Lumpy Investment, Business Cycles, and Stimulus Policy

> THOMAS WINBERRY CHICAGO BOOTH AND NBER

CIGS CONFERENCE ON MACROECONOMIC THEORY AND POLICY, JUNE 5TH 2018

- Want to understand fluctuations in aggregate investment
- At micro level, driven by extensive margin

\implies Does micro-level lumpiness matter for aggregate dynamics?

Motivation

- Want to understand fluctuations in aggregate investment
- · At micro level, driven by extensive margin

\implies Does micro-level lumpiness matter for aggregate dynamics?

- · Benchmark RBC: no, same aggregate outcomes as rep firm
 - Irrelevance driven by GE movements in r_t

- Want to understand fluctuations in aggregate investment
- At micro level, driven by extensive margin

\implies Does micro-level lumpiness matter for aggregate dynamics?

- · Benchmark RBC: no, same aggregate outcomes as rep firm
 - Irrelevance driven by GE movements in r_t
- This paper: yes, different aggregate outcomes than rep firm
 - 1. Irrelevance results driven by counterfactual r_t dynamics
 - 2. Build model consistent with empirical r_t dynamics
 - 3. Show important implications for cycles + stimulus policy

1. Show irrelevance results driven by counterfactual r_t dynamics

- Prove irrelevance in limit of simple model
 - Firms extremely sensitive to interest rates
 - Interest rates adjust to ensure aggregation
- Two counterfactual implications for real interest rate:
 - $\sigma(r_t)$ low (data: $\sigma(r_t)$ high)
 - rt and TFP highly correlated (data: negatively correlated)

1. Show irrelevance results driven by counterfactual r_t dynamics

2. Build model consistent with empirical rt dynamics

- Heterogeneous firms w/ fixed and convex adjustment costs
- Representative household w/ habit formation
- Calibrate to micro investment and *r_t* dynamics
 - · Investment demand determined by adjustment costs
 - Investment supply determined by habit formation
 - \implies breaks extreme sensitivity of investment w.r.t. r_t

- 1. Show irrelevance results driven by counterfactual r_t dynamics
- 2. Build model consistent with empirical r_t dynamics
- 3. Show important implications for cycles + policy
 - Investment up to 50% more responsive to shocks in expansions than recessions
 - Lumpy investment source of state dependence
 - Interest rates do not render irrelevant
 - Matches procyclical volatility in aggregate investment data
 - Stimulus policy five times more cost effective if target firms close to extensive margin

Aggregate implications of lumpy investment

- Partial equilibrium: Caballero et al. (1995); Caballero and Engel (1999); Cooper and Haltiwanger (2006); House (2014); Cooper and Willis (2014)
- General equilibrium: Veracierto (2002); Khan and Thomas (2003, 2008); Gourio and Kashyap (2007); Bachmann, Caballero, and Engel (2013); Bachmann and Ma (2016)

Real interest rate dynamics

• Beaudry and Guay (1996); Jermann (1998); Boldrin et al. (2001)

Investment stimulus policy

• House and Shapiro (2008); Zwick and Mahon (2017)

Solution algorithm

• Winberry (2018)

1. Show irrelevance results driven by counterfactual r_t dynamics

2. Build model consistent with empirical r_t dynamics

3. Show important implications for cycles + policy

1. Show irrelevance results driven by counterfactual r_t dynamics

2. Build model consistent with empirical r_t dynamics

3. Show important implications for cycles + policy

Representative household w/ prefs

$$\sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\sigma} - 1}{1-\sigma}$$

- Heterogeneous firms indexed by $j \in [0, 1]$
 - Produce $y_{jt} = z_t \varepsilon_{jt} k_{jt}^{\alpha}$ where $\alpha < 1$
 - ε_{jt} first-order Markov chain
 - z_t known \implies discount with risk-free r_t
 - Invest $k_{jt+1} = (1 \delta)k_{jt} + i_{jt}$
- Resource constraint $Y_t = C_t + I_t$

Proposition: As $\alpha \rightarrow 1$, economy aggregates to rep firm

$$Y_t \to Z_t \widetilde{\varepsilon} K_t$$
, where $\widetilde{\varepsilon} = \max_i \mathbb{E}[\varepsilon' | \varepsilon_i]$
 $r_t + \delta \to Z_t \widetilde{\varepsilon}$

