Child care costs and stagnating female labor force participation in the US

So Kubota
Hitotsubashi University

SWET 2018
“Basic childcare for Jack and Henry costs more than their mortgage, and almost as much as a year at the University of Minnesota.”

Barack Obama

State of the Union address 2015
Research Question

• Motivation
 • very expensive child care price in the US
 • The mean full-time monthly costs are about $1000
 • The costs seem rising (e.g., Child Care Aware of America)
 • The female labor force participation rate is now decreasing
 (69% in 1985 —> 76% in 2000 —> 73% in 2015)

• Questions
 • the basic trend of child care markets in the US?
 • driving force changing the child care market?
 • implications for female labor supply
 • evaluation of child care market policy?
Summary

- Fact finding: child care price ↑ & hours ↓ since the mid-1990s
- Significant impacts on the female labor supply (about 50% of ↓)

- A puzzle
 - expanding child care subsidies since the mid-1990s
 - positive demand effect —> price ↓, but price ↑ ??
 - *Minnesota* style explanation of the child care subsidy
 - backfire: negative supply side effect
 - many childcare workers are also working mothers. The childcare subsidies might distort their incentives
Outline

1. Facts: childcare market in the U.S.

2. childcare subsidy \rightarrow price \uparrow, evidence

3. childcare subsidy \rightarrow price \uparrow, simple model and numerical exercise

(optional)

4. price \uparrow \rightarrow household behavior, by life-cycle model

5. another factor: childcare regulation \rightarrow price, by diff-in-diff estimation
The trend of the childcare market

- Two existing studies: Census Bureau reports & Herbst (2015)
 - No estimates on quantity, hours of childcare
 - What I want: $\text{Hourly price} = \frac{\text{childcare expenditure}}{\text{hours}}$

- This paper: hourly price

- Survey of Income and Program Participation (SIPP), child care topical module
 - One survey per a few years, in 1988-2011.
 - About 1000 sample of working mothers with small children
 - Inconsistency between 1994-1997 \rightarrow adjusted
Average real hourly child care price, age < 5

- Questionnaire: “How much did you pay?”
 - consumer (net) price

1. Facts

kindergarten, only age 5 in the US

- Including: daycare, nursery/preschool, family day care, nanny and baby sitter.
- Excluding: kindergarten, before/after school, paid for family/relative
Real mean hourly child care price, age < 5

- Excluding no payment (close to the gross price)
Hourly costs / mother’s hourly wage

1. Facts

- Directly affect’s mother’s labor supply decisions
- U-shape: wage ↑ first —> child care price ↑ next
Mean weekly hours of child care

- Market care: paid care by daycare center or non-relative
- Non-market care: non-paid care by relative and family

- Mean hours, all working mothers, # kids not adjusted
1. Facts

- Reagan tax cuts
- Clinton’s welfare reform
- Child care price ↑ is a puzzle?

Source: Head start fact sheet, Committee on way and means, Green Book, Mitchell (2002), NIEER
The distribution of hourly child care price

1. Facts

- 10th percentile
- 25th percentile
- 50th percentile
- 75th percentile
- 90th percentile

Year:
- 1990
- 1995
- 2000
- 2005
- 2010

2010 dollars

adjustment

10th percentile
25th percentile
50th percentile
75th percentile
90th percentile

12
The distribution of hourly child care price

1. Facts

<table>
<thead>
<tr>
<th>Year</th>
<th>10th percentile</th>
<th>25th percentile</th>
<th>50th percentile</th>
<th>75th percentile</th>
<th>90th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.2</td>
<td>-0.4</td>
</tr>
<tr>
<td>1995</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>-0.2</td>
</tr>
<tr>
<td>2000</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>2005</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>2010</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Mean price by family income

1. Facts

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4 to 1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 to 3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom 1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mean hours of market care by family income

1. Facts

- Top 1/4
- 1/4 to 1/2
- 1/2 to 3/4
- Bottom 1/4

Year

2010 dollars

Adjustment
Mean hours of family/relative care by family income

1. Facts

Year:
- 1990
- 1995
- 2000
- 2005
- 2010

2010 dollars adjustment:
- Top 1/4
- 1/4 to 1/2
- 1/2 to 3/4
- Bottom 1/4

Graph showing mean hours of family/relative care by family income, with adjustments for years 1990 to 2010.
Puzzle? child care subsidy ↑

