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Abstract

Price rigidity is central to many predictions of modern macroeconomic models,

yet, standard models are at odds with certain robust empirical facts from micro price

datasets. We propose a new, parsimonious theory of price rigidity, built around the

idea of demand uncertainty, that is consistent with a number of salient micro facts.

In the model, the monopolistic firm faces Knightian uncertainty about its competitive

environment, which has two key implications. First, the firm is uncertain about the

shape of its demand function, and learns about it from past observations of quantities

sold. This leads to kinks in the expected profit function at previously observed prices,

which act as endogenous costs of changing prices and generate price stickiness and a

discrete price distribution. Second, the firm is uncertain about how aggregate prices

relate to the prices of its direct competitors, and the resulting robust pricing decision

makes our rigidity nominal in nature.
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1 Introduction

Macroeconomists have long recognized the crucial role played by the speed of adjustment of

prices in the amplification and propagation of macroeconomic shocks. In particular, there is

ample evidence that inflation responds only slowly to monetary shocks (e.g. Christiano et al.

(2005)). In an attempt to better understand the price adjustment frictions underpinning

these aggregate findings, numerous studies have turned their attention to micro-level price

datasets and have extracted a variety of additional salient pricing facts. In this paper, we

propose a parsimonious new theory of price rigidity that revolves around a simple reality

faced by firms: the demand for their product is uncertain and potentially complex. Coupled

with ambiguity aversion, this single mechanism endogenously creates a cost of moving to a

new price. Not only does the model naturally generate sticky prices, but its parsimony also

yields a number of overidentifying restrictions that are consistent with pricing facts from

micro data.

One of the earliest documented empirical findings in the micro price literature is that

prices at the product level tend to be sticky, that is do not change for long periods of time (Bils

and Klenow (2004)). Yet, if one plausibly believes that firms are regularly hit by demand

and cost shocks, in turn altering the profit-maximizing price, then firms would be expected

to update posted prices more often.1 This robust stylized fact led to the widespread use

of both time-dependent (e.g. Calvo (1983), Taylor (1980)) and state-dependent (e.g. menu

cost) price rigidity mechanisms. However other facts, such as the surprising coarseness and

stickiness of the set of prices chosen by firms over time (Eichenbaum et al. (2011)), are more

difficult to generate without expanding the standard models.

In our framework, the economy is composed of a continuum of industries, each populated

with monopolistic firms that face Knightian uncertainty about their competitive environ-

ment. In particular, an intermediate good firm does not know the production function of the

final good of its respective industry, which leads to two important implications. First, there

is uncertainty about the shape of the demand function the firm faces, and second, there is

uncertainty about the relevant relative price, and how it relates to the aggregate price index.

Firms understand that the quantity sold is the sum of an unknown, time-invariant

component, and a temporary demand shock. They use their observations of past prices

and quantities to learn about the time-invariant component, but cannot observe the two

components separately, only the total quantity sold, and thus face a signal extraction

problem. Furthermore, firms are not confident that demand belongs to a single parametric

1Eichenbaum et al. (2011), for example, argue that the large fluctuations in quantities sold in weekly
grocery store data in the absence of any price change are indicative of sizable demand shocks.
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family, but rather entertain potentially complex demand shapes. Firms use their noisy

signals to reduce uncertainty and build estimates of their demand curves. We thus put the

economic agent on the same footing as an econometrician outside the model that attempts

to estimate demand in a complex environment.2

We assume that the firm has enough prior knowledge to put some loose prior bounds

on the possible demand schedules, but not enough to impose functional form restrictions or

to assign a single probability measure to the space of admissible demand functions. Thus,

the firm faces Knightian uncertainty about the shape of its demand function. The agent

owning the firm is ambiguity averse in the sense that it acts as if the true distribution of the

demand at a given price yields the lowest possible total quantity sold. Ambiguity aversion

is described by recursive multiple priors preferences, axiomatized in Epstein and Schneider

(2003), that capture the agents’ lack of confidence in probability assessments.

Since demand is not restricted to a particular parametric family, uncertainty reduction

is local, not global. Unlike updating beliefs about the parameters of a given function, by

observing a noisy demand signal at a given posted price, the firm primarily reduces demand

uncertainty at that price, but remains uncertain about the quantity it could sell at other

prices. This generates kinks in demand uncertainty at previously observed prices, and an

uncertainty averse price-setter is reluctant to move to a new price since it would lead to a

sharp rise in uncertainty.

For our ambiguity-averse firms, the kinks show up in expected demand. A firm that

entertains switching to a higher price is worried that demand becomes more elastic in the

region above its current information set, maybe because a price increase could trigger an

exodus towards competing products. At the same time, the higher uncertainty at lower

prices generates the opposite fear that demand is in fact more inelastic in that region, and a

price cut might undermine profit margins without increasing sales much. This endogenous

switch in the worst-case scenario about the demand schedule, depending on whether the firm

is considering a price increase or decrease, leads to kinks in expected demand, which in turn

generate price stickiness. The kinks create a cost, in terms of expected profits, associated

with changing the price, which in turn compels the firm to abstain from changing its price,

unless it faces a sufficiently large shock. The higher is the uncertainty in the unexplored

regions of the price space, relative to the uncertainty at previously observed prices, the

steeper are the kinks in expected demand and the stronger is the stickiness.

A corollary implication is that the firm is not only reluctant to change its current price,

2The equal footing between the uncertainty faced by agents inside the model and econometricians outside
the model addresses a desideratum proposed in Hansen (2007) for time-series models and more generally in
Hansen (2014).
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but is in general inclined to repeat a price it has already posted in the recent past. These

previously observed prices become ‘reference’ points at which there are kinks in the profit

function. The pricing policy function then includes step-like regions of flatness around the

reference prices. When a shock moves the optimal price within such a flat area, the posted

price will be exactly equal to one of these reference prices. The steps in the policy function

also imply that each of those reference prices is associated with a positive measure of shocks

that map to it. Thus, the model is consistent with the optimal policy having ‘price memory’,

characterized by discrete price changes between a set of previously posted prices.

Moreover, since signals are noisy, the uncertainty across the previously posted prices is

not equal. Prices that have been observed more frequently have accumulated more signals

and thus greater uncertainty reduction. Hence, optimal prices would not necessarily bounce

randomly around the set of ‘reference prices’, but will exhibit a greater propensity to stay

put and return to prices that have been observed more often. Among other things, this has

the implication of endogenously generating a decreasing hazard of price change. Lastly, since

not all kinks are necessarily deep, the policy function is not exclusively a step-function, but

has regions in which the optimal price adjusts flexibly. Thus, the price series of this model

can look both flexible and sticky at the same time, and the unconditional distribution of

price changes features non-trivial density around zero.

Our mechanism has two key modeling ingredients. The first is the uncertainty about

the demand shape, which makes uncertainty reduction local, and the second is some form

of uncertainty aversion – i.e. uncertainty should ultimately matter. We have implemented

these ingredients in a model of learning under ambiguity, but qualitatively similar results

can be obtained in a model where uncertainty is only in the form of risk. As long as the

prior over the admissible demand functions does not rule out non-differentiable functions,

observing noisy signals would generate kinks in the posterior variance of demand, which

would have a similar effect on pricing decisions under risk-aversion. Intuitively, since risk

aversion is a smooth operator, there can be no kinks in the certainty equivalent if the prior

rules out non-differentiability. In contrast, with ambiguity we do not need to allow for non-

differentiability in the set of admissible functions. Instead, the kink in expected demand

arises endogenously, from the switch in the worst-case beliefs.

Fundamentally, this demand uncertainty represents a real rigidity: it does not, in itself,

generate money non-neutrality. Nominal rigidity is the result of the interaction of demand

uncertainty with the uncertainty about the relevant relative price. The firm does not know

the final good technology of its industry, hence it does not know the appropriate industry

price level, nor how it relates to the aggregate price and sees that relationship as ambiguous.

It conducts periodic marketing reviews that reveal the industry price, but in between reviews
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the firm updates beliefs using the ambiguous relationship with the observed aggregate prices.

Thus, the firm’s beliefs about the industry prices are anchored by the value of the last review,

and evolve in an ambiguous way with the observed aggregate inflation.

In this context, the firm understands that its demand is uncertain in two dimensions –

both the demand function and its argument, the relative price, are ambiguous. The firm

chooses an action robust to this two-dimensional uncertainty, and acts as if nature draws

the true Data Generating Process (DGP) to be the relationship between aggregate prices

and industry prices that implies the lowest possible demand, given the non-ambiguous choice

of the firm – own nominal price versus the last observed industry price level. The resulting

worst-case relationship is that aggregate prices are not informative about industry prices,

and this defines a worst-case demand schedule as a function of own nominal price relative the

last observed industry price, that the firm can then estimate via the process described above.

Since the review signals arrive periodically, the real rigidity created by the perceived kinks

in demand becomes a nominal one, as in order to keep the relevant relative price constant,

the firm needs to keep nominal prices constant. This results in nominal price paths that are

sticky, and also resemble infrequently updated “price plans”.

Our setup has stark implications about price-setting behavior. The model’s key outcome

is that it endogenously produces a cost of adjusting prices in the form of a higher perceived

uncertainty away from previously posted prices. This is different from standard models where

there is an assumed, exogenous fixed cost of adjustment. Moreover, the single, uncertainty-

based mechanism behind this endogenous cost generates many additional features observed

in micro price data that have proven challenging, if not impossible, for standard price-setting

models to replicate. On one hand, our mechanism is also compatible with the evidence that

firms appear to select from a small set of unique prices, and tend to revisit past price levels.

On another, because the cost of moving away from a price is negatively related to how much

information was gleaned from posting it in the past, it is by nature inherently history and

state dependent. As a result, our mechanism not only predicts a decreasing hazard function

of price changes (i.e. the probability of observing a price change is decreasing in the time

since the last price movement), but it can also rationalize the coexistence of small and large

price changes in the data.

The paper is organized as follows. In Section 2, we discuss its relation to the relevant

literature. In Section 3 we present motivating empirical evidence. Sections 4 describes

a simplified model that studies learning under demand uncertainty, and explains the real

rigidity mechanism. Section 5 derives analytical results. Section 6 introduces the full model,

and the interaction that generates nominal rigidity. Section 7 presents a quantitative version.
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2 Relation to literature

By connecting learning under ambiguity to the problem of a firm setting prices, this paper

relates to multiple literature strands. The question of price rigidity has generated a very

large empirical and theoretical literature. On the empirical side, the recent analysis on

micro-datasets, such as Bils and Klenow (2004), Klenow and Kryvtsov (2008), Nakamura

and Steinsson (2008), Klenow and Malin (2010) or Vavra (2014), attempts to uncover stylized

pricing facts whose aim is to act as overidentifying restrictions on theoretical models of price

rigidity. Of particular motivating interest for us are the empirical findings in Eichenbaum

et al. (2011), Kehoe and Midrigan (2014) and Stevens (2014), who find evidence of ‘reference

prices’, i.e. the set of prices chosen by the firm is surprisingly sticky over time.

Our mechanism produces kinks in expected demand and as such is related to theoretical

work on real price rigidity based on kinked demand, such as Stigler (1947), Stiglitz (1979),

Ball and Romer (1990) and Kimball (1995). While in these models the kinks are a feature

of the true demand curve, in our setup they arise only in the beliefs of the firm, as a result

of the uncertainty about demand, and an econometrician would not need to find evidence of

actual kinks in demand. Moreover, in our model the size and the location of the kinks are

endogenous, and are a function of the information accumulated at observed prices.

In terms of theories of nominal stickiness, our mechanism does not rely on any actual

impediment to adjusting prices. This distinguishes our contribution from a large literature

specifying either a fixed length of a price contract (Taylor (1980)), an exogenous chance

of resetting the optimal price (Calvo (1983)), a physical cost of price adjustment (Barro

(1972), Rotemberg (1982))3, or a cost of information acquisition present in more recent

models of rational inattention (Woodford (2009)).4 Instead, our model is based on the firm’s

uncertainty about demand as a source of what looks like an endogenous cost of changing

prices. Moreover, the emerging cost is also time-varying, with properties that are state and

history-dependent. It is this dependence that allows our single, parsimonious mechanism

to rationalize a set of otherwise puzzling pricing facts, such as price discreteness, memory,

3The large ”menu cost” literature that followed includes recent contributions such as Golosov and Lucas
(2007), Gertler and Leahy (2008), Nakamura and Steinsson (2008, 2010), Alvarez et al. (2011), Midrigan
(2011), and Vavra (2014).

4Imperfect information models, such as Mankiw and Reis (2002), Sims (2003), Woodford (2003), Reis
(2006), Lorenzoni (2009) and Mackowiak and Wiederholt (2009), predict sluggish adjustment to shocks.
However, in order to generate nominal prices that are constant for some periods, as we see in the data, they
typically require additional nominal rigidities. Bonomo and Carvalho (2004), Nimark (2008) and Knotek
and Edward (2010) are early examples of merging information frictions with a physical cost or an exogenous
probability of price adjustment. Our model instead not only generates a partial response of a firm’s price to
a monetary policy shock, but also actual nominal stickiness.
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small and large price changes and a decreasing hazard function.5

We also relate to theoretical work on firm pricing under demand uncertainty. The

standard approach has been to study this uncertainty in the context of an expected utility

model and analyze learning about a parametric demand curve. An early contribution is

Rothschild (1974), who frames the learning process as a two-arm bandit problem,6 while

more recent work includes Balvers and Cosimano (1990), Bachmann and Moscarini (2011)

and Willems (2011). Different from our environment, learning about parametric functions,

such as linear demand curves, does not produce kinks from uncertainty reduction since the

latter reflects the estimation risk of the whole function.

Lastly, we connect to the literature on ambiguity aversion. We use the multiple priors

preferences to capture the notion that the firm is not confident in the probability assessments

over various demand curves, and as such we build on previous contributions that include

Gilboa and Schmeidler (1989), Dow and Werlang (1992), Pires (2002) and Epstein and

Schneider (2003). Some recent work analyzes a firm pricing problem under a related

ambiguity-aversion preference, namely maxmin regret (Handel et al. (2013) and Bergemann

and Schlag (2011)), but does not analyze learning about the distributions.

3 Empirical motivation

In response to the marked interest of modelers in identifying the most appropriate way to

model nominal rigidities, a large empirical literature developed around micro level price

datasets. While case studies such as Carlton (1986) and Cecchetti (1986) had given

researchers some insights into the extent of price rigidity, their scope was limited, generally

focusing on very specific products or markets. In their seminal work, Bils and Klenow

(2004) leveraged the broad coverage of the U.S. Bureau of Labor Statistics’ consumer price

index (CPI) dataset to gain general insights into the dynamics of prices at the micro level.

Numerous other studies have followed, producing results from CPI (Nakamura and Steinsson

(2008), Klenow and Kryvtsov (2008)) or scanner datasets (Eichenbaum et al. (2011)).

