Rational Bubbles and Middlemen

Yu Awaya Kohei Iwasaki Makoto Watanabe University of Rochester University of Wisconsin VU Amsterdam/ TI

December 25, 2019

Motivation

Bubbles:

- Continuous price increases, interrupted by a sudden market crash
- Chains of intermediaries engaged in flipping

Examples: Dutch tulip mania (1634-7); Mississippi Bubble (1719-20); South Sea Bubble (1720); Roaring Twenties followed by the 1920 crash; Housing bubble preceded the 2008 financial crisis

 \implies Explore for a (simple) framework of bubbles that features the above

Our Approach

- Why would a smart person hold an asset they know is overpriced?
 - they're hoping to sell it to another person just before the bubble bursts
- Why would that other smart person buy an asset that's about to collapse?
 - Bubbles are impossible
 - They expect the overpricing to grow forever
 - Our answer: finite horizon, identifying exactly the timing of bubble burst

Our Approach

Implications:

- The intuition of market participants, "if they want to ride a bubble, they must carefully time the point at which they sell to a "greater fool", and so, get out of the bubble"
- Booms turn into euphoria as "rational exuberance morphs into irrational exuberance"
 Charles P. Kindleberger (1978)
 "Manias, Panics, and Crashes: A History of Financial Crises"

• Suppose there are two agents, A_1 and A_2

And two goods—goods x and y

- Good y can be produced (at a certain cost) and consumed by both agents
- Good x is owned by agent A_1 , but consumed only by A_2

- The consumption value of good x is stochastic
- Specifically, the value

$$V = \begin{cases} v & \text{with some probability} \\ 0 & \text{with the remaining probability} \end{cases}$$

where v > 0

- Obviously, bubble never occur
- That is, consider a case where
 - V = 0, that is the value of object x is 0
 - And all agents know this
- In this case, trade doesn't occur
 - A₂ rejects to produce any positive amount of good y to get good x

- Now suppose the trade can be done through a middleman (flipper)
- In particular, there are three agents, A_1 , A_2 and A_3

As before, two goods, x and y

- Good x is now owned by A_1 and can be consumed only by A_3
- Good y can be produced and consumed by all agents
- The consumption value of good x

$$V = \begin{cases} v & \text{with some probability} \\ 0 & \text{with the remaining probability} \end{cases}$$

Trading protocol is similar as before:

▶ First A₁ and A₂ can trade goods x and y

• If the trade occurs, then A_2 and A_3 can trade goods x and y

- Now suppose as before
 - V = 0, that is the value of object x is 0
 - And all agents know this
- Can good x ever be traded with good y?
- Can bubble occur?

Yes!

- There are certain cases in which good x is traded for good y, although everyone knows the consumption value of x is 0
- Specifically suppose A₂ is a fool who (mistakenly) believes that A₃ is a greater fool than he is
 - That is, A₂ puts high probability on the event than A₃ does on the event that x has value
 - Consistent with all agents knowing the value of x is 0
- In this case...

Then A_2 is still willing to trade with A_1

$$(A_1) \xrightarrow[y]{x} (A_2) (A_3)$$

Hoping to trade with A_3

• Recall A_2 does NOT know that A_3 knows V = 0

Unfortunately for A_2 , A_3 refuses the trade

- A₃ knows good x has no value
- A₂ turns out to be the greatest fool who cannot find a greater fool

Bubble

Middlemen (flippers) are a source of bubbles

- End users care about the quality of an asset
- Middlemen don't
 - Downstream middlemen only care about how end users think about the asset
 - Upstream middlemen only care about how down stream middlemen think about the asset

Paper

Based upon this observation

- We construct a tractable model of bubbles in an economy with flippers
 - An object with no value is traded although everyone knows that it has no value
 - A fool buys the object, hoping to find a greater fool who buys the object from him
- Bubble occurs in the unique equilibrium
- The model describes the life of a bubble

