# Rational Bubbles and Middlemen 

Yu Awaya Kohei Iwasaki Makoto Watanabe<br>University of Rochester University of Wisconsin VU Amsterdam/ TI

December 25, 2019

## Motivation

Bubbles:

- Continuous price increases, interrupted by a sudden market crash
- Chains of intermediaries engaged in flipping

Examples: Dutch tulip mania (1634-7); Mississippi Bubble (1719-20); South Sea Bubble (1720); Roaring Twenties followed by the 1920 crash; Housing bubble preceded the 2008 financial crisis
$\Longrightarrow$ Explore for a (simple) framework of bubbles that features the above

## Our Approach

- Why would a smart person hold an asset they know is overpriced?
- they're hoping to sell it to another person just before the bubble bursts
- Why would that other smart person buy an asset that's about to collapse?
- Bubbles are impossible
- They expect the overpricing to grow forever
- Our answer: finite horizon, identifying exactly the timing of bubble burst


## Our Approach

Implications:

- The intuition of market participants, "if they want to ride a bubble, they must carefully time the point at which they sell to a "greater fool", and so, get out of the bubble"
- Booms turn into euphoria as "rational exuberance morphs into irrational exuberance"
Charles P. Kindleberger (1978)

"Manias, Panics, and Crashes: A History of Financial Crises"

## Illustrative example

- Suppose there are two agents, $A_{1}$ and $A_{2}$

- And two goods-goods $x$ and $y$


## Illustrative example



- Good y can be produced (at a certain cost) and consumed by both agents
- Good $x$ is owned by agent $A_{1}$, but consumed only by $A_{2}$


## Illustrative example

- The consumption value of good $x$ is stochastic
- Specifically, the value

$$
V= \begin{cases}v & \text { with some probability } \\ 0 & \text { with the remaining probability }\end{cases}
$$

where $v>0$

## Illustrative example

- Obviously, bubble never occur
- That is, consider a case where
- $V=0$, that is the value of object $x$ is 0
- And all agents know this
- In this case, trade doesn't occur
- $A_{2}$ rejects to produce any positive amount of good $y$ to get $\operatorname{good} x$


## Illustrative example

- Now suppose the trade can be done through a middleman (flipper)
- In particular, there are three agents, $A_{1}, A_{2}$ and $A_{3}$

$A_{3}$


## Illustrative example

As before, two goods, $x$ and $y$

- Good $x$ is now owned by $A_{1}$ and can be consumed only by $A_{3}$
- Good $y$ can be produced and consumed by all agents
- The consumption value of good $x$

$$
V= \begin{cases}v & \text { with some probability } \\ 0 & \text { with the remaining probability }\end{cases}
$$

## Illustrative example

Trading protocol is similar as before:

- First $A_{1}$ and $A_{2}$ can trade goods $x$ and $y$

- If the trade occurs, then $A_{2}$ and $A_{3}$ can trade goods $x$ and $y$



## Illustrative example

- Now suppose as before
- $V=0$, that is the value of object $x$ is 0
- And all agents know this
- Can good $x$ ever be traded with good $y$ ?
- Can bubble occur?


## Illustrative example

- Yes!
- There are certain cases in which good $x$ is traded for good $y$, although everyone knows the consumption value of $x$ is 0
- Specifically suppose $A_{2}$ is a fool who (mistakenly) believes that $A_{3}$ is a greater fool than he is
- That is, $A_{2}$ puts high probability on the event than $A_{3}$ does on the event that $x$ has value
- Consistent with all agents knowing the value of $x$ is 0
- In this case...


## Illustrative example

Then $A_{2}$ is still willing to trade with $A_{1}$


## Illustrative example

Hoping to trade with $A_{3}$


- Recall $A_{2}$ does NOT know that $A_{3}$ knows $V=0$


## Illustrative example

Unfortunately for $A_{2}, A_{3}$ refuses the trade


- $A_{3}$ knows good $x$ has no value
- $A_{2}$ turns out to be the greatest fool who cannot find a greater fool


## Bubble

Middlemen (flippers) are a source of bubbles

- End users care about the quality of an asset
- Middlemen don't
- Downstream middlemen only care about how end users think about the asset
- Upstream middlemen only care about how down stream middlemen think about the asset


## Paper

Based upon this observation

- We construct a tractable model of bubbles in an economy with flippers
- An object with no value is traded although everyone knows that it has no value
- A fool buys the object, hoping to find a greater fool who buys the object from him
- Bubble occurs in the unique equilibrium
- The model describes the life of a bubble


