Fiscal policy and debt management with incomplete markets

Anmol Bhandari David Evans Mikhail Golosov Thomas Sargent
Minnesota Oregon Princeton NYU
Classical question in macro public finance

- How should the government manage its debt over the business cycle?
Classical question in macro public finance

- How should the government manage its debt over the business cycle?

 What is the "right" level of public debt?
 How quickly debt should be repaid?
 How much debt and taxes should be used to respond to agg shock?
Classical question in macro public finance

- How should the government manage its debt over the business cycle?
- What is the "right" level of public debt?
- How quickly debt should be repaid?
- How much debt and taxes should be used to respond to agg shock?

- Renewed interest in the aftermath of 2008 crisis
- Concerns that current debt levels are "too high" for rich countries...
Classical question in macro public finance

- How should the government manage its debt over the business cycle?

 What is the "right" level of public debt?
 How quickly debt should be repaid?
 How much debt and taxes should be used to respond to agg shock?

- Renewed interest in the aftermath of 2008 crisis
- Concerns that current debt levels are "too high" for rich countries...
- And "too low" (negative) for China, Norway,...
• A theory of optimal public debt management
 • Ramsey planner with distortionary taxation and incomplete markets
• Contribution: develop quadratic approximations that characterize moments of the invariant distribution in closed form
• Derive explicit formulas ("sufficient statistics") for the moments of the invariant distribution
This paper

- Most of the focus:
 - mean ("target") debt level
 - speed of reversion to the target
 - variance of debt in the invariant distribution

- Key insight: optimal debt minimizes risk for the gov’t

- Other questions that our framework addresses
 - what is the optimal composition of portfolio of gov’t debts?
 - how should gov’t debt respond to shocks?
 - how should government set taxes, transfers, tax rates over the cycle?
Results

• Main formulas:

\[
\text{target debt} = - \frac{\text{cov (returns, deficit)}}{\text{var (returns)}}
\]

\[
\text{speed of convergence} = \frac{1}{1 + \beta^2 \text{var (returns)}}
\]

• Here:
 • returns: MU-adjusted returns on gov’t portfolio of debts/assets
 • deficit: MU-adjusted present value of primary deficits

• Sufficient statistics: can be easily computed given observed data
Optimal debt level keeping maturity constant:

- target debt level: -7% of GDP
- speed of mean reversion: 250 years (half life)
- std. deviation: 0.26

Tax rates are persistent and smooth

Taxes and debt have similar volatility in the data but are less persistent
Related literature

 - any debt level is optimal, all fiscal hedging through (equivalent of) Arrow securities
 - hard to see how to achieve that with real world instruments

2. Incomplete markets: Barro, Bohn, Faraglia-Marcet-Scott, Lustig-Sleet-Yeltekin
 - mostly numerical, often for models with counterfactual returns
 - analytics (Barro): any debt level is optimal

 - can get their results in the limit, knife-edge cases

4. Portfolio theory: Markowitz, Merton, ...
 - GE, benevolence, interaction of portfolio decisions with taxation

5. Nominal debt, possibility of default
 - have not studied, but our approach should work there too
The simplest model

- Continuum of identical agents with preferences
 \[\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[c_t - \frac{1}{1 + \gamma} l_t^{1+\gamma} \right] \]

- No capital + exogenous gov't expenditures
 \[c_t + g_t = l_t \]

- Gov't can use proportional tax \(\tau_t\) and trade with agents one-period security (in zero net supply) at price \(q_t\) with stochastic payoff \(p_t\)
 \[g_t + p_t B_{t-1} = \tau_t l_t + q_t B_t \]

- iid shocks for \((g_t, p_t)\), \(B_t\) is in a compact set
- Let \(B_t \equiv q_t B_t\), \(R_t \equiv p_t / q_{t-1}\)
Characterization

Lemma

\[\{ c_t, l_t, R_t, B_t, \tau_t \}_{t=0}^\infty \text{ is a competitive equilibrium if and only if} \]

\[\{ l_t, B_t \}_{t=0}^\infty \text{ satisfies} \]

\[
\underbrace{l_t - l_t^{1+\gamma} + B_t}_{= \tau_t l_t} = R_t B_{t-1} + g_t
\]

- Easier to express hours as a function of tax revenues \(Z \)

\[
Z \equiv l(Z) - l(Z)^{1+\gamma}
\]

\[
\Psi(Z) = \frac{1}{1 + \gamma} l(Z)^{1+\gamma}
\]