Macroeconomic modelers have made extensive use of the findings from these studies to

calibrate or estimate their models. To do so, they have generally relied on a subset of

moments, most frequently the frequency and average size of price increases and decreases.

5Recent modeling advances address the challenge of obtaining a discrete distribution of prices out of
continuous shocks using a combination of physical adjustment costs to regular and sales price (Kehoe and
Midrigan (2014)) or information costs (Matějka (2010) and Stevens (2014)). In the latter case, given some
restrictions on the curvature in the objective function and the prior uncertainty, the firm chooses a discrete
price distribution to economize on the costs of acquiring information about the unobserved states.

6See Bergemann and Valimaki (2008) for a survey of related applications of bandit problems studied
under expected utility.
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One issue from relying on a small number of moments is that researchers have had a very

difficult time discriminating between the various price-setting mechanisms that have been

put forward in the literature. Yet, there exist a number of robust findings that have received

much less attention and remain a challenge for standard price-setting models. In this section,

we describe some of them using the IRI Marketing Dataset. It consists of scanner data for

the 2001 to 2011 period collected from over 2,000 grocery stores and drugstores in 50 U.S.

markets. The products cover a range of almost thirty categories, mainly food and personal

care products. A more complete description of the dataset is available in Bronnenberg et al.

(2008). For our purposes, we focus on nine markets and six product categories.7

We start by highlighting a finding ubiquitous across price datasets: firms appear to favor

choosing from a sticky, discrete set of prices even when given a chance to pick a brand new

price. For example, the median number of unique prices in a window of 26 weeks (half a

year) is only 3. Another way to describe this empirical property is to look at the degree of

price memory. To do so, we compute the probability that when a firm resets the price of its

product, the new price is one that was visited within the last six months. This statistic is

equal to 62% when we consider all price changes. Arguably such a high degree of memory

may be due to the tendency of retailers to post similar-sized discounts on a frequent basis.

Yet, even when we filter out temporary sales, memory probabilities still range between 31%

and 64% across market/category combinations, with a weighted average of 48%.

Another feature is the declining hazard function found in many micro price datasets:

the probability of a price change decreases with the time since the last price reset. As

highlighted for example by Nakamura and Steinsson (2008) and Campbell and Eden (2014),

this characteristic represents a challenge to many popular price-setting mechanisms. Despite

the fact that declining hazards can be found across numerous datasets, some have argued

that the finding could be a by-product of not taking proper care of heterogeneity: as

noted by Klenow and Kryvtsov (2008), ”[t]he declining pooled hazards could simply reflect

a mix of heterogeneous flat hazards, that is, survivor bias.” We find, however, that the

declining hazard remains a robust finding in our dataset, even once we aggressively control

for heterogeneity. We start by computing the hazard function for each single product in

our sample, pooling across retailers within a specific market. Then, we took the median

probability of a price change across all products for each duration. We find that the resulting

function is clearly downward sloping, as we show in more detail when we compare the data

with a quantitative model in Section 7. This downward slope is not only an artifact of

7The markets are Atlanta, Boston, Chicago, Dallas, Houston, Los Angeles, New York City, Philadelphia
and San Francisco, while the categories are beer, cold cereal, frozen dinner entrees, frozen pizza, salted snacks
and yogurt.
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temporary discounts: the hazard declines beyond the first few weeks, and the overall slope

remains negative even if we focus on regular prices.

Standard state-dependent pricing models tend to predict that firms only reprice when

the optimal price change is sufficiently large. Yet, while it is true that the typical price

change tends to be large in absolute value, this statistic masks the pervasive coexistence

of small and large prices in the data, as documented for example by Klenow and Kryvtsov

(2008).8 We document the same phenomenon in our dataset by computing the fraction of

price changes less than 5% and greater than 15% in absolute value, across all products and

markets. We find that price changes smaller than 5% in absolute value account for 14% of

all price changes, and prices changes larger than 15% for 56% of all price changes. Hence,

both small and large price changes are pervasive in the data. Next, we turn to a model

whose predictions are consistent with the empirical regularities described above.

4 Analytical Model

In this section we lay out and analyze the key mechanism in a smaller, analytically tractable

real model. We present the full, explicitly nominal model in Section 6.

We study the problem of a monopolistic firm that each period sells a single good at price

Pt expressed in real terms. Denoting logs by lower-case, the firm’s demand is given by:

q(pt) = x(pt) + zt, (1)

It consists of two components, the price sensitive part x(pt), and the price-insensitive zt.

Having posted the price Pt, the firm’s time t realized profit is:

υt = (Pt − ect) eq(pt) (2)

where we have assumed a linear cost function, with ct denoting the time t log marginal cost.

Crucially, the firm does not know the functional form of x(.), and has to learn about it from

past observations of quantity sold.

The decomposition of demand in (1) serves two purposes. First, it generates a motive

for signal extraction. In this respect we assume that the firm only observes total quantity

sold, q(pt), but not the underlying x(pt) and zt. Furthermore, we model zt as iid, and thus

past demand realizations q(pt) are noisy signals about the unknown function x(p).

The second purpose is to differentiate between risk and ambiguity. We model zt as purely

8See also Midrigan (2011) and Campbell and Eden (2014).
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risky, and give the firm full confidence it is iid and drawn from a known Gaussian distribution:

zt ∼ N(0, σ2
z)

On the other hand, the x(pt) component is ambiguous, meaning that the firm is not fully

confident in the distribution from which it has been drawn, and does not have a unique prior

over it. Instead, the firm entertains a whole set of possible priors, Υ0, which is defined on

the general space of measurable functions and is not restricted to a given parametric family.

Each individual prior in the set Υ0 is a Gaussian Process distribution, GP (m(p), K(p, p′)),

with mean function m(p) and covariance function K(p, p′). A Gaussian Process distribution

is the generalization of the Gaussian distribution to infinite-sized collections of real-valued

random variables, and is a convenient choice of a prior for doing Bayesian inference on

function spaces. It has the defining feature that any finite subcollection of random variables

has a multivariate Gaussian distribution.9 Thus, for any finite vector of prices p =

[p1, ..., pN ]′, the corresponding vector of demands x(p) is distributed as

x(p) ∼ N



m(p1)

...

m(pN)

 ,

K(p1, p1) . . . K(p1, pN)

...
. . .

...

K(pN , p1) . . . K(pN , pN)




where the mean function m(·) controls the average slope of the underlying functions x(p), and

the covariance function K(·, ·) controls their smoothness. In other words, this distribution

is a cloud of functions dispersed around m(p), according to the covariance function K(·, ·).
We model ambiguity by assuming that that all priors have the same covariance function,

but possibly different mean functions. In particular, the set Υ0 is the collection of all

Gaussian Process with a fixed covariance function K(·, ·), and a continuous mean function

that is weakly downward sloping, i.e. m(p1) ≤ m(p0) for any p1 > p0, and satisfies

m(p) ∈ [γl − bp, γh − bp]. (3)

Figure 1 provides an illustration of the set of admissible m(p). The overall interpretation

is that the firm has some a-priori information on the true demand, but is not confident in a

single probabilistic weighting of the potential demand schedules (i.e. a single prior), nor is

it able to restrict attention to a particular parametric family of demand functions.

9Intuitively, we can think of a function as an infinite collection of variables, and the GP distribution defines
a measure over such infinite length random vectors by defining the distribution of any finite sub-collection.
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x(p)

p

Figure 1: Set of potential m(p) defining the initial set of priors

For the covariance function we specify a simple constant function

K(p, p′) = σ2
x.

The parameter σ2
x controls the variance of the GP prior at any given price and thus σ2

x/σ
2
z

is the signal-to-noise ratio for the demand signals the firm observes. A constant covariance

function means that an observation at some particular price p, q(p), is equally informative

about the demand function at that p or at some other different price p′. We focus on this case

because of its analytical tractability, and because it showcases the minimal complexity of the

learning environment that is needed for our main point. The as if kinked behavior that will

emerge from our analysis does not require kinks in the covariance function or unequal degrees

of informational content of the signals about different points on the demand schedule.10

Finally, we assume that the true DGP is a standard log-linear demand with no kinks

that lies in the middle of the interval for prior mean functions m(p), defined in (3):

xDGP (p) = γ − bp (4)

10The assumption of constant K implies that there is no probabilistic uncertainty about the shape of x(p),
so that signals are equally informative about demand at all prices, and hence probabilistic uncertainty (i.e.
the posterior variance) shrinks globally. We shut it down because it is not needed here – the Knightian
uncertainty about the shape of m(p) is sufficient. However, our analysis can be extended to more general
covariance functions where K(p, p) 6= K(p, p′), which would turn on the probabilistic uncertainty about the
shape of demand. Lastly, note that in that case we could obtain our main results through risk-aversion alone
and without ambiguity, but the mechanism would operate through kinks the posterior variance instead.
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with γ = γl+γh
2
. We also find it useful for analytical and parsimony reasons to parametrize

the lower and upper bound of the prior set relative to the true DGP in (4), as

γl = γ − νσz; γh = γ + νσz (5)

4.1 Information and Preferences

The timing of choices and revelation of information is the following. We assume that ct is

known at the end of period t − 1 and that it follows a Markov process with a conditional

distribution gc(ct|ct−1). The firm enters the beginning of period t with information on the

history of all previously sold quantities qt−1 = [q(p1), ...q(pt−1)]′ and the corresponding prices

at which those were observed pt−1 = [p1, ...pt−1]′, where a superscript denotes history up to

that time. It updates its beliefs about demand conditional on εt−1 = {qt−1, pt−1}, observes

ct and posts a price pt that maximizes its objective, which we further specify below. At

the end of period t the idiosyncratic demand shock zt is realized, and the firm updates its

information set with the observed realized quantity sold q(pt) and marginal cost ct+1.

4.1.1 Learning: prior-by-prior Bayesian updating

The firm uses the available data εt−1 to update the set of initial priors Υ0. Learning occurs

through standard Bayesian updating, but measure-by-measure to account for the initial

ambiguity.11 Thus, for each prior in the inital set Υ0 the firm uses the new information

and Bayes’ Rule to obtain a posterior distribution. Given that there is a set of priors, the

Bayesian update results in a set of posteriors. As new data is observed, Bayesian updating

means that the role of each prior decreases in forming the corresponding posterior.

We denote by xt−1(pt) the posterior distribution of x(pt) conditional on end of period

t− 1 information. We denote the conditional mean and variances as:

x̂t−1(pt;m(p)) := E
[
x(pt)|εt−1;m(p)

]
(6)

σ̂2
t−1(pt) := V ar

[
x(pt)|εt−1

]
(7)

where m(p) is one particular prior on x(p), from the set of priors Υ0. Thus, conditional on

each prior there is a corresponding time t posterior belief about average demand given by

xt−1(pt) ∼ N(x̂t−1(pt;m(p)), σ̂2
t−1(pt)) (8)

The evolution of beliefs about average demand, x̂t−1(pt,m(p)), follow the standard

11See Jaffray (1994) and Pires (2002) for early axiomatizations of Bayesian updating for multiple priors.
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Bayesian updating formulas, as detailed in the Online Appendix A. The analytical derivation

is standard and is facilitated by the assumption of Gaussian shocks and the linear state space.

4.1.2 Preferences: recursive multiple priors

The monopolist firm is owned by an agent that is ambiguity-averse and has recursive multiple

priors utility12, so that the value of the firm’s profits is defined by the recursion:

V
(
εt−1, ct

)
= max

pt
min
m(p)

Ex̂t−1(pt;m(p))
[
υ(εt, ct) + βV

(
εt−1, εt, ct+1

)]
, (9)

where υ(εt, ct) is the per-period profit defined in (2), a function of the beginning-of-period

t posted price and end-of-period realized demand q(pt). The firm forms its conditional

expectations and evaluates expected profits and continuation utility using the worst-case

conditional expected demand x̂t−1(pt;m
∗(p)), given the available information εt−1 and the

prior m∗(p) that achieves that worst-case belief. The maximization step is over the action of

what price pt to post, which affects demand and profit today, but also affects the information

set in the future, and hence enters as a state variable for next period’s value function.

There are two aspects worth emphasizing about the min operator in (9). First, the

assumed aversion to ambiguity amounts to minimization over the set of conditional distri-

butions for xt−1(pt). As detailed by equation (8) the set is formed by updating the set of

initial priors Υ0, measure-by-measure, with the available data εt−1 via Bayes’ rule. Because

the set of posteriors is indexed by the choice of the initial prior m(p), and in turn this

only affects the conditional mean x̂t−1(pt;m(p)), the minimization problem over the set of

posterior distributions becomes equivalent to selecting the worst-case prior. As such, we

have stated the preference in (9) as directly minimizing over the initial set of priors.

Second, the minimization is conditional on an entertained choice of pt. We conjecture

that the minimizing belief m∗(p) is such that, for a given price pt and history εt−1, it implies

the lowest possible expected demand x̂t−1(pt;m
∗(p)) at that price pt.

13 Thus, for any price

pt, the firm worries that the underlying demand is low, given the data it has seen. The

outcome is that the firm maximizes over pt under the worst-case belief x̂t−1(pt;m
∗(p)).

After solving for the optimal policy rule, including the value function, we can verify the

conjecture on m∗(p). In this case, it is sufficient to establish that the profit function υ(εt, ct)

and the continuation utility are both increasing in x(pt). The former is straightforward by

(2). The latter needs to be verified, but it is also intuitive: a higher persistent component

of demand increases not only current profits but also future expected profits.

12Epstein and Schneider (2003) develop axiomatic foundations for the recursive multiple priors utility.
13The worst-case m∗(p; pt) is conditional on pt, however, for notational simplicity we simply use m∗(p).
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4.2 Kinks from learning

To build intuition for the updating formulas, suppose that the demand history only contains

observations of demand at a single price p0, that has been seen N0 times. The firm uses the

average signal y0 = x(p0)+ 1
N0

∑N0

i=1 zi to update beliefs about the unknown demand function

x(.). For a given prior m(p), the joint distribution of the signal and x(.) at any price p is:[
x(p)

y0

]
∼ N

([
m(p)

m(p0)

]
,

[
σ2
x σ2

x

σ2
x σ2

x + σ2
z/N0

])

The conditional distribution x(p)|y0 is also Normal, and its expectation and variance are

given by the familiar formulas:

E(x(p)|y0;m(p)) = m(p) + α [y0 −m(p0)] (10)

V ar(x(p)|y0) =
σ2
xσ

2
z/N0

σ2
x + σ2

z/N0

, (11)

where α = σ2
x

σ2
x+σ2

z/N0
. Thus, the Bayesian update of the conditional expectation combines

the prior for demand at that price, m(p), with the information revealed by the difference

between the observed signal y0, and the prior expected demand at that price, m(p0).

4.2.1 Worst-case prior

The firm minimizes the conditional expectation of demand over the priors m(p) ∈ Υ0. Using

equation (10), and since α ∈ (0, 1), it follows that when updating demand at p = p0 the

worst case prior is simply the lowest possible m(p0) – i.e. the lower bound of the set Υ0:

m∗(p0) = γl − bp0

When updating demand at a price p′ 6= p0, the firm minimizes over both m(p′) and m(p0).

