Health Insurance Reform: The impact of a Medicare Buy-In

Gary Hansen (UCLA) Minchung Hsu (GRIPS) Junsang Lee (KDI)

August 8, 2011
CIGS Conference on Macroeconomic Theory and Policy
Table: Insurance coverage in the US (2008)

<table>
<thead>
<tr>
<th>Age</th>
<th>19–34</th>
<th>35–54</th>
<th>55–64</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>28</td>
<td>18</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unhealthy among the uninsured</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
</tr>
</tbody>
</table>

Source: The Henry J. Kaiser Family Foundation.
Motivation

► Health care reform: how do we reduce the number of uninsured? Will the reform improve welfare?
► A universal health insurance law has been passed – however, still controversial.
► Possibilities:
 ► Public option – More affordable for some than individual private insurance since allows for pooling.
 ► Single payer – "Medicare for all"
 ► Individual mandate.
 ► All are controversial in the US.
What we do

- We consider a modest version of a public option: a Medicare buy-in optional for people 55-64.
 - Potentially a political compromise given opposition to universal health insurance.
 - Idea has been proposed by President Clinton in the early 1990’s.
- Compare with current system of individual health plans (IHI) and group insurance provided through employer (EHI).
- Compare with individual mandate
Questions & Methodology

- **Issues:**
 - Does Medicare buy-in actually reduce the number of uninsured? Or, does adverse selection lead to no one purchasing this insurance?
 - What subsidy is required to get all 55-64 year olds to be insured? How much would this cost?
 - Does this insurance affect labor participation since individuals can rely less on EHI?
 - How does welfare compare across different arrangements?

- **Method of Analysis:**
 - Construct a general equilibrium life-cycle model with endogenous health insurance choice
 - Perform quantitative policy experiments
Related Literature

- Auerbach and Kotlikoff (1987) and growing literature - calibrated general equilibrium life cycle model to study dynamic fiscal policy and social insurance programs.

- Attansio, Kitao and Violante (2008) - closest to us, evaluate alternative funding schemes for Medicare given projected aging of population.

- Jeske and Kitao (2009) - study adverse selection and welfare improving role of tax deductible premiums for group insurance programs.
Model Economy

- A general equilibrium life-cycle model with
 1. Endogenous demand for private health insurance
 2. Endogenous labor supply (indivisible)
 3. Market incompleteness due to a borrowing constraint and lack of annuity markets.
 4. Uncertainty due to
 - income shocks
 - health status
 - medical expenditure shocks – depends on health status and age
 - length of life – survival probability depends on health status and age
Model Economy: Demographics

- A continuum of finitely-lived households

- Overlapping generations of individuals of age $j = 1, 2, \ldots, J$, where $j = 1$ corresponds to age 21 and $J = 80$ corresponds to age 100.

- Lifespan is uncertain
 1. $\rho_{j,h}$ – probability of an individual of age j with health status h surviving to age $j + 1$.
 2. $h \in \{h_g, h_b\}$ denotes good or bad health status
 3. $\rho_{J,h} = 0$
Endowment and Income

- Individuals start life with zero assets \((j = 1)\).
- Individuals endowed with one unit of time each period.
 - Indivisible labor: work \(\bar{n}\) or zero
 - If work, earn \(wz\bar{n}\),
 where \(w\): market wage (determined in equilibrium)
 \(z\): idiosyncratic labor productivity (random shock)
- Idiosyncratic labor productivity shock \(z \in \mathbb{Z}\),
 where \(\mathbb{Z} = \{z_1, z_2, ..., z_L\}\)
 - evolves following an age-dependent first-order Markov process
Preferences

\[E \left[\sum_{j=1}^{J} \beta^{j-1} \left(\prod_{t=1}^{j-1} \rho_{t,h} \right) u(c_j, n_j) \right], \]

where

\[u(c, 1-n) = \frac{c^\phi (1-n)^{1-\phi}}{1-\mu} \]
Health Status and Medical Expenditure Uncertainty

