Reallocation Effects of Monetary Policy

Koki Oikawa Kozo Ueda

Waseda University

June, 2018

CIGS Conference on Macroeconomic Theory and Policy
Introduction

Motivating Facts

Model

Impacts of MP

Simulation
Introduction

- There exist sizable and persistent heterogeneity among firms. (e.g. survey by Syverson, 2011)
 - productivity dispersion
 - innovating firms and no-R&D firms
 - heavy-tailed firm size distribution
- Misallocation and reallocation (e.g. Hsieh and Klenow, 2009)
 - Zombie firms and secular stagnation in Japan. (Cabarello, Hoshi and Kashyap, 2008)
- Reallocation and growth (Lentz and Mortensen, 2008)
 - From decomposition of aggregate growth, the selection effect accounts for about 50% of aggregate productivity growth in Denmark.
- Many of previous papers in this strand only consider the real aspect of the economy.
This Study: How about the Nominal Aspect?

- The role of monetary policy in firm reallocation
 - between good and bad firms
 - between small and large firms
 - What kind of monetary policy (e.g. inflation target) improves economic growth and welfare?

- The optimal inflation rate.

To this aim, we combine

- Endogenous growth with firm dynamics (Klette and Kortum, 2004; Lentz and Mortensen, 2005, 2008)
- Nominal rigidity à la menu cost.
Main Results

- In Japan, large firms tend to grow faster than small firms under inflation.

- In the model, inflation reallocates resources from inferior to superior firms. If this reallocation effect is sufficiently strong, positive nominal growth improves both real growth and welfare.

- The optimal nominal growth rate can be strictly positive if the reallocation effect is strong.

- Nominal rigidity can improve welfare.
Related Literature

Introduction

Motivating Facts

Model

Impacts of MP

Simulation
Cross-country relation b/w inflation and firm distribution

- No direct study about relation b/w inflation and firm distribution.
- But in less developed countries (i.e., higher inflation), big firms account for a larger share. (Bartelsman et al, 2004; Alfaro et al, 2009; Poschke, 2017)

(from Alfaro et al, 2009)
Inflation and Firm Size Distribution in Japan

- Relationship between inflation and firm size distribution using Japanese firm-level data.

- Firm size dispersion in sales and employment,
 - Top-Middle ratio: 90 percentile/50 percentile
 - Top-Bottom ratio: 90 percentile/10 percentile

- Inflation: PPI input (average of the previous two years) by 14 industries in the manufacturing sector.

- Control: D.I. (financing) from Tankan, industry-level real sales, industry and year FEs.

- IV: inflation in international commodity price.
Inflation and Reallocation: Sales