The problem can be represented more intuitively as minimizing over the level of demand at

p′, and the likely change in demand between p′ and the observed p0. We can re-write (10)

as:

E(x(p′)|y0;m(p)) = (1− α)m(p′)︸ ︷︷ ︸
Prior demand at p′

+ α(y0 +m(p′)−m(p0))︸ ︷︷ ︸
Signal at p0 + ∆ in Demand between p′ and p0

The firm’s uncertainty about the shape of the demand function implies a lack of confidence

in how the information about the level of demand at p0 translates into information about

the level of demand at p′. Clearly, the worst-case prior is that m(p′) = γl − bp′, i.e. demand

13



at the considered price p′ is low overall. However, the worst-case demand shape depends on

whether the firm considers a price or a price decrease.

For a price, p′ > p0, m(p′)−m(p0) ≤ 0 and hence the worst-case is that demand falls a

lot between p0 and p′. The largest possible change in demand is restricted by the initial set

of priors Υ0, and given that m(p′) is at the lower bound, the solution is to pick m(p0) at the

upper bound and hence:14

m∗(p′) = γl − bp′; m∗(p0) = γh − bp0 (12)

Intuitively, the firm is worried that increasing the price from p0 to p′ would lead it into a

particularly elastic part of the demand curve, so that the price increase results in a significant

fall in average quantity demanded.

For a price p′ < p0, on the other hand, m(p′) −m(p0) ≥ 0. The firm understands that

demand is weakly downward sloping, and hence given a price decrease the worst-case prior

is that demand does not change – i.e. the demand curve is inelastic to the left of p0 and the

price cut does not generate an increase in demand. Given the downward sloping restriction

on m(p) and the prior set Υ0, the resulting worst-case prior for p′ < p0 is:15

m∗(p′) = γl − bp′; m∗(p0) = min(γl − bp′, γh − bp0) (13)

Thus, the worst-case prior when considering a switch to p′ is characterized by two features.

The firm is concerned that demand at p′ is low in general and that it has only changed for

the worst from its previously observed price p0. This leads to an endogenous switch in

the worst-case, where the firm worries that demand is relatively elastic when considering

a price increase, but worries about the opposite, an inelastic demand, when considering a

price decrease. As a result, the firm acts as if the prior is locally flat for downward price

movements, and as if the prior is steep for price increases, generating a kink in its beliefs.

4.2.2 As if kinked expected demand

Having characterized the worst-case prior, we can now plug it in equation (10) to obtain

the worst-case conditional expectation at any price p′. Since the worst-case prior changes

depending on whether p′ is above or below p0, as per equations (12) and (13), the conditional

14Because there are no signals observed at other prices, the rest of the prior demand m∗(p) does not enter
the conditional mean at p′ and as such is not uniquely determined out of the prior set Υ0.

15Since Υ0 is downward sloping, it could be the case that γl − bp′ is bigger than the upper bound of Υ0

at p0, hence the worst-case prior is defined as the minimum of the two.
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Figure 2: Worst-case Expected Demand

expectation becomes the following piecewise function:

E(x(p′)|y0;m∗(p)) =


γl − bp′ + α [y0 − (γh − bp0)] for p′ < p

γl − bp′ + α [y0 − (γl − bp′)] for p′ ∈ [p, p0]

γl − bp′ + α [y0 − (γh − bp0)] for p′ > p0

(14)

where the first line shows the case when p′ is sufficiently lower than p0, so that γl − bp′ >
γh − bp0. The critical value at which this inequality flips is p, defined as γl − bp = γh − bp0.

Thus, the multiple priors endogenously generate a kink in expected demand at the price

p0, even though there is no kink in the DGP. Intuitively, this happens because the worst-case

depends on the considered price p′, and it switches around the observed price p0. In the case

of a price increase, the firm worries that demand is elastic, but in case of a price decrease it

worries of that demand is inelastic. In essence, the overall worst-case is the result of splicing

two different priors together – an elastic one to the right of p0, and an inelastic one to the

left. Panel (a) in Figure 2 illustrates the resulting, kinked worst-case expected demand,

conditional on seeing a signal equal to the true DGP: y0 = γ̄ − bp0.

Continuous expected demands

The worst-case expected demand in (14) is not only kinked, but also discontinuous.

However the jump is not an integral part of the mechanism, the firm need not consider the

possibility of a drastic change in demand. We have found it most straightforward to impose

only limited restrictions on the set of admissible priors, but we could easily impose further
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restrictions on the smoothness of the possible priors that would ensure expected demand is

continuous, and still obtain the main results.

In particular, we can require that admissible priors m(p) must have a derivative no bigger

than some bmax. Without this restriction, the worst-case prior is discontinuous to the right

of p0 due to equation (12). If we impose it, however, the worst-case prior becomes:

m∗(p0) = min [γh − bp0, γl − bp+ bmax(p− p0)]

As before, the worst-case prior picks m(p′) equal to the lower bound and seeks the

maximal fall in demand between p′ and p0. But now there is a restriction on how high m(p0)

can be, given the value for m(p) and the understanding that m(p) cannot have an infinite

derivative. As illustrated in panel (b) of Figure 2, this constraint rules out jumps in m(p),

which makes the worst-case demand continuous, but it still has a kink at p0.

The kink is the fundamental feature of the mechanism: it is generated by the endogenous

switch in the worst-case elasticity to the left and to the right of p0 and does not depend on

discontinuities in the admissible priors. Indeed, the derivative of the worst-case expected

demand is equal to (α− 1)b to the left of p0 and equal to (α− 1)b−αbmax to its right. When

faced with ambiguity about the shape of the underlying demand, the ambiguity averse firm

acts as if demand is relatively more elastic for price increases than for price decreases.

Updating with more observed prices

The Bayesian update given a vector of signals is standard, and leverages our Gaussian

framework. Online Appendix A describes the general formulas and an analytical approach to

finding the worst-case prior. This involves sorting the observed prices from smallest to largest

and fully characterizing the worst-case prior for all prices recursively. For any entertained

price p′ the worst-case prior is obtained through three steps: (i) the priors on demand signals

at observed prices to the left of that p′ are at the upper bound of the prior set; (ii) the prior

at p′ is the lowest bound, and (iii) the priors on demand signals at observed prices to the

right of p′ to be as large as possible, while still respecting a downward sloping m(p). The

intuition is similar as before: the firm worries that demand at price p′ is low, while the

observed signals can be attributed to high prior demand at those other prices.

The main observation is that the switch in the worst-case priors now applies more

generally at all observed prices. For example, Figure 3 shows the worst-case expectation when

the firm has observed demand signals at two distinct prices, both equal to the corresponding

true DGP value. As we show in the next section, the emergence of the two concave kinks at

the previously observed prices in this as if expected demand leads not only to stickiness in

the pricing actions, but also to discreteness and memory of the optimal price.
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Figure 3: Worst-case Expected Demand, 2 previously observed prices

5 Optimal pricing

The firm’s problem is to choose the optimal price that maximizes expected utility as if

the worst-case probability distribution is the true data generating process. The problem is

specified in equation (9). In the previous section we have analyzed how the worst-case prior

endogenously changes, depending on the entertained pricing action.

The pricing problem of the ambiguity averse firm is dynamic. Posting a price today does

not only affect the current profit, but also affects next period’s information set. Solving

fully optimal learning problems while allowing for experimentation is a difficult numerical

task. The main computational burden here is that the state space explodes as the number of

posted prices increases with time. For this reason we focus on studying a two-period model,

where in the second period there are only static profits to be gained and no continuation

utility. We believe that while simple, this two-period model transparently captures the most

important effects of the infinite horizon version of the model.

In the second period, the firm observes the cost shock, c2, and the price-quantity history,

ε1, which includes the first period’s realized quantity sold, q(p1), and some initial information

inherited from period 0. We start by analyzing the static maximization problem in this last

period, and provide analytical results. We then proceed backwards and study numerically

the dynamic problem of the first period, where the firm takes into account the effect of its

optimal price on the information set in the last period.
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5.1 Second period: a static optimization problem

In the second period, the firm chooses a price p2 to maximize the end-of-period profits under

the worst-case expected demand, conditional on the observed ε1:

v(ε1, c2) = max
p2

min
m(p)

Ex̂1(p2;m(p)) (ep2 − ec2) ex(p2)+z2 (15)

where the posterior distribution of demand at some price p2 is a Normal distribution, as

shown in equation (8).

5.1.1 Price rigidity

Stickiness with one previously observed price

To highlight the analytical mechanics of the model, we start with the case where the firm

has only observed a single price p0 in the past, for N0 times and with an average realized

quantity sold y0. Evaluating the worst-case expectation, the static problem becomes:

v(ε1, c2) = max
p2

(ep2 − ec2) e0.5(σ2
z+σ̂2

1)ex̂1(p2;m∗(p))

where the posterior variance evaluates to σ̂2
1 = σ2

xσ
2
z/N0

σ2
x+σ2

z/N0
and applying equation (14), the

worst-case expectation is given by the piece-wise function

x̂1(p2;m∗(p)) =

{
γ − bp2 − νσz + α [y0 − (γ − bp0 + νσz)] for p < p and p > p0

(1− α)(γ − bp2 − νσz) + αy0 for p ∈ [p, p0]

where p = p0 − 2
b
νσz.

Thus, for higher and significantly lower prices than p0, the firm acts as if it perceives

a demand curve with a slope b (same as the DGP) that has been shifted from the actual

DGP curve γ − bp2 by two components. The first, −νσz, is a shift down resulting from

the lower-bound on the set of priors. The second component, α [y0 − (γ − bp0 + νσz)] , is the

result of the informative signal y0. On the other hand, for prices p ∈ [p, p0] the firm perceives

a flatter demand curve with a slope −b(1− α).

There are three potential local maxima that need to be checked: (i) p2 = p0 since that is

a kink point; (ii) the optimal price for a demand curve with slope −b, given by the standard

expected utility choice pRE,b2 = ln
(

b
b−1

)
+ c2, and (iii) the optimal price for a demand curve

with slope −b(1− α) or p
RE,b(1−α)
2 = ln

(
b(1−α)
b(1−α)−1

)
+ c2.

Solving this problem, we can show that there is a positive interval of cost shock realiza-

tions for which it is optimal to stick with the previously posted price p0, making that price
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sticky. We formally establish and characterize the stickiness in Proposition 1.

Proposition 1. If the firm has posted a single price p0 in the past then,

(i) the price p0 is sticky. There are values c0 < c0 such that p0 is the optimal price for all

cost realizations c2 ∈ [c0, c0]

(ii) the inaction region around p0 (i.e. stickiness) increases with α (more precise signal)

and νσz (more ambiguity).

Proof. Follows from the kink in x̂1(p2;m∗(p)) at p0. For details, see Online Appendix C.

The proposition showcases several important features of the mechanism. First, this is a

mechanism of rigidity – there is a positive probability that the firm does not change its price,

even if costs change. This is in contrast with the rational expectations firm, which adjusts

the price one-to-one with cost movements. Second, the perceived cost of changing the price

is endogenous and varies with the amount of information the firm has about demand at the

price p0 – the more signals the firm has seen, the more confident it is in demand at p0, and

the more apprehensive about leaving that price. Third, more initial ambiguity makes the

kink more prominent and thus the perceived cost of moving larger.

Stickiness for two previously observed price

The previous analysis can be extended to the case of many observed prices. In our two-

period model we focus on the situation where the firm has seen two distinct prices in the

past, arising potentially from different observations at time 0 and time 1. Similarly to the

case of one observed price, the emergence of kinks in the as if expected demand naturally

lead to inaction around both previously observed prices. As a counterpart to Proposition 1,

we establish the following:

Proposition 2. If the firm has previously posted two distinct prices p1 6= p0, then

1. there is a kink in the as if expected demand at each pi and each has an associated

inaction region, such that pi is the optimal price for all cost realizations c2 ∈ [ci, ci]

2. the inaction region around each pi (i.e. stickiness) increases with αi (the precision of

the signal at price pi)

Proof. See Online Appendix C.
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5.1.2 An endogenous, time-varying cost of price changes from learning

Our theory predicts an endogenous time-varying cost of price changes. New kinks are formed

at newly observed prices, and old kinks change their importance as the firm obtains repeated

observations of certain prices. In this section we go beyond stickiness, and characterize other

important features of the optimal price series. The results are formalized in Proposition 3.

Proposition 3. Optimal prices have the following characteristics:

(i) Discreteness and Memory. If the two previously observed prices are distinct p1 6=
p0, then there is a positive probability that a price change results in a discrete move

within the set of observed prices, exhibiting both discreteness and memory.

(ii) Declining Hazard. Increasing the number of times the firm has observed the price

p1 increases its region of inaction and hence the probability that the firm remains at p1.

(iii) Large and Small Changes. Optimal price adjustment is characterized by both

discrete jumps and arbitrarily small price movements.

Proof. (i) and (ii) follow from Proposition 2, (iii) obtains because the worst-case expected

demand is continuous to the left at kinks. For details, see Online Appendix C.

The proposition establishes several key results. The firm is not only reluctant to change

its current price, but is in general inclined to repeat a price it has already seen in the recent

past. These previously observed past prices become ‘reference’ prices at which there are kinks

in the profit function. The existence of kinks at these prices means that both are associated

with a positive measure of shocks that map to it. Intuitively, the perceived cost of switching

between the two of them is lower than the cost of changing to a wholly new price, thus the

model is consistent with the optimal policy having ‘price memory’, characterized by discrete

price changes between a set of previously posted prices. Moreover, the perceived cost of

changing the price varies with the amount of information about demand at that price – the

more signals the firm has seen about p0, the more confident it is in demand at p0, and the

more apprehensive about leaving that price. The endogenous cost of price changes is also

central in generating a price distribution that features both small and large price changes –

this is a model in which prices can simultaneously look both sticky and flexible.

5.2 A dynamic problem

Having solved the last period problem, we now analyze the first period. Here, the firm

observes its marginal cost c1 and the initial price-quantity history, ε0, and chooses p1 to
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maximize the worst-case expectation of the discounted sum of this and next period’s profits:

max
p1

min
m(p)

Ex̂0(p1;m(p))
[
(ep1 − ec1) ex(p1)+z1 + βυ(ε1, c2)

]
where υ(ε1, c2) is the period two profit given by equation (15).

This is a dynamic problem because the next period’s state variable, the price-quantity

history ε1, includes the quantity sold at the price chosen this period, q(p1). That observation

is a noisy signal on demand that the firm would use next period to further update its beliefs.

As a consequence, when the firm chooses its price today it is not only maximizing over this

period’s profit, but also taking into account the effect on the next period’s information set.

We now investigate the optimal policy functions in the context of an illustrative parametriza-

tion. We first note that we are interested in a continuous distribution for the cost shocks as

otherwise that may mechanically generate discreteness in prices even in a standard model.