- Health status $h \in \{h_g, h_b\}$
 - Two state Markov chain with a transition matrix $\pi^h_j (h', h)$

- Medical expenditure shock $x \in X_{j,h}$
 - $X_{j,h} = \{x^1_{j,h}, x^2_{j,h}, \ldots, x^m_{j,h}\}$
 - Probability of expenditure x, $\pi^x_j (x|h')$, depends on age and health status revealed mid period.
Employment-based and Individual Health Insurance

1. Employment-based Health Insurance (EHI)
 - offered by employers to employees, \(e = 1 \) if EHI offered; \(e = 0 \) if not.
 - premium does not depend on age or health status
 - premium \(q^e \) is tax free income to employees.

2. Individual Health Insurance (IHI)
 - Everyone has access to IHI
 - Price is a function of individual specific characteristics
 - The premium \(q^i (j, h) \) paid before this period’s medical expenditure \(x \) is realized.
Government: Tax Revenues

1. Consumption tax: τ_c

2. Income taxes:
 2.1 Labor income tax, τ_l
 2.2 Capital income tax, τ_k
Government Funded Social Programs

- **Medicare**
 - public health insurance for the elderly
 - eligibility age $J^r = 45$ (corresponds to age 65)
 - covers a fraction ω_m of medical expenditures
 - financed by government revenue (88%) and a Medicare premium q^m (12%)

- **Social Security**
 - provides the elderly with a benefit s at the eligibility age of $J^r = 45$ (corresponds to age 65)

- **Welfare**
 - guarantees a minimum level of consumption c for all households
 - Transfer T is made such that a minimum level of consumption c is affordable
Government Budget Constraint

- Government budget constraint

\[
\int \{ \tau_l [(w \eta_j z n - q^e \cdot e) + s] + \tau_k r (a + b) + \tau_c c + q^m \} d\Phi
\]

\[
= \int [T + s + \omega_m \cdot x] d\Phi + G,
\]

where \(\Phi \) is the distribution of population over state variables.

- \(G \) is residual
Supply Side

▶ Production Technology

\[Y = F(K, L) \]
\[= AK^\theta L^{1-\theta}, \]

where \(Y \) denotes aggregate output, \(K \) aggregate capital stock, \(L \) aggregate effective labour, and \(\theta \) the capital income share.
Agent’s Problem

- Time line for decisions within a period
 - Stage 1: Employment and health insurance are chosen given (e, z, a, h, j).
 - Stage 2: Consumption and savings are chosen after health status and medical expenditure, (h', x), are realized.
Agent’s Problem

State vector \(s = (a, h, z, e, j) \)

\[
V(s) = \max_{n \in \{0, \bar{n}\}, \iota_{IHI}} \sum_{(h', x)} \pi_j^x(x|h') \pi_j^h(h', h) \left\{ \max_{c, a'} u(c, n) + \right. \\
\left. \beta \rho_{j, h'} \sum_{(z', e')} P^j_{(z', e')|(z,e)} V(s') \right\}
\]

subject to

\[
(1 + \tau_c)c + a' + q^i(j, h)i_{IHI} = W + T \\
W \equiv (1 - \tau_l) (wzn - q^e \cdot \iota_{EHI}) + (1 + (1 - \tau_k) r) (a + b) - (1 - \hat{\omega}) x \\
T = \max\{0, (1 + \tau_c)\bar{c} - W\}
\]
Agent’s Problem

\[\hat{\omega} = \begin{cases}
\omega & \text{if } \iota_{EHI} = 1 \text{ or } \iota_{IHI} = 1 \\
0 & \text{otherwise}
\end{cases} \]

\[\iota_{EHI} = \begin{cases}
1 & \text{if } e = 1 \text{ and } n = \bar{n} \\
0 & \text{otherwise}
\end{cases} \]