- Puzzle?
 - ECON 101: subsidy → consumer price ↓ & quantity ↑
 - US child care market: consumer price ↑ & quantity ↓

- Two types of child care
 - Center-based: preschool, nursery school, daycare center
 - Home-based: family daycare home, nanny, baby sitter

- Main fact: Home-based childcare supply ↓
Two types of market child care in the US

<table>
<thead>
<tr>
<th>Place</th>
<th>Center-Based</th>
<th>Home-Based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>school-style facility</td>
<td>consumer or provider’s home</td>
</tr>
<tr>
<td>Examples</td>
<td>Daycare center, Nursery school, Preschool, Head start</td>
<td>Family daycare home (83%), Baby sitter, Nanny</td>
</tr>
<tr>
<td>Number of workers, 1990</td>
<td>303,975</td>
<td>503,327</td>
</tr>
<tr>
<td>Market share, 1990 (hours by consumer)</td>
<td>51%</td>
<td>49%</td>
</tr>
<tr>
<td>Hourly wage, 1990 (price level adjusted to 2010)</td>
<td>$7.4</td>
<td>$5.5</td>
</tr>
<tr>
<td>% of mothers, 1990 (youngest kid’s < 5)</td>
<td>17%</td>
<td>34% (13% in all work mom)</td>
</tr>
</tbody>
</table>

Dara source: IPUMS census 1990
• Decline only in home-based care
• Increase in hourly price
child care subsidy as a negative supply shock

- A mother, $8 potential wage in office work, $3 child care price

Home-based care, no subsidy

- Office work: net wage: $5 = 8 - 3

with childcare subsidies

- Subsidised child care: $0
- Office work: net wage: $8 = 8 - 0

Overall child care price↑

2. supply shock?
Worker side 1: labor supply

Center–based

Data source is CPS. child status is classified by having kids age lower than 18

Home–based

2. supply shock?
Worker side 2: wage

- wage gap between center and home
 - home-based worker’s advantage on no child care payment
 - The advantage disappears by subsidy —> the gap also shrank

2. supply shock?
Worker side 3: wage growth by region

- Public Use Microdata Area (PUMA): 543 divisions of US
- More moms in home-based —> higher wage growth
- General equilibrium —> higher growth also in center-based sector

2. supply shock?

Home–based worker's wage

Center–based worker's wage
Price↑, other factors?

- Oaxaca decomposition, 1993 vs. 2010
- The increase in the increase in the hourly price child care.
- about 75% still remain unexplained.

2. supply shock?
Hours↓, other factors?

- Oaxaca decomposition: 1993 vs. 2010
- The decline in the weekly hours of marker child care.
- It even predicts an *increase in hours*
Simple model and numerical exercise

- Question: why supply effects dominate demand ones?

- Type A mothers: office work or non-employment

\[
\max_{n \in \{0,1\}} c - \delta n \quad \text{s.t. } c = (w - [1 - \tau(w)]p)n
\]

\[
n_A(w) = \begin{cases}
1 & \text{if } w - [1 - \tau(w)]p > \delta \\
0 & \text{otherwise}
\end{cases}
\]

- Type B mothers: office work or home-based child care
 - work anyway —> care only wage
 - home-based child care: care \(z \) children and her own kid

\[
n_B(w) = \begin{cases}
1 & \text{if } w - [1 - \tau(w)]p > pz \\
0 & \text{otherwise}
\end{cases}
\]
Partial equilibrium with linear subsidy

- **Equilibrium condition**

\[
\theta \int n_A(w) dF_A(w) + (1 - \theta) \int n_B(w) dF_B(w)
\]

\[
= (1 - \theta) z \int [1 - n_B(w)] dF_B(w) + \Theta
\]

- \(\theta\) is population of Type A
- \(\Theta\) is fixed child care supply by the other child care workers

- **Case 1**: Linear subsidy: \(\tau(w) = \tau\) for all \(w\)

- **Proposition**: subsidy rate \(\tau \uparrow\), \((1-\tau)p \downarrow\) and supply \(\uparrow\)

