D + δ) = max
b∈Γ(n+1)(s,D+δ)

b.

(Proof of Claim 2). Suppose that b(n+1)(s,D + δ) is not the maximum feasible value.

Then, b(n+1)(s,D+δ)+βδ ∈ Γ(n+1)(s,D+δ). We compare d(n+1)(s,D+δ) andX(n+1)(b(n+1)(s,D+

δ) + βδ, s,D + δ), where X(n+1)(b, s,D) ≡ b + βEd(n)(s+1, β
−1(D − b)). Assumption (i′)

implies that

X(n+1)(b(n+1)(s,D + δ) + βδ, s,D + δ)

= b(n+1)(s,D + δ) + βδ + βEd(n)(s+1, β
−1(D + δ − b(n+1)(s,D + δ))− δ)

= b(n+1)(s,D + δ) + βE{δ + d(n)(s+1, β
−1(D + δ − b(n+1)(s,D + δ))− δ)}

≥ b(n+1)(s,D + δ) + βEd(n)(s+1, β
−1(D + δ − b(n+1)(s,D + δ)))

= d(n+1)(s,D + δ) = max
b
X(n+1)(b, s,D + δ).

Assumption (iv′) implies that

V (n+1)(s,D + δ) =

F (s, k(s,D + δ))−Rk(s,D + δ)− b(s,D + δ) + βEV (n)(s+1, D
(n+1)
+1 (s,D + δ)) ≤

F (s, k(s,D + δ))−Rk(s,D + δ)− b(s,D + δ) + βE(−δ + V (n)(s+1, D
(n+1)
+1 (s,D + δ)− δ)) =

F (s, k(s,D + δ))−Rk(s,D + δ)− b(s,D + δ)− βδ + βEV (n)(s+1, D
(n+1)
+1 (s,D + δ)− δ).
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Assumption (iv′) applies here as D + δ ≤ D̄(n+1)(s), which implies D
(n+1)
+1 (s,D + δ) ≤

D̄(n)(s). These two inequalities imply that the equilibrium value of b should be b(s,D +

δ) + βδ. This contradicts the definition of b(n+1)(s,D + δ). Therefore, b(n+1)(s,D + δ) is

the maximum feasible value. (End of proof of Claim 2)

This claim implies that it suffices to consider the region b ≥ δ, when we evaluate d(n+1)(s,D+

δ). If b+δ ∈ Γ(n+1)(s,D+δ) then b ∈ Γ(n+1)(s,D) for D > F (s, k∗(s))−Rk∗(s).6 Defining

b̂ by b̂ = b(s,D + δ)− δ, it is easily demonstrated that b̂ ∈ Γ(n+1)(s,D). Thus,

d(n+1)(s,D + δ) = b(s,D + δ) + βEd(n)(s+1, β
−1(D + δ − b(s,D + δ)))

= δ + b̂+ βEd(n)(s+1, β
−1(D − b̂)),

≤ δ + max
b∈Γ(n+1)(s,D)

b+ βEd(n)(s+1, β
−1(D − b)) = δ + d(n+1)(s,D).

Proof of (iv). We consider the case where D + δ ≤ D̄(n+1)(s). Define ∆̃b(s,D) = {b ∈
R|b = D − βD+1, where D+1 ∈ ∆+1, and b ≥ 0} ∪ {bnpl(s) − δ}. Define Γ̃(n+1)(s,D) =

{b ∈ ∆̃b(s,D) | ∃k ∈ ∆k(s), s.t. F (s, k) − Rk − b − δ + βEV (n)(s+1, β
−1(D − b)) ≥

G(s, k), and F (s, k)−Rk−b−δ ≥ 0}. Let b̃(s,D) be the maximum value of Γ̃(n+1)(s,D).

It is obvious that b̃(s,D) ≤ b(s,D), as b(s,D) is the maximum value of Γ(n+1)(s,D).

V (n+1)(s,D + δ) can be written as

V (n+1)(s,D + δ) = −δ + Ṽ (n+1)(s,D), (31)

where

Ṽ (n+1)(s,D) = max
k∈∆k(s)

F (s, k)−Rk − b̃(s,D) + βEV (n)(s+1, β
−1(D − b̃(s,D))), (32)

s.t. F (s, k)−Rk − b̃(s,D)− δ + βEV (n)(s+1, β
−1(D − b̃(s,D))) ≥ G(s, k),

F (s, k)−Rk − b̃(s,D)− δ ≥ 0.

