The Home Market Effect and Patterns of Trade Between Rich and Poor Countries

Kiminori Matsuyama
Northwestern University

December 2015
Introduction

- Empirically rich (poor) countries tend to export high (low) income elastic products

- Standard trade models assume *homothetic preferences* to focus on the supply side determinants of the patterns of trade

- Just adding *nonhomothetic preferences* in the standard models would, *ceteris paribus*, make rich countries *import* high income elastic goods

- *Virtually all* models of trade with nonhomothetic preferences *assume* that the rich have CA in high income elastic goods.

 ✓ **Factor endowment**: Markusen (1986), Caron-Fally-Markusen (2014)

These models suggest that the rich export high income elastic goods *despite* they demand relatively more of them.

- Here, we explain *why* the rich have CA in high income elastic goods based on *Home Market Effect*, suggesting that the rich export high income elastic goods *because* they demand relatively more of them.
Home Market Effect (HME): Krugman’s (1980) example

- Two Dixit-Stiglitz monopolistic competitive sectors, α & β, with iceberg trade costs
- One factor of production (labor)
- Two countries of equal size, A & B, mirror-images of each other
 - A is a nation of α-lovers; with the minority of β-lovers.
 - B is a nation of β-lovers, with the minority of α-lovers.

In equilibrium,
- **Under autarky**, proportionately large share of firms in A operates in sector α.
- **Under trade**, disproportionately large share of firms in A operates in sector α.
- A becomes a net-exporter in α; B a net exporter in β.

Key Insight: With scale economies and positive but finite trade costs, a relatively larger domestic market is a source of comparative advantage.

Notes: In Krugman (1980),
- Demand composition differs across countries due to *exogenous variations in taste*
- The mirror image setup obscures crucial factors of HME. Also restricts comparative static exercises
This Paper: Krugman-type HME model with demand composition difference due to nonhomothetic preferences. Also dispenses with the mirror-images setup.

- Continuum of Dixit-Stiglitz monopolistic competitive sectors with iceberg trade costs
- Two countries; may differ only in per capita labor endowment and population size.
- Preferences across sectors: Implicitly Additively Separable Nonhomothetic CES
 - Sectors indexed such that their income elasticity is increasing in the index.
 - The Rich has relatively larger domestic market than the Poor in the higher indexed

Under Trade Equilibrium, HME implies
- The Rich’s share of firms are disproportionately larger in higher-indexed sectors
- The Rich run trade surpluses (deficits) in higher (lower)-indexed sectors.

Comparative Statics: Due to endogenous demand compositions, uniform productivity improvement and a trade cost reduction cause
- Product cycles: The Rich switches from a net exporter to a net importer in the middle
- Welfare gaps to widen (narrow), when different sectors produce substitutes (complements)
- When two countries differ in size, a trade cost reduction has additional effects due to the ToT change; Leapfrogging and Reversal of the patterns of trade
Explicitly vs. Implicitly Additive Separability: Hanoch (1975)

Explicit Additivity: \[u = \int_{0}^{1} f_s(c_s)ds; \quad \text{CES if} \quad u = \int_{0}^{1} \omega_s(c_s)^{1-1/\eta} ds \]

Pigou’s Law:
Income Elasticity of Good s = constant
Price Elasticity of Good s

Two Problems:
i) Empirically false (Deaton 1974 and others)
ii) Conceptually impossible to disentangle the effects of income elasticity differences from those of price elasticity differences

Implicit Additivity: \[\int_{0}^{1} f_s(u,c_s)ds = 1; \quad \text{CES if} \quad \int_{0}^{1} \omega_s(u)(c_s)^{1-1/\eta} ds = 1 \]

i) Price elasticities & income elasticities can be separate parameters.
ii) *Nonhomothetic CES* if \(\frac{\partial \log \omega_s(u)}{\partial u} \) varies with s. When we can index s to make it monotone increasing in s, \(\frac{\partial^2 \log \omega_s(u)}{\partial s \partial u} > 0, \) *log-supermodularity*
Fajgelbaum-Grossman-Helpman (2011); FGH

- A monopolistic competitive sector producing indivisible products with trade costs, with two segments, H&L, across which products are *vertically* differentiated.
- A competitive outside sector producing the divisible numeraire to pin down the ToT
- Each household consumes one unit of a particular product from either H or L.
 o A *discrete choice model* a la McFadden, a *nested-logit demand structure*
 o The rich consumers more likely to choose an H-product if marginal utility of the numeraire is higher when combined with an H-product
- The Rich (Poor) becomes a net-exporter of high-quality H (low-quality L) products.

