Aging, Factor Prices and Capital Flows

Andrea Bonfatti, University of Padua
Selahattin Imrohoroglu, University of Southern California
Sagiri Kitao, University of Tokyo

August 6, 2018
Summer Workshop on Economic Theory (SWET)
Hokkaido University
Big issue: aging, fiscal sustainability and capital flow

- A major challenge facing not only Japan, but also all economies, developed and developing, is aging of the populations, driven by
 - Rising longevity
 - Low fertility rates
 - Rising old-age dependency ratios and fiscal tensions associated with old-age transfer programs.
Big issue: aging, fiscal sustainability and capital flow

- But the countries and regions of the world differ in:
 - The timing and the severity of these demographic trends.
 - Advanced economies started aging earlier than emerging/developing regions.
 - Generosity of the age-dependent transfer programs and implicit debt.
 - Pension systems are less developed or generous in less developed economies, posing less fiscal challenges than in advanced economies.
The combination of unsynchronized demographic aging and differences in social insurance institutions has implications about capital-labor ratios, factor prices and capital flows (in an open-economy).

They also matter for the timing and size of fiscal responses and for the achievement of fiscal sustainability, affecting macroeconomy.

These issues are the most eminent and time-pressing in Japan.
A three-region model of the world

To highlight the implications of the different demographic trends and social insurance institutions, we develop a three-region model of the world.

- **High Income (HI) region:** United States, Canada, Europe (EU28), Australia and New Zealand.
- **Middle Income (MI) region:** China, HK, Taiwan, South Korea, Singapore, Thailand, Indonesia, Malaysia, Philippines, Viet Nam, India, Mexico, Brazil, Russia, Saudi Arabia, UAE, South Africa and Turkey
- **Japan (J)**
Demographic data and projections

 - Harmonized data and projections for all countries from 1950 to 2100

- For Japan, use 2017 estimates of the National Institute of Population and Social Security Research (IPSS).
 - The UN projections for Japan tend to be very optimistic.
Demographic trends in the three regions

Source: United Nation (2017) and IPSS (2017)
Demographic trends in the three regions

Source: United Nation (2017) and IPSS (2017)
Demographic trends in the three regions

Source: United Nation (2017) and IPSS (2017)
Demographic trends in the three regions

Source: United Nation (2017) and IPSS (2017)
Demographic trends in the three regions

Population growth rates (\%)

Old-age dependency ratios
\((\geq 65/20-64, \%)\)

Source: United Nation (2017) and IPSS (2017)
Factor prices and capital flows

- These demographic trends and accompanying fiscal adjustments tend to raise the capital-labor ratio and reduce interest rates.
 - The force manifests in a closed economy, general equilibrium setting.
 - The mechanism may not be as strong in a small/large open economy, or does not exist in a partial equilibrium model.

- Actual economies are neither closed nor small-open. Depending on bilateral trade and capital flows, they may be closer to one extreme or the other.
What we do

• Build a general equilibrium model with 3 regions, each populated with overlapping generations of individuals.

• Calibrate the model to the UN, World Bank, OECD, IMF and Japanese data on demographics and macro/fiscal variables (capital stock, growth, pensions, tax rates, government expenditures and debt). Use micro data on labor productivity.
What we do

• Compute two benchmark transition paths
 ➢ Three regions are closed economies
 ➢ Three regions are open economies with one integrated capital market
• Numerically characterize the path of macro and microeconomic indicators (such as Y, I, S, CA, net foreign asset, life-cycle consumption and saving) in the three regions in closed vs open economies.
• Simulate various counterfactuals, sensitivity analysis and policy experiments.
• In the absence of reform, how high would the fiscal burden be to achieve fiscal sustainability given the projected aging and related public expenditures?
 ➢ Hansen and Imrohoroglu (2016): 40-60% in consumption taxes.
 ➢ Kitao (2015, 2018): 45%, pension reform needed, better done sooner than later.