- Consumption is a residual

\[
c_t = (1 + \gamma) \Psi(Z_t) + R_t B_{t-1} - B_t
\]
Ramsey problem in recursive form

- Bellman equation (state $s = (g, p)$):

\[
V(B) = \max_{\{Z(s), B'(s)\}} \mathbb{E} \left[R B - B' + \gamma \Psi(Z) + \beta V(B') \right]
\]

subject to

\[
Z(s) + B'(s) = R(s) B + g(s) \quad \text{for all } s
\]

- Policy functions $\tilde{B}(B, s), \tilde{Z}(B, s), \tilde{\tau}(B, s)$ induce optimum

$\{\tilde{B}_t, \tilde{Z}_t, \tilde{\tau}_t\}_t$
Optimal policy

- **Monotonicity**: $\tilde{B}, \tilde{Z}, \tilde{\tau}$ are increasing in E
- **Distortion smoothing**:
 $$V' (\tilde{B}_t) = \mathbb{E}_t V' (\tilde{B}_{t+1}) + \beta \text{cov}_t (R_{t+1}, V' (\tilde{B}_{t+1}))$$
- **Uniqueness**: \tilde{B}_t converges to a unique invariant distribution
Optimal policy

- Our goal: characterize properties of the invariant distribution
- Amount of risk depends on debt level:
 \[E(B, s) = R(s)B + g(s) \]
- Let \(B^* \) be the debt level that minimizes \(\text{var}(E(B, \cdot)) \):
 \[B^* \equiv -\frac{\text{cov}(R, g)}{\text{var}(R)} \]
- Let \(Z^* \) be the level of tax revenues that satisfies budget constraint in expectation
 \[Z^* \equiv \bar{g} + \frac{1 - \beta}{\beta}B^* \]
Special case: p and g are perfectly correlated

- If $\text{corr}(p, g) = \pm 1$ then $E(B^*, s)$ is independent of s
 - risk is completely eliminated if $B_t = B^*$
- Monotonicity of policy rules:
 \[
 B < B^* \implies \text{cov}(R(\cdot), V'(\tilde{B}(B, \cdot))) > 0 \\
 B = B^* \implies \text{cov}(R(\cdot), V'(\tilde{B}(B, \cdot))) = 0 \\
 B > B^* \implies \text{cov}(R(\cdot), V'(\tilde{B}(B, \cdot))) < 0
 \]
- Euler equation and Martingale convergence theorem imply
 \[
 \tilde{B}_t \to B^*, \ \tilde{Z}_t \to Z^*, \ \text{var}(\tilde{\tau}_t) \to 0
 \]
Imperfect hedging

• If shocks are imperfectly correlated, complete elimination of risk is impossible, invariant distribution of \(\{ \tilde{B}_t, \tilde{Z}_t \} \) is not degenerate

• Our approach: take quadratic approximation of \(\tilde{B} (B, s) \) around \(B \) as variance of shocks goes to zero

• Simple linear policy rules

\[
\tilde{B} (s, B) = B + \beta [g (s) - \bar{g}] + \beta \left[R (s) - \beta^{-1} \right] \\
\quad - \beta^2 \text{var} (R) B - \beta^2 \text{cov} (R, g) + O \left(\| s \|^3, (1 - \beta) \| s \|^2 \right)
\]
Main result: moments of invariant distribution

Proposition: the mean, variance and mean reversion of \(\{ \tilde{B}_t, \tilde{Z}_t \} \) satisfy, up to order \(O(||s||, (1 - \beta)) \):

- The mean of the invariant distribution
 \[
 \mathbb{E}\tilde{B}_t = B^*, \quad \mathbb{E}\tilde{Z}_t = Z^*
 \]

- Speed of mean reversion
 \[
 \frac{\mathbb{E}_{t-1} (\tilde{B}_t - B^*)}{\tilde{B}_{t-1} - B^*} = \frac{\mathbb{E}_{t-1} (\tilde{Z}_t - Z^*)}{\tilde{Z}_{t-1} - Z^*} = \frac{1}{1 + \beta^2 \text{var} (R)}
 \]

- Variance of the invariant distribution
 \[
 \text{var} (\tilde{B}_t) = \frac{\text{var} (\mathbb{E} (B^*))}{\text{var} (R)}
 \]
 \[
 \text{var} (\tilde{Z}_t) = 0
 \]
Intuition