The Markov process gc(ct|ct−1) for the cost shock is

ct − c = ρc (ct−1 − c) + σcη
c
t

where ηct is white noise. We set b = 6, the constant γ = 0 and the discount factor β =

0.97(1/52). We normalize c = (b− 1)/b so that PRE = 1. We set the cost shock parameters ρc

and σc to values calculated by Eichenbaum et al. (2011), at 0.14 and 0.11, respectively. We

set ν = 2, argued in Ilut and Schneider (2014) as a reasonable upper bound on ambiguity,

and illustrate the mechanisms by setting σz = 0.4 and a signal to noise ratio σ2
x/σ

2
z = 0.2.

5.2.1 Static policy functions

For comparison purposes, we begin by illustrating the static problem’s optimal price policy

that we characterized analytically in section 5.1. Using the parametrization above, the left

panel in Figure 4 plots the static problem’s policy under RE in red, and in blue the case

of ambiguity for one previously observed price p0. For the latter there is a clear area of

inaction at p0, for which the firm finds it optimal not to change its price. Outside that

area the optimal price is: (i) for p < p0 equal to pRE,b(1−α), the RE optimal price when

demand elasticity is equal to −b(1 − α); (ii) for p < p or p > p0, it is equal to pRE,b, the

RE optimal price under the true elasticity of −b. The black line shows the case where the

price p0 has been observed more often. Importantly, the higher confidence accumulated at

this price leads to a larger inaction area, and it is now the optimal price for a larger mass of

cost shock realizations, i.e. the price is stickier. This panel illustrates the stickiness result

of Proposition 1 and the declining hazard property of Proposition 3.
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Figure 4: Policy Function, Static problem

The right panel of the figure plots the optimal price for the case where the firm has

also seen a second price p1 > p0. The two kinks in expected demand manifest themselves as

areas of inaction around these two previously observed prices. This captures the discreteness

of the policy function: previously observed prices become ‘focal points’. Notice that there

is a whole range of cost shocks, that would have previously resulted in setting pRE, but

now lead to setting p1. There is now a high probability that conditional on a price change

the price adjusts discretely and not proportionally with the cost. This panel illustrates the

inaction result of Proposition 2 and the additional properties analyzed in Proposition 3,

namely discreteness and memory as well as price changes being potentially small or large.

5.2.2 Dynamic policy functions

The dark solid line in the top left panel of Figure 5 plots the period one pricing policy of

the two-period model, where the firm has an initial signal at price p0 and takes into account

the effect of its current price choice on the future. In comparison to a static optimization,

the dynamic one features even more stickiness, especially for higher cost shocks.

Accounting for active learning has two competing effects. On the one hand, by sticking

to the same price, the firm gets to learn more about it. On the other, by moving to another

price it can expect to learn something new and potentially valuable. Which force dominates

is state-dependent. The left panel is an example of the former effect being stronger, which

leads to more stickiness than the static policy function. This is because the observed price

p0 is the optimal price for the mean cost shock c̄. The firm expects future cost shocks to be
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Figure 5: Policy Function, Dynamic problem

close to it, and hence realizes that it is likely to post the price p0 in the future with a high

probability. Hence, learning more about this part of the demand curve is particularly useful.

In the right panel, we plot the different case where the observed p0 is significantly higher

and would generally be optimal only for high cost values. In this case, the experimentation

motive dominates, as it is not very useful to learn about this relatively unusual price p0. The

firm is not very likely to revisit such a high price again, and thus finds it optimal to move

earlier away from it and in particular explore prices closer to the more likely region. This

leads to the optimal price featuring less stickiness than the static solution,.

Our results suggest that there is an inherent tension between the incentive to experiment

and that of acquiring further information at a previously observed action. In general, we

find that dynamic learning does not negate the price stickiness results from the static model,

and that it typically further amplifies inaction. The local nature of learning is key for the

result that experimentation may lead to additional stickiness of actions.16

6 Nominal Rigidity

The model presented so far was one of real rigidity, in which p is interpreted as a real

price, and nothing prevented nominal adjustments. For example, if the firm knew that the

16Consistent with the behavior that our model predicts, Anderson (2012) documents that in laboratory
experiments subjects undervalue information from experimentation but are willing to pay more than the
ambiguity neutral agents to learn the true mean of the payoff distribution.
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aggregate price level had shifted, it could similarly change its nominal price to achieve the

same “safe” real price. In this section we enrich the model so as to make a distinction

between real and nominal prices and show how nominal rigidity arises as a result of the

interaction of demand uncertainty with the uncertainty about the relevant relative price.

The model consists of a continuum of industries populated by monopolistically competi-

tive firms. The firm’s demand is thus a function of the aggregative technology of its industry

and of the relevant relative price, equal to the ratio of its nominal price against the industry

price index. We assume that the monopolistically competitive firm faces ambiguity about

the technology of its industry. This results in the firm not knowing both its demand function

as well as the appropriate relative price argument of this demand function. The ambiguity

averse firm sets an optimal nominal pricing action that is robust to both sources of ambiguity,

and this turns the real rigidity generated in the previous section into nominal rigidity.

6.1 Economic Framework

There is a continuum of industries indexed by j and a representative household that consumes

a CES basket of the goods produced by the different industries. The final good basket and

the associated aggregate price index are:

Ct =

(∫
C

b−1
b

jt dj

) b
b−1

, Pt =

(∫
P 1−b
jt dj

) 1
1−b

(16)

where Pjt are the price indices of the separate industries.17

Each industry j has a representative final goods firm that produces by aggregating over

intermediate goods i with the technology

Cjt = f−1
j

(∫
fj(Cijt)vj(zit)di

)
(17)

where zit is an idiosyncratic demand shock for the good i, distributed as N(0, σ2
z). Each

industry j has potentially different functions fj and vj, and a price index Pjt such that

PjtCjt =

∫
PitCijtdi

where Cijt is the amount purchased of good variety i by industry j. Solving the cost

17An equivalent alternative interpretation of our setup is that the economy is composed by a continuum
of households j with different preferences, which share risk and aggregate according to the basket Ct.
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minimization problem of the representative firm in industry j yields

Cijt = f ′−1
j

(
Pit
Pjt

f ′ (Cjt)

v(zit)

)
≡ Hj

(
Pit
Pjt

, Cjt, zit

)
(18)

The demand of industry j for a given intermediate good i is a function of the relevant

relative price, Pit
Pjt

, overall industry output Cjt, and demand shocks zit. We denote this

function by Hj and note that it is a transformation of the functions fj and vj. The

intermediate goods consumed by an industry j are produced by a continuum of monopolistic

firms i. Each firm i sells to only one industry j, hence Yit = Cijt.
18

6.2 Information structure and learning

The information of the intermediate good firms is imperfect in two ways. First, they do not

know the functional forms of the industry-level production technologies fj and vj, and in fact

the uncertainty over the production functions cannot be described by a single probability

measure – firms face Knightian uncertainty (or ambiguity) about their industry structure.

Second, they do not observe all variables every period. They see their own prices and

quantities, Pit and Yit, and the aggregate output and price level, Ct and Pt, every period.

However, they observe industry level prices and quantities, Cjt and Pjt, infrequently, only

every T periods. Lastly, the firms never see the demand shock zit.

6.2.1 Demand uncertainty

A firm does not know the specific functional form of its demand, but rather needs to estimate

it using its observables. For tractability, we assume the firm understands that the aggregate

industry demand Cjt and the demand shocks zit enter multiplicatively so that19

Cijt = Hj

(
Pit
Pjt

)
Cjt exp(zit)

The firm can then use the known structure of aggregate demand

Cjt =

(
Pjt
Pt

)−b
Ct (19)

18As a result, firms are indexed by both i and j, however, we for ease of notation we drop the j subscript
with the understanding that each firm i is unique to a given industry.

19Our learning framework extends to the case of learning about demand as a function fo multiple variables
without conceptual differences. We make this assumption to transparently focus on the main mechanism.
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to write its demand schedule as

Cijt = Hj

(
Pit
Pjt

)(
Pjt
Pt

)−b
Ct exp(zit) (20)

Thus, the firm understands how the aggregates affect its individual demand through their

effect on average industry demand Cjt. However it does not have complete information on

the specific competitive environment it faces, and hence does not know the function Hj(.).

Taking logs and denoting logged variables as lower-case letters, we obtain a linear expression

in an unknown function, hj, an unknown variable, pjt, known effects, ct and bpt, and an

unobserved shock zit:

yit = hj(pit − pjt) + ct − b(pjt − pt) + zit. (21)

The uncertainty about the unknown function hj is modeled as before - there is a set of

multiple priors Υ0, where each prior is a GP distribution with a weakly decreasing mean

function m(r) such that

m(r) ∈ [−γ − br, γ − br],

Learning about this unknown function proceeds as before, and next we turn our attention

to the uncertainty about pjt.

6.3 Uncertainty about the relationship with aggregate prices

The firm has two sources of information on pjt. First, every T periods, it conducts marketing

reviews that reveal the current industry price. The idea is that reviews are costly and time

consuming, but since they are useful, they are done on a regular basis.20 Second, in between

reviews, the firm attempts to filter pjt out of the aggregate information it observes. Since the

firm’s direct competitors form only a small portion of the overall economy, the firm knows

that pjt 6= pt, where pt is the aggregate, fully-observable price level.

Even though the industry price pjt is not equal to the observed aggregate price, the

firm can use the latter to extract information about pjt. Indeed, the firm understands that

prices are cointegrated and that there is a link between industry prices and aggregate prices.

However, since the firm does not know the exact structure of industry demand (i.e. the

20As long as reviews do not happen every period, introducing state-dependent reviews would not
significantly change our analysis. For simplicity we are implicitly assuming that the firm either does not want
to perform reviews more frequently, or there are some technological constraints on the ability to perform
frequent reviews (e.g. the necessary data is not observed every period).
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production functions fj), it does not know the exact functional form of that relationship.21

In fact, the ambiguity about the industry’s production structure transfers to this issue as

well – different industry production functions imply different structural relationships between

aggregate and industry level prices. Due to this ambiguity, the firm is not confident in any

single relationship, and entertains a whole set of potential relationships such that

pjt = pjs + φ(pt − pjs) + νjt, (22)

where pjs is the last perfectly revealing signal the firm has seen. Thus, in between reviews

the firm is trying to forecast the industry prices pjt with the aggregate price pt, but is not

certain what is the correct structure of that signal.

Ambiguity is modeled through multiple priors on the co-integrating relationship φ(.)

and the transitory term νjt. The priors on νjt are Gaussian white noise, but with different,

possibly time-varying variances. The uncertainty about the cointegrating function is modeled

in a similar fashion to the uncertainty about the demand function h(.). As such, we assume

that the priors on φ(.) are Gaussian Process distributions that put non-zero probability on

all functions that lay in a set Ωφ around the true DGP φ(pt − pjs) = pt − pjs. Lastly,

for tractability, we focus on the limiting case where the variance function of the Gaussian

Processes distributions for the functions φ(.) goes to zero, so conditional on a prior, one

function φ(.) has probability 1 and all others probability zero.

The set of potential cointegrating functions allows for a weak relationship between

industry and aggregate inflation in the short-run. We model this by specifying that for

small |pt− pjt|, i.e. small inflationary pressure, the function φ(.) lies in an interval around 0

φ(pt − pjs) ∈ [−γp, γp], for |pt − pjs| ≤ Γ. (23)

This allows for functions that imply weak short-run relationship between aggregate and

industry inflation. The firm realizes, however, that the two are cointegrated in the long-run,

and for that reason, away from zero, the set of potential φ(.) grows linearly with pt − pjt

φ(pt − pjs) ∈ [pt − pjs − γp + Γ, pt − pjs + γp + Γ], for |pt − pjs| ≥ Γ.

The particular boundaries of Ωφ are chosen to define an analytically tractable set of priors,

but this is done solely for convenience, and has no bearing on the rest of the argument.

The magnitude of Γ is chosen to be high enough so that in between reviews the function

21In essence, the firm does not know the functional form of the relevant industry price index, and how it
relates to the aggregate price index.
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φ(.) belongs to the set described by (23). Our empirical evidence discussed in subsection 6.4

supports the notion that it is reasonable for the firm to consider a lack of precise relationship

between aggregate and industry prices for horizons of up to several years.

Note that all admissible priors imply that the price ratio pjt − pt is stationary with

probability 1, but allow for potentially complex, non-linear relationships locally. Intuitively,

the firm understands price levels are co-integrated in the long-run, however, it is not confident

in extrapolating this long-run relation to short-run fluctuations, and entertains functions

φ(.) which allow for a variety of local, possibly time-varying relationships. This is meant to

capture the empirical regularity that estimates of the short-run relationship between disag-

gregated inflation indices and overall inflation are imprecise and appear to be time-varying,

but estimates on long-run inflation series confidently point towards cointegration. The firm

has no advantage over real-world econometricians and cannot eliminate the uncertainty in the

short-run inflation relationship by postulating a single, linear cointegrating relationship with

full certainty. Thus, the set of priors explicitly allows for the possibility that the short-run

relationship is weak, even though in the long-run the firm expects prices to rise in lock-step.

6.3.1 Worst-case beliefs

The unknown portion of the firm’s demand can be written as

h(r̂it − φ(pt − pjs)− νjt)− b(φ(pt − pjs) + νjt),

where r̂it = pit − pjs, and it includes two unknown functions: h(.) and φ(.). The firm

understands that its demand is ambiguous in two dimensions. First, the functional form

of demand, h(.), is ambiguous, and second the argument of that function itself is also

ambiguous, due to the uncertainty about φ(.). The firm chooses an optimal pricing action,

r̂it, that is robust to both sources of ambiguity. This amounts to choosing a profit maximizing

price, under the worst-case demand schedule, where worst-case demand is determined price-

by-price, i.e. conditional on any given pricing action r̂it.

For each admissible demand shape h(.) and pricing action r̂it, we can find a worst-case

cointegrating relationship φ(.) that yields the worst demand:22

h∗(r̂it, νjt) = min
φ
h(r̂it − φ(pt − pjs)− νjt)− b(φ(pt − pjs) + νjt) (24)

This is the demand level that would prevail if nature draws the worst possible φ(.), con-

ditional on a particular h(.) and price r̂it. Since in the short run φ(pt − pjs) ∈ [−γp, γp],
22Here we are able to minimize over φ directly due the assumption of Delta priors.
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variation in pt does not change the set of possible numerical values that could be realized

through φ(pt − pjs). Hence we can recast the optimization in terms of minimizing over

a parameter, φ̄ ∈ [−γt, γp], which represents the short-run conditional expectation of pjt.

The solution to the minimization can then be written as φ∗(pt − pjs) = φ̄∗. Intuitively,

the worst-case cointegrating relationship implies that movements in the aggregate price are

not informative about industry prices in the short-run. This is because when there is no

such informative relationship, nature has the greatest flexibility in choosing the worst-case

expectation of pjt, given a demand function h(.) and a price choice r̂it.