Price path

An object without fundamental value is traded at a positive price

Price path

Price of the object increases—and accelerates—as time passes

While the fundamental of the economy does NOT grow

Price path

Paper

And

- Provide a simple condition for which bubble is detrimental
- Show bubble-bursting policy (Conlon, 2015) does not affect welfare
- Information increases size of bubble
 - Not information on fundamentals, but information on knowledge of the other agents

We do NOT assume irrational agents nor heterogeneous priors

Fools are not irrational, but ignorant people

The Model

Objects

- ► Two goods—x and y
- Good x is durable and indivisible
- Good y is perishable and divisible

Environment

N agents, A_1 , A_2 ,..., A_N

Environment

- Good x is owned by A_1 and can be consumed only by A_N
 - The consumption value of good x

 $V = \begin{cases} v > 0 & \text{ with some probability} \\ 0 & \text{ with remaining probability} \end{cases}$

Good y can be produced and consumed by all agents

- The cost of producing \hat{y} units of good y is \hat{y}
- The utility of consuming \hat{y} units of good y is $\kappa \hat{y}$

Environment

• Agent A_{n-1} and A_{n+1} can trade only through A_n

- ► First A_{n-1} and A_n can (if both want) exchange x and some amount of good y
- ► Conditional on the trade between A_{n-1} and A_n, A_n and A_{n+1} can exchange x and some amount of good y
- The amount of y is determined by Nash bargaining

- Introduce type space
 - Each type describes who knows what
- In a way reminiscent of Rubinstein's Email game
 - Rather schematic
 - A way to help illustrating the relevant knowledge structure

$\cdots \cdots \qquad (A_{N-2}) \qquad (A_{N-1}) \qquad (A_N)$

- If V = 0, A_N gets a signal s_N with some probability
- Thus, if A_N gets s_N , then he knows that V = 0
 - If not, A_N becomes optimistic about the value of good x

- If A_N gets the signal s_N, then he sends a signal ("rumor") s_{N-1} to A_{N-1}
- The "rumor" reaches A_{N-1} with some probability
- ► Thus, if A_{N-1} gets s_{N-1} , then he knows that A_N knows V = 0

- If A_{N-1} gets the signal s_{N-1}, then he sends a signal ("rumor") s_{N-2} to A_{N-2}
- The "rumor" reaches A_{N-2} with some probability
- Thus, if A_{N-2} gets a signal s_{N-2}, then he knows that A_{N-1} knows that A_N knows V = 0

In general

$$\cdots \cdots (A_{n-1}) \longleftarrow A_n) \longleftarrow \cdots (A_N)$$

- If A_n gets the signal s_n, then he sends a signal ("rumor") s_{n-1} to A_{n-1}
- The "rumor" reaches A_{n-1} with some probability
- ► Thus, if A_{n-1} gets a signal s_{n-1}, then he knows that A_n knows that ... that A_N knows that V = 0

• If A_1 gets the signal s_1 , the process stops

Finally, assume all but A_N always know the value of x

Type space

Formally, the set of the state of the world

$$\Omega = \{\omega_{\rm v}, \omega_{\phi}, \omega_{\rm N}, ..., \omega_1\}$$

where

•
$$\omega_v$$
 means $V = v$

- ω_{ϕ} means V = 0 and no agents get a signal
- ω_n means V = 0 and agent *n* is the last one to get a signal

Partition

- Prior distribution μ on Ω
- Homogeneous prior—µ is common knowledge

Price

- Price (the amount of good y) is determined by Nash barganing
 - Outside option is 0
 - The value of good x is unknown, but the expected value is common knowledge
 - Can be generalized
 - Let θ be the bargaining power of A_n in trade between A_n and A_{n+1}
- Price of each pair is NOT observed by outsiders
 - Over-the-couter market

Timing

- 1. Nature determines V
- 2. Signals ("rumors") are send, and a type is determined
- 3. Actual trades start

Main result

Definition

We say bubble occurs if

- Everyone knows the value of good x is 0
- And yet good x is exchanged with positive amount of good y

Main result

Theorem

The equilibrium is unique. In the equilibrium, a bubble occurs when $\omega \in \{\omega_N, \omega_{N-1}, \cdots, \omega_3\}$. Moreover, a bubble bursts for sure.