## Price path

An object without fundamental value is traded at a positive price


## Price path

Price of the object increases-and accelerates-as time passes


While the fundamental of the economy does NOT grow

## Price path

And someday, it bursts


## Paper

And

- Provide a simple condition for which bubble is detrimental
- Show bubble-bursting policy (Conlon, 2015) does not affect welfare
- Information increases size of bubble
- Not information on fundamentals, but information on knowledge of the other agents


## Fools

We do NOT assume irrational agents nor heterogeneous priors

- Fools are not irrational, but ignorant people

The Model

## Objects

- Two goods- $x$ and $y$
- Good $x$ is durable and indivisible
- Good $y$ is perishable and divisible


## Environment

$N$ agents, $A_{1}, A_{2}, \ldots, A_{N}$


## Environment

- Good $x$ is owned by $A_{1}$ and can be consumed only by $A_{N}$
- The consumption value of good $x$

$$
V= \begin{cases}v>0 & \text { with some probability } \\ 0 & \text { with remaining probability }\end{cases}
$$

- Good y can be produced and consumed by all agents
- The cost of producing $\hat{y}$ units of good $y$ is $\hat{y}$
- The utility of consuming $\hat{y}$ units of good $y$ is $k \hat{y}$


## Environment



- Agent $A_{n-1}$ and $A_{n+1}$ can trade only through $A_{n}$
- First $A_{n-1}$ and $A_{n}$ can (if both want) exchange $x$ and some amount of good $y$
- Conditional on the trade between $A_{n-1}$ and $A_{n}, A_{n}$ and $A_{n+1}$ can exchange $x$ and some amount of good $y$
- The amount of $y$ is determined by Nash bargaining


## Knowledge

- Introduce type space
- Each type describes who knows what
- In a way reminiscent of Rubinstein's Email game
- Rather schematic
- A way to help illustrating the relevant knowledge structure


## Knowledge



- If $V=0, A_{N}$ gets a signal $s_{N}$ with some probability
- Thus, if $A_{N}$ gets $s_{N}$, then he knows that $V=0$
- If not, $A_{N}$ becomes optimistic about the value of good $x$


## Knowledge



- If $A_{N}$ gets the signal $s_{N}$, then he sends a signal ("rumor") $s_{N-1}$ to $A_{N-1}$
- The "rumor" reaches $A_{N-1}$ with some probability
- Thus, if $A_{N-1}$ gets $s_{N-1}$, then he knows that $A_{N}$ knows $V=0$


## Knowledge



- If $A_{N-1}$ gets the signal $s_{N-1}$, then he sends a signal ("rumor") $s_{N-2}$ to $A_{N-2}$
- The "rumor" reaches $A_{N-2}$ with some probability
- Thus, if $A_{N-2}$ gets a signal $s_{N-2}$, then he knows that $A_{N-1}$ knows that $A_{N}$ knows $V=0$


## Knowledge

In general


- If $A_{n}$ gets the signal $s_{n}$, then he sends a signal ("rumor") $s_{n-1}$ to $A_{n-1}$
- The "rumor" reaches $A_{n-1}$ with some probability
- Thus, if $A_{n-1}$ gets a signal $s_{n-1}$, then he knows that $A_{n}$ knows that ... that $A_{N}$ knows that $V=0$


## Knowledge



- If $A_{1}$ gets the signal $s_{1}$, the process stops


## Knowledge

- Finally, assume all but $A_{N}$ always know the value of $x$


## Type space

Formally, the set of the state of the world

$$
\Omega=\left\{\omega_{v}, \omega_{\phi}, \omega_{N}, \ldots, \omega_{1}\right\}
$$

where

- $\omega_{v}$ means $V=v$
- $\omega_{\phi}$ means $V=0$ and no agents get a signal
- $\omega_{n}$ means $V=0$ and agent $n$ is the last one to get a signal


## Partition

Partition of

- $A_{N}$ is

$$
\{\underbrace{\left\{\omega_{v}, \omega_{\phi}\right\}}_{\text {no signal }}, \underbrace{\left\{\omega_{N}, \ldots \omega_{1}\right\}}_{\text {signal }}\}
$$

- $A_{n}$ is

$$
\{\underbrace{\left\{\omega_{v}\right\}}_{V=v}, \underbrace{\left\{\omega_{\phi}, \ldots, \omega_{n+1}\right\}}_{V=0, \text { no signal }}, \underbrace{\left\{\omega_{n}, \ldots, \omega_{1}\right\}}_{V=0, \text { signal }}\}
$$

## Prior

- Prior distribution $\mu$ on $\Omega$
- Homogeneous prior- $\mu$ is common knowledge


## Price

- Price (the amount of good $y$ ) is determined by Nash barganing
- Outside option is 0
- The value of $\operatorname{good} x$ is unknown, but the expected value is common knowledge
- Can be generalized
- Let $\theta$ be the bargaining power of $A_{n}$ in trade between $A_{n}$ and $A_{n+1}$
- Price of each pair is NOT observed by outsiders
- Over-the-couter market


## Timing

1. Nature determines $V$
2. Signals ("rumors") are send, and a type is determined
3. Actual trades start

## Main result

## Definition

We say bubble occurs if

- Everyone knows the value of good $x$ is 0
- And yet good $x$ is exchanged with positive amount of good $y$


## Main result

## Theorem

The equilibrium is unique. In the equilibrium, a bubble occurs when $\omega \in\left\{\omega_{N}, \omega_{N-1}, \cdots, \omega_{3}\right\}$. Moreover, a bubble bursts for sure.