Since the transitory shocks νjt are not observed, we can take an expectation over them

and define the expected demand under the worst-case cointegrating relationship:

x(r̂it) = Et(h
∗(r̂it, νjt))

This is the object that the firm can learn about through its past prices and quantities because,

according to the optimal behavior under ambiguity, it believes that nature has minimized

demand in this same fashion at any point in time. For tractability, we assume that the

implied expectational errors follow a normal distribution,

h∗(r̂it, νjt) = x(r̂it) + εit; εit ∼ N(0, σ2
ε). (25)

6.3.2 Nominal rigidity from real rigidity

The firm uses past signals to learn about the worst-case demand. Putting together (21) and

(25), the demand facing the firm is

yit = x(r̂it) + ct + b(pt − pjs) + εit + zit (26)

which is a known function of the observed aggregates, namely price pt and quantity ct, an

unknown function x(.) of its perceived relevant relative price and Gaussian noise. This forms

a well-defined learning problem that the firm approaches in the way described in Section 4.

The kinks are formed in the space of relative prices r̂it. However the base of this relative

price, i.e. the last review signal pjs, does not change every period. To keep this relative

price constant then, and thus take advantage of the kinks, the firm needs to keep its nominal

price constant. Hence, the model generates both nominal stickiness and memory in nominal

prices. In essence, all results from the analytic section go through, but their effects are now

primarily on nominal prices. In addition, since the firm does update its beliefs about pjt

regularly, the stickiness in nominal prices appears as stickiness in “price plans”. The price

series tends to bounce around a few common prices that look like a “price plan”, and then
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when new review signals arrive the firm shifts that price plan accordingly.

6.4 Empirical link between aggregate and industry prices

Here we use US CPI data to show that the relationship between aggregate and industry

prices is time-varying and unstable over short-horizons. In particular, an econometrician

would generally have very little confidence that short-run aggregate inflation is related to

industry-level inflation, even though he can be confident that the two are cointegrated in the

long-run. Thus, our assumption on the uncertainty over φ(.) above again puts the firm on

an equal footing with an econometrician outside of the model.

Our analysis uses the Bureau of Labor Statistics’ most disaggregated 130 CPI indices as

well as aggregate CPI inflation. The empirical exercise consists of the following regression

method. For a specific industry j, we define its inflation rate between t−k and t as πj,t,k and

similarly πat,k for aggregate CPI inflation. For each industry j, we run the rolling regressions:

πj,t,k = βj,k,tπ
a
t,k + ut

over three-year windows starting in 1995 and ending in 2010.23 We repeat this exercise for

k equal to 1, 3, 6, 12 and 24 months. Finally, for each of these horizons we compute the

fraction of regression coefficients βj,k,t (across industries and 3-year regression windows) that

are statistically different from zero at the 95% level.

We find that for 1-month inflation rates, only 11.4% of the relationships between sectoral

and aggregate inflation are statistically significant. For longer horizons k, these fractions

generally remain weak but do rise over time: 26.4%, 40.6%, 58.5% and 69.1% for the 3-

, 6-, 12- and 24-month horizons respectively. This supports our assumption that while

disaggregate and aggregate price indices might be cointegrated in the long run, their short-

run relationship is weak.

In fact, not only is the relationship statistically weak in general, but it is highly unstable.

This can be seen in Figure 6 that shows the evolution of the coefficient βj,k,t for k = 3 for 3-

year-window regressions starting in each month between 1995 and 2010, for four industries.

Not only are there large fluctuations in the value of this coefficient over our sample, but

sign reversals are common. In general, at any given date, there is little confidence that the

near-future short-horizon industry-level inflation would be highly correlated with aggregate

inflation, even though the data is quite clear that the two are tightly linked over the long-run.

23Results are very similar if we use windows of 2 or 5 years instead.
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Figure 6: 3-year rolling regressions of 3-month industry inflation on 3-month aggregate
inflation for four categories. The solid line plots the point estimate of regression coefficient
on aggregate inflation. The dotted lines plot the 95% confidence intervals.

7 Quantitative model

We build a quantitative version of the model in the previous section, that endogenizes

marginal cost and introduces a law of motion for the aggregate price level. The objective is to

quantitatively study the individual decision problem of a firm that faces demand uncertainty.

A precise way to view the setup proposed here is to consider it as general equilibrium model

with a measure zero of myopic, ambiguity averse firms. This means that the aggregate

variables follow their flexible, rational expectations law of motion.

7.1 Model setup

As described in section 6, there are three layers of production. A representative household

purchases consumption from a competitive final good producer, who buys from a continuum

of industries indexed by j. Each industry itself is composed of a competitive final good
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producer, that aggregates over a continuum of intermediate monopolistic firms index by i.

The representative household consumes and works according to

∞∑
k=0

Et

(
βt+k

[
logCt+k − χ

∫
Li,t+kdi

])

subject to the budget constraint∫
Pj,tCjtdj + Etqt+1bt+1 = bt +Wt

∫
Li,tdi+

∫
υi,tdi

where qt+1 is the stochastic discount factor, bt+1 is state contingent claims on aggregate shock,

υi,t is the profit from the monopolistic intermediaries and consumption integrates over the

varieties produced by competitive industries j with a CES aggregator with elasticity b as

shown in (16). The solution to the cost minimization problem of the representative agent is

to demand from each industry the amount given by (19). The technology and resulting cost

minimization solution of the j-th industry are described by equations (17) and (18).

The demand for the monopolistic firm i comes from the industry j in the form of (18)

which we have further restricted to be described in (20). The firm produces variety i using

the production function:

Yi,t = ωitAtLit

where ωit and At are an idiosyncratic and aggregate productivity shock, respectively, and

Lit is hours hired by firm i at wage Wt. The processes for these shocks are:

logωit = ρω logωit−1 + εωi,t; logAt = ρa logAt−1 + εat

where εωi,t is iid N(0, σ2
ξ ) and εat is iid N(0, σ2

a).

Monopolistic firms are owned by the representative agent, and thus they discount profits

using the agent’s stochastic discount factor. The economy-wide price index and aggregate

output are defined as

Pt =

∫ 1

0

Pj,t
Yj,t
Yt
di; Yt =

∫ 1

0

(
Y

b−1
b

j,t

) b
b−1

dj

Finally, nominal aggregate spending St = PtCt follows a random walk with drift

logSt = µ+ logSt−1 + εst

where εst is iid N(0, σ2
s). Using the household’s hours decision Wt/Pt = χCt to substitute out
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for Wt, the real flow profits can be written as

υi,t =

(
Pit
Pt
− χSt
ωitAtPt

)
Yi,t (27)

7.2 Demand uncertainty

As in section 6, we assume that the firm observes the aggregate Pt and Ct, but not its

demand function. The learning process is the same as described in section 6, where equation

(26) gives the demand to be estimated as

yit = x(r̂it) + ct + b(pt − pjs) + zit + εit (28)

and r̂it = pit − pjs is the price relative to the last observed pjt and the set of priors consists

of Gaussian Processes with a weakly decreasing mean function

m(r̂it) ∈ [γl − br̂it, γh − br̂it],

and a covariance function K(r̂, r̂′) = σ2
x.

The firm enters period t with knowledge of the history of previous realized demand and

corresponding prices, denoted by εt−1; the current productivity ωit and the aggregate state

variables: current productivity At, nominal spending St and aggregate price Pt; and an

incomplete history of past Pj,t, where it has observed the industry price level only once

every T periods. Based on the state variables, the firm chooses its price. Demand shocks

are realized at the end-of-period and the firm fulfills demand at that price. The firm then

updates its information set.

The firm does not observe the distribution of idiosyncratic states, but needs to conjecture

how the aggregate price is formed. Here we use the assumption that there is a measure zero

of ambiguity averse firms while the rest of the economy is populated by flexible price firms

that have full confidence in their knowledge. This is the flexible price, rational expectations

(RE) general equilibrium version of our economy.24

To characterize the RE version, we assume a simple true DGP: each industry j has the

same CES functions fj and vj in (17): fj(Cijt) = C
b−1
b

ijt ; vj(zit) = z
1/b
it . These aggregators

imply the standard demand Cj,i,t = Cjtεit (Pi,t/Pj,t)
−b . Thus, under the true DGP, the

demand function is simply yit = −bpi,t + ct + bpt + zit and the RE firms know that the

24A similar approach of a flexible aggregate price level is taken for example by Stevens (2014) in the
context of a rational inattention model. This benchmark provides an upper bound for the degree of price
neutrality compared to the case of a measure one of ambiguity averse firms.
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underlying demand is x(r̂it) = −br̂it.25 The aggregate price solution of this economy is, up

to a log-linear term:

pflext = log
bχ

b− 1
+ logSt − logAt (29)

and the optimal price for the RE firms’ price is to subtract logωit from pflext .

The ambiguity averse firm has all the knowledge about aggregate equilibrium relation-

ships of a RE economy, except knowing its demand function. For the quantitative model of

this section we solve for decision rules of the firm by assuming that the firm is myopic, so

that it solves a static optimization of end-of-period profit υi,t:
26

max
r̂it

min
x̂(r̂it|εt−1)

Ex̂(r̂it|εt−1)υi,t (30)

The optimal decision rule is characterized as follows: the ambiguity-averse firm takes as

given the aggregates, and maximizes the objective given by (30), where profits are defined

in (27), subject to the demand uncertainty in (28) and the assumed information structure.

7.3 Results

7.3.1 Calibration

The model period is a week. We calibrate β = 0.97(1/52) to match an annual interest rate

of 3%. The mean growth rate of nominal spending µ = 0.00046 is set to match an annual

inflation of 2.4% and we set the standard deviation σs = 0.0015 to generate an annual

standard deviation of nominal GDP growth of 1.1%. Following the calibration in Vavra

(2014) we set the persistence and standard deviation of aggregate productivity ρa = 0.9785

and σa = 0.003 to match the quarterly persistence and standard deviation of average labor

productivity, as measured by non-farm business output per hour.

We are left with seven parameters that refer to the firm’s problem. We choose an elasticity

of substitution of b = 6, implying a markup of 20%. We set the interval between reviews,

given by the parameter T, to be equal to 31 weeks, which is the average duration of a pricing

regime documented by Stevens (2014). For the other parameters we use pricing and quantity

moments based on the IRI Marketing Dataset, as described in section 3.

First, we calibrate the standard deviation of demand shocks σz by using empirical

evidence on the accuracy of predicting one-period-ahead quantity. In particular, using our

25Notice that the whole layer of industry demand has dissapeared in this case. This was done on purpose
for the simplicity of the model. However, the monopolistic firm retains all the uncertainty about the direct
competitors, reflected in the unknown, relevant price pj,t.

26This simplifying assumption allows us to compute easier a larger model such as this. We have investigated
more forward-looking problems in the exogenous cost section 4, which produce an incentive to experiment.
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dataset we run linear regressions of log(Q) on a vector of controls X, that include: 2 lags of

log(Q), log(P ) plus its own 2 lags, the weighted average of weekly prices in that category and

its 2 lags as well as item and store dummies. We compute the absolute in-sample prediction

error (Q−Xβ̂)/Q, where β̂ are the regression coefficients and Q is the mean quantity.27 We

calibrate the size of noise shocks to σz = 0.5, corresponding to a median forecast error of

0.50 ∗ 0.675 = 0.3375, matching our sample average.28

We set symmetric bounds on the prior set Υ0, such that −γl = γh = νσz, normalized by

a parameter ν, which we set equal to 2 following Ilut and Schneider (2014). We calibrate

the remaining three parameters, the persistence and volatility of idiosyncratic productivity

(ρw and σω), and the signal-to-noise ratio in demand signals (σ
2
x

σ2
z
), by targeting three salient

pricing moments: the frequency of price changes, the frequency of ‘reference price’ changes,

and the fraction of price increases.29 Table 1 presents the whole set of parameters.30

Table 1: Parameters

β µ σs ρa σa T σz ρω σω ν σ2
x/σ

2
z

0.97(1/52) 0.00046 0.0015 0.9785 0.003 31 0.5 0.9 0.0975 2 0.2

7.3.2 Pricing behavior

Pricing moments

Table 2 presents pricing moments generated by the model against their empirical coun-

terparts. Only the first three moments are targeted by the calibration. As in the data, the

model produces posted prices that look as if they change frequently but at the same time

reference prices that are relatively sticky.

In section 5 we analyzed the potential of our proposed mechanism to be consistent

with a range of stylized pricing facts. We follow the description of price characteristics

in Proposition 3 and report in Table 2 the model implied moments along four dimensions.

The emerging message is that the mechanism operates as if firms face an endogenous, state-

dependent cost of price changes, that is not only consistent with observed stickiness of posted

and reference prices, but also with additional empirical overidentifying restrictions.

27We do this across all items within a category/market and also for the item with most sales in its category.
Table B.1 in the Online Appendix reports prediction errors for these various regressions.

28Here we used that Φ(−0.6745) = 0.25, with Φ(.) denoting the standard normal cdf. In addition, we note
that, with a slight abuse of notation, we use σz to denote the standard deviation of the sum zit + εit. From
the firm’s perspective either source of disturbance amounts as noise in the demand equation (28).

29As in Gagnon et al. (2012), a ’reference price’ is the modal price within a rolling window of 13-weeks.
30Moments are based on a simulation of 1000 firms for 5000 periods. For computational purposes, we need

to limit the proliferation of useful past information the firm carries over, which we do by imposing that only
information in the last 200 periods is used in the Bayesian update.
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Table 2: Pricing moments

Moment Data Model
(1) Fraction of price increases 51% 52.6%
(2) Frequency of posted price changes 22.85% 22.93%
(3) Frequency of ’reference price’ changes 5.96% 5.58%
(4) Probability of revisiting a price 62.1% 50.9%
(5) Average number of unique prices (13 weeks) 2.62 2.77
(6) Fraction of price changes ≤ 5% 13.9% 17.3%
(7) Fraction of price changes ≥ 15% 56.3% 55.1%

First, there is strong memory in prices: conditional on a price change, the probability

of selecting the same price in the last 26 weeks is about 51%.31 This in particular is a

challenging moment to match for a benchmark menu cost model, as it typically features no

incentives for firms to revisit prices, conditional on changing. Second, there is discreteness in

prices: a window of 13 weeks experiences a relatively small number of unique prices. Memory

and discreteness arises from the multiple kinks in the as if expected demand, produced by

the lower perceived cost in terms of uncertainty of moving back to previously observed prices.

Third, as in the data, there are both small and large price changes: the model implies

that 17.3% of all price changes are less than 5% in absolute terms, while 55.1% of all changes

are greater than 15% in absolute terms. The existence of kinks in the policy function result

in the potential for frequent, large price changes as the firm switches between the prices at

those kinks. Small price changes arise because the policy function also has parts where the

firm adjusts flexibly, as discussed in the analytical model. On the one hand, this can happen

when the history of shocks is such that kinks in the policy function are small, for instance

because of little accumulated previous information at some prices. On the other hand, the

ambiguity price policy also has regions of flexibility outside the kinks. Thus, because of the

endogeneity of what appears as a cost of changing a price in the ambiguity model, large

and small price changes co-exist. This endogeneity makes the model behave differently than

a model with a fixed cost of a price change which would typically not feature small price

changes, as they are not worth paying that fixed cost.32

Fourth, the model produces a declining hazard function. As the firm accumulates

information at some price, the kink in the expected demand deepens and the cost of changing

that price increases. Figure 7 plots the probability of a price change, given that the price

31Note that if we filter sales out of the data, the probability of revisiting a price seen in the last 26 weeks
is still 48%, which is even closer to the model.