Let k̃(s,D) be the solution to (32). The following claim holds:

Claim 3. b̃(s,D) and k̃(s,D) satisfy b̃(s,D) ≤ b(s,D) and k̃(s,D) ≤ k(s,D).

(Proof of Claim 3). We know b̃(s,D) ≤ b(s,D) from the above argument. Now, k(s,D)

is the maximum k that satisfies

F (s, k)−Rk − b(s,D) + βEV (n)(s+1, β
−1(D − b(s,D))) ≥ G(s, k),

F (s, k)−Rk − b(s,D) ≥ 0,

6For D ≤ F (s, k∗(s))−Rk∗(s), (b,D+1) = (D, 0) is feasible. Let d(n+1)(s,D) = b+βEd(n)(s+1, β
−1(D−

b)). Assumption (i′) implies that, for any b ≥ 0, βEd(n)(s+1, β
−1(D−b)) ≤ β[β−1(D−b)]+βEd(n)(s+1, 0).

Thus, it must be the case that d(n+1)(s,D) = D + βEd(n)(s+1, 0). Therefore, d(n+1)(s,D + δ) = δ +

d(n+1)(s,D), for D ≤ F (s, k∗(s))−Rk∗(s).
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while k̃(s,D) is the maximum k that satisfies

F (s, k)−Rk − b̃(s,D)− δ + βEV (n)(s+1, β
−1(D − b̃(s,D))) ≥ G(s, k),

F (s, k)−Rk − b̃(s,D)− δ ≥ 0.

We will demonstrate that k̃(s,D) ≤ k(s,D) by contradiction. Suppose that k̃(s,D) >

k(s,D). Then, F (s, k̃(s,D)) − Rk̃(s,D) − b(s,D) ≥ 0 is satisfied. The condition for

b̃(s,D) implies

F (s, k̃(s,D))−Rk̃(s,D)− b̃(s,D)− δ + βEV (n)(s+1, β
−1(D − b̃(s,D))) ≥ G(s, k̃(s,D)).

(33)

By definition of Γ̃(n+1)(s,D), the fact that b̃(s,D) ≤ b(s,D) implies that there exists an

integer m (≥ 0) such that b̃(s,D) +mβδ = b(s,D). Then,

− b̃(s,D) + βEV (n)(s+1, β
−1(D − b̃(s,D))) = −b(s,D) +mβδ + βEV (n)(s+1, β

−1(D − b(s,D) +mβδ))

≤ −b(s,D) + βEV (n)(s+1, β
−1(D − b(s,D))),

where the inequality is due to assumption (iv′). This inequality together with (33) implies

that

F (s, k̃(s,D))−Rk̃(s,D)− b(s,D)− δ + βEV (n)(s+1, β
−1(D − b(s,D))) ≥ G(s, k̃(s,D)).

This condition and the nonnegativity condition (F (s, k̃(s,D)) − Rk̃(s,D) − b(s,D) ≥ 0)

imply that k̃(s,D) ∈ Γ(n+1)(s,D), which implies that k̃(s,D) ≤ k(s,D), a contradiction.

Thus, it must be the case that k̃(s,D) ≤ k(s,D). (End of proof of Claim 3).

Let (k, b) = (k(s,D), b(s,D)) and (k̃, b̃) = (k̃(s,D), b̃(s,D)). Then, Claim 3 implies that

there exist a non-negative integer m and a non-negative real number ε such that

F (s, k̃)−Rk̃ = F (s, k)−Rk − ε,

b̃ = b−mβδ.

Thus,

Ṽ (n+1)(s,D) = F (s, k̃)−Rk̃ − b̃+ βEV (n)(s+1, β
−1(D − b̃)),

= F (s, k)−Rk − ε− b+mβδ + βEV (n)(s+1, β
−1(D − b) +mδ),

= −ε+ F (s, k)−Rk − b+ βE[mδ + V (n)(s+1, β
−1(D − b) +mδ)

≤ −ε+ F (s, k)−Rk − b+ βEV (n)(s+1, β
−1(D − b))

= −ε+ V (n+1)(s,D) ≤ V (n+1)(s,D),

where the first inequality is from Assumption (iv′). Note that Assumption (iv′) applies,

since β−1(D−b̃) < D(n)(s) because D+δ < D(n+1)(s). (31) implies that V (n+1)(s,D+δ) =
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−δ + Ṽ (n+1)(s,D) ≤ −δ + V (n+1)(s,D).

