Model

Impacts of MF

## Reallocation Effects of Monetary Policy

Koki Oikawa Kozo Ueda

Waseda University

#### June, 2018

CIGS Conference on Macroeconomic Theory and Policy

| Introduction | Motivating Facts | Model | Impacts of MP | Simulation |
|--------------|------------------|-------|---------------|------------|
|              |                  |       |               |            |
|              |                  |       |               |            |

#### Introduction

Motivating Facts

Model

Impacts of MP

Simulation

Mode

## Introduction

- There exist sizable and persistent heterogeneity among firms. (e.g. survey by Syverson, 2011)
  - productivity dispersion
  - innovating firms and no-R&D firms
  - heavy-tailed firm size distribution
- Misallocation and reallocation (e.g. Hsieh and Klenow, 2009)
  - Zombie firms and secular stagnation in Japan. (Cabarello, Hoshi and Kashyap, 2008)
- Reallocation and growth (Lentz and Mortensen, 2008)
  - From decomposition of aggregate growth, the selection effect accounts for about 50% of aggregate productivity growth in Denmark.
- Many of previous papers in this strand only consider the real aspect of the economy.

## This Study: How about the Nominal Aspect?

- The role of monetary policy in firm reallocation
  - between good and bad firms
  - between small and large firms
  - What kind of monetary policy (e.g. inflation target) improves economic growth and welfare?
- The optimal inflation rate.

To this aim, we combine

- Endogenous growth with firm dynamics (Klette and Kortum, 2004; Lentz and Mortensen, 2005, 2008)
- Nominal rigidity à la menu cost.

Model

## Main Results

- In Japan, large firms tend to grow faster than small firms under inflation.
- In the model, inflation reallocates resources from inferior to superior firms. If this reallocation effect is sufficiently strong, positive nominal growth improves both real growth and welfare.
- The optimal nominal growth rate can be strictly positive if the reallocation effect is strong.
- Nominal rigidity can improve welfare.

## Related Literature

- The optimal inflation rate in New Keynesian models: Goodfriend and King (1997), Khan et al. (2003), Burstein and Hellwig (2008), Schmitt-Grohe and Uribe (2010), Coibion et al (2012), Adam and Weber (2017)
- Endogenous growth with firm dynamics: Klette and Kortum (2004), Lentz and Mortensen (2005, 2008), Murao and Nirei (2011), Acemoglu et al. (2017)
- Nominal factor and real growth: Billbie et al (2014), Chu and Cozzi (2014), Oikawa and Ueda (2015), Chu et al (2017), Arawatari et al (2018)

| Introduction | Motivating Facts | Model | Impacts of MP | Simulation |
|--------------|------------------|-------|---------------|------------|
|              |                  |       |               |            |
|              |                  |       |               |            |

#### Introduction

#### Motivating Facts

Model

Impacts of MP

Simulation

## Cross-country relation b/w inflation and firm distribution

- No direct study about relation b/w inflation and firm distribution.
- But in less developed countries (i.e., higher inflation), big firms account for a larger share. (Bartelsman et al, 2004; Alfaro et al, 2009; Poschke, 2017)



(from Alfaro et al, 2009)

## Inflation and Firm Size Distribution in Japan

- Relationship between inflation and firm size distribution using Japanese firm-level data.
- Firm size dispersion in sales and employment,
  - Top-Middle ratio: 90 percentile/50 percentile
  - Top-Bottom ratio: 90 percentile/10 percentile
- Inflation: PPI input (average of the previous two years) by 14 industries in the manufacturing sector.
- Control: D.I. (financing) from *Tankan*, industry-level real sales, industry and year FEs.
- IV: inflation in international commodity price.