<table>
<thead>
<tr>
<th></th>
<th>Top/Middle ratio</th>
<th>Top/Bottom ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) OLS</td>
<td>(4) OLS</td>
</tr>
<tr>
<td></td>
<td>(2) OLS</td>
<td>(5) OLS</td>
</tr>
<tr>
<td></td>
<td>(3) 2SLS</td>
<td>(6) 2SLS</td>
</tr>
<tr>
<td>π input</td>
<td>100.6* (20.16)</td>
<td>282.7* (63.48)</td>
</tr>
<tr>
<td></td>
<td>102.7* (20.58)</td>
<td>289.0* (64.53)</td>
</tr>
<tr>
<td></td>
<td>194.6* (27.73)</td>
<td>620.5* (87.52)</td>
</tr>
<tr>
<td>D.I. gap (T/M or T/B)</td>
<td>-0.0454 (0.18)</td>
<td>-0.134 (0.49)</td>
</tr>
<tr>
<td></td>
<td>0.135 (0.18)</td>
<td>0.365 (0.53)</td>
</tr>
<tr>
<td>D.I.</td>
<td>-0.358 (0.22)</td>
<td>-1.220* (0.70)</td>
</tr>
<tr>
<td></td>
<td>-0.547** (0.23)</td>
<td>-1.876** (0.73)</td>
</tr>
<tr>
<td>Industry RS</td>
<td>2.168 (5.69)</td>
<td>17.9800 (17.00)</td>
</tr>
<tr>
<td></td>
<td>3.437 (6.08)</td>
<td>104.8 (226.40)</td>
</tr>
<tr>
<td></td>
<td>-6.377 (17.85)</td>
<td>106.2000 (244.40)</td>
</tr>
<tr>
<td>Constant</td>
<td>4.591 (5.40)</td>
<td>17.9800 (17.00)</td>
</tr>
<tr>
<td></td>
<td>-20.99 (72.16)</td>
<td>104.8 (226.40)</td>
</tr>
<tr>
<td></td>
<td>-33.84 (77.19)</td>
<td>106.2000 (244.40)</td>
</tr>
<tr>
<td>Year/Industry FE</td>
<td>yes/yes</td>
<td>yes/yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>322</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>316</td>
<td>316</td>
</tr>
<tr>
<td></td>
<td>302</td>
<td>302</td>
</tr>
<tr>
<td>R²</td>
<td>0.509</td>
<td>0.679</td>
</tr>
<tr>
<td></td>
<td>0.507</td>
<td>0.679</td>
</tr>
<tr>
<td></td>
<td>0.483</td>
<td>0.653</td>
</tr>
<tr>
<td>Underidentification</td>
<td>164.1</td>
<td>165.4</td>
</tr>
<tr>
<td>Weak identification</td>
<td>22.97</td>
<td>23.37</td>
</tr>
</tbody>
</table>

Notes: *p < 0.1, **p < 0.05, ***p < 0.01
Inflation and Reallocation: Employment

<table>
<thead>
<tr>
<th></th>
<th>Top/Middle ratio</th>
<th>Top/Bottom ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) OLS</td>
<td>(2) OLS</td>
</tr>
<tr>
<td>$\bar{\pi}^\text{input}$</td>
<td>3.484***</td>
<td>3.343***</td>
</tr>
<tr>
<td></td>
<td>(1.027)</td>
<td>(0.992)</td>
</tr>
<tr>
<td>D.I. gap (T/M or T/B)</td>
<td>-0.0215***</td>
<td>-0.0116</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>D.I.</td>
<td>-0.0245**</td>
<td>-0.0279***</td>
</tr>
<tr>
<td>Industry RS</td>
<td>1.097***</td>
<td>1.290***</td>
</tr>
<tr>
<td></td>
<td>(0.273)</td>
<td>(0.284)</td>
</tr>
<tr>
<td>Constant</td>
<td>4.510***</td>
<td>-9.090***</td>
</tr>
<tr>
<td></td>
<td>(0.275)</td>
<td>(3.455)</td>
</tr>
<tr>
<td>Year/Industry FE</td>
<td>yes/yes</td>
<td>yes/yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>322</td>
<td>316</td>
</tr>
<tr>
<td>\bar{R}^2</td>
<td>0.7</td>
<td>0.729</td>
</tr>
<tr>
<td>Underidentification</td>
<td>163.7</td>
<td></td>
</tr>
<tr>
<td>Weak identification</td>
<td>22.84</td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Firm Size and Growth under Inflation

- Divide firm size distribution into 10 deciles (size groups: 1, 2, ..., 10) and take the average growth rates of real sales and employment within size groups.