\[a' \geq 0; \quad c \geq 0. \]
Old Agent’s Problem

\[V(j, a, h) = \max_{c, a'} \{ u(c, 0) + \beta \rho_{j, h'} V(j + 1, a', h') | h', x \} \]

subject to

\[(1 + \tau_c)c + a' = W + T \]

\[W \equiv s + (1 + (1 - \tau_k) r) (a + b) - (1 - \omega_m) x - q^m \]

\[T = \max\{0, (1 + \tau_c)c - W\} \]

\[a' \geq 0; \quad c \geq 0. \]
Equilibrium Conditions

\[L = \int n(s) z \eta_j d\Phi \]

\[K = \int (a + b) d\Phi \]

where

\[b = \int \frac{(1 - \rho_{j-1,h})a}{1 + g} d\Phi \]
Equilibrium Conditions

\[q^i(j, h) = \psi \sum_{(h', x)} \pi_j^x(x|h') \pi_j^h(h', h) \omega \ x \]

\[q^e = \int \sum_{(h', x)} \pi_j^x(x|h') \pi_j^h(h', h) \omega \ x \ \nu_{EHI} \ d\Phi \]

\[q^m = (1 - \sigma_m) \int \sum_{(h', x)} \pi_j^x(x|h') \pi_j^h(h', h) \omega_m \ x \ \nu_{j \geq J_r} \ d\Phi \]

where \(\psi \) is the markup for IHI and \(\Phi \) is the equilibrium distribution of population over state variables.
Medicare Buy-in

\[
V(s) = \max_{n \in \{0, \bar{n}\}, \iota_{IHI}, \iota_{MB}} \sum_{(h', x)} \pi^x_j (x|h') \pi^h_j (h', h) \left\{ \max_{c, a'} u(c, n) + \beta \rho_{j, h'} \sum_{(z', e')} P^j_{(z', e')|(z, e)} V(s') \right\}
\]

subject to

\[
(1 + \tau_c) c + a' + q^i(j, h) \cdot \iota_{IHI} + q^{mb}(j) \cdot \iota_{MB} = W + T
\]

\[
W \equiv (1 - \tau_i)(\omega \eta_j zn - q^e i_{EHI}) + (1 + (1 - \tau_k)r)(a + b) - (1 - \hat{\omega})x
\]

\[
T = \max\{0, (1 + \tau_c) c - W\}
\]
Medicare Buy-in

\[\hat{\omega} = \begin{cases}
\omega & \text{if } \iota_{EHI} = 1, \text{ or } \iota_{IHI} = 1 \\
\omega_b & \text{if } \iota_{MB} = 1 \\
0 & \text{otherwise}
\end{cases} \]

\[\iota_{EHI} = \begin{cases}
1 & \text{if } e = 1 \text{ and } n = \bar{n} \\
0 & \text{otherwise}
\end{cases} \]

\[a' \geq 0; \quad c \geq 0; \]
Medicare Buy-in–Insurance premium

\[q^b(j) = (1 - \sigma_b) \int \sum_{(h', x)} \pi^x_j(x|h') \pi^h_j(h', h) \omega_b x \nu_{MB} \nu_j d\Phi \]

where \(\sigma_b \) is the government subsidy rate.

If the Medicare buy-in is not priced by age:

\[q^b = (1 - \sigma_b) \int \sum_{(h', x)} \pi^x_j(x|h') \pi^h_j(h', h) \omega_b x \nu_{MB} d\Phi \]
Calibration

- Medical Expenditure Panel Survey (MEPS) is used for our calibration of income fluctuations, health status transition, and medical expenditures.
 - All values are transformed to 2007 dollars.
Labor Productivity Shocks z and EHI offer e

- Specify 5 earning groups from whole sample with equal size

 $$Z = \{0.05, 0.43, 0.79, 1.23, 2.50\}$$

 expressed as fraction of average earnings in 2007 dollars ($30,678$).