Proposition: As $\alpha \rightarrow 1$, economy aggregates to rep firm

$$Y_t \to Z_t \widetilde{\varepsilon} K_t$$
, where $\widetilde{\varepsilon} = \max_i \mathbb{E}[\varepsilon' | \varepsilon_i]$
 $r_t + \delta \to Z_t \widetilde{\varepsilon}$

- \cdot Constant returns \implies profits linear in capital
- r_t adjusts so that highest-productivity firms make zero profits
- Semi-elasticity of investment w.r.t r_t approaches infinity:

$$\frac{\partial i_{jt}/i_{jt}}{\partial r_t} = -\frac{1}{\delta} \frac{1}{1-\alpha} \frac{1+r_t}{r_t+\delta} \to \infty \text{ as } \alpha \to 1$$

= 7, 695 with $\delta = 0.025, \alpha = 0.85, r = 0.01$

• Logic also holds with **fixed cost** $\overline{\xi}$ as long as $\overline{\xi} \to 0$ as $\alpha \to 1$

$$Y_t \to z_t \widetilde{\varepsilon} K_t$$
, where $\widetilde{\varepsilon} = \max_i \mathbb{E}[\varepsilon' | \varepsilon_i]$
 $\widetilde{\tau}_t + \delta \to z_t \widetilde{\varepsilon}$

- Requirement that $\overline{\xi} \to 0$ not quantitatively restrictive
 - · Khan and Thomas (2008): random fixed costs
 - + House (2014): if $\delta \to$ 0, get infinite elasticity in timing even if $\overline{\xi}>0$ and $\alpha<1$

• Logic also holds with **fixed cost** $\overline{\xi}$ as long as $\overline{\xi} \to 0$ as $\alpha \to 1$

$$Y_t \to z_t \widetilde{\varepsilon} K_t$$
, where $\widetilde{\varepsilon} = \max_i \mathbb{E}[\varepsilon' | \varepsilon_i]$
 $\widetilde{\tau}_t + \delta \to z_t \widetilde{\varepsilon}$

- Requirement that $\overline{\xi} \to 0$ not quantitatively restrictive
 - · Khan and Thomas (2008): random fixed costs
 - + House (2014): if $\delta \to$ 0, get infinite elasticity in timing even if $\overline{\xi}>0$ and $\alpha<1$
- Two counterfactual implications for r_t dynamics:
 - 1. Volatility of r_t small
 - 2. r_t and z_t move one for one

- Data (quarterly and HP-filtered)
 - 1. r_t = return on 90-day T-bill, adjusted w/ realized inflation
 - 2. Y_t = real GDP
 - 3. z_t = Solow residual
- RBC = simple model w/ labor

- Data (quarterly and HP-filtered)
 - 1. r_t = return on 90-day T-bill, adjusted w/ realized inflation
 - 2. Y_t = real GDP
 - 3. z_t = Solow residual
- RBC = simple model w/ labor

- Data (quarterly and HP-filtered)
 - 1. r_t = return on 90-day T-bill, adjusted w/ realized inflation
 - 2. Y_t = real GDP
 - 3. z_t = Solow residual
- RBC = simple model w/ labor

- Impulse response estimated from VAR of $(z_t, r_t)^T$ w/ 3 lags
- Identification: r_t innovation does not affect z_t upon impact

1. Show irrelevance results driven by counterfactual r_t dynamics

2. Build model consistent with empirical r_t dynamics

3. Show important implications for cycles + policy

- **Fixed mass** of firms $j \in [0, 1]$
- Production technology $y_{jt} = z_t \varepsilon_{jt} k_{it}^{\theta} n_{it}^{\nu}$, $\theta + \nu < 1$
 - Aggregate shock $\log z_t = \rho_z \log z_{t-1} + \omega_t^z$
 - Idiosyncratic shock $\log \varepsilon_{jt} = \rho_{\varepsilon} \log \varepsilon_{jt-1} + \omega_{jt}^{\varepsilon}$
- Invest $k_{jt+1} = (1 \delta)k_{jt} + i_{jt}$ subject to two frictions
 - If $\frac{i_{jt}}{k_{jt}} \notin [-a, a]$, fixed cost $-\xi_{jt}w_t$ with $\xi_{jt} \sim U[0, \overline{\xi}]$

• Quadratic cost
$$-\frac{\varphi}{2} \left(\frac{i_{jt}}{k_{jt}}\right)^2 k_{jt}$$