- Check the cross effect: inflation \(\times \) size group index
Introduction

Motivating Facts

Model

Impacts of MP

Simulation

<table>
<thead>
<tr>
<th></th>
<th>Sales growth</th>
<th>Employment growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) OLS</td>
<td>(2) OLS</td>
</tr>
<tr>
<td>$\bar{\pi}^{\text{input}}$</td>
<td>-0.592***</td>
<td>-0.628***</td>
</tr>
<tr>
<td></td>
<td>(0.0792)</td>
<td>(0.0797)</td>
</tr>
<tr>
<td>Size group</td>
<td>-0.00687***</td>
<td>-0.00838***</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
<td>(0.0008)</td>
</tr>
<tr>
<td>$\bar{\pi}^{\text{input}} \times \text{Size group}$</td>
<td>0.0524*</td>
<td>0.0570*</td>
</tr>
<tr>
<td></td>
<td>(0.0118)</td>
<td>(0.0118)</td>
</tr>
<tr>
<td>Average D.I.</td>
<td>0.00156***</td>
<td>0.00155***</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0004)</td>
</tr>
<tr>
<td>Industry RS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0024)</td>
<td>(0.0024)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.0881***</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td>(0.0125)</td>
<td>(0.1830)</td>
</tr>
<tr>
<td>Year/Industry FE</td>
<td>yes/yes</td>
<td>yes/yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>2940</td>
<td>2880</td>
</tr>
<tr>
<td>R^2</td>
<td>0.179</td>
<td>0.181</td>
</tr>
<tr>
<td>Underidentification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak identification</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Introduction

Motivating Facts

Model

Impacts of MP

Simulation
Model Ingredients

- Endogenous growth with firm heterogeneity (Lentz and Mortensen, 2005, 2008)
 - Multi-product firms
 - Creative destruction. Innovation ability (size of quality update) is ex ante heterogeneous.

- Menu cost (Oikawa and Ueda, 2015ab)
 - Because inflation/deflation reduces real firm values under nominal rigidity, monetary policy affects innovation incentives and real growth.
Model

- Households; Firms with different innovation ability \(q \); Central bank
 - Firms: entrants and incumbents
 - A firm draws \(q \) at entry. Once drawn, \(q \) does not change.

- Focus on a balanced growth path.
 - \(n \): nominal growth rate. We focus on \(n \geq 0 \). ← exogenous
 - \(g \): real growth rate ← endogenous
 - \(\delta \): creative destruction rate ← endogenous

Note:
- \(n \) is equivalent to the quality-unadjusted inflation rate;
- \(\pi = n - g \) is the quality-adjusted inflation rate.
Household

- Household consumes version $a \in \{0, 1, \ldots, A_t(j)\}$ of final goods $j \in [0, 1]$ whose qualities are $Q(j, a)$. The welfare of the representative household is

$$U_t = \int_t^\infty e^{-\rho(t'-t)} \log C_{t'} \, dt',$$

$$\log C_t = \int_0^1 \log \left[\sum_{a=0}^{A_t(j)} Q(j, a) x_t(j, a) \right] \, dj,$$

- Quality evolves as

$$Q(j, a) = \prod_{a'=0}^{a} q(j, a'), \quad q(j, a') > 1 \quad \forall j, a'$$

- Inelastic labor supply.
Incumbent Firms and Creative Destruction

Incumbents produce multiple products for which they compete through innovation (quality updates).
Incumbents’ Decision

1. Pricing under menu cost
 • Find the optimal Ss rule to maximize the value of a product line.

2. R&D investment
 • To maximize firm value (bundle of product lines).
Ss-pricing and Product Line Value

- Fix $q > 1$.
- Linear one-to-one production from labor. Bertrand competition in each product line.
- Posted price: p_t. Relative price: $\xi_t \equiv p_t e^{-nt}$.
- Menu cost: $\kappa E_t / P_t$, where $\kappa > 0$. Entrants must pay at entry.
- We write $E_0 \equiv E$, $P_0 \equiv P$, $W_0 \equiv W$.

(E_t: nominal expenditure; P_t: general price; W_t: nominal wage)

Then,
- The optimal pricing follows an Ss-rule.
- The upper bound of ξ is the limit price, qW.
• Higher nominal growth \rightarrow relative price is going down more rapidly \rightarrow higher frequency of price reset \rightarrow lower product line value.
The damage from $n \uparrow$ is relatively small for high-q firms

- Let $\nu_\tau(q|\delta, n)$ be the value of product line with elapsed time of τ from the previous price reset.