#### Inflation and Reallocation: Sales

|                       | To       | p/Middle ra | itio     | Top/Bottom ratio |          |          |
|-----------------------|----------|-------------|----------|------------------|----------|----------|
|                       | (1)      | (2)         | (3)      | (4)              | (5)      | (6)      |
|                       | OLS      | OLS         | 2SLS     | OLS              | OLS      | 2SLS     |
| $ar{\pi}^{input}$     | 100.6*** | 102.7***    | 194.6*** | 282.7***         | 289.0*** | 620.5*** |
|                       | (20.16)  | (20.58)     | (27.73)  | (63.48)          | (64.53)  | (87.52)  |
| D.I. gap (T/M or T/B) |          | -0.0454     | 0.135    |                  | -0.134   | 0.365    |
|                       |          | (0.18)      | (0.18)   |                  | (0.49)   | (0.53)   |
| D.I.                  |          | -0.358      | -0.547** |                  | -1.220*  | -1.876** |
|                       |          | (0.22)      | (0.23)   |                  | (0.70)   | (0.73)   |
| Industry RS           |          | 2.168       | 3.437    |                  | -6.377   | -5.679   |
|                       |          | (5.69)      | (6.08)   |                  | (17.85)  | (19.26)  |
| Constant              | 4.591    | -20.99      | -33.84   | 17.9800          | 104.8    | 106.2000 |
|                       | (5.40)   | (72.16)     | (77.19)  | (17.00)          | (226.40) | (244.40) |
| Year/Industry FE      | yes/yes  | yes/yes     | yes/yes  | yes/yes          | yes/yes  | yes/yes  |
| Obs.                  | 322      | 316         | 302      | 322              | 316      | 302      |
| $\bar{R}^2$           | 0.509    | 0.507       | 0.483    | 0.679            | 0.679    | 0.653    |
| Underidentification   |          |             | 164.1    |                  |          | 165.4    |
| Weak identification   |          |             | 22.97    |                  |          | 23.37    |

#### Inflation and Reallocation: Employment

|                                  | Т        | op/Middle ra | atio       | To       | p/Bottom r | atio      |
|----------------------------------|----------|--------------|------------|----------|------------|-----------|
|                                  | (1)      | (2)          | (3)        | (4)      | (5)        | (6)       |
|                                  | OLS      | OLS          | 2SLS       | OLS      | OLS        | 2SLS      |
| $ar{\pi}^{input}$                | 3.484*** | 3.343***     | 5.903***   | 11.24*** | 11.80***   | 16.73***  |
|                                  | (1.027)  | (0.992)      | (1.309)    | (2.734)  | (2.674)    | (3.497)   |
| D.I. gap $(T/M \text{ or } T/B)$ |          | -0.0215***   | -0.0116    |          | 0.0242     | 0.0436**  |
|                                  |          | (0.008)      | (0.009)    |          | (0.020)    | (0.021)   |
| D.I.                             |          | -0.0245**    | -0.0279*** |          | -0.0529*   | -0.0588** |
|                                  |          | (0.011)      | (0.011)    |          | (0.029)    | (0.029)   |
| Industry RS                      |          | 1.097***     | 1.290***   |          | 2.735***   | 3.172***  |
|                                  |          | (0.273)      | (0.284)    |          | (0.737)    | (0.764)   |
| Constant                         | 4.510*** | -9.090***    | -10.95***  | 11.21*** | -23.19**   | -28.16*** |
|                                  | (0.275)  | (3.455)      | (3.608)    | (0.732)  | (9.337)    | (9.661)   |
| Year/Industry FE                 | yes/yes  | yes/yes      | yes/yes    | yes/yes  | yes/yes    | yes/yes   |
| Obs.                             | 322      | 316          | 302        | 322      | 316        | 302       |
| $\bar{R}^2$                      | 0.7      | 0.729        | 0.723      | 0.776    | 0.791      | 0.786     |
| Underidentification              |          |              | 163.7      |          |            | 165.1     |
| Weak identification              |          |              | 22.84      |          |            | 23.27     |

Standard errors in parentheses. \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

### Firm Size and Growth under Inflation

- Divide firm size distribution into 10 deciles (size groups: 1,2,...,10) and take the average growth rates of real sales and employment within size groups.
- Check the cross effect: inflation  $\times$  size group index

