EM²: Nuclear Power for the 21st Century

Presented at the Canon Institute for Global Studies Climate Change Symposium

Climate Change and the Role of Nuclear Energy

By Dr. Christina Back

February 5, 2016

This material is based upon work supported by GA IR&D.

For Nuclear Power To Play a Vital Role In Low Carbon Emissions, 21st Century Challenges Must Be Met

- Energy Resources
- Economic Competitiveness
- Siting Flexibility
- Waste Disposal

World Energy Requirements Present Major Challenges and Large Opportunities

Global Energy Consumption EIA and Harvard Projections

Nuclear can be a major clean-energy factor in supporting this growth

World's Uranium and Thorium Have almost 300 Times More Energy than all Proven Oil Reserves

Competition, Fossil Depletion and Environmental Costs Will Create Market for Nuclear and Renewables

Projected composition of energy Consumption to meet world demand

Required growth in nuclear & renewables to meet demand

However, nuclear power must be able to fill energy demand at a reasonable price

Siting Flexibility

Dry Cooling Greatly Increases Available Sites

- 1) LWR sites are limited due to need for water cooling.
- 2) EM² has substantially more siting opportunities due to dry-cooling ability

Site Requirement	4 x EM ²	ALWR
Power, MWe	1060	1117
Minimum land area, acres	50	500
Minimum cooling water makeup, gpm	negligible	200,000
Max distance to rail, mi	N/A	20
Safe shutdown earthquake acceleration, g	0.5	0.3

Green = no siting challenges Yellow = 1 siting challenge Orange = 2 siting challenges Blue = 3 or more siting challenges

60% of U.S. is available for siting an EM² plant; only 13% is available to LWRS

Updated Application of Spatial Data Modeling and Geographical Information Systems (GIS) fo Identification of Potential Siting Options for Small Modular Reactors, ORNL TM-2012/403, Sept, 2012

The Nuclear Industry Requires a Technology Upgrade

LWRs are the workhorse for the nuclear industry, but

can 60-year old technology meet the huge world energy demand in 21st century and beyond?

Problems

Uranium	LWRs require large natural U resources for ²³⁵ U enrichment
Efficiency	Low electric output to fuel energy consumed (~33%)
Waste	Low fuel utilization/efficiency result in high waste production
Water	lack of abundant cooling water inhibits nuclear power siting
High Cost	LWRs cannot compete with fossil fuels in most countries

Energy Multiplier Module (EM²) is a Compact Fast Gas Reactor Optimized for 21st Century Grid

Below-ground construction negates many physical threats and improves security

1060 MWe EM² plants fits on 9 hectares

- 30-year fuel life high burnup
- Multi-fuel capable
- Reduced waste stream
- Cost competitive
- Flexible siting, no need for water cooling
- Factory built, truck transportable
- Higher efficiency 53% net

EM² is a Modular, Gas-Cooled, "Convert and Burn", Fast Reactor

Two reactor systems on one seismically isolated module

Specifications:

- 265/240 MWe per reactor for water/dry cooling
- 500 MW_t reactor power
- 4 modules per standard plant
- 60 year plant life; 30 year core life
- 60 year dry fuel storage
- 14 % average fuel burnup
- Multi-fuel capable
 - Fissile: low-enriched U or converted MOX
 - Fertile: depleted U, natural U, spent LWR fuel or thorium

Reduced Capital Cost: Use Building Block Module Pair to Reduce Construction Time to 42 Months

EM² module pair

EM² reactor

aux. bldg.

AP1000 reactor auxiliary building (China installation) same size as entire EM² module pair

GENERAL ATOMICS

EM² Primary Coolant System Includes Power Conversion within 2-Chamber Containment

Reactor System: Long-Burn Core Extracts Most of Its Energy From Fertile Uranium or Thorium

Starter	Fertile
LEU: ~ 11.6%	Depleted uranium
Transuranics	Used nuclear fuel
Mixed U/Pu oxides	Natural uranium
Recycled EM ² discharge	Thorium

EM² Fuel is Designed to Meet the Challenge of a 30-Year Burn

High Efficiency: High Temperature + Combined Brayton/Organic Rankine Cycle

* Based on U.S. geographical and seasonal mean temps

EM² DRACS Based on Natural Circulation Cooling

DRACS Passive Cooling Performance

Station Blackout Cooldown on only one DRACS loop

500 CM² Primary System Breach Cooldown on only one DRACS loop; Containment pressure reaches 100 psig

Waste Reduction: Benefits from High Temperature and Radiation Resistant Materials

One LWR produces ~600 tonnes of nuclear waste over 30 years

4-unit EM² produces 80% less waste over the same period

For EM² closed cycle, waste is further reduced to 97%

EM² Cuts Energy Costs by 40% 5% Cost of Capital

EM² Provides a Firm Basis for the Nuclear Power to Reduce CO₂ Emissions

- Energy Resources EM² burns ²³⁸U and ²³²Th thereby extending nuclear energy resources by a factor of thousands.
- Economically Viable EM² reduces the cost of electricity to make it affordable in the world market
- Water Resources EM² does not require water cooling thereby enabling siting in more locations and preserving precious water resources
- Waste Reduction EM² reduces the amount of nuclear waste relative to current thermal reactor technology by a factor of five for once through and by a factor of 30 for recycle.