- Back to Euler equation:

\[
\text{cov} \left(R_{t+1}, V' (\tilde{B}_{t+1}) \right) \propto \text{cov} \left(R_{t+1}, E_{t+1} \right) + O \left(\| s \|^3 \right) \\
\propto \frac{\partial}{\partial B} \text{var} \left(R_{t+1}, E_{t+1} (B, \cdot) \right) + O \left(\| s \|^3 \right)
\]

- \(\text{var} \left(R_{t+1}, E_{t+1} (B, \cdot) \right) \) is minimized at \(B = B^* \):

\[
B < B^* \implies \text{cov} \left(R_{t+1}, E_{t+1} (B, \cdot) \right) > 0 \\
B = B^* \implies \text{cov} \left(R_{t+1}, E_{t+1} (B, \cdot) \right) = 0 \\
B > B^* \implies \text{cov} \left(R_{t+1}, E_{t+1} (B, \cdot) \right) < 0
\]

The optimal policy is to revert to risk-minimizing position.
Main insights

- Target debt level: minimizes risk
 - target level is positive if $\text{cov}(R, g) < 0$
 - target level is negative (accumulate assets) if $\text{cov}(R, g) > 0$
- Speed of mean reversion is determined by $\text{var}(R)$
 - $\text{var}(R) = 0$ implies debt is random walk as in Barro (1979)
- The less hedging B^* offers, the bigger the variance of the invariant distribution is
- For β close to one, $\text{var}(\tilde{Z}_t)$ and $\text{var}(\tilde{\tau}_t)$ is close to 0 \implies all adjustment to shock is done via debt
Reliability of approximations

Figure 1: Using the quadratic approximation (red line) and a more accurate global approximator (black line), the top, middle, and bottom panels plot smoothed kernel densities (left side) and decision rules (right side) associated with values of $\sigma = 0.001, 0.02,$ and 0.04. The right panel displays policies $\tilde{H}(s, H) - H$ for states s that attain the extreme values for $\{g(s)\}$ and $\{p(s)\}$.
Extensions

- Richer asset structure
- Persistence, other shocks
- Risk aversion
Extension 1: richer market structure

- Suppose there are K assets with arbitrary payoffs, duration
 - note that fixed portfolio weights are isomorphic to one security
- Notation: $\mathbf{R} = \begin{bmatrix} R^1, \ldots, R^K \end{bmatrix}$; $\mathbb{C} [\mathbf{R}, \mathbf{R}]$ and $\mathbb{C} [\mathbf{R}, \mathbf{g}]$ are covariances matrices
 - assume that $\mathbb{C} [\mathbf{R}, \mathbf{R}]$ is non-singular
- Risk-minimizing total debt level and portfolio are

$$
(B^*, \mathbf{B}^*) \equiv \arg \min_{B=\mathbf{1}^T \mathbf{B}} \operatorname{var} \left(\sum R^k B^k + g \right)
$$

$$
= \left(-\mathbf{1}^T \mathbb{C} [\mathbf{R}, \mathbf{R}]^{-1} \mathbb{C} [\mathbf{R}, \mathbf{g}], \mathbb{C} [\mathbf{R}, \mathbf{R}]^{-1} \mathbb{C} [\mathbf{R}, \mathbf{g}] \right)
$$
Optimal portfolio with active debt management

- Mean debt level:
 \[E(\tilde{B}_t) = B^* \]

- Mean reversion:
 \[
 \frac{\mathbb{E}_{t-1}(\tilde{B}_t - B^*)}{(\tilde{B}_{t-1} - B^*)} = \frac{\beta^{-2} \mathbf{1}^T C [R, R]^{-1} \mathbf{1}}{1 + \beta^{-2} \mathbf{1}^T C [R, R]^{-1} \mathbf{1}}
 \]

- Optimal portfolio:
 \[
 B_t = B^* + \frac{C [R, R]^{-1} \mathbf{1}}{\mathbf{1}^T C [R, R]^{-1} \mathbf{1}} \left(\tilde{B}_t + \mathbf{1}^T C [R, R]^{-1} C [R, g] \right)
 \]
Some insights

- Optimal portfolio chosen to **minimize risk**
 - unlike Merton’s investor’s, no risk-return trade-off
 - gov’t benevolent + general equilibrium implies that not optimal to chase returns for gov’t

- Speed of mean reversion is slower with more asset: can hedge risks better when $B_t \neq B^*$

- Higher debt $B_t \implies$ higher weight of securities with small $\text{var} \left(R^k \right)$
Suppose that shocks are first order Markov + TFP shocks θ + discount factor shocks.