- e, an indicator of EHI offer, is either 0 or 1.

- Calibrate transition probabilities of z and e jointly – a 10 by 10 matrix for each 5-year age group.
EHI offer and Labor Productivity Shocks \(z_t \)

Table: Joint transition matrices of earnings and EHI offer by age group 20-24

<table>
<thead>
<tr>
<th>Age</th>
<th>(e' = 1) (z' = z_1)</th>
<th>(e' = 1) (z' = z_2)</th>
<th>(e' = 1) (z' = z_3)</th>
<th>(e' = 1) (z' = z_4)</th>
<th>(e' = 1) (z' = z_5)</th>
<th>(e' = 0) (z' = z_1)</th>
<th>(e' = 0) (z' = z_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-24</td>
<td>0.08</td>
<td>0.24</td>
<td>0.25</td>
<td>0.09</td>
<td>0.07</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>(e = 1) (z = z_1)</td>
<td>0.04</td>
<td>0.38</td>
<td>0.24</td>
<td>0.09</td>
<td>0.02</td>
<td>0.07</td>
<td>0.11</td>
</tr>
<tr>
<td>(e = 1) (z = z_2)</td>
<td>0.01</td>
<td>0.11</td>
<td>0.48</td>
<td>0.24</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>(e = 1) (z = z_3)</td>
<td>0.01</td>
<td>0.04</td>
<td>0.16</td>
<td>0.58</td>
<td>0.13</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>(e = 1) (z = z_4)</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.19</td>
<td>0.63</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(e = 1) (z = z_5)</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.59</td>
<td>0.24</td>
</tr>
<tr>
<td>(e = 0) (z = z_1)</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.59</td>
</tr>
<tr>
<td>(e = 0) (z = z_2)</td>
<td>0.01</td>
<td>0.06</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
<td>0.11</td>
<td>0.47</td>
</tr>
<tr>
<td>(e = 0) (z = z_3)</td>
<td>0.01</td>
<td>0.04</td>
<td>0.07</td>
<td>0.05</td>
<td>0.01</td>
<td>0.22</td>
<td>0.47</td>
</tr>
<tr>
<td>(e = 0) (z = z_4)</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.15</td>
<td>0.06</td>
<td>0.09</td>
<td>0.26</td>
</tr>
<tr>
<td>(e = 0) (z = z_5)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>0.17</td>
<td>0.00</td>
<td>0.08</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Health Status and Medical Expenditure Shocks x_t

- Self-reported health status in MEPS, from 1 to 5 representing excellent, very good, good, fair and poor health.

- Mapping to health status in model: Scores from 1 to 3, $h = g$; scores from 4 to 5, $h = b$.

- To capture the long-tail in the distribution of health expenditures, we use three expenditure states with uneven measures (top 5%, 35% and 60%) for each age and health status.
Health Status and Medical Expenditure Shocks x_t

Table: Health expenditures from MEPS (2007 dollars)

<table>
<thead>
<tr>
<th>Age</th>
<th>Health</th>
<th>60%</th>
<th>35%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>Good</td>
<td>62</td>
<td>1,353</td>
<td>10,870</td>
</tr>
<tr>
<td></td>
<td>Bad</td>
<td>158</td>
<td>3,132</td>
<td>20,560</td>
</tr>
<tr>
<td>30-39</td>
<td>Good</td>
<td>110</td>
<td>1,670</td>
<td>12,259</td>
</tr>
<tr>
<td></td>
<td>Bad</td>
<td>252</td>
<td>4,108</td>
<td>33,161</td>
</tr>
<tr>
<td>40-49</td>
<td>Good</td>
<td>214</td>
<td>2,285</td>
<td>14,394</td>
</tr>
<tr>
<td></td>
<td>Bad</td>
<td>548</td>
<td>6,082</td>
<td>40,926</td>
</tr>
<tr>
<td>50-64</td>
<td>Good</td>
<td>521</td>
<td>3,863</td>
<td>24,336</td>
</tr>
<tr>
<td></td>
<td>Bad</td>
<td>1,225</td>
<td>9,645</td>
<td>53,103</td>
</tr>
<tr>
<td>65-</td>
<td>Good</td>
<td>1,258</td>
<td>8,118</td>
<td>47,871</td>
</tr>
<tr>
<td></td>
<td>Bad</td>
<td>2,597</td>
<td>15,540</td>
<td>63,096</td>
</tr>
</tbody>
</table>
Summary of Parameter Values