- demand effect > supply effect (as usual)
Partial equilibrium with mean-tested subsidy

• **Case 2:** Mean-tested subsidy:

• **Proposition:** $s \uparrow$ reduces the child care supply if

$$
\tau(w) = \begin{cases}
1 & \text{if } w \leq s \\
0 & \text{if } w > s
\end{cases}
$$

$$
\frac{f_B(s)}{f_A(s)} \quad \frac{f_A(p + d)}{zf_A(pz) + (1 + z)f_B((1 + z)p)}
$$

- **direct effect** $s \uparrow$
 - # Type B leave child care
 - # Type A start working

- **indirect effect** $p \uparrow$
 - # Type A quit jobs
 - # Type B start child care

• **Corollary:** If $f_A(w), f_B(w)$ follow uniform distributions, child care supply \uparrow

• **Heterogeneity** may be necessary to cause the backfire
 - Non-linear subsidy
 - Non-uniform wage distribution
Numerical exercises

- Model parameters are matched to CPS 1985-1995 data
 - $f_A(w), f_B(w)$ following log-normal by wage distribution
 - $f_B(w)$: home-based child care “last year” and changed jobs
 - selection corrected by simulation
 - $\delta, \theta, z, \Theta$ by other moments: emp rate, CC price, CC wage, HB share.
3. Model

Fraction of Type A women who receive subsidy

Fraction of Type B women who receive subsidy

18% eligibility in 2010
3. Model

Gross hourly price of child care

Employment rate of Type A

18% eligibility in 2010
Numerical exercise

- Numerical Exercises
 - If subsidy cutoff is low
 - only potential childcare workers are eligible
 - less childcare supply —> high price —> low employment rate
 - Quantitatively consistent with the actual policy

- If the government used the same amount of money in different way?
 - linear subsidy to consumers: Emp rate: 46.3%, Net price: $2.49
 - linear subsidy to home-based: Emp rate: 48.0%, Net price: $2.07
Brief summary: Life-cycle model

- Question: price ↑, then labor supply? child care allocation?
- price ↑ as exogenous shock —> household response
- Life-cycle decision model of married couples:
 - wife’s full-time or part-time labor supply
 - child care arrangement: market vs. grandma care
- Simulation: calibration with 1990 data & add price ↑ in 2010
 - Capture more than half deviation from trends in maternal labor supply
 - Human capital loss —> labor supply ↓ in later life
 - Almost fully captures child care arrangement shifts.
Brief summary: Regulation

- Child care development Fund (CCDF) —→ regulation ↑
- Less than half of home-based care were licensed
- CCDF —→ license ↑ in home-based
 - required for operation and subsidy
 - regulation agency’s budget ↑
- DDD estimation
 - time difference
 - state-level difference in licensed family daycare ↑
 - Home-based vs.Center-based Difference
- Result: Explains 4%↑ in child care price (wage)

wrap up!
Other factors?

- Quality Improvement?
 - Possible, but maybe a minor factor
 - If so, why hours of market child care decreased?

- Monopoly power in child care industry?
 - Herfindahl index has dropped down
 - Share of franchised providers have been constant at 4%

- Culture?
 - Tiger mom effect?
 - Unclear factor. Observed factor first.

wrap up!
Conclusion

• Research question: why female labor in the US ↓?

• New facts: rising child care price and decreasing its hours.

• Why child care costs ↑?
 • child care subsidies for low-income families
 • also for working mothers in home-based childcare
 • They send kids to subsidized care and change jobs
 • childcare supply ↓, unexpected subsidy’s backfire

• Policy implication: encourage home-based child care supply

• Future research:
 • Quality adjustment?
 • Rich quantitative model and policy exercise
Price ↑ —> household behavior? Life-cycle model

• Question: price ↑, then labor supply? child care allocation?