For any random variable x let

$$PV(x; s) = \mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t x_t \bigg| s_0 = s \right].$$
Optimal policy with persistent shocks

- Optimal debt satisfies

\[V'_t (\tilde{B}_t) = \mathbb{E}_t V'_{t+1} (\tilde{B}_{t+1}) + \beta \text{cov}_t (R_{t+1}, V'_{t+1} (\tilde{B}_{t+1})) \]

- Our quadratic approximations imply that in invariant distribution

\[\mathbb{E} \tilde{B}_t = \frac{\text{cov} (R, \text{PV} (g)) - \bar{g} \text{cov} \left(R, \text{PV} \left(\theta \frac{1+\gamma}{\gamma} \right) \right)}{\text{var} (R)} \]

mean reversion:

\[\frac{1}{1 + \beta^2 \text{var} (R)} \]
Intuition: risk minimization

- Planner wants to minimize fluctuations in τ_t
- Primary deficit, holding τ constant is

$$X_\tau \equiv g - \theta \frac{1+\gamma}{\gamma} Z_\tau = g - \theta \frac{1+\gamma}{\gamma} \tau (1 - \tau)^{\frac{1}{\gamma}}$$

- Mean level of debt B and τ related through budget constraint:

$$\frac{1 - \beta}{\beta} B = \bar{g} - \tau (1 - \tau)^{\frac{1}{\gamma}} \mathbb{E} \theta^{\frac{1+\gamma}{\gamma}}$$

- The mean of invariant distribution is risk-minimizing debt:

$$B^* \equiv \arg\min_B \text{var} \left(RB + PV \left(X_{\tau(B)} \right) \right)$$

- Effect from $\tau (B)$ is second order:

$$B^* \approx -\frac{\text{cov} \left(R, X_{\tau(B)} \right)}{\text{var} \left(R \right)} \text{ for any } B$$
Extension 3: Risk aversion

- Same environment as extension 1 but utility is

\[
\frac{c^{1-\sigma}}{1-\sigma} - \frac{l^{1+\gamma}}{1+\gamma}
\]

- New implementability constraint

\[
U_{c,t}B_t + U_{c,t} \left[l_t + \frac{U_{l,t}}{U_{c,t}} l_t - g_t \right] = \frac{p_t U_{c,t}}{\beta E_{t-1} p_t U_{c,t}} U_{c,t-1}B_{t-1}
\]
Effective debt and return

- Define
 - effective debt: \(B_t = U_{c,t}B_t \)
 - effective return: \(R_t = \frac{p_t U_{c,t}}{\beta E_{t-1} p_t U_{c,t}} \)
 - effective primary deficit: \(\chi_t = U_{c,t} \chi_t \)
- All can be written as functions of \(c_t \)
Recursive problem

- Bellman equation

\[V(\mathcal{B}, s) = \max_{\{c(s), \mathcal{X}'(s)\}} \mathbb{E} \left[U \left(c(s), \frac{c(s) + g(s)}{\theta(s)} \right) + \beta V(\mathcal{B}, s) \right] \]

subject to

\[\mathcal{B}'(s) = \mathcal{R}(s) \mathcal{B} + \mathcal{X}(s) \text{ for all } s \]

- Similar to recursive formulation in quasi-linear case, same optimality condition for effective debt:

\[V_t(\tilde{\mathcal{B}}_t) = \mathbb{E}_t V'_{t+1}(\tilde{\mathcal{B}}_{t+1}) + \beta \text{cov}_t (\mathcal{R}_{t+1}, V'_{t+1}(\tilde{\mathcal{B}}_{t+1})) \]
Risk-minimizing effective debt

- Planner wants to minimize fluctuations in τ
- The risk-minimizing effective debt is

$$\tilde{B}^* = -\frac{\text{cov} (R, PV (X))}{\text{var} (R)}$$

- Terms on the r.h.s. are endogenous but, up to the second order, do not depend on τ
- Can be easily computed without doing dynamic programing
- Risk-free $R \implies R$ is when X is high \implies optimal to hold negative quantity of risk-free debt
- Easy to generalize to K asset
Quantitative exercise

- Apply our analysis to the U.S. economy
- Since formulas are approximation, also evaluate how well they do
Model specification

- Preferences
 \[\ln c \equiv \frac{1}{3} l^3 \]

- 1 asset, return are matched to returns of the U.S. gov't portfolio

- 3 shock process:

 \(\ln \theta_t = \rho_\theta \theta_{t-1} + \sigma_\theta \epsilon_{\theta,t} \)