• All in a closed-economy model.
Related literature

• Quantitative life cycle models and demographic shocks
 ➢ Auerbach and Kotlikoff (1987), De Nardi, Imrohoroglu and Sargent (1999), Imorhoroglu and Nishiyama (2018), …

• Demographics and capital flows
Preliminaries

- The model consists of Japan \((J)\) and two regions: High Income \((HI)\) and Middle Income \((MI)\) regions.
 - The three differ in their demographics, productivity and fiscal institutions.

- Calculate a perfect foresight equilibrium transition path for the world economy from 1990 to a distant future steady state.
 - Compute closed and open economy transitions

- Let \(t\) denote time, \(j\) a household’s age, and \(r\) the region with \(r = J, HI, MI\).
Technology

- Output is produced according to the CRS production function $F(Z_t^r, K_t^r, N_t^r)$ in each region r
 - Z_t^r total factor productivity level
 - K_t^r aggregate capital stock used in production
 - N_t^r aggregate labor supply in efficiency units

- TFP in region r grows at rate λ_t^r between t and $t + 1$
Demographics

- Each region is populated by overlapping generations of households of adult age $j = 1, \cdots, J$ (max age)
- Households of age j face probability $s_{j,t}^r$ to survive till next period. Unconditional survival probability is given by $S_{j,t}^r \equiv \prod_{k=1}^{j} s_{k,t+(k-j)}^r$.
- Let $\mu_{j,t}^r$ denote the size of population of age j at time t in region r.
Household preferences

- Instantaneous utility function
 \[u(c_{j,t}) = \frac{c_{j,t}^{1-\theta}}{1-\theta} \]

- Intertemporal preference ordering
 \[U^r = \sum_{j=1}^{J} \beta^{j-1} S_{j,t+j-1} \frac{c_{j,t+j-1}^{1-\theta}}{1-\theta} \]

- Accidental bequests left by the deceased are distributed as a lump-sum transfer, \(b_t^r \), to all surviving households.
Household endowments

- Households enter the market with zero initial asset, $a_{1,t}^r = 0$ and supply labor exogenously. Exit the labor force at age J_t^r.

- Households of age j at time t in region r are endowed with $\varepsilon_{j,t}^r$ efficiency units of labor.
Household budget constraint (1)

\[(1 + \tau^r_{c,t})c^r_{j,t} + a^r_{j+1,t+1} = y^r_{j,t} + [1 + (1 - \tau^r_{a,t})r_t](a^r_{j,t} + b^r_t) + p^r_{j,t}\]
Household budget constraint (1)

\[(1 + \tau^r c_{r,t})c^r_{j,t} + a^r_{j+1,t+1} = y^r_{j,t} + [1 + (1 - \tau^r a_{a,t})r_t](a^r_{j,t} + b^r_t) + p^r_{j,t}\]

- Net earnings \(y^r_{j,t}\) accruing to households of age \(j\) in region \(r\)
 \[y^r_{j,t} = (1 - \tau^r_{w,t})w^r_t \varepsilon^r_{j,t}\]

- \(w^r_t\) is the market wage rate, \(\varepsilon^r_{j,t}\) is the efficiency units of labor.
Household budget constraint (2)

\[(1 + \tau_{c,t}^r) c_{j,t}^r + a_{j+1,t+1}^r = y_{j,t}^r + [1 + (1 - \tau_{a,t}^r) r_t](a_{j,t}^r + b_{t}^r) + p_{j,t}^r \]

- \(p_{j,t}^r \) is the pension income for those above the pension eligibility age \(j \geq J_{SS}^r \), given by the formula

\[p_{j,t}^r = \kappa_{j,t}^r \frac{W_{j,t}^r}{J_{SS}^r - 1} \]

where \(\kappa_{j,t}^r \) is the replacement rate of average past earnings. \(W_{j,t}^r \) denotes cumulated past gross earnings, updated recursively.
Government budget constraint

- In each region, the government can raise revenues by taxes on consumption at $\tau_{c,t}^r$, labor income at $\tau_{w,t}^r$, and capital income at $\tau_{a,t}^r$, and lump-sum tax $\tau_{ls,t}^r$, and can issue one-period risk-free debt B_{t+1}^r.