32Midrigan (2011) uses a multiproduct firm and assumes economies of scope in price adjustment to generate
small price changes in a menu cost model. A reduced form is to assume the random possibility of a much
smaller menu cost, as used for example in Vavra (2014).
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Figure 7: Price Change Hazard

has stayed fixed for n periods, with n on the X-axis. We find that the model (left panel)

matches the data very well (right panel).33 The model implies a probability of a price change,

given that the current price has been posted for just one week so far, of about 50%, and the

probability steadily declines to about 7% for prices that have stayed constant for 13 weeks.

Policy functions

Next, we examine the underlying optimal price policy functions. Figure 8 plots the price

policy as a function of idiosyncratic productivity. The left panel shows the case of two

previous prices observed only once each. The resulting kinks are relatively small and the

policy function resembles the flexible price one – it is characterized by large flexibility and

likely small price changes. However, the right panel shows that as the number of observations

at those same prices increases (to five in this case), the kinks become deeper. In this situation

we will mostly observe few and large (discrete) price changes, as the firm switches between

the two kinks. Moreover, even in this situation, the firm may choose small price changes in

the areas further away from the kinks.

Of particular interest is the optimal pricing behavior as a function of monetary policy

shocks. We are specifically interested in the implied degree of monetary non-neutrality,

defined as the effect of the monetary policy shock on the quantity sold, which can be read

off from the deviation of the optimal price from its flexible version. The left panel of Figure

9 plots the price policy when the firm has observed a single signal in the past. The resulting

kink and inaction region are small, and monetary non-neutrality is relatively weak. In the

33The empirical hazard function is computed product by product, pooling over retailers within a single
market, and then we report the median probability across products.
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Figure 8: Optimal Price Policy, idiosyncratic shocks

right panel, we plot the price policy for a firm that has seen the single reference price five

times, and we see a much larger region of inaction and stronger monetary non-neutrality.

Moreover, both policy functions show that even conditional on a price change, the ambiguity

averse firm is likely to deviate from the flexible price, and thus preserve non-neutrality.

Having multiple observed prices leads to different, potentially non-linear effects of mone-

tary shocks, as we illustrate in Figure 10. The left panel plots the case in which two previous

prices have been observed once each. We see that there are two flat areas in the policy

function, corresponding to the two past prices, and consequently there is more total inaction

compared to the case of single past price. Furthermore, we see that in general there is now

a higher probability that the price deviates from the flexible benchmark.

In particular, a monetary policy shocks can have small, large and even negative effects.

Consider for example a contractionary monetary shock, starting at s = −0.1. As we move

to the left, there is strong monetary non-neutrality as prices at first do not change, and then

remain above the flexible price level, even conditional on changing. On the other hand, an

expansionary monetary shock behaves differently. Initially (i.e. for smaller shocks) there is a

significant amount of inaction and thus monetary non-neutrality, but then the optimal price

jumps up to a level above the flexible price. Thus, instead of under-reacting and generating a

positive quantity effect, the price would over-react, and in fact have a negative effect on the

average quantity. For even larger shocks, the price would eventually settle at the other kink,

and the positive quantity effects can be restored, at least for a while. This is an example of

the possibly non-linear monetary shock effects, where small and large shocks can have the
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Figure 9: Optimal Price Policy, monetary shocks

expected positive effects, but moderate shocks might in fact have negative effects.

The right panel plots the policy function in the case where the firm has observed each

of the two past prices five times each. We can again see that this results in deeper kinks

and larger regions of inaction. Moreover, this panel also illustrates that monetary policy

shocks can have asymmetric effects. In general, contractionary shocks might have quite

strong monetary non-neutrality, because of the deepness of the lower kink. However, positive

shocks (starting from s = −0.1 again) would relatively quickly incentivize the firm to change

price to its other kink. This generally bring the price close to the flexible price, and thus

there appears to be less monetary non-neutrality to the right than to the left.

To summarize, monetary policy shocks have effects that are history and size dependent.

History matters because it affects where in the state space the kinks are formed and how large

they are. For example, there may be a history of shocks, either idiosyncratic or aggregate,

that has generated larger kinks, and in that case the firm will behave as if there are significant

costs of changing its nominal price, together with potentially strong memory in its price.

Alternatively, the firm may find itself in a situation where these kinks are much smaller, and

as such monetary non-neutrality is likely to be small. At the same time, for a given history,

the current size of the shock matters through the standard effect of pulling the optimal

price out of an inaction area. However, when there are multiple kinks, the qualitative

and quantitative effect on the sign on the average quantity sold depends on the interaction

between the size of the shock and the history-dependent kink formation.
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Figure 10: Optimal Price Policy, monetary shocks

8 Conclusion

Despite its central role in modern macroeconomic models, a price-setting mechanism that

happens to be both plausible and in line with the numerous pricing facts that have been

documented in the literature remains elusive. In this paper, we model an uncertainty-averse

firm that learns about the demand it faces by observing noisy signals at posted price. The

limited knowledge allows the firm to only characterize likely bounds on the possible demand

schedules. Since the firm is ambiguity-averse, it acts as if the true demand is the one that

yields the lowest possible total quantity sold at a given price. In other words, for a price

decrease the firm is worried that there will be very little expansion in demand; while it fears

a drop in quantity sold if it were to raise its price. This endogenous switch in the worst-case

scenario leads to kinks in the expected profit function. This is akin to acting as if there is

a cost, in terms of expected profits, associated with moving to a new price.

A corollary implication is that because signals are noisy, repeated observations are useful

to learn about demand at a specific price. The firm thus finds it beneficial to stick with

prices that it has less uncertainty about by having repeatedly posted them in the past. This

discrete set of previously observed past prices become ’reference prices’ at which there are

kinks in the profit function. In addition, we show that if publicly available indicators such as

aggregate inflation are ambiguous signals of the price aggregate most relevant for the firm,

then our real rigidity becomes nominal in nature and money shocks can have real effects.

Our model naturally predicts that prices should be sticky, unless shocks are sufficiently
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large. In addition, the proposed mechanism is parsimonious in the sense that it produces

a set of overidentifying restrictions that are consistent with stylized facts from micro data:

prices exhibit ’memory’ as firms find it optimal to stick to a discrete distribution of prices;

the probability of observing a price change is decreasing in the time since the last price

movement; and small and large price changes coexist in the data.

References

Alvarez, F. E., F. Lippi, and L. Paciello (2011): “Optimal Price Setting With
Observation and Menu Costs,” The Quarterly Journal of Economics, 126, 1909–1960.

Anderson, C. M. (2012): “Ambiguity aversion in multi-armed bandit problems,” Theory
and decision, 72, 15–33.

Bachmann, R. and G. Moscarini (2011): “Business cycles and endogenous uncertainty,”
Manuscript, Yale University.

Ball, L. and D. Romer (1990): “Real rigidities and the non-neutrality of money,” The
Review of Economic Studies, 57, 183–203.

Balvers, R. J. and T. F. Cosimano (1990): “Actively learning about demand and the
dynamics of price adjustment,” The Economic Journal, 882–898.

Barro, R. J. (1972): “A theory of monopolistic price adjustment,” The Review of Economic
Studies, 39, 17–26.

Bergemann, D. and K. Schlag (2011): “Robust monopoly pricing,” Journal of
Economic Theory, 146, 2527–2543.

Bergemann, D. and J. Valimaki (2008): “Bandit problems,” The New Palgrave
Dictionary of Economics, 2nd ed. Macmillan Press.

Bils, M. and P. Klenow (2004): “Some evidence on the importance of sticky prices,”
Journal of Political Economy, 112, 947–985.

Bonomo, M. and C. Carvalho (2004): “Endogenous time-dependent rules and inflation
inertia,” Journal of Money, Credit and Banking, 1015–1041.

Bronnenberg, B., M. Kruger, and C. Mela (2008): “Database paper: The IRI
Marketing Data Set,” Marketing Science, 27, 745–748.

Calvo, G. (1983): “Staggered prices in a utility-maximizing framework,” Journal of
Monetary Economics, 12, 383–398.

Campbell, J. R. and B. Eden (2014): “Rigid prices: Evidence from US scanner data,”
International Economic Review, 55, 423–442.

41



Carlton, D. W. (1986): “The Rigidity of Prices,” American Economic Review, 76, 637–
658.

Cecchetti, S. G. (1986): “The Frequency of Price Adjustment: A Study of the Newsstand
Prices of Magazines,” Journal of Econometrics, 31, 255–274.

Christiano, L., M. Eichenbaum, and C. Evans (2005): “Nominal Rigidities and the
Dynamic Effects of a Shock to Monetary Policy,” Journal of Political Economy, 113.

Dow, J. and S. Werlang (1992): “Uncertainty Aversion, Risk Aversion, and the Optimal
Choice of Portfolio,” Econometrica, 60, 197–204.

Eichenbaum, M., N. Jaimovich, and S. Rebelo (2011): “Reference Prices, Costs, and
Nominal Rigidities,” American Economic Review, 101, 234–62.

Epstein, L. G. and M. Schneider (2003): “Recursive Multiple-Priors,” Journal of
Economic Theory, 113, 1–31.
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Online Appendix

A Updating with more observed prices

We can readily expand the updating formulas that we have developed in Section 4.2 for one

observed price. Assume that firm has seen a whole vector of T previous signals, y0, with the

corresponding vectors of prices p0 and number of times N0. The joint distribution with demand

at any price p is again jointly Normal[
x(p)

y0

]
∼ N

([
m(p)

m(p0)

]
,Σ(p,p0)

)

with

Σ(p,p0) =

[
σ2
x (σ2

x, . . . , σ
2
x)

(σ2
x, . . . , σ

2
x)
′ Σx + diag( σ

2
z

N0
)

]
where (σ2

x, . . . , σ
2
x) is a 1xT vector, and Σx is a TxT matrix with all entries equal to σ2

x.

The resulting conditional expectation follows from applying the standard formula for condi-

tional Normal expectations:

E(x(p)|y0) = m(p) + [σ2
x, . . . , σ

2
x](Σx + diag(

σ2
z

N0

))−1(y0 −m(p0))

The conditional expectation is again linear in the prior and a weighted sum of the demeaned

signals. Expanding the above formula, we obtain

E(x(p)|y0) = m(p) + α0(y0,1 −m(p0,1)) + · · ·+ αT (y0,T −m(p0,T ))

where y0,i is the i-th element of the vector y0, and αi ∈ (0, 1) is the i-th element of the 1xT

vector [σ2
x, . . . , σ

2
x](Σx + diag( σ

2
z

N0
))−1.

Without loss of generality, assume the prices in p0 are sorted and that the last element is the

largest price. In building the worst case expectation, one can work from right to left and start

with p′ > p0,T . This is the easiest case, since the firm wants m∗(p′) to be the lowest possible so it

sets it equal to the lower bound of the prior set, but sets the priors on all observed signals to the

upper bound of the prior set

m(p) =

{
γh − bp for p ≤ p0,T

γl − bp for p > p0,T

Next consider, p′ ∈ (p0,T−1, p0,T ]. As for the case of one observed price, the worst case is when
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m∗(p′) is low, but the priors on the observed prices are high. So we set m∗(p0,t) equal to the

upper bound for all t ≤ T − 1, and set m∗(p0,T ) to the highest admissible value that satisfies the

downward sloping restriction, so again m∗(p0,T ; p′) = min(γl − bp′, γh − bp0,T ). As a result

m(p; p′) =


γh − bp for p < p′

min(γl − bp′, γh − bp) for p ∈ (p′, p0,T ]

γl − bp for p > p0,T

We can work recursively to the left (i.e. p′ ∈ (p0,T−2, p0,T1 ] and so on) and fully characterize the

worst-case prior for all possible price choices p′. The general rule is that for any p′, the worst-case

m(p) for all signals to the left of p′ to be at the top of the tunnel, the prior at p′ to be at the

bottom of the tunnel, and priors on signals to the right of p′ to be the highest admissible value

that respects a downward sloping m(p).

B Additional Table: Predicting Demand

Table B.1: Predicting demand

(1) Across all items

Median p10 p25 p75 p90

Spaghetti sauce Detroit 0.26 0.05 0.12 0.5 0.95

Beer Boston 0.3 0.05 0.14 0.5 0.87

Frozen pizza Dallas 0.46 0.07 0.2 0.91 1.63

Peanut butter Seattle 0.45 0.08 0.2 0.83 1.36

(2) Item with most sales in category/market

Salted snacks Seattle 0.3 0.04 0.11 0.65 1.16

Beer NYC 0.46 0.17 0.3 0.71 1.23

Frozen dinner LA 0.48 0.09 0.23 0.84 1.35

Spaghetti sauce Dallas 0.28 0.05 0.13 0.53 0.9

The dependent variable is log(Q). Independent variables are: 2 lags of log(Q), log(P ) + 2

lags; log(P )2; log(P ) + 2 lags; log(P )
2
; item/store and week dummies, where log(P ) : weighted

average of weekly prices in category/market. The Table reports the moments on the absolute

in-sample prediction error: (Q−Xβ̂)/Q.
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C Proofs

Proposition 1. If the firm has posted a single price p0 in the past then,

(i) the price p0 is sticky. There are values c0 < c0 such that p0 is the optimal price for all cost

realizations c2 ∈ [c0, c0]

(ii) the inaction region around p0 (i.e. stickiness) increases with α (more precise signal) and νσz

(more ambiguity).

Proof. (i) Given the piece-wise form of the worst-case expectation in (14), there are three potential

local maxima that we need to check: p0, pRE,bt , and p
RE,b(1−α)
t . We start by comparing p0 and pRE,bt .