• price ↑ as exogenous shock —> household response

• Life-cycle decision model of married couples:
 • wife’s full-time or part-time labor supply
 • child care arrangement: market vs. grandma care

• Simulation: calibration with 1990 data & add price ↑ in 2010
 • Capture more than half deviation from trends in maternal labor supply
 • Human capital loss —> labor supply ↓ in later life
 • Almost fully captures child care arrangement shifts.
Life-cycle models of female labor supply

<table>
<thead>
<tr>
<th>Papers</th>
<th>Saving</th>
<th>Human Capital</th>
<th>Intensive Margin</th>
<th>Non-market child care</th>
<th>Fertility</th>
<th>Marriage Divorce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attanasio et al. (2008)</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eckstein & Lifshitz (2011)</td>
<td></td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fernandez & Wong (2014)</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>Bick (2016)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Guner et al. (unpublished)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My paper</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>

- My paper focuses more on child care and labor supply decision
Life-cycle model

One period = 5 year

- **work periods**
- **Retired**

25

Child care when kid < 5

Options: not work, market care, non-market care

- Heterogeneity: husband & Wife human capital: h^m_i, h^f_i

- Non-wage heterogeneity:

 - Timing of child bearing: two children in 1st period (25-29), or in 2nd period (30-34)

- Non-market care availability: θ couples have access
Life-cycle model: Retired periods (age 65-80)

\[
V_t(a_t) = \max_{c_t} \log \left(\frac{c_t}{\psi_t} \right) + \beta V_{t+1}(a_{t+1})
\]

s.t. \[c_t + \frac{a_{t+1}}{1 + r} = a_t \]

\[a_t \geq -\bar{a}(t) \]

• Both husband and wife are retired
• \(\psi \) is OECD adjustment factor for family size
• natural borrowing limit on asset
Life-cycle model: working periods (age 25-64) without childcare

\[V_t^z(h^m_t, h^f_t, a_t) = \max_{c_t, n_t} \log \left(\frac{c_t}{\psi_{t, z}} \right) + d(t, z) \frac{(1 - n_t)^{1-1/\gamma}}{1 - 1/\gamma} \]

\[\quad + \beta V_{t+1}^z(h^m_{t+1}, h^f_{t+1}, a_{t+1}) \]

s.t. \[n_t \in \{0, 0.2, 0.4\} \]
\[c_t + \frac{a_t+1}{1 + r} = (1 - \tau)[0.4wh^m_t + wh^f_t n] + a_t \]
\[a_t \geq -\bar{a}(t) \]

Human capital accumulation

- wife’s labor supply: not-work, part-time, full-time
- husband always works in full-time
- \(d(t, z)\) depends on child status, (0-4, 5-14, no child)
Life-cycle model: human capital accumulation

• Husband
 \[\ln h^m_{t+1} = \ln h^m_t + g_{t+1} + v^m_{t+1} \]

• Wife
 \[\ln h^f_{t+1} = \ln h^f_t + \mathcal{I}(n_t > 0)g_{t+1} - \mu(n_t)\delta + v^f_{t+1} \]

• Human capital depreciation
 \[\mu(n_t) = \begin{cases}
 0 & \text{if } n_t = 0.4 \\
 \bar{\mu} & \text{if } n_t = 0.2 \\
 1 & \text{if } n_t = 0
\end{cases} \] (full-time work)
 \[\begin{cases}
 0 & \text{if } n_t = 0.2 \\
 \bar{\mu} & \text{if } n_t = 0.4 \\
 1 & \text{if } n_t = 0
\end{cases} \] (part-time work)
 \[\begin{cases}
 0 & \text{if } n_t = 0 \\
 \bar{\mu} & \text{if } n_t = 0.2 \\
 1 & \text{if } n_t = 0.4
\end{cases} \] (non-employment)

• Permanent shock
 \[\begin{bmatrix} v^m_t \\ v^f_t \end{bmatrix} \sim N \left(\begin{bmatrix} -\sigma^2/2 \\ -\sigma^2/2 \end{bmatrix}, \begin{bmatrix} \sigma^2 & \sigma^2 \rho \\ \sigma^2 \rho & \sigma^2 \end{bmatrix} \right) \]
Life-cycle model: childcare period (age 25-29 or 30-34)

\[
V^z_t(h^m_t, h^f_t, a_t) = \max_{c_t, n_t, x_t, y_t} \log(c_t/\psi_t) + d(t, z) \frac{(1 - n_t)^{1 - 1/\gamma}}{1 - 1/\gamma} - d_y y_t + \beta V_{t+1}(h^m_{t+1}, h^f_{t+1}, a_{t+1})
\]

s.t. \(n_t, x_t, y_t \in \{0, 0.2, 0.4\} \)

\[
n_t = x_t + y_t
\]

\[
c_t + \frac{a_{t+1}}{1 + r} = (1 - \tau)[0.4wh^m_t + wh^f_t n] - px_t + a_t
\]

\[
a_t \geq -\bar{a}(t)
\]