- Revenues finance a stream of expenditures G_t^r, debt services $(1 + r_t)B_t^r$ and benefits of the PAYGO social security program $\sum_{j=J_{SS}}^J p_{j,t}^r \mu_{j,t}^r$.

$$G_t^r + (1 + r_t)B_t^r + \sum_{j=J_{SS}}^J p_{j,t}^r \mu_{j,t}^r =$$

$$\tau_{w,t}^r w_t^r \sum_{j=1}^{J_{R}^r-1} \mu_{j,t}^r \varepsilon_{j,t}^r + \sum_{j=1}^J \mu_{j,t}^r [\tau_{a,t}^r r_t (a_{j,t}^r + b_{j,t}^r) + \tau_{c,t}^r c_{j,t}^r + \tau_{ls,t}^r] + B_{t+1}^r$$
Government budget constraint

- In each region, the government can raise revenues by taxes on consumption at $\tau_{c,t}^r$, labor income at $\tau_{w,t}^r$, and capital income at $\tau_{a,t}^r$, and lump-sum tax $\tau_{ls,t}^r$, and can issue one-period risk-free debt B_{t+1}^r.

- Revenues finance a stream of expenditures G_t^r, debt services $(1 + r_t)B_t^r$ and benefits of the PAYGO social security program $\sum_{j=J_{SS}}^J p_{j,t}^r \mu_{j,t}^r$.

\[
G_t^r + (1 + r_t)B_t^r + \sum_{j=J_{SS}}^J p_{j,t}^r \mu_{j,t}^r = \tau_{w,t}^r w_t^r \sum_{j=1}^{J_{R}^r-1} \mu_{j,t}^r \varepsilon_{j,t}^r + \sum_{j=1}^J \mu_{j,t}^r [\tau_{a,t}^r r_t (a_{j,t}^r + b_{j,t}^r) + \tau_{c,t}^r c_{j,t}^r + \tau_{ls,t}^r] + B_{t+1}^r
\]
Market structure (1): openness

- In the baseline open economy, we assume that physical capital is perfectly mobile without any friction across the three regions. There exists one world market for capital. (Later introduce frictions.)

- Labor is immobile and wages are determined independently in regional markets.
Market structure (2)

- Let X_t^r denote the external wealth of region r at time t, that is, the stock of capital used in production in other regions and owned by households of region r.
- In equilibrium, $\sum_r X_t^r = 0$ at any time t.
- The world interest rate clears the world capital market.
 - A no-arbitrage condition implies the return on regional bonds and capital market equals the world interest rate. Households’ wealth is allocated to K_t^r, X_t^r, B_t^r, with the same return.

$$K_t^r + X_t^r + B_t^r = \sum_{j=1}^J \mu_{j-1,t-1}^r (a_{j,t}^r + b_t^r).$$
Competitive equilibrium of the multi-region economy

- A competitive equilibrium, for given paths of demographics, TFP, fiscal variables, is a sequence of:
 1. Household choices
 2. Lump-sum taxes
 3. Factor prices: wage rates in each region and world interest rate
 4. Aggregate variables in each region

such that
Competitive equilibrium of the multi-region economy

- Households optimally choose consumption and wealth sequence subject to the budget constraint.
- Firms in each region maximize profits.
 \[w_t^r = F_N(Z_t^r, K_t^r, N_t^r) \text{ for all region}, \]
 \[r_t = F_K(Z_t^r, K_t^r, N_t^r) - \delta. \]
- The lump-sum transfer of accidental bequests equals the amount of assets left by the deceased, distributed equally to all surviving households of the region.
- The regional labor markets clear and aggregate labor supply equals the labor
 \[N_t^r = \sum_{j=1}^{J^r} \mu_{j,t}^r \varepsilon_{j,t}^r \]
Competitive equilibrium of the multi-region economy