 \(\ln g_t = \ln \bar{g} + \chi_g \epsilon_{\theta,t} + \sigma_g \epsilon_{g,t} \)

 \(\ln p_t = \chi_p \epsilon_{\theta,t} + \sigma_p \epsilon_{p,t} \)
Target statistics:
- dynamics of GDP
- dynamics of returns to U.S. gov’t portfolio

Returns computed from budget constraint:

\[(q_t + p_t) B_{t-1} = X_t + q_t B_t\]

\[\implies R_t = \frac{\text{market value of debt}_t + \text{primary deficit}_t}{\text{market value of debt}_{t-1}}\]

GDP and returns are endogenous, depend on tax policy. We estimate

\[\tau_t = (1 - \rho_\tau) \tau_{t-1} + \rho_\tau \bar{\tau} + \rho_Y \ln Y_t + \rho_{Y-} \ln Y_{t-1}\]
Model fit

<table>
<thead>
<tr>
<th>Param</th>
<th>Value</th>
<th>Moment</th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Log Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{θ}</td>
<td>0.020</td>
<td>std. dev</td>
<td>1.7%</td>
<td>1.70%</td>
</tr>
<tr>
<td>ρ_{θ}</td>
<td>0.160</td>
<td>auto corr</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_p</td>
<td>0.05</td>
<td>std. dev</td>
<td>5.1%</td>
<td>5.02%</td>
</tr>
<tr>
<td>χ_p</td>
<td>0.650</td>
<td>corr with $\log Y_t$</td>
<td>-0.06</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G/Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\bar{g}</td>
<td>0.230</td>
<td>mean</td>
<td>23%</td>
<td>23%</td>
</tr>
<tr>
<td>σ_g</td>
<td>0.040</td>
<td>std. dev</td>
<td>4.7%</td>
<td>4.7%</td>
</tr>
<tr>
<td>χ_g</td>
<td>-0.150</td>
<td>corr with $\log Y_t$</td>
<td>-0.42</td>
<td>-0.41</td>
</tr>
</tbody>
</table>
Optimal policy: computed and analytical

Correlation of returns and output is close to 0:
- correlation with effective returns is negative
- accumulate assets

Variability of effective returns is quite low, provides bad hedge:
- slow convergence to the mean
- large variance of debt

<table>
<thead>
<tr>
<th>Effective debt: X_t</th>
<th>Using simulation</th>
<th>Using formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-0.07</td>
<td>-0.06</td>
</tr>
<tr>
<td>Half life (years)</td>
<td>250</td>
<td>257</td>
</tr>
<tr>
<td>Std. deviation</td>
<td>0.26</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Table 4: Ergodic moments and comparison with formula
Simple back of envelope

- Run VAR

\[
\begin{pmatrix}
X_t \\
Y_t
\end{pmatrix} = A \begin{pmatrix}
X_{t-1} \\
Y_{t-1}
\end{pmatrix} + \varepsilon_t
\]

- Let

\[
\begin{pmatrix}
\alpha X \\
\alpha Y
\end{pmatrix} = \left(I - \beta^{-1} A \right)^{-1} \begin{pmatrix}
1 \\
0
\end{pmatrix}
\]

- Then

\[
PV_t (X') = \alpha X X_t + \alpha Y Y_t
\]

- Risk minimizing effective debt

\[
B^* = - \frac{\text{cov} (R_t, PV_t (X'))}{\text{var} (R_t)} = - \frac{\alpha Y \text{cov} (R_t, Y_t) + \alpha X \text{cov} (R_t, X_t)}{\text{cov} (R_t)}
\]

- Applying to the U.S. data

\[
B^* = -0.08
\]
Comparison to the U.S. policy

<table>
<thead>
<tr>
<th>Moments</th>
<th>Benchmark</th>
<th>Comparison to U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Simulated</td>
</tr>
<tr>
<td>Tax Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>std. dev</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>auto corr</td>
<td>0.97</td>
<td>0.31</td>
</tr>
<tr>
<td>Log Debt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>std. dev</td>
<td>10%</td>
<td>1.8%</td>
</tr>
<tr>
<td>auto corr</td>
<td>0.95</td>
<td>0.31</td>
</tr>
</tbody>
</table>

- Similar orders of magnitude
- Debt in the U.S. too smooth, reverts to the mean too quickly
Conclusion

- Portfolio theory for government assets
 - general equilibrium effects
 - benevolence
- Easily extend to other countries
 - open economy and accumulating foreign debt (e.g. China)
 - investing in stocks (e.g. Norway, sovereign funds)