Proposition

If $\nu_0 > 0$, $\nu_0(q|\delta, n)$ is increasing in q and decreasing in n. Moreover,

$$\frac{\partial^2 \nu_0(q|\delta, n)}{\partial q \partial n} > 0.$$

- The loss caused by faster nominal growth (high inflation) is relatively small for more creative firms (high q).
- The cross impact occurs because the cost of price reset is independent of q while the return of price reset is increasing in q.
Let $q(\delta, n)$ be the threshold below which $\nu_0 < 0$.

Proposition

If $\kappa < (\rho + \delta)^{-1}$, then $q(\delta, n)$ uniquely exists and is increasing in n.

- Under greater n, less creative firms cannot survive.
- One of the main sources of reallocation effect.
Firm Value and Incumbents’ R&D (1/4)

- The probability of success in R&D is $k\gamma$, where k is the number of product lines and γ is R&D intensity.
 - This property is often assumed to have Gibrat’s law: The growth rate of firm is independent of firm size.

- Real R&D cost is $kwc(\gamma)$, where $c' > 0$, $c'' > 0$, $c(0) = 0$. ($w \equiv \frac{W}{E}$)
Firm Value and Incumbents’ R&D (2/4)

Bellman Equation

\[\rho v_k(T_k, q|\delta, w, n) = \max_{\gamma} \sum_{i \notin \Omega} \left[\pi^0(\xi_0 e^{-n\tau_i}) + \frac{\partial v_k(T'_k, q|\delta, w, n)}{\partial \tau_i} \right] \]

\[+ \sum_{i \in \Omega} \left[\pi^0(\xi_0 e^{-n\tau_i}) - \kappa + \frac{\partial v_k(T'_k, q|\delta, w, n)}{\partial \tau_i} \right] \]

\[- kwc(\gamma) + k\gamma \left[v_{k+1}(\{T'_k, 0\}, q|\delta, w, n) - v_k(T'_k, q|\delta, w, n) \right] \]

\[+ k\delta \left[\frac{1}{k} \sum_{i=1}^{k} v_{k-1}(T'_{k-1,<i>}, q|\delta, w, n) - v_k(T'_k, q|\delta, w, n) \right], \]

- \(T_k \equiv \{\tau_i\}_{i=1}^{k} \). \(T_{k-1,<i>} \) is the set of elapsed time of the firm when it exits from \(i \)-th product market.

- \(\Omega \equiv \{i|\tau_i = \Delta(q|\delta, n)\} \), the set of products whose prices are revised. \(T'_k \) is \(\{\tau'_i\}_{i=1}^{k} \) and

\[\tau'_i = \begin{cases} \tau_i & \text{for } \tau_i \in [0, \Delta(q|\delta, n)), \\ 0 & \text{for } \tau_i = \Delta(q|\delta, n). \end{cases} \] (1)
Firm Value and Incumbents’ R&D (3/4)

The Maximized Firm Value

- Firm value:

\[v_k(T_k, q|\delta, w, n) = \sum_{i=1}^{k} \nu_{\tau_i}(q|\delta, n) + k \psi(q|\delta, w, n) \]

future R&D return

- FOC about R&D intensity (\(\gamma\)):

\[\nu_0(q|\delta, n) + \psi(q|\delta, w, n) = wc'(\gamma). \]
Firm Value and Incumbents’ R&D (4/4)
Heterogeneous impact of $n \uparrow$ on R&D

Proposition

Fix $n \geq 0$ and $\delta > 0$. $\gamma(q|\delta, w, n)$ uniquely exists for sufficiently large w. **Being well-defined, $\gamma(q|\delta, w, n)$ is increasing in q and decreasing in n, δ, and w. Moreover, for $n \neq 0$,**

$$\frac{\partial^2 \gamma(q|\delta, w, n)}{\partial q \partial n} > 0 \quad \text{and} \quad \frac{\partial^2 \gamma(q|\delta, w, n)}{\partial q \partial w} < 0.$$

The decline in R&D intensity under higher n is relatively small for firms with greater q.
Impact of $n \uparrow$ on Distribution

Let $K(q|\delta, w, n)$ be the measure of product lines produced by type-q firms.