## Backward induction

Backward induction

- Clearly, $A_{N}$ buys good $x$ if and only if he doesn't get a signal
- If he gets a signal, he knows $x$ has no value
- If he hasn't, his expected value of good $x$ is positive, and hence willing to produce some amount of good $y$
- Suppose that $A_{n+1}$ buys good $x$ if and only if he doesn't get a signal
- Given this, how should $A_{n}$ behave?


## Optimal behavior of $A_{n}$



- If $A_{n}$ gets a signal, then $A_{n+1}$ also gets a signal
- Induction hypothesis: $A_{n+1}$ will reject the trade
- Optimal not to buy $x$


## Optimal behavior of $A_{n}$



- If $A_{n}$ doesn't get a signal, $\omega \in\left\{\omega_{n+1}, \omega_{n+2}, \ldots, \omega_{\phi}\right\}$
- Two possibilities:

1. $A_{n+1}$ also doesn't get a signal, that is, $\omega \in\left\{\omega_{n+2}, \ldots, \omega_{\phi}\right\}$
2. $A_{n+1}$ gets a signal, that is, $\omega=\omega_{n+1}$

- Induction hypothesis:

1. $A_{n+1}$ buys $x$ when $\omega \in\left\{\omega_{n+2}, \ldots, \omega_{\phi}\right\}$
2. $A_{n+1}$ doesn't buy $x$ when $\omega=\omega_{n+1}$

- Since there is a chance that $A_{n+1}$ buys good $x, A_{n}$ is willing to buy good $x$


## Price

The exact price is given as follows: Define $\left(\hat{y}_{n}\right)_{n=1}^{N-1}$ by: For $N-1$,

$$
\hat{y}_{N-1}=\theta v_{e}
$$

and for each $n=1, \cdots, N-2$,

$$
\hat{y}_{n}=\theta \kappa \psi_{n+1} \hat{y}_{n+1}
$$

## Example: $N=3$ and Uniform $\mu(\omega)$

- At state $\omega_{3}$, bubbles occur.
- More precisely, $A_{1}$ and $A_{2}$ exchange $x$ and

$$
\frac{1}{4} K V
$$

units of good $y$

- Then $A_{2}$ and $A_{3}$ of course do not trade
- recall partition of $A_{2}$

$$
\mathcal{P}_{2}=\left\{\left\{\omega_{v}\right\},\left\{\omega_{\phi}, \omega_{3}\right\},\left\{\omega_{2}, \omega_{1}\right\}\right\}
$$

so that at $\omega_{3}$, from $A_{2}$ 's point of view, the state is either $\omega_{\phi}$ or $\omega_{3}$

- He puts the same probability in each state


## Example: $N=3$ and Uniform $\mu(\omega)$

Recall $A_{3}$ 's partition

$$
\mathcal{P}_{3}=\left\{\left\{\omega_{v}, \omega_{\phi}\right\},\left\{\omega_{3}, \omega_{2}, \omega_{1}\right\}\right\}
$$

- At $\omega_{\phi}, A_{3}$ doesn't know whether $V=0$ or $v$
- Recall true state of the world is $\omega_{3}$
- But importantly, $A_{2}$ assigns probability $1 / 2$ to the event $\omega_{\phi}$
- Thus what happens at $\omega_{\phi}$ matters a lot
- And so $A_{3}$ accepts a trade as long as

$$
\hat{y}_{3} \leq \frac{1}{2} \times 0+\frac{1}{2} \times v=\frac{v}{2}
$$

## Example: $N=3$ and Uniform $\mu(\omega)$

Then, from middleman $A_{2}$ 's point of view...