| Land |  |  |
|------|--|--|
|      |  |  |

|                                         | Sales growth |             |             | Employment growth |             |             |
|-----------------------------------------|--------------|-------------|-------------|-------------------|-------------|-------------|
|                                         | (1)          | (2)         | (3)         | (4)               | (5)         | (6)         |
|                                         | OLS          | OLS         | 2SLS        | OLS               | OLS         | 2SLS        |
| $\bar{\pi}^{input}$                     | -0.592***    | -0.628***   | -0.623***   | -0.0464**         | -0.0611***  | -0.0408     |
|                                         | (0.0792)     | (0.0797)    | (0.1500)    | (0.0191)          | (0.0187)    | (0.0354)    |
| Size group                              | -0.00687***  | -0.00838*** | -0.00837*** | -0.00245***       | -0.00301*** | -0.00296*** |
|                                         | (0.0007)     | (0.0008)    | (0.0009)    | (0.0002)          | (0.0002)    | (0.0002)    |
| $ar{\pi}^{	ext{input}}	imes$ Size group | 0.0524***    | 0.0570***   | 0.0564***   | 0.0148***         | 0.0170***   | 0.0145***   |
| 5.                                      | (0.0118)     | (0.0118)    | (0.0195)    | (0.0028)          | (0.0028)    | (0.0046)    |
| Average D.I.                            |              | 0.00156***  | 0.00155***  |                   | 0.000528*** | 0.000516*** |
| -                                       |              | (0.0004)    | (0.0004)    |                   | (0.0001)    | (0.0001)    |
| Industry RS                             |              | (0.0024)    | (0.0024)    |                   | -0.00766**  | -0.00768**  |
|                                         |              | (0.0144)    | (0.0143)    |                   | (0.0034)    | (0.0034)    |
| Constant                                | 0.0881***    | 0.133       | 0.133       | 0.0211***         | 0.123***    | 0.123***    |
|                                         | (0.0125)     | (0.1830)    | (0.1810)    | (0.0030)          | (0.0429)    | (0.0426)    |
| Year/Industry FE                        | yes/yes      | yes/yes     | yes/yes     | yes/yes           | yes/yes     | yes/yes     |
| Obs.                                    | 2940         | 2880        | 2880        | 2940              | 2880        | 2880        |
| $\bar{R}^2$                             | 0.179        | 0.181       | 0.181       | 0.27              | 0.289       | 0.289       |
| Underidentification                     |              |             | 798.2       |                   |             | 796.9       |
| Weak identification                     |              |             | 83.43       |                   |             | 83.25       |

Standard errors in parentheses. \* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

| Introduction | Motivating Facts | Model | Impacts of MP | Simulation |
|--------------|------------------|-------|---------------|------------|
|              |                  |       |               |            |
|              |                  |       |               |            |

#### Introduction

#### Motivating Facts

#### Model

Impacts of MP

#### Simulation

## Model Ingredients

- Endogenous growth with firm heterogeneity (Lentz and Mortensen, 2005, 2008)
  - Multi-product firms
  - Creative destruction. Innovation ability (size of quality update) is ex ante heterogeneous.
- Menu cost (Oikawa and Ueda, 2015ab)
  - Because inflation/deflation reduces real firm values under nominal rigidity, monetary policy affects innovation incentives and real growth.

Model

## Model

- Households; Firms with different innovation ability q; Central bank
  - Firms: entrants and incumbents
  - A firm draws q at entry. Once drawn, q does not change.
- Focus on a balanced growth path.
  - *n*: nominal growth rate. We focus on  $n \ge 0$ .  $\leftarrow$  exogenous
  - g: real growth rate  $\leftarrow$  endogenous
  - $\delta$ : creative destruction rate  $\leftarrow$  endogenous

Note:

- *n* is equivalent to the quality-unadjusted inflation rate;
- $\pi = n g$  is the quality-adjusted inflation rate.

## Household

• Household consumes version  $a \in \{0, 1, ..., A_t(j)\}$  of final goods  $j \in [0, 1]$  whose qualities are Q(j, a). The welfare of the representative household is

$$U_t = \int_t^\infty e^{-\rho(t'-t)} \log C_{t'} dt',$$

$$\log C_t = \int_0^1 \log \left[ \sum_{a=0}^{A_t(j)} Q(j,a) x_t(j,a) \right] dj,$$

• Quality evolves as

$$Q(j, \mathbf{a}) = \prod_{\mathbf{a}'=0}^{\mathbf{a}} q(j, \mathbf{a}'), \qquad q(j, \mathbf{a}') > 1 \quad \forall j, \mathbf{a}'$$

• Inelastic labor supply.

## Incumbent Firms and Creative Destruction

Incumbents produce multiple products for which they compete through innovation (quality updates).



## Incumbents' Decision

- 1. Pricing under menu cost
  - Find the optimal Ss rule to maximize the value of a product line.
- 2. R&D investment
  - To maximize firm value (bundle of product lines).