It is useful to define

θ = ln(
b

b− 1
)

and also the cost value c0 such that p0 would be the optimal price for a RE firm facing a

demand curve with slope −b, i.e. p0 = pRE,bt (c0):

p0 = θ + c0

We also define the difference between the current cost and c0 as

ĉt = ct − c0

Now we can write the expected profit at p0 as

E∗(π(p0)) = (exp(p0)− exp(ct)) exp(
1

2
σ2
z + x̂∗(p0))

= (exp(θ + c0 − ct)− 1) exp(ct +
1

2
σ2
z + (1− α)(γ − b(θ + c0)− νσz) + αy0)

= (exp(θ − ĉt)− 1) exp(ct − b(1− α)c0 +
1

2
σ2
z + (1− α)(γ − bθ − νσz) + αy0)

and write the expected profit at pRE,bt as:

E∗(π(pRE,bt )) = (exp(pt)− exp(ct)) exp(
1

2
σ2
z + x̂∗(pRE,bt ))

= (exp(θ)− 1) exp(ct +
1

2
σ2
z + γ − b(θ + ct)− νσz − α(γ − b(θ + c0) + νσz) + αy0)

= (exp(θ)− 1) exp((1− b)ct + bαc0 +
1

2
σ2
z + (1− α)(γ − bθ)− (1 + α)νσz + αy0)

Dividing the two
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E∗(π(p0))

E∗(π(pRE,bt ))
=

(exp(θ − ĉt)− 1) exp(ct − b(1− α)c0 + 1
2
σ2
z + (1− α)(γ − bθ − νσz) + αy0)

(exp(θ)− 1) exp((1− b)ct + bαc0 + 1
2
σ2
z + (1− α)(γ − bθ)− (1 + α)νσz + αy0)

=
(exp(θ − ĉt)− 1)

(exp(θ)− 1)
exp(bĉt + 2ανσz)

Notice that this is a continuous function of ĉt and that at ĉt = 0

E∗(π(p0))

E∗(π(pRE,bt ))

∣∣∣∣
ĉt=0

= exp(2ανσz) > 0

Moreover, as ĉt → −∞ the ratio grows without bound, and as ĉt →∞ the ratio turns negative.

Since this is a continuous function of ĉt, there exist cb < c such that

E∗(π(p0)) ≥ E∗(π(pRE,bt ))

for all ct ∈ [cb, c].

Next we compare the profit at p0 to the profit at p
RE,b(1−α)
t . This is straightforward since

p
RE,b(1−α)
t could be an optimal price only if p

RE,b(1−α)
t ∈ [p0 − 2

b
νσz, p0] – the region in which the

demand curve has a slope of b(1− α). Since this section of the demand curve includes p0 itself, it

follows that

E∗(π(p
RE,b(1−α)
t )) > E∗(π(p0))

⇐⇒

p
RE,b(1−α)
t ∈ [p0 −

2

b
νσz, p0)

There are two possible cases for p
RE,b(1−α)
t . First, if α is so large that

b(1− α) < 1

then the slope is less than 1, and hence the optimal price is the maximum admissible price and

hence

p
RE,b(1−α)
t = p0.

In that case, we only need to compare profits at p0 and pRE,bt (c) which we had already done before,

and can conclude that p0 is the optimal price for all cost shocks

ct ∈ [c, c]
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where c = cb.

On the other hand, if b(1− α) > 1, let

θ̃ = ln(
b(1− α)

b(1− α)− 1

and then p
RE,b(1−α)
t = θ̃ + ct. Then the condition p

RE,b(1−α)
t ∈ [p0 − 2

b
νσz, p0) is satisfied if and

only if

ct ∈ [c0 − (θ̃ − θ)− 2

b
νσz, c0 − (θ̃ − θ))

Notice that since (1− α) < 1,

θ̃ > θ

and hence

c0 − (θ̃ − θ)) < c0

Putting this together with the above result comparing E∗(π(p0)) and E∗(π(pRE,bt )), we have

that p0 is the optimal price for all cost shocks

ct ∈ [c, c]

where c = max(cb, c0 − (θ̃ − θ)), and we have that c < c0 < c.

To sum things up, p0 is the optimal price for all ct ∈ [c, c] where c is defined above as the cutoff

point at which the price pRE,bt starts yielding higher profits than p0 for ct > c0 and,

c =

{
cb for b(1− α) < 1

max(c1, c0 − (θ̃ − θ)) for b(1− α) > 1

(ii) From the proof above we know that there exist c < c0 and c > c0 such that E∗(π(p0))

E∗(π(pRE,bt ))
= 1.

Let ĉ = c− c0 and take logs of the expected profits ratio when cost equals c so that:34

ln(
E∗(π(p0))

E∗(π(pRE,bt ))
) = ln(

(exp(θ − ĉ)− 1)

(exp(θ)− 1)
) + bĉ+ 2ανσz = 0

Applying the implicit function theorem we get

∂ĉ

∂α
= − 2νσz

− exp(θ−ĉ)
exp(θ−ĉ)−1

+ b

34Implicitly we are assuming ĉ < θ which is true since at ĉ = θ we have E∗(π(p0)) = 0 and thus is clearly below

the profit at the price pRE,b
t . Hence ĉ < θ.
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Since 1) − exp(θ)
exp(θ)−1

= −b and 2)
∂

exp(θ−ĉ)
exp(θ−ĉ)−1

∂ĉ
< 0, it follows that the denominator is negative when

ĉ > 0, and positive otherwise:

− exp(θ − ĉ)
exp(θ − ĉ)− 1

+ b < 0 ⇐⇒ ĉ > 0

And since 2νσz > 0 it follows that

∂ĉ

∂α
> 0 ⇐⇒ ĉ > 0

Hence increasing α increases c and decreases cb, which increases the region over which p0

dominates pRE,bt . If b(1− α) < 1 then we are done, since then c = cb. If b(1− α) > 1, notice that

∂(c0 − (θ̃ − θ))
∂α

= −∂(θ̃ − θ)
∂α

= −
∂(ln( b(1−α)

b(1−α)−1
))

∂α

= − 1

(1− α)(b(1− α)− 1)
< 0

and hence c = max(cb, c0 − (θ̃ − θ)) unambiguously decreases with α as well. Thus, we have

shown that the inaction region increases in α.

To prove that the inaction region increases with νσz, notice that we can apply the implicit

function theorem in a similar way to get

∂ĉ

∂(νσz)
= − 2νσz

− exp(θ−ĉ)
exp(θ−ĉ)−1

+ b
> 0 ⇐⇒ ĉ > 0

and we can complete the proof following the same steps as above.

Proposition 2. If the firm has previously posted two distinct prices p1 > p0, then

1. there is a kink in the as if expected demand at each pi and each has an associated inaction

region, such that pi is the optimal price for all cost realizations c2 ∈ [ci, ci]

2. the inaction region around each pi (i.e. stickiness) increases with αi (the precision of the

signal at price pi)

Proof. Without loss of generality, we assume p1 > p0.

(i) First, we characterize the worst-case expectation. Let p
0

= p0 − 2
b
νσz and p

1
= p1 − 2

b
νσz

be the prices such that the lower bound on the prior of p
i

equals the upper-bound of the prior

tunnel at pi:
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γ − bp
i
− νσz = γ − bpi + νσz

Then, if p
1
> p0 the worst-case expectation is

x̂∗(pt) =


γ − bpt − νσz + α1(y1 − (γ − bp1 + νσz)) + α0(y0 − (γ − bp0 + νσz)) for p < p

0
, p ∈ (p0, p1

), or p > p1

(1− α0)(γ − bpt − νσz) + α0y0 + α1(y1 − (γ − bp1 + νσz)) for pt ∈ (p
0
, p0]

(1− α1)(γ − bpt − νσz) + α1y1 + α0(y0 − (γ − bp0 + νσz)) for pt ∈ (p
1
, p1]

and if p
1
< p0 we have

x̂∗(pt) =


γ − bpt − νσz + α1(y1 − (γ − bp1 + νσz)) + α0(y0 − (γ − bp0 + νσz)) for p < p

0
, p ∈ (p0, p1

), or p > p1

(1− α1)(γ − bpt − νσz) + α1y1 + α0(y0 − (γ − bp0 + νσz)) for pt ∈ (p0, p1]

(1− α1 − α0)(γ − bpt − νσz) + α1y1 + α0y0 for pt ∈ (p
1
, p0]

(1− α0)(γ − bpt − νσz) + α0y0 + α1(y1 − (γ − bp1 + νσz)) for pt ∈ (p
0
, p

1
]

In both cases there is a jump and a kink at both p1 and p0. As we show below this leads

to regions of inaction around both of those prices. The proof is constructed in a way similar to

Proposition 1.

Case 1: p
1
> p0. We have 5 candidate optima: p0, p1, p

RE,b
t , p

RE,b(1−α0)
t , p

RE,b(1−α1)
t .

It is again helpful to define the cost values c0 and c1 such that

p0 = θ + c0

p1 = θ + c1

and

ĉit = ct − ci

Start by comparing the expected profits at pRE,bt = θ + ct and p0 and p1 respectively:

E∗(π(p0))

E∗(π(pRE,bt ))
=

exp(θ − ĉ0t)− 1

exp(θ)− 1
exp(bĉ0t + 2α0νσz) (31)

E∗(π(p1))

E∗(π(pRE,bt ))
=

exp(θ − ĉ1t)− 1

exp(θ)− 1
exp(bĉ1t + 2α1νσz) (32)

The same analysis as in the proof of Proposition 1 tells us that there exist cbi < cbi such that

E∗(π(p0)) ≥ E∗(π(pRE,bt )) for all ct ∈ [cb0, cb0], and E∗(π(p1)) ≥ E∗(π(pRE,bt )) for all ct ∈ [cb1, cb1].
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Similarly, if b(1− αi) < 1, then p
RE,b(1−αi)
t = pi, and otherwise E∗(π(pi)) ≥ E∗(π(p

RE,b(1−αi)
t ))

if and only if ct ≥ ci + (θ̃i − θ), where we define

θ̃i = ln(
b(1− αi)

b(1− αi)− 1

Next, we need to compare the profits at p0 and p1. That ratio of expected profits is:

E∗(π(p0))

E∗(π(p1))
=

exp(θ − ĉ0t)− 1

exp(θ − ĉ1t)− 1
exp(b(p1 − p0) + 2(α0 − α1)νσz)

=
exp(θ − ĉ0t)− 1

exp(θ − ĉ1t)− 1
exp(b(c1 − c0) + 2(α0 − α1)νσz)

=
exp(θ − ĉ0t)− 1

exp(θ − ĉ0t + (c1 − c0))− 1
exp(b(c1 − c0) + 2(α0 − α1)νσz)

Notice that this is a continuous function of ĉ0t, that equals 0 for ĉ0t = θ, which tells us there

are sufficiently high values of ct such that E∗(π(p0)) < E∗(π(p1))) . Next, take logs and derivate

in respect to ĉ0t:

∂ ln(E
∗(π(p0))

E∗(π(p1))
)

∂ĉ0t

= − exp(θ − ĉ0t)

exp(θ − ĉ0t)− 1
+

exp(θ − ĉ0t + (c1 − c0))

exp(θ − ĉ0t + (c1 − c0))− 1
< 0 (33)

where the inequality follows from c1 > c0 and the fact that exp(θ+x)
exp(θ+x)−1

is a decreasing function

of x. Hence the ratio of expected profits is a monotonically decreasing function of ĉ0t and thus

there can be at most only one crossing point c̃ such that the profits at p0 exceed the profits at p1.

The limit as ĉ0t → −∞ is

lim
ĉ0t→−∞

(
exp(θ − ĉ0t)− 1

exp(θ − ĉ1t)− 1
exp(b(p1 − p0) + 2(α0 − α1)νσz)

)
= exp((b− 1)(c1 − c0) + 2(α0 − α1)νσz)

Which is greater than 1 if and only if

(b− 1)(c1 − c0) + 2(α0 − α1)νσz > 0

If this condition holds, then there indeed exists a c̃ such that

E∗(π(p0)) > E∗(π(p1)) ⇐⇒ ct < c̃

otherwise, if (b− 1)(c1 − c0) + 2(α0 − α1)νσz ≤ 0 then

E∗(π(p0)) ≤ E∗(π(p1)) for all ct
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It is possible to be in a situation where p0 is never an optimal price, and p1 always dominates it.

Next, we compare p0 with p
RE,b(1−α1)
t and p1 with p

RE,b(1−α0)
t . Starting with the first pair, recall

that p
RE,b(1−α1)
t is a potential optimum only for ct ∈ [c1 − (θ̃1 − θ)− 2

b
νσz, c1 − (θ̃1 − θ)] and thus

if c̃ < c1 − (θ̃1 − θ)− 2
b
νσz, then

E∗(π(p0)) < E∗(π(p1)) ≤ E∗(π(p
RE,b(1−α1)
t ))

for all ct for which p
RE,b(1−α1)
t is a potential optimum. Next, consider c̃ ≥ c1− (θ̃1− θ)− 2

b
νσz.

The ratio between the expected profits is

E∗(π(p0))

E∗(π(p
RE,b(1−α1)
t ))

=
exp(θ − ĉ0t)− 1

exp(θ̃1)− 1
exp((1−α1)b(θ̃1−θ)+b(1−α1)ĉ0t+α1b(c1−c0)+2νσz(α0−α1))

The first and second derivatives are:

∂ ln( E∗(π(p0))

E∗(π(p
RE,b(1−α1)
t ))

)

∂ĉ0t

= − exp(θ − ĉ0t)

exp(θ − ĉ0t)− 1
+ b(1− α1)

∂2 ln( E∗(π(p0))

E∗(π(p
RE,b(1−α1)
t ))

)

(∂ĉ0t)2
= − exp(θ − ĉ0t)

(exp(θ − ĉ0t)− 1)2
< 0

Since this is a concave function, we can find it’s maximum by setting the first derivative equal

to zero. This achieved at

ĉ0t = ln(
b(1− α1)− 1

(b− 1)(1− α1)
) < 0

Evaluating the profits ratio at that cost value we get

E∗(π(p0))

E∗(π(p
RE,b(1−α1)
t ))

= exp(α1(b(c1 − c0)− 2νσz) + 2νσzα0) > 1

Where the inequality follows from that fact that p
1
> p0, which implies that

0 < p
1
− p0 < c1 − c0 −

2

b
νσz

Since this is a convex function with a maximum above zero, it crosses zero at two distinct points,

c(1−α1)b and c(1−α1)b. And because the maximum is obtained at a cost value below c0, we know that

c(1−α1)b < c0, but since p
RE,b(1−α1)
t is a relevant maximum only for ct ≥ c1−(θ̃1−θ)− 2

b
νσz > c0, then

E∗(π0) < E∗(p
RE,(1−α1)b
t ) if and only if ct > cb(1−α1) and cb(1−α1) ∈ [c1−(θ̃1−θ)− 2

b
νσz, c1−(θ̃1−θ)].