Human capital accumulation

- market child care \(x_t \) requires monetary cost \(px_t \)
- non-market child care (care by relative/family) incurs utility costs \(d_y y_t \)
Calibration, rough summary

- Data: IPUMS Census 1990.
- It is cross-section data. A steady state is assumed.
- Human capital accumulation parameters
 - directly calculated from wage data by generation
 - depreciation & his-wife correlation are from existing studies
- Preference parameters and non-market care availability $^\theta$
 - 7 parameters --> 7 moments.
Calibration, parameters to match moments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_n^1</td>
<td>leisure with kids <5</td>
<td>0.3</td>
</tr>
<tr>
<td>d_n^2</td>
<td>leisure with kids 5-14</td>
<td>0.52</td>
</tr>
<tr>
<td>d_n^3</td>
<td>leisure without kids</td>
<td>0.26</td>
</tr>
<tr>
<td>γ</td>
<td>Frisch elasticity</td>
<td>0.64</td>
</tr>
<tr>
<td>d_y</td>
<td>disutility by non-market child care</td>
<td>0.3</td>
</tr>
<tr>
<td>θ</td>
<td>fraction, accessible to non-market child care</td>
<td>0.31</td>
</tr>
<tr>
<td>μ</td>
<td>Human capital depreciation, part-time job</td>
<td>0.37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moment</th>
<th>Data</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFPR, married women with kids <5</td>
<td>0.656</td>
<td>0.666</td>
</tr>
<tr>
<td>LFPR, married women with kids 5-14</td>
<td>0.74</td>
<td>0.715</td>
</tr>
<tr>
<td>LFPR, married women without kids <5</td>
<td>0.71</td>
<td>0.7</td>
</tr>
<tr>
<td>Fraction of part-time, with kids 0-14</td>
<td>0.206</td>
<td>0.18</td>
</tr>
<tr>
<td>Fraction of part-time, without kids</td>
<td>0.139</td>
<td>0.118</td>
</tr>
<tr>
<td>Non-Market child care share, income > median</td>
<td>0.406</td>
<td>0.38</td>
</tr>
<tr>
<td>Non-Market child care share, income < median</td>
<td>0.503</td>
<td>0.529</td>
</tr>
</tbody>
</table>
Main results

- Shock: child care costs ↑ by 32% between 1990-2010
- Comparison to each variable’s deviation from the trend
 - Extrapolation by logistic function — data in 2010
 - Trend: if all the other factors are keep growing?

Main results

<table>
<thead>
<tr>
<th></th>
<th>Labor Force Particip.</th>
<th>Particip. kid<5</th>
<th>Particip. kid,5-14</th>
<th>Particip. no kids</th>
<th>Hours Worked</th>
<th>Non-market care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in Simulation</td>
<td>-0.054</td>
<td>-0.129</td>
<td>-0.046</td>
<td>-0.043</td>
<td>-2.38</td>
<td>0.152</td>
</tr>
<tr>
<td>Deviation from Trend</td>
<td>-0.090</td>
<td>-0.177</td>
<td>-0.086</td>
<td>-0.050</td>
<td>-7.28</td>
<td>0.210</td>
</tr>
</tbody>
</table>

- Direct effect
- Human capital depreciation
- Part time ↑ in model, ↓ in data

4. Life-cycle
One more factor: regulation

- Child care development Fund (CCDF) —> regulation ↑
- Less than half of home-based care were licensed
- CCDF —> license ↑ in home-based
 - required for operation and subsidy
 - regulation agency’s budget ↑
- Diff-Diff-Diff estimation
 - time difference
 - state-level difference in licensed family daycare ↑
 - Home-based vs. Center-based Difference
- Result: Explains 4%↑ in child care price (wage)
Wage and labor supply before/after CCDF