- $q(\delta, n) \uparrow$. Low R&D quality firms exit.
- R&D intensity is less sensitive for firms with greater q.
 \Rightarrow The product line share of firms with higher q increases.
- The average quality improvement by each innovation is higher under greater n.
A measure h of potential entrants do R&D without knowing its q. Their types are drawn from density $\Phi(q)$ on $(1, \infty)$.

If an entrant draws $q < q(\delta, n)$, it gives up entry.

Free entry condition (FE):

$$\int_0^{\infty} \Phi(q) v_1(\{0\}, q|\delta, w, n) dq = wc' (\gamma_\eta(\delta, w, n)),$$

where $\gamma_\eta(\delta, w, n)$ is entrants’ R&D intensity to have the ex-post entry rate of η.

Labor Market

- Relative price distribution for a product line with q: $f(\xi(\tau))$
- Labor demand from the production sector is

$$L_X = \int_{q(\delta,n)}^{\infty} K(q|\delta, w, n) \left[\int_{0}^{\Delta(q|\delta,n)} f(\xi(\tau)) \frac{1}{\xi(\tau)} d\tau \right] dq$$

- Labor demands from the R&D sector:

$$L_R = hc(\gamma_{\eta}(n)) + \int_{q(\delta,n)}^{\infty} K(q|\delta, w, n)c(\gamma(q|\delta, w, n))dq$$

- The labor market clearing condition (LMC):

$$L = L_X + L_R$$
Stationary Equilibrium

Equilibrium conditions:

1. FE
2. LMC

Proposition

For given \(n \geq 0 \), there exists a stationary equilibrium with a positive entry rate.
• $\delta \uparrow \Rightarrow \eta \uparrow$ and $v_1 \downarrow$. To satisfy FE, $w \downarrow$ should compensate the decline of innovation reward.

• $\delta \uparrow \Rightarrow L_{R,entrant} \uparrow$, $L_{R,incumbent} \downarrow$, and $L_X \uparrow\downarrow (?)$. The total impact is ambiguous but LMC is basically upward-sloping under typical distributions.
Introduction

Motivating Facts

Model

Impacts of MP

Simulation
Impacts of \(n \uparrow \) on Real Growth

- Real growth effect:
 - \(n \uparrow \Rightarrow \) Average quality update \(\uparrow \).
 - \(n \uparrow \Rightarrow \delta \downarrow \) (\(\because \) R&D reward \(\downarrow \)).
 - The overall impact on real growth,

 \[
 \delta \times \int_{q(n,\delta)}^{\infty} K(q|\delta, w, n) \log q \, dq
 \]

 is ambiguous.

- Note: If \(\kappa = 0 \), the model conforms to Lentz-Mortensen. Firm distribution, real growth, and welfare are independent of \(n \).
Impacts of $n \uparrow$ on Welfare

\[U = \frac{\log C}{\rho} + \frac{g}{\rho^2} \]
\[C \propto \frac{1 - \text{menu costs}}{P} \]

- Consumption
 - Menu cost \uparrow ($-$)
 - Markup $\uparrow\downarrow$ (\pm?)
- Real growth $\uparrow\downarrow$ (\pm?)
 - Spillover effect
 - Business-stealing effect: Innovators ignore what the previous producers lose. This negative externality is decreasing in q.
- The overall impact on welfare is ambiguous.
Optimal Inflation Rate

- Standard New Keynesian: \(n = 0 \) is the best.
- Oikawa and Ueda (2015a), w/o firm heterogeneity: \(n > 0 \) could be optimal if R&D is overinvested.
 - Chu and Cozzi (2014): the same mechanism to get out of the Friedman rule.