Backward induction

- Clearly, A_N buys good x if and only if he doesn't get a signal
 - If he gets a signal, he knows x has no value
 - If he hasn't, his expected value of good x is positive, and hence willing to produce some amount of good y
- Suppose that A_{n+1} buys good x if and only if he doesn't get a signal
- ▶ Given this, how should A_n behave?

Optimal behavior of A_n

$$(A_{n-1}) \underbrace{\longleftrightarrow} (A_n) \underbrace{\longleftrightarrow} (A_{n+1})$$

- If A_n gets a signal, then A_{n+1} also gets a signal
- Induction hypothesis: A_{n+1} will reject the trade
- Optimal not to buy x

Optimal behavior of A_n

- If A_n doesn't get a signal, $\omega \in \{\omega_{n+1}, \omega_{n+2}, ..., \omega_{\phi}\}$
- Two possibilities:
 - 1. A_{n+1} also doesn't get a signal, that is, $\omega \in \{\omega_{n+2}, ..., \omega_{\phi}\}$
 - 2. A_{n+1} gets a signal, that is, $\omega = \omega_{n+1}$
- Induction hypothesis:
 - 1. A_{n+1} buys x when $\omega \in \{\omega_{n+2}, ..., \omega_{\phi}\}$
 - 2. A_{n+1} doesn't buy x when $\omega = \omega_{n+1}$
- Since there is a chance that A_{n+1} buys good x, A_n is willing to buy good x

Price

The exact price is given as follows: Define $(\hat{y}_n)_{n=1}^{N-1}$ by: For N-1,

 $\hat{y}_{N-1} = \theta v_e$

and for each $n = 1, \cdots, N - 2$,

$$\hat{y}_n = \theta \kappa \psi_{n+1} \hat{y}_{n+1}$$

At state ω₃, bubbles occur.

More precisely, A₁ and A₂ exchange x and

$$\frac{1}{4}\kappa v$$

units of good y

• Then A_2 and A_3 of course do not trade

recall partition of A₂

$$\mathcal{P}_2 = \{\{\omega_v\}, \{\omega_\phi, \omega_3\}, \{\omega_2, \omega_1\}\}$$

so that at ω_3 , from A_2 's point of view, the state is either ω_ϕ or ω_3

He puts the same probability in each state

Recall A_3 's partition

$$\mathcal{P}_3 = \{\{\omega_{\mathbf{v}}, \omega_{\phi}\}, \{\omega_3, \omega_2, \omega_1\}\}$$

• At ω_{ϕ} , A_3 doesn't know whether V = 0 or v

- Recall true state of the world is \u03c63
- But importantly, A_2 assigns probability 1/2 to the event ω_{ϕ}
- Thus what happens at ω_{ϕ} matters a lot
- And so A₃ accepts a trade as long as

$$\hat{y}_3 \leq \frac{1}{2} \times 0 + \frac{1}{2} \times \nu = \frac{\nu}{2}$$

Then, from middleman A_2 's point of view...

- At ω_3 , A_3 refuses the trade. A_2 gets 0 by having good x
- ▶ But at ω_{ϕ} , A_3 accepts the trade. This implies, at ω_{ϕ} , A_2 gets

$\frac{\kappa v}{2}$

by having good x

- Note that from v/2 units of good y, an agents gets utility $\kappa v/2$
- Since he assigns the same probability to each event, his expected value of having good x is

$$\frac{1}{2} \times 0 + \frac{1}{2} \times \frac{\kappa v}{2} = \frac{\kappa v}{4}$$