To ease notation, we adopt the convention that cb(1−α1) =∞ if cb(1−α1) /∈ [c1− (θ̃1−θ)− 2
b
νσz, c1−

(θ̃1 − θ)].
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Similarly, when comparing p1 and p
RE,b(1−α0)
t , we note that p

RE,b(1−α0)
t can only be the optimal

price for ct ∈ [c0 − (θ̃0 − θ) − 2
b
νσz, c0 − (θ̃0 − θ)]. If c̃ > c0 + (θ̃0 − θ) then E∗(π(p1)) <

E∗(π(p
RE,b(1−α0)
t )) for all ct ∈ [c0 − (θ̃0 − θ)− 2

b
νσz, c0 − (θ̃0 − θ)]. Otherwise, the the ratio of the

expected profits is:

E∗(π(p1))

E∗(π(p
RE,b(1−α0)
t ))

=
exp(θ − ĉ1t)− 1

exp(θ̃0)− 1
exp((1− α0)b(θ̃0 − θ) + b(1− α0)ĉ1t − α1b(c1 − c0)− 2νσz(α0 − α1))

which we can again show that is strictly concave in ĉ1t (and as a result in ct) and thus there

exist at most two points, cb(1−α0) and cb(1−α0), where the ratio crosses 1. And adopting a similar

convention as above, that we set cb(1−α0) = −∞ if cb(1−α0) /∈ [c0 − (θ̃0 − θ) − 2
b
νσz, c0 − (θ̃0 − θ)],

and hence

E∗(π1) ≥ E∗(p
RE,(1−α0)b
t ) ⇐⇒ ct ≥ c(1−α0)b

Putting everything together, we conclude that p0 is optimal for all

ct ∈ [c0, c0]

where c0 = max(cb0, c0 − (θ̃0 − θ)) and c0 = min(cb0, c̃, cb(1−α1)). And p1 is optimal for all

ct ∈ [c1, c1]

where c1 = max(cb1, c1 − (θ̃1 − θ), c̃, cb(1−α0)) and c1 = cb1.

Case 2: p
1
≤ p0. Everything is the same except for the fact that we need to re-work the

comparison between p0 and p1 and between p0 and p
RE,b(1−α0)
t , and also need to compare p0 and

p1 with p
RE,(1−α0−α1)
t .

We can show that the ratio of expected profits at p0 and p1 yields:

E∗(π(p0))

E∗(π(p1))
=

exp(θ − ĉ0t)− 1

exp(θ − ĉ0t + (c1 − c0))− 1
exp(b(1− α1)(c1 − c0) + 2α0νσz)

which is again a decreasing function of ĉ0t and by similar analysis as above, we can conclude

that if (b(1− α1)− 1)(c1 − c0) + 2α0νσz < 0 then E∗(π(p0)) < E∗(π(p1)) for all ct, and otherwise

there exists a c̃ such that

E∗(π(p0)) < E∗(π(p1)) ⇐⇒ ct > c̃

.
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In comparing p0 to p
RE,b(1−α0−α1)
t , first notice that p

RE,b(1−α0−α1)
t is a relevant potential maxi-

mum only for ct ∈ [c0 − (θ̃01 − θ)− 2
b
νσz, c0 − (θ̃01 − θ)], where we define

θ̃01 = ln(
b(1− α0 − α1)

b(1− α0 − α1)− 1
)

and we again have that p0 = p
RE,b(1−α0−α1)
t for ct = c0 − (θ̃01 − θ). Then, by a similar analysis

to the above we conclude that

E∗(π(p0)) < E∗(π(p
RE,b(1−α0−α1)
t )) ⇐⇒ ct ∈ [c0 − (θ̃01 − θ)−

2

b
νσz, c0 − (θ̃01 − θ))

To compare p1 and p
RE,(b(1−α0−α1)
t , we look at the ratio of their expected profit:

E∗(π(p1))

E∗(π(p
RE,b(1−α0−α1)
t ))

=
exp(θ − ĉ1t)− 1

exp(θ̃01)− 1
exp((1− α0 − α1)b(θ̃01 − θ) + b(1− α0 − α1)ĉ1t

− α0b(c1 − c0)− 2νσzα0)

Which is again a concave function of ĉ1t, and by similar analysis to the above we can show

that at the maximum ĉ1t the profits ratio is equal to

E∗(π(p1))

E∗(π(p
RE,b(1−α0−α1)
t ))

∣∣∣∣
ĉ1t=ĉ∗1t

= exp(−α0b(c1 − c0)− 2νσzα0) < 1

So p1 is always dominated by p
RE,b(1−α0−α1)
t , but that is a relevant comparison only for ct ∈

[c0 − (θ̃01 − θ) − 2
b
νσz, c0 − (θ̃01 − θ)]. For values of ct greater than this interval, the relevant

comparison is between p0 and p1 which we have already addressed above.

Lastly, we turn our attention to comparing p0 and p
RE,b(1−α0)
t . We can express the ratio of

those profits as

E∗(π(p0))

E∗(π(p
RE,b(1−α0)
t ))

=
exp(θ − ĉ0t)− 1

exp(θ̃0)− 1
exp((1− α0)b(θ̃0 − θ) + b(1− α0)ĉ0t − α1b(c1 − c0) + 2νσzα1)

which is strictly concave in ĉ0t and at the maximum:

E∗(π(p0))

E∗(π(p
RE,b(1−α0)
t ))

∣∣∣∣
ĉ0t=ĉ∗0t

= exp(α1(2νσz − b(c1 − c0)) > 1

Then, by the strict concavity there can exist at most two values cb(1−α0),0 < cb(1−α0),0 such that

the ratio crosses 1, and similarly to above, only the lower value cb(1−α0),0 is relevant in comparing

profits, since p
RE,b(1−α0)
t is a potential maximum only for ct ∈ [c0 − (θ̃0 − θ)− 2

b
νσz, c0 − (θ̃0 − θ)].
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Thus,

E∗(π(p0)) > E∗(π(p
RE,b(1−α0)
t )) ⇐⇒ ct ≥ cb(1−α0),0

Putting everything together, we conclude that p0 is optimal for all

ct ∈ [c0, c0]

where c0 = max(cb0, c0 − (θ̃01 − θ), cb(1−α0),0) and c0 = min(cb0, c̃, cb(1−α1)). And p1 is optimal for

all

ct ∈ [c1, c1]

where c1 = max(cb1, c1 − (θ̃1 − θ), c̃, cb(1−α0),1, c0 − (θ̃01 − θ)) and c1 = cb1.

Part (ii) Case 1: p
1
> p0. The steps are similar to part (ii) of the proof of Proposition 1.

Using the ratio of profits at p0 and pRE,bt (equation (31)) and the Implicit Function Theorem, it

follows that:

∂(cb0 − c0)

∂α0

= − 2νσz

− exp(θ−(cb0−c0)

exp(θ−(cb0−c0)−1
+ b

> 0

∂(cb0 − c0)

∂α0

= − 2νσz

− exp(θ−(cb0
−c0)

exp(θ−(cb0
−c0)−1

+ b
< 0

Thus the inaction in comparison with pRE,bt increases in α0. Moreover,

∂(c0 + (θ̃0 − θ))
∂α0

= − 1

(1− α0)(b(1− α0)− 1)
< 0

and hence inaction in respect to p
RE,b(1−α0)
t is increasing in α0.

Next, turning to the comparison between p0 and p1, notice that

∂ ln(E
∗(π(p0))

E∗(π(p1))
)

∂α0

= 2νσz > 0

and by equation (33)
∂ ln(

E∗(π(p0))
E∗(π(p1))

)

∂ĉ
< 0 and hence, by the implicit function theorem

c̃

α0

= −
∂ ln(

E∗(π(p0))
E∗(π(p1))

)

∂α0

∂ ln(
E∗(π(p0))
E∗(π(p1))

)

∂ĉ

> 0

we see that the tipping point at which E∗(p1) = E∗(p0) increases with α0. Lastly, we turn to
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comparing p0 and p
RE,b(1−α1)
t . The derivative of the log of the ratio of expected profits is

∂ ln( E∗(π(p0))

E∗(π(p
RE,b(1−α1)
t ))

)

∂ĉ0t

∣∣∣∣
ĉ0t=cb(1−α1)−c0

= − exp(θ − ĉ0t)

exp(θ − ĉ0t)− 1

∣∣∣∣
ĉ0t=cb(1−α1)−c0

+ b(1− α1) < 0

since cb(1−α1) − c0 > 0. At the same time,

∂ ln( E∗(π(p0))

E∗(π(p
RE,b(1−α1)
t ))

)

∂α0

= 2νσz > 0

so, by applying the Implicit Function Theorem again, we see that inaction is increasing in α0.

Putting all of this together, we see that

∂c0

∂α0

< 0 ;
∂c0

∂α0

> 0

and hence the inaction region around p0 is increasing in α0. We can show the symmetric result

for p1 following the same steps as above.

Case 2: p
1
≤ p0. Only a few things change. First, the ratio of profits at p0 and p1 is slightly

different,

E∗(π(p0))

E∗(π(p1))
=

exp(θ − ĉ0t)− 1

exp(θ − ĉ0t + (c1 − c0))− 1
exp(b(1− α1)(c1 − c0) + 2α0νσz)

but the derivatives in respect to ĉ and α0 remain the same, so the above analysis again implies

that the tipping point is increasing in α0. Next, recall that p
RE,b(1−α0−α1)
t dominates p0 for all

ct ≤ c0 − (θ̃01 − θ), and notice that

∂θ̃01

α0

=
1

1− α0 − α1

> 0

and hence inaction increases with α0. Lastly, we need to compare p0 and p
RE,b(1−α0)
t . Recall that

the log of the ratio of their expected profits is:

ln(
E∗(π(p0))

E∗(π(p
RE,b(1−α0)
t ))

) = ln(
exp(θ − ĉ0t)− 1

exp(θ̃0)− 1
)+(1−α0)b(θ̃0−θ)+b(1−α0)ĉ0t−α1b(c1−c0)+2νσzα1

The derivative in respect to ĉ is

∂ ln( E∗(π(p0))

E∗(π(p
RE,b(1−α0)
t ))

)

∂ĉ
= − exp(θ − ĉ)

exp(θ − ĉ)− 1
+ b(1− α0)
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But since p
RE,b(1−α0)
t is a potential maximum only for ct ≤ c0 − (θ̃0 − θ), it follows that

ĉ = ct − c0 ≤ −(θ̃0 − θ) < 0

and since exp(θ−ĉ)
exp(θ−ĉ)−1

is a decreasing function of ĉ, it follows that

exp(θ − ĉ)
exp(θ − ĉ)− 1

≤ exp(θ̃0)

exp(θ̃0)− 1
= b(1− α0)

and hence for the relevant cost values:

∂ ln( E∗(π(p0))

E∗(π(p
RE,b(1−α0)
t ))

)

∂ĉ
≥ 0

On the other hand, the derivative in respect to α0 is

∂ ln( E∗(π(p0))

E∗(π(p
RE,b(1−α0)
t ))

)

∂α0

= −
exp(θ̃0) 1

1−α0

exp(θ̃0)− 1
− b(θ̃0 − θ) + b− bĉ

> −b(θ̃0 − θ) + b(θ̃0 − θ)

> 0

where the first equality follows from the fact that ĉ ≤ −(θ̃0 − θ). Applying the inverse function

theorem again, we have that
∂cb(1−α0)

α0

< 0

and hence the inaction region is increasing in α0. Putting it all together,

∂c0

∂α0

< 0 ;
∂c0

∂α0

> 0

and hence the inaction region around p0 is increasing in α0. We can again apply symmetric

arguments to obtain the corresponding result that the inaction around p1 is increasing in α1.

The only difference is in the comparison between p1 and p
RE,b(1−α1−α0)
t . Recall that p1 is always

dominated by p
RE,b(1−α0−α1)
t , which is a relevant comparison only for ct ≤ c0− (θ̃01− θ), and since

θ̃01 is increasing in α1, it follows that the range of cost shocks for which p1 might be an optimal

price increases.

Proposition 3. Optimal prices have the following characteristics:

(i) Discreteness and Memory. If the two previously observed prices are distinct p1 6= p0,

then there is a positive probability that a price change results in a discrete move within the

set of observed prices, exhibiting both discreteness and memory.
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(ii) Declining Hazard. Increasing the number of times the firm has observed the price p1

increases its region of inaction and hence the probability that the firm remains at p1.

(iii) Large and Small Changes. Optimal price adjustment is characterized by both discrete

jumps and arbitrarily small price movements.

Proof. Part (i) By Proposition 2, part (i), both past prices have associated intervals of cost

shocks, [ci, ci] for i ∈ {0, 1}, such that pi is the optimal choice for all cost shocks ct ∈ [ci, ci]. Let c1

be the particular marginal cost the firm faced at time 1 and g(c2|c1) be the conditional pdf of the

marginal cost at time 2. Thus, the probability that at time 2 the firm finds it optimal to switch

form p1 back to p0 is simply

Prob(p∗2 = p0|c1) =

∫ c0(c1)

c0(c1)

g(c2|c1)dc2 > 0

where [c0(c1), c0(c1)] is the particular region of inaction associated with p0, given that the

firm has faced a cost shock c1 at time 1. Hence, conditional on a cost value c1, there is a

positive probability that the optimal price at time 2, p∗2, switches back to p0. In other words,

the distribution of price changes at time 2 features a mass point at p0 − p1, and price changes

display discrete changes. Moreover, there is memory, since the discrete change reverts back to a

price posted in the past.

This analysis was conditional on a particular cost value c1, but it is straightforward to extend

it by integrating over the possible values of c1:

Prob(p∗2 = p0) =

∫
(−∞,c0)∪(c0,∞)

(∫ c0(c1)

c0(c1)

g(c2|c1)dc2

)
g(c1)dc1 > 0

where we integrate only over cost values c1 that would result in p1 6= p0. But the basic result is

the same – the optimal price at time 2 has a positive probability of reverting back to p0, implying

now that the unconditional distribution of prices at time 2 is discrete and displays memory.

Part (ii) By Proposition 2, part(ii), the regions of inaction associated with the observed prices pi

is increasing in αi. Notice that if N1 is the number of times the firm has observed signals at the

price p1 in the past, and N0 is the number of times the firm has observed the price p0, then the

resulting signal to noise ratio of the average signal at p1 is:

α1 =
σ2
x

σ2
x + σ2

z/N1 + N0

N1
σ2
x

Clearly, increasing N1 increases α1 as it decreases the variance of the error in the average signal.

As a result, by the results in Proposition 2 part (ii), increasing N1 increases the inaction region

[c1, c1], and hence the probability that the firm remains at p1.
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Part (iii) The fact the price distribution features discrete jumps follows from (i). To complete

the proof, we’ll show that for any ε > 0, there are situations in which the firm finds it optimal to

change its price by less than ε. Let p1 < p0, and be far enough apart so that

E∗(π(p1))

E∗(π(p0))
> 1

for all ct < c̃ where c̃ > c0 − (θ̃0 − θ)− 2
b
νσz. In that case, we know that there is a cost value

cb(1−α0) such that

E∗(π(p1))

E∗(π(p
RE,b(1−α0)
t )

> 1

for all ct < cb(1−α0). Lastly, assuming that cb1 < c1 − (θ̃1 − θ) it follows that there exists a

c < c1− (θ̃1− θ) such that p
RE,b(1−α1)
t is the optimal price for all ct ∈ [c, c1− (θ̃1− θ)]. As a result,

for any ε > 0, we can find a ct > c such that

c1 − (θ̃1 − θ)− ct < ε

and thus the optimal price switches from p1 to

p
RE,b(1−α1)
t = θ̃1 + ct

However, notice that

p1 − pRE,b(1−α1)
t = θ + c1 − (θ̃1 + ct) < ε

Thus, there are situations in which the optimal price changes by less than an arbitrary ε, and

hence the price distribution features arbitrarily small price changes.
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