## Ss-pricing and Product Line Value

- Fix q > 1.
- Linear one-to-one production from labor. Bertrand competition in each product line.
- Posted price:  $p_t$ . Relative price:  $\xi_t \equiv p_t e^{-nt}$ .
- Menu cost:  $\kappa E_t/P_t$ , where  $\kappa > 0$ . Entrants must pay at entry.
- We write  $E_0 \equiv E$ ,  $P_0 \equiv P$ ,  $W_0 \equiv W$ .
- ( $E_t$ : nominal expenditure;  $P_t$ : general price;  $W_t$ :nominal wage)

Then,

- The optimal pricing follows an *Ss*-rule.
- The upper bound of  $\xi$  is the limit price, qW.



• Higher nominal growth  $\rightarrow$  relative price is going down more rapidly  $\rightarrow$  higher frequency of price reset  $\rightarrow$  lower product line value.

## The damage from $n \uparrow$ is relatively small for high-q firms

 Let ν<sub>τ</sub>(q|δ, n) be the value of product line with elapsed time of τ from the previous price reset.

#### Proposition

If  $\nu_0 > 0$ ,  $\nu_0(q|\delta, n)$  is increasing in q and decreasing in n. Moreover,

$$\frac{\partial^2 \nu_0(q|\delta,n)}{\partial q \partial n} > 0.$$

- The loss caused by faster nominal growth (high inflation) is relatively small for more creative firms (high *q*).
- The cross impact occurs because the cost of price reset is independent of q while the return of price reset is increasing in q.

## n also affects the threshold of q

Let  $q(\delta, n)$  is the threshold below which  $\nu_0 < 0$ .

Proposition

If  $\kappa < (\rho + \delta)^{-1}$ , then  $q(\delta, n)$  uniquely exists and is increasing in n.

- Under greater *n*, less creative firms cannot survive.
- One of the main sources of reallocation effect.

#### Firm Value and Incumbents' R&D (1/4)

- The probability of success in R&D is kγ, where k is the number of product lines and γ is R&D intensity.
  - This property is often assumed to have Gibrat's law: The growth rate of firm is independent of firm size.
- Real R&D cost is  $kwc(\gamma)$ , where c' > 0, c'' > 0, c(0) = 0.  $(w \equiv \frac{W}{E})$

#### Firm Value and Incumbents' R&D (2/4) Bellman Equation

$$\begin{split} \rho v_k(T_k, q | \delta, w, n) &= \max_{\gamma} \sum_{i \notin \Omega} \left[ \Pi^0(\xi_0 e^{-n\tau_i}) + \frac{\partial v_k(T'_k, q | \delta, w, n)}{\partial \tau_i} \right] \\ &+ \sum_{i \in \Omega} \left[ \Pi^0(\xi_0 e^{-n\tau_i}) - \kappa + \frac{\partial v_k(T'_k, q | \delta, w, n)}{\partial \tau_i} \right] \\ &- kwc(\gamma) + k\gamma \left[ v_{k+1}(\{T'_k, 0\}, q | \delta, w, n) - v_k(T'_k, q | \delta, w, n) \right] \\ &+ k\delta \left[ \frac{1}{k} \sum_{i=1}^k v_{k-1}(T'_{k-1, < i>}, q | \delta, w, n) - v_k(T'_k, q | \delta, w, n) \right], \end{split}$$

- $T_k \equiv {\tau_i}_{i=1}^k$ .  $T_{k-1, <i>}$  is the set of elapsed time of the firm when it exits from *i*-th product market.
- $\Omega \equiv \{i | \tau_i = \Delta(q | \delta, n)\}$ , the set of products whose prices are revised.  $T'_k$  is  $\{\tau'_i\}_{i=1}^k$  and

$$\tau'_{i} = \begin{cases} \tau_{i} & \text{for } \tau_{i} \in [0, \Delta(q|\delta, n)), \\ 0 & \text{for } \tau_{i} = \Delta(q|\delta, n). \end{cases}$$
(1)

Model

Simulation

#### Firm Value and Incumbents' R&D (3/4) The Maximized Firm Value

• Firm value:

$$v_k(T_k, q|\delta, w, n) = \sum_{i=1}^k \nu_{\tau_i}(q|\delta, n) + k \underbrace{\psi(q|\delta, w, n)}_{\text{future R&D return}}$$

• FOC about R&D intensity  $(\gamma)$ :

$$u_0(q|\delta, n) + \psi(q|\delta, w, n) = wc'(\gamma).$$

#### Firm Value and Incumbents' R&D (4/4) Heterogeneous impact of $n \uparrow$ on R&D

#### Proposition

Fix  $n \ge 0$  and  $\delta > 0$ .  $\gamma(q|\delta, w, n)$  uniquely exists for sufficiently large w. Being well-defined,  $\gamma(q|\delta, w, n)$  is increasing in q and decreasing in n,  $\delta$ , and w. Moreover, for  $n \ne 0$ ,

$$rac{\partial^2 \gamma(m{q}|\delta,w,n)}{\partial m{q}\partial n}>0 \quad ext{and} \quad rac{\partial^2 \gamma(m{q}|\delta,w,n)}{\partial m{q}\partial w}<0.$$

The decline in R&D intensity under higher n is relatively small for firms with greater q.

