Promotion of Innovation to mitigate GHG emission

CIGS 25 October 2018

1. Role of innovation

Reality: on the trajectory?

(出所) UNFCCC 「Aggregate effect of the intended nationally determined contributions: an update(2016) 環境省資料 http://www.env.go.jp/press/103822/105478.pdf

Role of innovation: Rapid cost reduction in many tech fields (PV, battery, shale rig, LED, MEMS, sensors, internet, ...)

(Nykvist & Nilsson, 2015)

Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., & Aharon, D. (2015).

(Holdowsky, Mahto, Raynor, & Cotteleer, 2015)

GHG emission mitigation through three revolutions

・自動運転車、EV、カーシェアリングにより大幅な経済便益とCO2削減。

3R Scenario Global Results

Compared to the BAU case in 2050, the 3R scenario produces impressive global results. It would:

- Cut global energy use from urban passenger transportation by over 70%
- Cut CO, emissions by over 80%
- Cut the measured costs of vehicles, infrastructure, and transportation system operation by over 40%
- Achieve savings approaching \$5 trillion per year

Three Revolutions in Urban TRANSPORTATION

How to achieve the full potential of vehicle electrification, automation and shared mobility in urban transportation systems around the world by 2050

> Lew Fulton, UC Davis Jacob Mason, ITDP Dominique Meroux, UC Davis

Research supported by: ClimateWorks Foundation, William and Flora Hewlett Foundation, Barr Foundation

SUSTAINABLE TRANSPORTATION ENERGY PATHWAY

Benefits

Transportation sector : 3 Revolutions

EV + automatic driving + sharing \Rightarrow Econ benefits + CO2 reduction

But more generally,

• All sectors :

Rapid development in all science and tech sectors, particularly in general purpose tech sectors (GPT :=ICT, AI, IOT, nano tech, etc.)

⇒ Further econ benefits + CO2 reduction Take place in shorter time period

3D printer

Fig. 7 Parts designed with Within software: optimized lightweight support part (top left); cranial flap implants (top right); radical heat exchanger (bottom left); pipe manifold (bottom right) [26]

- •遺伝的アルゴリズム
- 流体シミュレーション

More sophisticated design and lightweight parts

⇒More energy efficient

(Beyer, 2014)

Precision agriculture in the US

- Big data
- GPS
- Increased production
 with reduced fertilizer
 - Energy efficient
 - Reduced CO2

Figure 1. Adoption of PA Technologies among Corn Farms

Notes: Error bars represent positive and negative standard errors of the mean percent estimates.

Source: 2010 USDA Agricultural Resource Management Survey (ARMS).

2. Structure of innovation

Linear model

Linear model + Spill over

Government intervention: Linear model

Rationale: Appropriability and Env. Externality

Structure of innovation: Deep learning

「温暖化対策イノベーション」は真空から生まれるものではない。 科学技術全般のイノベーションから生まれる

Spill over

"New combination" promotes innovation

Time

Theory of complex systems (Arthur, Kaufmann)

Development in ecosystem

Policy to promote innovation

To develop ecosystem:

- High-temperature and humidity
 - ⇒ Biodiversity increases

To promote tech-ecosystem:

- Good economic environment
 - ⇒ Business gets vitalized and innovation increases

Public intervention: Linear model

Analysis of cases: several types and patterns

- 1. Energy efficiency increase by Al
 - 一般的なAIからのスピルオーバー (+ 政府によるR&D支援)
- 2. Cost reduction of EV battery

ノートパソコン用バッテリー等からのスピルオーバー (+政府R&D: アルゴンヌ研究所等)

- 3. CG animation ムーアの法則の「スピルオーバー」を利用
- 4. Space solar power system (SSPS)

ピクサー方式: 要素技術開発を重視しない

- 5. Cost reduction of PV
 - A. 政府介入のお陰(米国、日本、ドイツ、中国)(Nemet 2018) VS
 - B. スピルオーバーが本質(半導体産業、フラットパネル産業、中国製造業)(私見)

3. Strategy

Lessons learned from the experiences

- PV: Large scaled installation amounting to 6.9 trillion yen of additional expenses under FIT scheme. However, the PV cost remains high.
- Consumer electronics: 100 billion yen subsidy for liquid crystal display equippments under Eco-point system for consumer electronics, however, little CO2 emission reduction was observed.

• Public R&D Projects such as Sunshine Project and Moonlight Project has measurable benefits.

Detour strategy for wicked problem

- × Little benefit
- × Increased bad effect

Detour Strategy

: Prepare for the measures that ensure the goal

- O A range of options
- O Coordination with other policy issues

Detour strategy for global warming: Case 1

Directly aim to reach the large scaled mitigation of GHG emission:

- Increased economic and security risk
- × Unstable policy

Detour strategy

Promote innovation in the measures to tackle global warming which enable mitigation of large scaled reduction of GHG emission

- Harmonization with economy and security
- O Stable policy

Detour strategy for global warming: Case 2

-Promotion of innovation not only to tackle global warming instead of to mitigate GHG emission but in science and technology as a whole-

Directly aim to reach innovation in the tech of mitigation of GHG emission

- × Concern of government failure
- × Limited options of available tech

Detour strategy

Promotion of innovation not only to tackle global warming instead of to mitigate GHG emission but in science and technology as a whole

- O Harmonization with economy and security
- O Increased opportunity for "New combination"

Dual detour strategy

Role of government -Establishment of virtuous cycle between economy and innovation is crucial-

- 1. Climate change policy must not interrupt virtuous cycle between economy and innovation.
- 2. Investment should go to basic R&D.
- 3. The policy and related system should be reviewed from time to time according to the development of innovation.
- 4. Concrete measures that have become cost effective should be implemented.