Proof of (v). For D > D̄(n+1)(s), it is the case that V (n+1)(s,D) = Gnpl(s) as proven at

part (iii). Next, we consider the case where D ≤ D̄(n+1)(s). For a fixed (s,D), Assumption

(v′) implies that Γ(n+1)(s,D) ⊂ Γ(n)(s,D) and Λ(n+1)(s,D) ⊂ Λ(n)(s,D). The following

claim holds.

Claim 4. The variables for (n + 1)−th problem satisfy b(n+1)(s,D) ≤ b(n)(s,D) and

k(n+1)(s,D) ≤ k(n)(s,D).

(Proof of Claim 4). Since Γ(n+1)(s,D) ⊂ Γ(n)(s,D), Claim 2 implies that b(n+1)(s,D) ≤
b(n)(s,D). Next, we prove k(n+1)(s,D) ≤ k(n)(s,D). Denote by (C(n)) and (C(n+1)) the

following conditions:

(C(n))

{
F (s, k)−Rk − b+ βEV (n−1)(s+1, β

−1(D − b)) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0,

(C(n+1))

{
F (s, k)−Rk − b+ βEV (n)(s+1, β

−1(D − b)) ≥ G(s, k),

F (s, k)−Rk − b ≥ 0,

• Case 1: Suppose that b(n+1) = b(n)

In this case, k(n+1) ≤ k(n) should hold because (C(n+1)) is (weakly) tighter than

(C(n)) for b = b(n+1) = b(n).

• Case 2: Suppose that b(n+1) < b(n).

In this case, we first prove that the following condition holds:

0 ≤ F (s, k(n+1)(s,D))−Rk(n+1)(s,D)− b(n+1)(s,D) < δ(s, k(n+1)(s,D)) + βδ,

(34)

where δ(s, k(n+1)(s,D)) is defined by δ(s, k(n+1)(s,D)) ≡ F (s, k(n+1)(s,D))−Rk(n+1)(s,D)−
F (s, k

(n+1)
− (s,D))+Rk

(n+1)
− (s,D), where k

(n+1)
− (s,D) is defined by f(s, k

(n+1)
− (s,D))−

f(s, k(n+1)(s,D)) = βδ. Thus, k
(n+1)
− (s,D) is the value of k, which is smaller than

and adjacent to k(n+1)(s,D). The condition (34) is proven by contradiction.7 Then,

as b(n)(s,D) ≥ b(n+1)(s,D) + βδ, the condition (34) implies that

F (s, k
(n+1)
− (s,D))−Rk(n+1)

− (s,D)− b(n)(s,D) < 0,

which implies that k(n)(s,D) > k
(n+1)
− (s,D), which means k(n)(s,D) ≥ k(n+1)(s,D).

7Suppose that F (s, k(n+1)(s,D)) − Rk(n+1)(s,D) − b(n+1)(s,D) ≥ δ(s, k(n+1)(s,D)) + βδ. Then,

k = k
(n+1)
− (s,D) and b = b(n+1)(s,D) + βδ satisfies (C(n+1)), as follows. First, the limited liabil-

ity (F (s, k) − Rk − b ≥ 0) is obviously satisfied. Second, since F (s, k(n+1)(s,D)) − Rk(n+1)(s,D) −
G(s, k(n+1)(s,D)) = F (s, k

(n+1)
− (s,D)) − Rk

(n+1)
− (s,D) − G(s, k

(n+1)
− (s,D)) − βδ and V (n)(s+1, β(D −

b(n+1)(s,D))) ≤ V (n)(s+1, β(D − b(n+1)(s,D) − βδ)), the enforcement constraint is satisfied for k =

k
(n+1)
− (s,D) and b = b(n+1)(s,D) + βδ. Thus, they are in Γ(n+1)(s,D). Then, the solution to (n + 1)-th

problem should be b(n+1)(s,D) + βδ, instead of b(n+1)(s,D). This is a contradiction.
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(End of proof of Claim 4).

