Population Aging, Government Policy and the Postwar Japanese Economy

Keisuke Otsu and Katsuyuki Shibayama

University of Kent

27 December 2016
Japan has gone through rapid population aging over the past few decades

- decline in the share of working age population (15-64) among adults (15+)
- decline in adult population growth rate

How important is population aging and related government policies in accounting for postwar Japanese growth?
Figure: Real GDP per adult
Introduction
Population Aging

![Population Share 1955-2014](chart)

Figure: Population Share 1955-2014
Introduction
Related Studies

- Neoclassical model for postwar Japanese growth
 - Christiano (1989), King and Rebelo (1993): capital destruction and subsistence consumption

- Demographic effects on Japanese output

- Labor decline
 - Braun, Ikeda and Joines (2009): reduction in family size
This paper constructs a parsimoneous neoclassical growth model with young and old adults quantitatively decomposes Japanese growth 1975-2014 into the effects of population aging, productivity, and government distortions.
The Postwar Japanese Economy
Demographic, Productivity and Government Variables

Figure: Exogenous Variables
Figure: Aging Effect on Employment Share
Representative household consists of young and old adults (no kids)

- a fraction η_t are young and have high employment rate π_y
- a fraction $1 - \eta_t$ are old and have low employment rate π_o
- head of household allocates resources among the family
- The number of households N_t increases over time at the rate n_t

Firm hires labor and capital to produce output

Government taxes the household by labor and capital income tax and lumpsum tax
Model
Household Problem

- **Preferences**
 \[U = \max \sum \beta^t \left[\Psi \ln c_t + e_t (1 - \Psi) \ln (\bar{h}_t - h_t) \right], \quad (1) \]

 where
 \[e_t = \eta_t \pi_y + (1 - \eta_t) \pi_o \]

- **Budget constraint**
 \[c_t + i_t = (1 - \tau_{l,t}) w_t h_t e_t + (1 - \tau_{k,t}) r_t k_t + \zeta_t, \quad (2) \]

- **Capital law of motion**
 \[(1 + n_t) k_{t+1} = i_t + (1 - \delta) k_t, \quad (3) \]
Model
Household Problem

- Weekly leisure of the workers (e_t)

\[
leisure_t = \psi \ln(rest_t) + (1 - \psi) \ln(weekend_t)
\]

where

\[
rest_t = (\bar{\omega} - \omega_t) \times workweek_t
\]

\[
weekend_t = \bar{\omega} \times (7 - workweek_t)
\]

therefore

\[
leisure_t = \psi \ln(\bar{h}_t - h_t) + (1 - \psi) \ln(\bar{\omega} \times (7 - workweek_t))
\]

where

\[
\bar{h}_t = \bar{\omega} \times workweek_t, h_t = \omega_t \times workweek_t
\]

- weekend is exogenous and does not affect choices (due to seperability)
Model
Firm Problem

- **Production**

\[Y_t = A_t K_t^\theta (h_t e_t N_t)^{1-\theta}, \]

so

\[\pi_t N_t = Y_t - w_t h_t e_t N_t - r_t K_t, \]

or in per family terms

\[\pi_t = y_t - w_t h_t e_t - r_t k_t. \]
Government budget constraint

\[G_t = \tau_{l,t} w_t h_t e_t N_t + \tau_{k,t} r_t K_t - \zeta_t N_t. \] \hspace{1cm} (4)

where assume

\[G_t = g_t Y_t. \]

so that

\[(1 - g_t) y_t = c_t + i_t \] \hspace{1cm} (5)
Equilibrium conditions

\[
\frac{\Psi}{c_t} = \mu_t \\
\frac{1 - \Psi}{h_t - h_t} = \mu_t (1 - \tau_{l,t}) w_t \\
(1 + n_t) \mu_t = \beta \mu_{t+1} \{(1 - \tau_{k,t+1}) r_{t+1} + 1 - \delta\} \\
r_t = \theta \frac{y_t}{k_t} \\
w_t = (1 - \theta) \frac{y_t}{h_t e_t} \\
(1 + n_t) k_{t+1} = i_t + (1 - \delta) k_t, \\
y_t = A_t k_t^\theta (h_t e_t)^{1-\theta} \\
(1 - g_t) y_t = c_t + i_t
\]
Quantitative Analysis
Algorithm

- **Shooting algorithm**
 - 8 variables \(\{k_{t+1}, \mu_t, h_t, y_t, c_t, i_t, r_t, w_t\}\), 8 equilibrium conditions for 1975-2014
 - specify initial and terminal conditions
 - initial capital = data in 1975
 - terminal capital = steady state capital given constant productivity growth, taxes etc. after terminal period
 - search for the trajectory of capital that satisfies all equilibrium conditions and the terminal condition
Table 7. Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>Capital Income Share</td>
</tr>
<tr>
<td>(\beta)</td>
<td>Subjective Discount Factor</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Capital Depreciation Rate</td>
</tr>
<tr>
<td>(\Psi)</td>
<td>Preference Weight</td>
</tr>
</tbody>
</table>
Figure: Simulated Variables: Benchmark
Quantitative Analysis

Counterfactual Simulation: Constant Demographics

Figure: Simulated Variables: No Demographic Transition
Quantitative Analysis
Counterfactual Simulation: Constant Productivity