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Notations</th>
<th>Values</th>
<th>Target/Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount Factor</td>
<td>β</td>
<td>0.974</td>
<td>K/Y ratio = 2.5</td>
</tr>
<tr>
<td>Risk Aversion</td>
<td>μ</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Depreciation Rate</td>
<td>δ</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Labor Parameter</td>
<td>ϕ</td>
<td>0.7</td>
<td>Agg. labor = 0.34</td>
</tr>
<tr>
<td>Capital Income Share</td>
<td>θ</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>IHI premium Markup</td>
<td>ψ</td>
<td>0.08</td>
<td>PHI take up = 0.64</td>
</tr>
<tr>
<td>Social assistance</td>
<td>c</td>
<td>24% of</td>
<td>Jeske and Kitao (2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>avg earnings</td>
<td></td>
</tr>
<tr>
<td>Social security benefit</td>
<td>s</td>
<td>45% of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>avg earnings</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Parameter Values (cont’d)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Notations</th>
<th>Values</th>
<th>Target/Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHI coverage rate</td>
<td>ω</td>
<td>0.70</td>
<td>AKV (2008)</td>
</tr>
<tr>
<td>Medicare coverage rate</td>
<td>ω_m</td>
<td>0.50</td>
<td>AKV (2008)</td>
</tr>
<tr>
<td>Medicare Buy-in coverage rate</td>
<td>ω_{mb}</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Consumption tax rate</td>
<td>τ_c</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Capital tax rate</td>
<td>τ_k</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Labor tax rate</td>
<td>τ_l</td>
<td>0.35</td>
<td></td>
</tr>
</tbody>
</table>
Quantitative Analysis

- Benchmark economy
- Policy experiments
 1. Mandate
 2. Medicare buy-in
- Policy implications
 1. Insurance coverage
 2. Tax burden
 3. Labor market
 4. Welfare
Benchmark economy

Table: Benchmark properties

<table>
<thead>
<tr>
<th>Working-age population</th>
<th>Total PHI coverage</th>
<th>EHI take-up</th>
<th>IHI take-up</th>
<th>Labor hours</th>
<th>Capital-output ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Bench</td>
<td>0.64</td>
<td>0.54</td>
<td>0.10</td>
<td>0.34</td>
<td>2.5</td>
</tr>
<tr>
<td>MEPS data</td>
<td>0.64</td>
<td>0.51</td>
<td>0.13</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Benchmark economy (cont’d)

Figure 1: Age profile of HI take-up ratio (Benchmark)
Benchmark economy (cont’d)

Figure: PHI, EHI and IHI take-up ratios (Benchmark)
Benchmark economy (cont’d)

Figure: Total PHI take-up ratio by health status (Benchmark)
Benchmark economy (cont’d)

Figure: IHI purchase by health status (Benchmark)
Benchmark economy (cont’d)

Figure 2: Income, Consumption and Asset Holding (Benchmark)
Benchmark economy (cont’d)

Figure 3: Labor Participation (Benchmark)
Policy Experiments

- Mandate – No government financing
 - 1. A mandate without new health insurance options
 - 2. A mandate with voluntary Medicare Buy-in for age 55-64
 - adverse selection problem
 - results same as the first policy
 - 3. With mandatory Medicare Buy-in for age 55-64