Let (k, b) = (k(n)(s,D), b(n)(s,D)) and (k̃, b̃) = (k(n+1)(s,D), b(n+1)(s,D)). The above

claim implies that there exists a non-negative integer m and a non-negative real number

ε such that F (s, k̃)−Rk̃ = F (s, k)−Rk − ε and b̃ = b−mβδ. Thus,

V (n+1)(s,D) = F (s, k̃)−Rk̃ − b̃+ βEV (n)(s+1, β
−1(D − b̃)),

≤ F (s, k)−Rk − ε− b+mβδ + βEV (n−1)(s+1, β
−1(D − b) +mδ),

= −ε+ F (s, k)−Rk − b+ βE[mδ + V (n−1)(s+1, β
−1(D − b) +mδ)]

≤ −ε+ F (s, k)−Rk − b+ βEV (n−1)(s+1, β
−1(D − b))

= −ε+ V (n)(s,D) ≤ V (n)(s,D),

where the first inequality is from Assumption (v′) and the second inequality is from As-

sumption (iv′). Note that Assumption (iv′) applies since D ≤ D̄(n+1)(s), which implies

that β−1(D − b) ≤ D̄(n)(s) ≤ D̄(n−1)(s). The fact that k(n+1)(s,D) ≥ knpl(s) and the

enforcement constraint [V (n+1)(s,D) ≥ G(s, k(n+1)(s,D))] directly imply that

V (n+1)(s,D) ≥ Gnpl(s).

Proof of (vi). First, we prove D̄(n+1)(s) ≤ D̄(n)(s) by contradiction. Suppose that

∃s, D̄(n+1)(s) > D̄(n)(s). Then, we can pick D such that D̄(n)(s) < D ≤ D̄(n+1)(s),

which satisfies

D
(n+1)
+1 (s,D) = β−1[D − b(n+1)(s,D)] < D̄(n)(sH) ≤ D̄(n−1)(sH),

D
(n)
+1 (s,D) = β−1[D − b(n)(s,D)] ≥ D̄(n−1)(sH).

These inequalities imply b(n+1)(s,D) > b(n)(s,D), while b(n+1)(s,D) is feasible in (n)-th

problem:

b(n+1)(s,D) ∈ Γ(n+1)(s,D) ⊂ Γ(n)(s,D).

Therefore, b(n)(s,D) and b(n)(s,D) + βδ are both feasible in (n)-th problem. Assumption

(i′) implies

d(n)(s,D) = b(n)(s,D) + βEd(n−1)(s+1, D
(n)
+1 (s,D))

≤ b(n)(s,D) + βE[δ + d(n−1)(s+1, D
(n)
+1 (s,D)− δ)]

= b(n)(s,D) + βδ + βEd(n−1)(s+1, D
(n)
+1 (s,D)− δ).

If d(n)(s,D) < b(n)(s,D)+βδ+βEd(n−1)(s+1, D
(n)
+1 (s,D)−δ), then b(n) +βδ should be the

solution to the (n)-th problem. This is a contradiction because b(n)(s,D) is the solution. If

d(n)(s,D) = b(n)(s,D)+βδ+βEd(n−1)(s+1, D
(n)
+1 (s,D)−δ), then the fact that d(n)(s,D) =

dnpl(s) and b(n)(s,D) = bnpl(s) for D > D̄(n)(s), and dnpl(s) = bnpl(s)+βEdnpl(s+1) imply

that

Ed(n−1)(s+1, D
(n)
+1 (s,D)− δ) < Ednpl(s+1),
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which, in turn, implies that ∃s+1, d
(n−1)(s+1, D

(n)
+1 (s,D) − δ) < dnpl(s+1). On the other

hand, D > D̄(n)(s) > dnpl(sH) implies that D ≥ dnpl(sH) + 2δ, which, in turn, im-

plies that D
(n)
+1 (s,D) − δ ≥ D − δ > dnpl(sH). Then, Assumption (ii′) implies that

d(n−1)(s+1, D
(n)
+1 (s,D)− δ) ≥ dnpl(s+1). Thus, we have demonstrated that ∃s+1, such that

dnpl(s+1) ≤ d(n−1)(s+1, D
(n)
+1 (s,D) − δ) < dnpl(s+1), which is a contradiction. Therefore,

it cannot be the case that ∃s, D̄(n+1)(s) > D̄(n)(s).

G Proof of Lemma 12

Claim 2 implies that b(s,D) = limn→∞ b
(n)(s,D) satisfies b(s,D) ≥ δ for D < Dmax(s).

For D ≥ Dmax(s), Lemmas 10 and 11 imply b(s,D) = bnpl(s) ≥ δ. Therefore, b(s,D) ≥ δ

for all (s,D).

Lemmas 10 and 11 imply that V (s,D) = limn→∞ V
(n)(s,D) andDmax(s) = limn→∞ D̄

(n)(s)

satisfy that V (s,D + δ) ≤ V (s,D)− δ for D < Dmax(s).
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