- **Tax** rate τ on revenue y_{jt} net of
 - 1. Labor costs $w_t n_{jt}$
 - 2. Capital depreciation
 - Stock of depreciation allowances d_{jt}
 - Deduct $\hat{\delta}$ of $d_{jt} + i_{jt}$ from taxes
 - Carry forward $d_{jt+1} = (1 \hat{\delta})(d_{jt} + i_{jt})$

Total tax bill is

$$\tau\left(y_{jt}-w_tn_{jt}-\widehat{\delta}(d_{jt}+i_{jt})\right)$$

$$\begin{aligned} v(\varepsilon, k, d, \xi; \mathbf{s}) &= \tau \widehat{\delta} d + \max_{n} \{ (1 - \tau) \left(z \varepsilon k^{\theta} n^{\nu} - w(\mathbf{s}) n \right) \} \\ &+ \max\{ v^{a}(\varepsilon, k, d; \mathbf{s}) - \xi w(\mathbf{s}), v^{n}(\varepsilon, k, d; \mathbf{s}) \} \end{aligned}$$

$$\begin{aligned} \mathsf{v}(\varepsilon, k, d, \xi; \mathbf{s}) &= \tau \widehat{\delta} d + \max_{n} \{ (1 - \tau) \left(z \varepsilon k^{\theta} n^{\nu} - w(\mathbf{s}) n \right) \} \\ &+ \max\{ \mathsf{v}^{\theta}(\varepsilon, k, d; \mathbf{s}) - \xi w(\mathbf{s}), \mathsf{v}^{n}(\varepsilon, k, d; \mathbf{s}) \} \end{aligned}$$

$$v^{a}(\varepsilon, k, d; \mathbf{s}) = \max_{i \in \mathbb{R}} -(1 - \tau \widehat{\delta})i - \frac{\varphi}{2} \left(\frac{i}{k}\right)^{2} k + \mathbb{E}[\Lambda(z'; \mathbf{s})v(\varepsilon', k', d', \xi'; \mathbf{s}')]$$

$$\implies i^{a}(\varepsilon, k, d; \mathbf{s})$$

$$v^{n}(\varepsilon, k, d; \mathbf{s}) = \max_{i \in [-ak, ak]} -(1 - \tau \widehat{\delta})i - \frac{\varphi}{2} \left(\frac{i}{k}\right)^{2} k + \mathbb{E}[\Lambda(z'; \mathbf{s})v(\varepsilon', k', d', \xi'; \mathbf{s}')]$$
$$\implies i^{n}(\varepsilon, k, d; \mathbf{s})$$

• **Preferences** feature habit formation and no wealth effects on labor supply:

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}\log\left(C_{t}-X_{t}-\chi\frac{N_{t}^{1+\eta}}{1+\eta}\right)$$

• Define law of motion for $S_t = \frac{C_t - X_t}{C_t}$ (Campbell and Cochrane 1999)

$$\log S_t = (1 - \rho_S) \log \overline{S} + \rho_S \log S_{t-1} + \lambda \log \left(\frac{C_t}{C_{t-1}}\right)$$

• Habit stock X_t is external

Business cycle parameters			
Parameter	Description	Value	
β	Discount factor	0.99	
η	Inverse Frisch elasticity	1/2	
θ	Labor share	0.64	
ν	Capital share	0.21	
δ	Depreciation	0.025	
$ ho_Z$	Aggregate TFP AR(1)	0.95	
σ_{z}	Aggregate TFP AR(1)	0.007	
Tax parameters			
Parameter	Description	Value	
au	Tax rate	0.35	
$\widehat{\delta}$	Tax depreciation	0.119	

1. Micro-level heterogeneity

Parameter	Description	Value
ξ	Fixed cost	
а	No fixed-cost region	
arphi	Quadratic cost	
$ ho_{arepsilon}$	Idiosyncratic TFP AR(1)	
$\sigma_{arepsilon}$	Idiosyncratic TFP AR(1)	

2. Habit formation

Parameter	Description	Value
S	Average surplus consumption	
$\rho_{\overline{S}}$	Persistence of surplus consumption	

1. **Interest rate dynamics**: projected on history of TFP shocks and HP filtered

Target	Data	Model
$\sigma(\hat{r})$	0.48%	
$\rho(\widehat{r}, \widehat{y})$	-0.205	