## Impact of $n \uparrow$ on Distribution

Let  $K(q|\delta, w, n)$  be the measure of product lines produced by type-q firms.

- $q(\delta, n)$   $\uparrow$ . Low R&D quality firms exit.
- R&D intensity is less sensitive for firms with greater *q*.
   ⇒ The product line share of firms with higher *q* increases.
- The average quality improvement by each innovation is higher under greater *n*.



- A measure h of potential entrants do R&D without knowing its q. Their types are drawn from density φ(q) on (1,∞).
- If an entrant draws  $q < \underline{q}(\delta, n)$ , it gives up entry.
- Free entry condition (FE):

$$\int_{\underline{q}(\delta,n)}^{\infty} \bar{\phi}(q) v_1(\{0\},q|\delta,w,n) dq = wc'(\gamma_{\eta}(\delta,w,n)),$$

where  $\gamma_{\eta}(\delta, w, n)$  is entrants' R&D intensity to have the ex-post entry rate of  $\eta$ .

## Labor Market

- Relative price distribution for a product line with q:  $f(\xi(\tau))$
- Labor demand from the production sector is

$$L_X = \int_{\underline{q}(\delta,n)}^{\infty} \mathcal{K}(q|\delta,w,n) \left[ \int_0^{\Delta(q|\delta,n)} f(\xi(\tau)) \frac{1}{\xi(\tau)} d\tau \right] dq$$

• Labor demands from the R&D sector:

$$L_R = hc(\gamma_\eta(n)) + \int_{\underline{q}(\delta,n)}^{\infty} K(q|\delta,w,n)c(\gamma(q|\delta,w,n))dq$$

• The labor market clearing condition (LMC):

$$L = L_X + L_R$$

## Stationary Equilibrium

#### Equilibrium conditions:

- 1. FE
- 2. LMC

#### Proposition

For given  $n \ge 0$ , there exists a stationary equilibrium with a positive entry rate.



- δ ↑ ⇒ η ↑ and v<sub>1</sub> ↓. To satisfy FE, w ↓ should compensate the decline of innovation reward.
- δ ↑ ⇒ L<sub>R,entrant</sub> ↑, L<sub>R,incumbent</sub> ↓, and L<sub>X</sub> ↑↓ (?). The total impact is ambiguous but LMC is basically upward-sloping under typical distributions.

| Introduction | Motivating Facts | Model | Impacts of MP | Simulation |
|--------------|------------------|-------|---------------|------------|
|              |                  |       |               |            |
|              |                  |       |               |            |

#### Introduction

#### Motivating Facts

#### Model

#### Impacts of MP

#### Simulation

## Impacts of $n \uparrow$ on Real Growth

#### • Real growth effect:

- $n \uparrow \Rightarrow$  Average quality update  $\uparrow$ .
- $n \uparrow \Rightarrow \delta \downarrow$  (:: R&D reward  $\downarrow$ )
- The overall impact on real growth,

$$\delta imes \int_{\underline{q}(n,\delta)}^{\infty} K(q|\delta,w,n) \log q \, dq$$

is ambiguous.

• Note: If  $\kappa = 0$ , the model conforms to Lentz-Mortensen. Firm distribution, real growth, and welfare are independent of *n*.

## Impacts of $n \uparrow$ on Welfare

$$U = rac{\log C}{
ho} + rac{g}{
ho^2}$$
  
 $C \propto rac{1 - ext{menu costs}}{P}$ 

- Consumption
  - Menu cost  $\uparrow$  (-)
  - Markup  $\uparrow \downarrow$  (±?)
- Real growth  $\uparrow \downarrow$  ( $\pm$ ?)
  - Spillover effect
  - Business-stealing effect: Innovators ignore what the previous producers lose. This negative externality is decreasing in *q*.
- The overall impact on welfare is ambiguous.