- The world capital market clears at the world interest rate r_t. At interest rate r_t, the aggregate stock of capital in each region satisfies

$$K^r + X^r + B^r = \sum_{j=1}^{J} \mu^r_{j-1,t-1} (a^r_{j,t} + b^r_t).$$

- The lump-sum taxes satisfy the government budget constraint of each region.
Competitive equilibrium of the multi-region economy

- The allocations are feasible in each region, that is, they satisfy aggregate resource constraints.

\[K_{t+1}^r - (1 - \delta)K_t^r + X_{t+1}^r - (1 + r_t)X_t^r = F(Z_t^r, K_t^r, N_t^r) - C_t^r - G_t^r \]
Some equations

- From the aggregate resource constraint

\[
K^r_{t+1} - (1 - \delta)K^r_t + X^r_{t+1} - (1 + r_t)X^r_t = F(Z^r_t, K^r_t, N^r_t) - C^r_t - G^r_t
\]
Some equations

- From the aggregate resource constraint

\[
K_{t+1}^r - (1 - \delta)K_t^r + X_{t+1}^r - (1 + r_t)X_t^r = F(Z_t^r, K_t^r, N_t^r) - C_t^r - G_t^r
\]

(1)
Some equations

- From the aggregate resource constraint

\[K_{t+1}^r - (1 - \delta)K_t^r + X_{t+1}^r - (1 + r_t)X_t^r = F(Z_t^r, K_t^r, N_t^r) - C_t^r - G_t^r \]

- Aggregate gross investment in region \(r \) is given as

\[I_t^r = K_{t+1}^r - (1 - \delta)K_t^r \]

- Aggregate saving (public and private) is given as

\[S_t^r = F(Z_t^r, K_t^r, N_t^r) + r_tX_t^r - C_t^r - G_t^r \]
Some equations

- From the aggregate resource constraint

\[K_{t+1}^r - (1 - \delta)K_t^r + X_{t+1}^r - (1 + r_t)X_t^r = F(Z_t^r, K_t^r, N_t^r) - C_t^r - G_t^r \]

- Aggregate gross investment in region \(r \) is given as

\[I_t^r = K_{t+1}^r - (1 - \delta)K_t^r \]

(2)

- Aggregate saving (public and private) is given as

\[S_t^r = F(Z_t^r, K_t^r, N_t^r) + r_tX_t^r - C_t^r - G_t^r \]

(3)

- (2) and (3) in (1), the current account is given as

\[S_t^r - I_t^r = CA_t^r = X_{t+1}^r - X_t^r \]
Calibration
Calibration: basic strategy

- Match a set of moments in the data with the model’s counterparts in the closed-economy equilibrium.
 - Target economic variables for the period of 1990-2015.
- Compute the initial and final steady states and compute the transition between the two steady states.
 - Use the actual age distribution in the initial steady state (non-stationary demographics)
- Let demographic parameters and TFP growth rates in the three regions converge in the long run, by 2200, and all regions reach a BGP sometime after 2200.
- Model frequency: 1 year
Calibration: technology

- TFP growth rates in 1990-2015 are set to match the per-capita GDP growth during the same periods of each region.
- Initial TFP levels are set to match the per-capita GDP (level) in 2015.
Calibration: technology

- TFP growth rates in 1990-2015 are set to match the per-capita GDP growth during the same periods of each region.
- Initial TFP levels are set to match the per-capita GDP (level) in 2015.

<table>
<thead>
<tr>
<th>Region</th>
<th>GDP pc growth 1990-2015 (Target)</th>
<th>TFP growth rate 1990-2015 (Calibrated)</th>
<th>GDP per capita level, WDI 2015 (Target)</th>
<th>Initial TFP level (Calibrated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>1.1%</td>
<td>0.825%</td>
<td>$40,763 (1.00)</td>
<td>0.56</td>
</tr>
<tr>
<td>High income</td>
<td>1.4%</td>
<td>0.850%</td>
<td>$45,373 (1.11)</td>
<td>0.73</td>
</tr>
<tr>
<td>Middle income</td>
<td>3.9%</td>
<td>2.060%</td>
<td>$12,696 (0.31)</td>
<td>0.29</td>
</tr>
</tbody>
</table>

- After 2015, we let the growth rate of TFP in the three regions converge smoothly to the common long-run growth rate of 1% by 2100.
Calibration: demographics

- Households enter the economy at age 20 and live up to 100 years old.
- Age to exit the labor force 65.
Calibration: preference and endowment

- Common preferences across regions
 - CRRA set at 2 and discount factor at 1.0552 to match the target interest rate of 4% in Japan in 1990.