2. Firm-level investment behavior: IRS corporate tax data (Zwick and Mahon 2017)

Target	Data	Model
$\Pr(\frac{i}{k} > 0.2)$	0.144	
$\Pr(\frac{i}{k} \in [0.01, 0.2])$	0.619	
$\Pr(\frac{i}{k} < 0.01)$	0.237	
$\mathbb{E}[\frac{i}{k}]$	0.104	
$\sigma(\frac{i}{k})$	0.160	

1. **Interest rate dynamics**: projected on history of TFP shocks and HP filtered (pins down habit + overall ACs)

Target	Data	Model
$\sigma(\hat{r})$	0.48%	
$\rho(\widehat{r}, \widehat{y})$	-0.205	

2. **Firm-level investment behavior**: IRS corporate tax data (Zwick and Mahon 2017) (pins down shocks + split of ACs)

Target	Data	Model
$\Pr(\frac{i}{k} > 0.2)$	0.144	
$\Pr(\frac{7}{k} \in [0.01, 0.2])$	0.619	
$\Pr(\frac{i}{k} < 0.01)$	0.237	
$\mathbb{E}[\frac{i}{k}]$	0.104	
$\sigma(\frac{\dot{l}}{k})$	0.160	

1. **Interest rate dynamics**: projected on history of TFP shocks and HP filtered (pins down habit + overall ACs)

Target	Data	Model
$\sigma(\hat{r})$	0.48%	0.48%
$\rho(\widehat{r}, \widehat{y})$	-0.205	-0.204

2. **Firm-level investment behavior**: IRS corporate tax data (Zwick and Mahon 2017) (pins down shocks + split of ACs)

Target	Data	Model
$\Pr(\frac{i}{k} > 0.2)$	0.144	0.159
$\Pr(\frac{i}{k} \in [0.01, 0.2])$	0.619	0.602
$\Pr(\frac{i}{k} < 0.01)$	0.237	0.239
$\mathbb{E}\left[\frac{i}{k}\right]$	0.104	0.106
$\sigma(\frac{\dot{l}}{k})$	0.160	0.121

1. Micro-level heterogeneity

Parameter	Description	Value
ξ	Fixed cost	0.44
а	No fixed-cost region	0.003
arphi	Quadratic cost	2.69
$ ho_{arepsilon}$	Idiosyncratic TFP AR(1)	0.94
σ_{ε}	Idiosyncratic TFP AR(1)	0.026

2. Habit formation

Parameter	Description	Value
S	Average surplus consumption	0.65
$ ho_{\overline{S}}$	Persistence of surplus consumption	0.95

1. Show irrelevance results driven by counterfactual r_t dynamics

2. Build model consistent with empirical r_t dynamics

3. Show important implications for cycles + policy

Effect of Aggregate Shock is Time-Varying

- Firms' decision rules feature choice of k^a vs. k^n
 - More likely to adjust if $|k^a k^n|$ is large
- On average, $k^n < k^a$ due to depreciation
- After history of negative shocks, $k^n \approx k^a$
 - Less likely to adjust
- After history of positive shocks, $k^n << k^a$
 - More likely to adjust

- Irrelevance results in previous literature
 - 1. PE: lumpy investment generates state dependence
 - 2. Benchmark RBC: no state dependence

- Driven by extreme sensitivity of investment to interest rates
- Extreme sensitivity has counterfactual implications for data
- In order to match data, need to break extreme sensitivity \implies also break irrelevance results

Proposition: tax depreciation only affects decisions through

tax-adjusted price
$$= 1 - \tau \times PV_t$$

 $PV_t = \mathbb{E}_t \sum_{s=0}^{\infty} \left(\prod_{j=0}^s \frac{1}{1 + r_{t+j}} \right) (1 - \hat{\delta})^s \hat{\delta}$

Model investment stimulus policy as shock

$$\widehat{\mathsf{PV}}_t = \mathsf{PV}_t + \mathsf{sub}_t$$

Simple stochastic process for implicit subsidy

$$\log \operatorname{sub}_t = \log \overline{\operatorname{sub}} + \varepsilon_t$$

Stimulus Policy Less Effective In Recession

Avoid subsidizing investment that would have been done anyway

$$cost = \underbrace{sub_t \times I_{nopol}}_{inframarginal \approx 96\%} + \underbrace{sub_t \times (I_{pol} - I_{nopol})}_{marginal \approx 4\%}$$