Figure: Simulated Variables: Constant Productivity
Quantitative Analysis

Counterfactual Simulation: Constant Fiscal Policy

Figure: Simulated Variables: Constant Fiscal Policy
Quantitative Analysis

Counterfactual Simulation: Constant Workweek

Figure: Simulated Variables: Constant Workweek
Quantitative Analysis

Summary

- Productivity growth is by far the most important driver of growth
- Population aging increases hours worked but reduces total labor and hence output by 8.4%
- Population shrinking reduced capital dilution and increased output by 5.9%
- Government consumption increased output by 3.9%
- Labor income tax reduced output by 8.1%
- Workweek shortening reduced output by 9.6%
Figure: Structural Change Data
• Representative household consumes goods and services
 • old relatively prefers services more than young
 • government subsidizes service consumption

• Firm produces goods and services

• Government taxes the household by labor and capital income tax and lumpsum tax and subsidizes service consumption
Consumption

\[c_{y,t} = \left(\omega_y \frac{\varepsilon - 1}{\varepsilon} c_{yg,t} + (1 - \omega_y) \frac{\varepsilon - 1}{\varepsilon} c_{ys,t} \right)^{\frac{\varepsilon}{\varepsilon - 1}}, \]

\[c_{o,t} = \left(\omega_o \frac{\varepsilon - 1}{\varepsilon} c_{og,t} + (1 - \omega_o) \frac{\varepsilon - 1}{\varepsilon} c_{os,t} \right)^{\frac{\varepsilon}{\varepsilon - 1}}, \]

Budget constraint

\[\eta_t (c_{yg,t} + (1 - s_y)p_t c_{ys,t}) + (1 - \eta_t) (c_{og,t} + (1 - s_o)p_t c_{os,t}) + i_t \]
\[= (1 - \tau_{l,t}) w_t h_t e_t + (1 - \tau_{k,t}) r_t k_t + \zeta_t, \]
• Production

\[y_{g,t} = A_{g,t} k_{g,t}^\theta (h_{g,t} e_{g,t})^{1-\theta}, \]
\[y_{s,t} = A_{s,t} k_{s,t}^\theta (h_{s,t} e_{s,t})^{1-\theta}. \]

• Relative price of services

\[p_t = \frac{A_{g,t}}{A_{s,t}}. \]
Government budget constraint

\[G_t = S_t + \tilde{G}_t \]
\[= \tau_{l,t} w_t h_t e_t N_t + \tau_{k,t} r_t K_t - \zeta_t N_t. \]

where

\[S_t = \eta_t s_y p_t c_{ys,t} + (1 - \eta_t) s_o p_t c_{os,t}. \]
Table 8. Parameter Values II

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>Consumption Elasticity</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega_y)</td>
<td>Preference Weight Young</td>
<td>0.55</td>
</tr>
<tr>
<td>(\omega_o)</td>
<td>Preference Weight Old</td>
<td>0.2</td>
</tr>
<tr>
<td>(s_y)</td>
<td>Subsidy Rate Young</td>
<td>0.1</td>
</tr>
<tr>
<td>(s_o)</td>
<td>Subsidy Rate Old</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Population Aging and Structural Transformation
Quantitative Exercise

- Nominal expenditure share

\[\frac{p_t c_{s,t}}{c_{g,t}} = \frac{\left(\eta_t \frac{1-s_o}{1-s_y} \frac{\omega_o}{\omega_y} \left(\left(1 - s_o \right) p_t \right)^{\varepsilon-1} + 1 + 1 - \eta_t \right)}{\left(\eta_t \frac{1+\frac{1-\omega_o}{\omega_o} \left(\left(1 - s_o \right) p_t \right)^{1-\varepsilon}}{1+\frac{1-\omega_y}{\omega_y} \left(\left(1 - s_y \right) p_t \right)^{1-\varepsilon} + 1 - \eta_t \right)} \frac{p_t}{\left(\frac{\omega_o}{1-\omega_o} \left(\left(1 - s_o \right) p_t \right)^{\varepsilon} \right)}. \]

where \(p_t \) and \(\eta_t \) from data
Subsidy share of government consumption

\[\phi_t = \frac{S_t}{C_t} \times \frac{C_t}{G_t} \]

where

\[\frac{S_t}{C_t} = \eta_t \frac{s_y}{1 - s_y} \frac{1}{1 + \frac{\omega_y}{1 - \omega_y} ((1 - s_y)p_t)^{1-1}} \]

\[+ (1 - \eta_t) \frac{s_o}{1 - s_o} \frac{1}{1 + \frac{\omega_o}{1 - \omega_o} ((1 - s_o)p_t)^{1-1}}. \]

and \(\frac{C_t}{G_t} \) from data
Population Aging and Structural Transformation
Quantitative Exercise

Figure: Structural Change Simulation
Conclusion

- A parsimoneous model can capture the effects of demographics, government policy and productivity

- Population aging harms growth through
 - decline in labor participation
 - increase in social security tax burden

- Population aging contributes to structural transformation by
 - increasing the share of services relative to goods
 - increase in government expenditure
Extensions

- OLG?: intertemporal inequality
- Non-separable utility?: intratemporal inequality
- Variable employment rate?: should amplify the result
- Population aging and productivity?: endogenous growth?