- At $\omega_{3}, A_{3}$ refuses the trade. $A_{2}$ gets 0 by having good $x$
- But at $\omega_{\phi}, A_{3}$ accepts the trade. This implies, at $\omega_{\phi}, A_{2}$ gets

$$
\frac{\kappa v}{2}
$$

by having good $x$

- Note that from $v / 2$ units of good $y$, an agents gets utility kv/2
- Since he assigns the same probability to each event, his expected value of having good $x$ is

$$
\frac{1}{2} \times 0+\frac{1}{2} \times \frac{\kappa V}{2}=\frac{\kappa V}{4}
$$

- He accepts a trade if

$$
\hat{y}_{2} \leq \frac{\kappa v}{4}
$$

## Example: $N=3$ and Uniform $\mu(\omega)$

- In words, at $\omega_{3}, A_{2}$ doesn't know whether he
- can find a greater fool
- or not-he is the greatest fool
- And unfortunately, $A_{2}$ turns out to be the greatest fool

Price Path

## Price

Price of good $x$ is

- Always increasing
- Accelerating unless prior distribution is extreme
- Satisfied when, for example, in each step the signal is lost with the same probability



## Increasing



- Why increasing?
- Agent $A_{n}$ always faces a risk that $A_{n+1}$ rejects the trade
- That is, $A_{n}$ may be the greatest fool who fails to find a greater fool
- To compensate this, price must increase


## Accelerating



- Why accelerating?
- When $m<n$, the risk that $A_{n}$ faces is higher than that $A_{m}$ faces
- Why so? Will see
- To compensate this, price must accelerate


## Accelerating

- Why it is the case that when $m<n$, the risk that $A_{n}$ faces is higher than that $A_{m}$ faces?
- Given that $A_{n}$ doesn't get a signal, the probability that $A_{n+1}$ does not get a signal is

$$
\psi_{n}=1-\frac{\mu\left(\omega_{n+1}\right)}{\mu\left(\omega_{n+1}\right)+\mu\left(\omega_{n+2}\right)+\ldots+\mu\left(\omega_{\phi}\right)}
$$

- The probability is decreasing in $n$
- To get an idea, suppose that $\mu$ is uniform so that for each $\omega, \omega^{\prime} \in \Omega, \mu(\omega)=\mu\left(\omega^{\prime}\right)$
- Then

$$
\psi_{n}=1-\frac{1}{N-n+1}
$$

- $\psi_{n}$ is decreasing in $n$


## Welfare/ Probability of Bubble

## Welfare

Welfare implication

- Consider the interim stage where planner knows $V=0$
- When $\kappa>1$, bubble improves welfare
- But when $\kappa<1$, bubble is detrimental


## Probability of bubble

- How likely (ex ante) does a bubble occur?
- The probability can be arbitrarily close to 1
- Recall bubble occurs at states $\left\{\omega_{N}, \ldots, \omega_{3}\right\}$
- With uniform distribution $(\mu(\omega)=1 /((N+2))$ the probability is

$$
1-\frac{4}{N+2}
$$

- As $N \rightarrow \infty$, the probability goes to 1
- Note that the ex ante probability that good $x$ has value is very small


## Applications

## Bubble-bursting policy

- Should a central bank burst bubble?
- Suppose it knows that the asset is worthless if and only if all agents know, that is,

$$
\mathcal{P}_{C B}:=\left\{\left\{\omega_{v}, \omega_{\phi}\right\},\left\{\omega_{N}, . . \omega_{3}\right\}\right\}=\mathcal{P}_{N}
$$

- And it can release the information to burst the bubble
- Should it adopt such a policy?


## Bubble-bursting policy

Trade-off when $\kappa<1$ (the other case is opposite), bubble-bursting policy is

- Good when $\omega \in\left\{\omega_{N}, . . \omega_{3}\right\}$
- Without policy, bubble occurs while detrimental
- With policy, announcement follows and bubble doesn't occur
- Bad when $\omega=\omega_{\phi}$
- Without policy, agents $A_{n}$ put positive probability that he is the greatest fool
- With policy, agents $A_{n}, n \neq N$ now know that he cannot be the greatest fool
- They all know that $A_{N}$ doesn't get the signal and so will "buy" good $x$
- The inaction of the central bank affects agents' beliefs
- Thus, policy increases price
- Neutral when $\omega \in\left\{\omega_{v}, \omega_{2}, \omega_{1}\right\}$


## Announcement

Surprisingly, these two effects completely offset each other!

## Proposition

The bubble-bursting policy has no effect on ex ante welfare.

## Bubble and information

- In the model, flippers' information is "fine"
- Everyone has a chance to get a signal
- This is why, everyone can be the greatest fool
- What if information is "coarser"?
- That is, $A_{n}, n \neq N$ never gets a signal
- What happens to the size of bubble?
- Information enhances bubble, that is...


## Bubble and information

- $\hat{y}_{n}$ is the price when information is finer
- $y_{n}^{0}$ is that when coarser

Proposition

$$
\hat{y}_{n}>y_{n}^{0}
$$

## Conclusion

A tractable model of bubble

- Flippers cause bubbles
- Bubble occurs in an unique backward induction outcome