- With firm heterogeneity and reallocation, \(n > 0 \) improves welfare if the reallocation effect is sufficiently strong (even when R&D is underinvested).
Introduction

Motivating Facts

Model

Impacts of MP

Simulation
Simulation: Parameter Setting

Denmark Economy

- Menu cost: $\kappa = 0.022$ (Midrigan, 2011)
- We assume $\bar{\phi}(q) = \zeta q^{-\zeta-1}$ is Pareto.
 - Set $\zeta = 17.5$ to have the same variance as in the estimated distribution (a discrete distribution with three q’s) in Lentz and Mortensen (2008).
- Other parameters are set to be consistent with Lentz and Mortensen (2008) when $n = 0$.
 - $L = 1$.
 - R&D cost: $c_0 = 1.02 \cdot 10^5$, $c_1 = 3.728$ where $c(\gamma) = c_0 \gamma^{c_1}$.
 - $\rho = 0.0361$ to attain $g = 0.0139$ when $n = 0$.
 - Potential entrants: $h = 1.1667$.
Impact of Nominal Growth

- g, U
- δ, η
- q
- $k(q)$
- k
- Lr
- Lx, w
- menu cost

Graphs depicting the relationship between different variables with respect to n. The graphs show trends and changes in various economic indicators as nominal growth changes.
Firm size distribution and nominal growth in the model

Tail distributions of sales and employment. n is the nominal growth rate.
Firm size distribution and nominal growth in the model

Sales and Employment dispersion

Sales (# of products) ratio

Employment ratio

Ratio of top 10% to median
Ratio of top 1% to median
Ratio of top 0.1% to median
Various Menu Cost Parameters

Changes in welfare under various κ.

$\kappa = 0$ means no nominal rigidity.
It reminds me a phrase in Keynes (1936)...

It is sometimes said that it would be illogical for labour to resist a reduction of money-wages but not to resist a reduction of real wages. For reasons given below, this might not be so illogical as it appears at first; and, as we shall see later, fortunately so.

General Theory (Ch.2)

—We might be fortunate to have nominal rigidity.
Growth Decomposition

The impact of n on real growth can be decomposed into four components:

- Entry barrier effect ($n \uparrow \Rightarrow q \uparrow$)
- Entry/exit effect ($n \uparrow \Rightarrow$ entrants’ contribution \downarrow)
- Selection effect ($n \uparrow \Rightarrow$ product line share of high type \uparrow)
- Within effect ($n \uparrow \Rightarrow$ average growth without selection \uparrow)

\[
g(n) - g(0) = -\delta(0) \int_{q(0)}^{q(n)} K(q|0) \log q \, dq \\
+ \int_{q(n)}^{\infty} \{\eta(n)\phi(q|n) - \eta(0)\phi(q|0)\} \log q \, dq \\
+ \int_{q(n)}^{\infty} \left\{[K(q|n) - \phi(q|n)] \gamma(q|n) - [K(q|0) - \phi(q|0)] \gamma(q|0)\right\} \log q \, dq \\
+ \int_{q(n)}^{\infty} \{\phi(q|n)\gamma(q|n) - \phi(q|0)\gamma(q|0)\} \log q \, dq
\]
In the Danish economy, the selection effect is dominant especially under higher inflation.
Reallocation effects in Japanese Economy

- Murao and Nirei (2011) apply an extended model of Lentz and Mortensen (2008) to Japanese economy. We use their results to calibrate our model to Japanese economy.

- Parameters:
 - $\rho = 0.0385$
 - $c_1 = 1.923$; $h = 11.682$
 - Pareto coefficient of ϕ: 4.821.
Concluding Remarks

- Larger firms tend to grow faster than small firms under inflation in Japan.

- We developed a model to analyze long-run effect of monetary policy (like trend inflation) in an endogenous growth model with nominal rigidity, firm heterogeneity, and reallocation.

- Positive nominal growth improves real economic growth and welfare if the reallocation effect is sufficiently large. Thus, the optimal inflation rate can be strictly positive.

- Inflation may improve welfare with nominal rigidity because it hinders R&D by firms whose quality updates are small.