## **Optimal Inflation Rate**

- Standard New Keynesian: n = 0 is the best.
- Oikawa and Ueda (2015a), w/o firm heterogeneity: n > 0 could be optimal if R&D is overinvested.
  - Chu and Cozzi (2014): the same mechanism to get out of the Friedman rule.
- With firm heterogeneity and reallocation, n > 0 improves welfare if the reallocation effect is sufficiently strong (even when R&D is underinvested).

| Introduction | Motivating Facts | Model | Impacts of MP | Simulation |
|--------------|------------------|-------|---------------|------------|
|              |                  |       |               |            |
|              |                  |       |               |            |
|              |                  |       |               |            |

#### Introduction

#### **Motivating Facts**

Model

Impacts of MP

#### Simulation

# Simulation: Parameter Setting

Denmark Economy

- Menu cost:  $\kappa = 0.022$  (Midrigan, 2011)
- We assume  $ar{\phi}(q)=\zeta q^{-\zeta-1}$  is Pareto.
  - Set ζ = 17.5 to have the same variance as in the estimated distribution (a discrete distribution with three q's) in Lentz and Mortensen (2008).
- Other parameters are set to be consistent with Lentz and Mortensen (2008) when n = 0.
  - *L* = 1.
  - R&D cost:  $c_0 = 1.02 \cdot 10^5$ ,  $c_1 = 3.728$  where  $c(\gamma) = c_0 \gamma^{c_1}$ .
  - $\rho = 0.0361$  to attain g = 0.0139 when n = 0.
  - Potential entrants: h = 1.1667.

#### Impact of Nominal Growth



## Firm size distribution and nominal growth in the model

Tail distributions of sales and employment. n is the nominal growth rate.



#### Firm size distribution and nominal growth in the model Sales and Employment dispersion



### Various Menu Cost Parameters

Changes in welfare under various  $\kappa$ .  $\kappa = 0$  means no nominal rigidity.



## It reminds me a phrase in Keynes (1936)...

It is sometimes said that it would be illogical for labour to resist a reduction of money-wages but not to resist a reduction of real wages. For reasons given below, this might not be so illogical as it appears at first; and, as we shall see later, **fortunately so**.

General Theory (Ch.2)

-We might be fortunate to have nominal rigidity.

## Growth Decomposition

The impact of n on real growth can be decomposed into four components:

- Entry barrier effect  $(n \uparrow \Rightarrow \underline{q} \uparrow)$
- Entry/exit effect ( $n \uparrow \Rightarrow$  entrants' contribution  $\downarrow$ )
- Selection effect ( $n \uparrow \Rightarrow$  product line share of high type  $\uparrow$ )
- Within effect ( $n \uparrow \Rightarrow$  average growth without selection  $\uparrow$ )

$$g(n) - g(0) = -\delta(0) \int_{\underline{q}(0)}^{\underline{q}(n)} K(q|0) \log q \, dq + \int_{\underline{q}(n)}^{\infty} \{\eta(n)\phi(q|n) - \eta(0)\phi(q|0)\} \log q \, dq + \int_{\underline{q}(n)}^{\infty} \{[K(q|n) - \phi(q|n)] \gamma(q|n) - [K(q|0) - \phi(q|0)] \gamma(q|0)\} \log q \, dq + \int_{\underline{q}(n)}^{\infty} \{\phi(q|n)\gamma(q|n) - \phi(q|0)\gamma(q|0)\} \log q \, dq$$

#### Growth Decomposition



In the Danish economy, the selection effect is dominant especially under higher inflation.

#### Reallocation effects in Japanese Economy

- Murao and Nirei (2011) apply an extended model of Lentz and Mortensen (2008) to Japanese economy. We use their results to calibrate our model to Japanese economy.
- Parameters:
  - ρ = 0.0385;
  - $c_1 = 1.923; h = 11.682$
  - Pareto coefficient of  $\bar{\phi}$ : 4.821.

#### Motivating Facts

0.1



## Concluding Reamrks

- Larger firms tend to grow faster than small firms under inflation in Japan.
- We developed a model to analyze long-run effect of monetary policy (like trend inflation) in an endogenous growth model with nominal rigidity, firm heterogeneity, and reallocation.
- Positive nominal growth improves real economic growth and welfare if the reallocation effect is sufficiently large. Thus, the optimal inflation rate can be strictly positive.
- Inflation may improve welfare with nominal rigidity because it hinders R&D by firms whose quality updates are small.