- Labor productivity
 - Basic Survey on Wage Structure (BSWS) for Japan
 - Consumer Expenditures Survey (CEX) of the U.S. for HI
 - ENIGH of Mexico for MI
Calibration: Government

- Debt B_t and expenditures G_t to GDP using IMF’s World Economic Outlook (WEO) database
 - G_t: 33% in HI and 21% in MI, 26% in Japan.
 - B_t: 51% in HI and 31% in MI. For Japan, varies from 14% in 1990-1995 to 120% in 2010-2015. Set 100%.

- Pension data from OECD Pensions at a Glance (2014)
 - The replacement rate is 48%, 27% and 39% for HI, MI and J.
 - The statutory retirement age is 66, 56 and 65 for HI, MI and J.
Calibration: Government

- Effective tax rates are computed using OECD Revenue Statistics and UN National Account Statistics, following the method of Mendoza, Razin and Tesar (1994).
 - Capital tax: 34.1% in HI, 18.8% in MI and 34.7% in Japan.
 - Labor income tax: 32.8% in HI, 17.0% in MI and 29.8% in Japan.
 - Consumption tax: 10.9% in HI and 12.7% in MI. 3% → 5% → 8% → 10% in 2019 in Japan.
 - Lump-sum tax is adjusted each year in each region to satisfy government budget constraint.
Numerical results
Numerical results: methodology

- Characterize the equilibrium transition path from 1990 to 2065 (or 2100).

- Two extreme assumptions on the openness of the economics: closed and open.
 - First, study closed-economy transition paths of the three regions and study the open economy.
 - Then focus on the Japanese economy, closed vs open.

- Individuals and firms have the “perfect foresight” and make optimal decisions taking into account paths of demographics, fiscal institutions, macroeconomic variables.
Labor supply: exogenous
Capital stock: closed economy

High income

Middle income

Japan
Capital-labor ratio: closed economy

High income

Middle income

Japan
Interest rates: closed economy
Interest rates: closed & open
External wealth

Normalized to the total GDP of the three regions in the initial year 1990.
External wealth to GDP

Relative to GDP of each region.
Some equations

- From the aggregate resource constraint

\[
K_{t+1}^r - (1 - \delta)K_t^r + X_{t+1}^r - (1 + r_t)X_t^r = F(Z_t^r, K_t^r, N_t^r) - C_t^r - G_t^r
\]

(1)

- Aggregate gross investment in region \(r \) is given as

\[
I_t^r = K_{t+1}^r - (1 - \delta)K_t^r
\]

(2)

- Aggregate saving (public and private) is given as

\[
S_t^r = F(Z_t^r, K_t^r, N_t^r) + r_tX_t^r - C_t^r - G_t^r
\]

(3)

- (2) and (3) in (1), the current account is given as

\[
S_t^r - I_t^r = CA_t^r = X_{t+1}^r - X_t^r
\]

A change in external wealth
Capital-flow (current account) to GDP
Lump-sum taxes
• Now focus on the transition paths in Japan
 ➢ Closed vs open
Interest rates: Japan
Wage rates: Japan
Capital stock: Japan
Lump-sum tax: closed and open

(to GDP)
Household asset (incl. bequest) = Capital + Government bond
Wealth decomposition of Japan: open economy

Household asset (incl. bequest) = Capital + Government bond + External wealth
External wealth of Japan (to GDP)
Capital flow (current account)
Some equations