He accepts a trade if

$$\hat{y}_2 \leq \frac{\kappa v}{4}$$

- ▶ In words, at ω_3 , A_2 doesn't know whether he
 - can find a greater fool
 - or not—he is the greatest fool
- And unfortunately, A_2 turns out to be the greatest fool

Price Path

Price

Price of good x is

- Always increasing
- Accelerating unless prior distribution is extreme
 - Satisfied when, for example, in each step the signal is lost with the same probability

Increasing

- Why increasing?
- Agent A_n always faces a risk that A_{n+1} rejects the trade
 - That is, A_n may be the greatest fool who fails to find a greater fool
- To compensate this, price must increase

Accelerating

- Why accelerating?
- ▶ When m < n, the risk that A_n faces is higher than that A_m faces
 - ► Why so? Will see
- ▶ To compensate this, price must accelerate

Accelerating

- Why it is the case that when m < n, the risk that A_n faces is higher than that A_m faces?
- ▶ Given that A_n doesn't get a signal, the probability that A_{n+1} does not get a signal is

$$\psi_n = 1 - \frac{\mu(\omega_{n+1})}{\mu(\omega_{n+1}) + \mu(\omega_{n+2}) + \dots + \mu(\omega_{\phi})}$$

- The probability is decreasing in n
 - ▶ To get an idea, suppose that μ is uniform so that for each $\omega, \omega' \in \Omega, \ \mu(\omega) = \mu(\omega')$
 - Then

$$\psi_n = 1 - \frac{1}{N - n + 1}$$

• ψ_n is decreasing in *n*

Welfare/ Probability of Bubble

Welfare

Welfare implication

- Consider the interim stage where planner knows V = 0
- When $\kappa > 1$, bubble improves welfare
- But when $\kappa < 1$, bubble is detrimental

Probability of bubble

- How likely (ex ante) does a bubble occur?
- The probability can be arbitrarily close to 1
- Recall bubble occurs at states $\{\omega_N, ..., \omega_3\}$
- With uniform distribution (µ(ω) = 1/((N+2)) the probability is

$$1-\frac{4}{N+2}$$

- As $N \to \infty$, the probability goes to 1
- Note that the ex ante probability that good x has value is very small

Applications

Bubble-bursting policy

- Should a central bank burst bubble?
- Suppose it knows that the asset is worthless if and only if all agents know, that is,

$$\mathcal{P}_{CB} := \{\{\omega_{v}, \omega_{\phi}\}, \{\omega_{N}, ..\omega_{3}\}\} = \mathcal{P}_{N}$$

- And it can release the information to burst the bubble
- Should it adopt such a policy?

Bubble-bursting policy

Trade-off when $\kappa < 1$ (the other case is opposite), bubble-bursting policy is

- Good when $\omega \in \{\omega_N, ...\omega_3\}$
 - Without policy, bubble occurs while detrimental
 - With policy, announcement follows and bubble doesn't occur
- Bad when $\omega = \omega_{\phi}$
 - ► Without policy, agents A_n put positive probability that he is the greatest fool
 - With policy, agents A_n , $n \neq N$ now know that he cannot be the greatest fool
 - They all know that A_N doesn't get the signal and so will "buy" good x
 - The inaction of the central bank affects agents' beliefs
 - Thus, policy <u>increases</u> price
- Neutral when $\omega \in \{\omega_v, \omega_2, \omega_1\}$

Surprisingly, these two effects *completely* offset each other!

Proposition The bubble-bursting policy has no effect on ex ante welfare.

Bubble and information

In the model, flippers' information is "fine"

- Everyone has a chance to get a signal
- This is why, everyone can be the greatest fool
- What if information is "coarser"?
 - That is, A_n , $n \neq N$ never gets a signal
- What happens to the size of bubble?
- Information enhances bubble, that is...

Bubble and information

- \hat{y}_n is the price when information is finer
- y_n^0 is that when coarser

Proposition

$$\hat{y}_n > y_n^0$$

Conclusion

A tractable model of bubble

- Flippers cause bubbles
- Bubble occurs in an unique backward induction outcome