· Avoid subsidizing investment that would have been done anyway

$$cost = \underbrace{sub_t \times I_{nopol}}_{inframarginal \approx 96\%} + \underbrace{sub_t \times (I_{pol} - I_{nopol})}_{marginal \approx 4\%}$$

- \cdot Lumpy investment \implies want to avoid inframarginal firms
- Particular illustration: avoid subsidizing small firms
 - \cdot Growing faster than average \implies more likely to be investing
 - One-time, unexpected subsidy per unit of investment

$$\operatorname{sub}_{jt} = \alpha_1 n_{jt}^{\alpha_2}$$

- Vary α_2 and solve for budget-equivalent α_1

Increasing Cost Effectiveness

24

Jointly modeling lumpy investment and real interest rate dynamics important for understanding aggregate investment

- 1. Business cycle fluctuations
 - More responsive to productivity shocks in expansions than recessions
- 2. Investment stimulus policy
 - Less responsive to policy in recessions
 - Firm-level targeting powerful way to increase cost effectiveness

	$\sigma(r_t)$	$\rho(r_t, y_t)$	$\rho(r_t, z_t)$
Whole sample	1.73%	-0.11*	-0.20***
(p-value)		(0.09)	(0.001)
No Volcker	1.13%	0.07	-0.18***
		(0.29)	(0.006)
Pre-1983	1.57%	-0.38***	-0.17*
		(0.00)	(0.06)
Post-1983	1.86%	0.21**	-0.24***
		(0.01)	(0.00)
RBC	0.16%	0.95	0.97

Role of Habit and Adjustment Costs 🚥

Without habit, Euler equation is $1 + r_t = \frac{1}{\beta} \frac{C_t^{-1}}{\mathbb{E}_t[C_{t+1}^{-1}]}$

- Without ACs, I_t increases enough to increase $C_{t+1}/C_t \implies r_t$ rises
- With ACs, I_t does not increase enough to increase $C_{t+1}/C_t \implies r_t$ falls

Role of Habit and Adjustment Costs 🕬

- Given C_t , stronger habit could generate fall in r_t
- But greater incentive to smooth consumption \implies r_t rises

Role of Habit and Adjustment Costs 🚥

With habit, Euler equation is $1 + r_t = \frac{1}{\beta} \frac{(C_t - X_t)^{-1}}{\mathbb{E}_t[(C_{t+1} - X_{t+1})^{-1}]}$

- Given C_t , stronger habit could generate fall in r_t
- But greater incentive to smooth consumption \implies r_t rises
- Adjustment costs impede consumption smoothing $\implies r_t$ falls

Can We Find State Dependence in the Data? •••••

• Statistical description of aggregate investment rate (Bachmann, Caballero, and Engel 2013)

$$\frac{I_t}{K_t} = \phi_0 + \phi_1 \frac{I_{t-1}}{K_{t-1}} + \sigma_t e_t, e_t \sim N(0, 1)$$

$$\sigma_t^2 = \beta_0 + \beta_1 \frac{I_{t-1}}{K_{t-1}}$$

- My model: $\beta_1 > 0$
 - More responsive to shocks in expansions than recessions
- Benchmark RBC model: $\beta_1 \approx 0$
 - Similarly responsive to shocks in expansions as in recessions

Fitted values from estimating

$$\frac{l_t}{K_t} = \phi_0 + \phi_1 \frac{l_{t-1}}{K_{t-1}} + \sigma_t e_t, e_t \sim N(0, 1)$$

$$\sigma_t^2 = \beta_0 + \beta_1 \frac{l_{t-1}}{K_{t-1}}$$

Volatility			Autocorrelation		
Statistic	Data	Model	Statistic	Data	Model
$\sigma(Y)$	1.57%	1.61%	$\rho(Y, Y_{-1})$.85	.72
$\sigma(C)/\sigma(Y)$.53	.66	$\rho(C, C_{-1})$.88	.72
$\sigma(l)/\sigma(Y)$	2.98	3.31	$\rho(I, I_{-1})$.91	.71
$\sigma(H)/\sigma(Y)$	1.21	.68	$\rho(H, H_{-1})$.91	.72
Correlation with Output					
Statistic	Data	Model			
$\rho(C, Y)$.84	.99			
ρ(I, Y)	.80	.99			
ρ(H, Y)	.87	.99			

Role of Lumpy Investment • Back

 $sub_t = BDA_t(1 - PV_t)$