- From the aggregate resource constraint
 \[
 K_{t+1}^r - (1 - \delta)K_t^r + X_{t+1}^r - (1 + r_t)X_t^r = F(Z_t^r, K_t^r, N_t^r) - C_t^r - G_t^r
 \]
 \hspace{1cm} (1)

- Aggregate gross investment in region \(r \) is given as
 \[
 I_t^r = K_{t+1}^r - (1 - \delta)K_t^r
 \]
 \hspace{1cm} (2)

- Aggregate saving (public and private) is given as
 \[
 S_t^r = F(Z_t^r, K_t^r, N_t^r) + r_tX_t^r - C_t^r - G_t^r
 \]
 \hspace{1cm} (3)

- (2) and (3) in (1), the **current account** is given as
 \[
 S_t^r - I_t^r = CA_t^r = X_{t+1}^r - X_t^r
 \]
Some equations

- From the aggregate resource constraint
 \[
 K_{t+1}^r - (1 - \delta)K_t^r + X_{t+1}^r - (1 + r_t)X_t^r = F(Z_t^r, K_t^r, N_t^r) - C_t^r - G_t^r \tag{1}
 \]

- Aggregate gross investment in region \(r \) is given as
 \[
 I_t^r = K_{t+1}^r - (1 - \delta)K_t^r \tag{2}
 \]

- Aggregate saving (public and private) is given as
 \[
 S_t^r = F(Z_t^r, K_t^r, N_t^r) + r_tX_t^r - C_t^r - G_t^r \tag{3}
 \]

- (2) and (3) in (1), the \textbf{current account} is given as
 \[
 S_t^r - I_t^r = CA_t^r = X_{t+1}^r - X_t^r
 \]

Saving - Investment
Saving and investment in Japan

Closed economy

Open economy
Life-cycle consumption in Japan

Closed economy

Open economy
Summary of the baseline transitions

- Aging demographics and a rise in government expenditures raise the tax burden in equilibrium and lower disposable income in the closed economy.

- In the open economy, capital initially flows from Japan to the MI with higher interest rates but the direction reverses by 2020, and the current account will turn negative. Japan will be a borrower against the world by mid-2060s.

- Next: sensitivity of the results to assumptions on the demographics projections, fiscal policy (pension generosity) in Japan and MI, transaction costs, etc...?
Numerical experiments

• A capital transaction cost
 ➢ Return from capital in MI “reduced” by a given fraction (20-40-60%)

• Public pension reform
 ➢ Replacement rate (RR): 47.8% in HI, 26.8% in MI, 38.5% in Japan
 1. R.R. in Japan falls to the level of MI
 2. R.R. in MI rises to the level of HI

• Demographic transition path
 ➢ Fertility rates in Japan: low and high scenarios of the IPSS
Capital adjustment cost: current account of Japan

Data computed based on Hayashi and Prescott (2002) and the SNA
Data computed based on Hayashi and Prescott (2002) and the SNA
Capital adjustment cost: remarks

- IF transaction costs associated with various risks of lower income countries (such as underdeveloped financial markets, political uncertainty and expropriation risks) explain the overprediction of the capital flow to the MI, they will be less relevant once the capital flow is reversed, since such risks are much lower in advanced economies.
Low pension in Japan: lump-sum tax (to GDP)
Low pension in Japan: capital stock
Low pension in Japan: interest rate
Low pension in Japan: interest rate
Low pension in Japan: external wealth
More generous pension in MI: interest rate of Japan
Low/high fertility rates in Japan

Interest rate (closed economy)

- Red: High fert
- Blue: Baseline
- Black: Low fert
Low/high fertility rates in Japan

Interest rate (closed & open economy)
Low/high fertility rates in Japan

External wealth (to GDP)
Remarks

- The unsynchronized demographic aging across regions and differences in the social security systems have induced capital to flow out of Japan but the direction may soon be reversed.
 - In the long-run, what implies lower closed-economy interest rates in the MI or higher interest rates in Japan will generate a greater capital flow into Japan and larger current account deficits.

- In the open economy, wages are higher and taxes are low due to the capital inflow to Japan, implying more benefits of more openness for future generations.