<table>
<thead>
<tr>
<th></th>
<th>1990</th>
<th>2000</th>
<th>log diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Wage, Center-Based</td>
<td>7.67</td>
<td>8.19</td>
<td>0.06</td>
</tr>
<tr>
<td>Real Wage, Family Daycare</td>
<td>5.34</td>
<td>6.85</td>
<td>0.24</td>
</tr>
<tr>
<td># Center-Based Providers</td>
<td>86,212 (in 1991)</td>
<td>106,246</td>
<td>0.20</td>
</tr>
<tr>
<td># All Family Daycare Home (only reporting income to IRS)</td>
<td>524,381 (in 1992)</td>
<td>559,639</td>
<td>0.06</td>
</tr>
<tr>
<td># Licensed Family Daycare Home</td>
<td>220,867</td>
<td>304,958</td>
<td>0.32</td>
</tr>
</tbody>
</table>
Effect of licensing: Diff-in-Diff-in-Diff estimation

- **Licensed** family daycare \uparrow \rightarrow wage
- DDD estimation
 - time difference
 - state-level difference in # licensed family daycare
 - “Family Daycare — Center” Difference
Effect of licensing: Diff-in-Diff-in-Diff estimation

\[
\log(W_{it}) = \beta_0 + \beta_1 X_{ijt} + \beta_2 \tau_t + \beta_3 \delta_j + \beta_4 T_i \\
+ \beta_5 (\tau_t \times \delta_j) + \beta_6 (\delta_j \times T_i) + \beta_7 (T_i \times \tau_t) + \beta_8 (\tau_t \times \delta_j \times T_i)
\]

- Subscripts, \(i\) : individual, \(j\) : states, \(t\) : year (1990 or 2000)
- \(W_{it}\) : hourly wage (in baseline)
- \(X_{ijt}\) : individual characteristics
 (age, marital status, part-time, education, race)
- \(\tau_t\) : fixed year effect (dummy, \(\tau_t = 1\) if year is 2000)
- \(\delta_j\) : percentage increase in licensed (FCC) providers in each state
- \(T_i\) : treatment dummy (1 if FCC worker, 0 if other CC workers)
Effect of licensing: Diff-in-Diff-in-Diff estimation

- Why DDD?
 - To control the child care demand effect: e.g., child care demand↑, wage↑, provider↑
- Why not each component of regulation?
 - too many. # licensed providers summarize them.
- Why wage instead of price?
 - childcare is labor intensive
 - small sample size in SIPP.
- Why compare 1990 and 2000?
 - large sample in census
Effect of licensing: Diff-in-Diff-in-Diff estimation

- Baseline case: $\beta_8 = 0.045$ with 5% significant level

- Quantitative effects
 - 8% ↓ in center/home wage difference
 - 3% ↑ in home-based childcare workers’ wage

- Robustness
 - # per kid
 - control = all female workers
 - annual income, full-time workers
 - DD
Effect of licensing: Diff-in-Diff-in-Diff estimation

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_{it}</td>
<td>Hourly Wage</td>
<td>Hourly Wage</td>
<td>Hourly Wage</td>
<td>Annual income</td>
<td>Hourly Wage</td>
</tr>
<tr>
<td>Sample</td>
<td>CC workers</td>
<td>CC workers</td>
<td>all female workers</td>
<td>Full-time CC workers</td>
<td>FCC workers</td>
</tr>
<tr>
<td>Method</td>
<td>DDD</td>
<td>DDD</td>
<td>DDD</td>
<td>DDD</td>
<td>DD</td>
</tr>
<tr>
<td>β_8</td>
<td>0.045**</td>
<td>0.045**</td>
<td>0.032***</td>
<td>0.070**</td>
<td>0.058***</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.019)</td>
<td>(0.011)</td>
<td>(0.033)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Note</td>
<td>Baseline</td>
<td>The level difference in FCC provider per child</td>
<td>The control group is all the other female workers</td>
<td>Hours of work per week is more than 35, Weeks of work per year is more than 50.</td>
<td>Diff-in-diff with only FCC workers</td>
</tr>
</tbody>
</table>

significant levels:

- *** 1%
- ** 5%
- * 10 %