- Voluntary Medicare Buy-in – subsidy required
 - 1. No price discrimination with various subsidy rates
 - 2. Priced by age with various subsidy rates
Policy implication: insurance coverage and tax burden

<table>
<thead>
<tr>
<th>Reform policy</th>
<th>MB take-up ratio without EHI offer</th>
<th>MB subsidy to GDP ratio</th>
<th>Labor tax rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandate</td>
<td>–</td>
<td>–</td>
<td>35%</td>
</tr>
<tr>
<td>Mandate MB</td>
<td>100%</td>
<td>0%</td>
<td>35%</td>
</tr>
<tr>
<td>MB (10% S)</td>
<td>28.5%</td>
<td>0.009%</td>
<td>35.015%</td>
</tr>
<tr>
<td>MB (20% S)</td>
<td>44.6%</td>
<td>0.028%</td>
<td>35.048%</td>
</tr>
<tr>
<td>MB (44% S)</td>
<td>100%</td>
<td>0.100%</td>
<td>35.160%</td>
</tr>
<tr>
<td>MB PA (10% S)</td>
<td>44.0%</td>
<td>0.014%</td>
<td>35.025%</td>
</tr>
<tr>
<td>MB PA (20% S)</td>
<td>44.8%</td>
<td>0.028%</td>
<td>35.047%</td>
</tr>
<tr>
<td>MB PA (38% S)</td>
<td>100%</td>
<td>0.088%</td>
<td>35.140%</td>
</tr>
</tbody>
</table>

Table: Insurance coverage and tax burden
Policy implication: Impact on labor market

Figure 6: Labor participation

![Labor participation graph]

Legend:
- Bench
- MB 44% subsidy
- MB PA 38% subsidy
- Mandate
- Mandate MB
Policy implication: Welfare

Table: Welfare comparison (CEV from Bench)

<table>
<thead>
<tr>
<th></th>
<th>New-born</th>
<th>All</th>
<th>Without EHI offer</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Young good H</td>
<td>Young bad H</td>
<td>Mid age good H</td>
<td>Mid age bad H</td>
<td></td>
</tr>
<tr>
<td>Mandate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mandate</td>
<td>-0.141%</td>
<td>-0.112%</td>
<td>-0.139%</td>
<td>-0.092%</td>
<td>-0.301%</td>
<td>-0.119%</td>
<td></td>
</tr>
<tr>
<td>Mandate MB</td>
<td>-0.136%</td>
<td>-0.082%</td>
<td>-0.122%</td>
<td>-0.065%</td>
<td>-0.359%</td>
<td>0.251%</td>
<td></td>
</tr>
<tr>
<td>Voluntary MB with subsidy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB (44% S)</td>
<td>-0.012%</td>
<td>0.010%</td>
<td>-0.051%</td>
<td>-0.014%</td>
<td>0.349%</td>
<td>0.919%</td>
<td></td>
</tr>
<tr>
<td>MB PA (38% S)</td>
<td>-0.122%</td>
<td>0.013%</td>
<td>-0.041%</td>
<td>-0.006%</td>
<td>0.277%</td>
<td>0.850%</td>
<td></td>
</tr>
</tbody>
</table>

Note: Young – age < 55; Mid age – 55-64.
Conclusion

- Without subsidy or mandate, adverse selection eliminates market for Medicare Buy-in.
- Even with mandate, adverse selection eliminates market for Medicare Buy-in if individuals can purchase IHI.
- To get 100 percent of 55-64 to purchase insurance requires 44% subsidy of Medicare Buy-in premium if all participants pay the same.
 - The subsidy is reduced to 38% if price differently by age.
Conclusion

- A subsidized Medicare Buy-in does not cause significant reduction in employment.
- All policies considered reduce lifetime expected welfare of an individual at the beginning of life.
- Mandate to purchase Medicare Buy-in for those without EHI improves welfare for those 55-64 and in bad health.
- Subsidized Medicare Buy-in improves average welfare.