FGH focuses on specialization along the quality dimension within a single industry. Our model focuses on specialization across a broader range of industries.

Some Advantages of Our Framework
- A minimum departure from the standard HME models
- Parsimonious and yet flexible
 o Comparative statics with any number of sectors and the ToT effect
 o Income elasticities are separate parameters from price elasticities
 o Different sectors may produce substitutes, as in Flam-Helpman (1987), Stokey (1991), and FGH (2011), or complements, as in Matsuyama (2000)
Organization of the Paper

1. Introduction
2. HME with Nonhomothetic Preferences
 2.1 The Model
 2.2 Autarky Equilibrium
 2.3 Trade Equilibrium and Patterns of Trade
 2.4 Ranking the Countries
 2.5 Comparative Statics
 2.5.1 A Uniform Productivity Improvement
 2.5.2 A Trade Cost Reduction without ToT change
 2.5.3 A Trade Cost Reduction with ToT Change
3. HME with Exogenous Taste Variations: A Comparison
4. Adding an Outside Goods Sector
5. Concluding Remarks
Appendix: Two Lemmas
Home Market Effect with Nonhomothetic Preferences
One Nontradeable Factor (Labor)

Two Countries: \((j \text{ or } k = 1 \text{ or } 2) \)

\(N^j \) identical households with labor endowment \(h^j \), supplied inelastically at \(w^j \).

- \(w^j h^j = E^j \): Household Income (and Expenditure)
- \(L^j = h^j N^j \): Total Labor Supply in \(j \)

\(N^j \) and \(h^j \) are the only possible sources of heterogeneity across the two countries.

Tradeable Goods:

- A continuum of monopolistically competitive sectors, \(s \in [0,1] \),
- Each sector produces a continuum of tradable differentiated goods, \(\nu \in \Omega^j_s = \Omega^1_s + \Omega^2_s \),

\(\Omega^j_s \): Disjoint sets of differentiated goods in sector \(s \) produced in country \(j \) in equilibrium
Household Preferences: Two-Tier structure

Lower-level, usual Dixit-Stiglitz aggregator (Homothetic within each sector)

\[
\tilde{C}_s^k \equiv \left[\int_{\Omega_s} (c_s^k(v))^{-\frac{1}{\sigma}} \, dv \right]^\frac{\sigma}{\sigma-1}; \quad \sigma > 1, \quad s \in [0,1]
\]

Upper-level, \(\tilde{U}^k = U(\tilde{C}_s^k, s \in [0,1]) \), implicitly given by

\[
\int_0^1 (\beta_s)^{\frac{1}{\eta}} (\tilde{U}^k)^{\frac{\epsilon(s)-\eta}{\eta}} (\tilde{C}_s^k)^{\frac{\eta-1}{\eta}} \, ds \equiv 1; \quad \beta_s > 0 \text{ and } \sigma > \eta \neq 1
\]

- \((\epsilon(s) - \eta)/(1 - \eta) > 0\) for global monotonicity & quasi-concavity
- \(\int_0^1 \epsilon(s) \, ds = 1\), without loss of generality.
- If \(\epsilon(s) = 1\) for all \(s \in [0,1]\), standard homothetic CES
- If \(\epsilon(s) \neq 1\), nonhomothetic. Index sectors so that \(\epsilon(s)\) is increasing in \(s \in [0,1]\). Then,

\[
\omega(s, \tilde{U}^k) \equiv (\beta_s)^{\frac{1}{\eta}} (\tilde{U}^k)^{\frac{\epsilon(s)-\eta}{\eta}} \text{ is log-supermodular in } s \text{ and } \tilde{U}^k.
\]
Lemma 1: For a positive value function, \(\hat{g}(\bullet; x) : [0,1] \rightarrow \mathbb{R}_+ \), with a parameter \(x \), define

\[
g(s; x) \equiv \frac{\hat{g}(s; x)}{\int_0^1 \hat{g}(t; x) dt} \text{ (a density function)} \quad \text{and} \quad G(s; x) \equiv \int_0^s g(t; x) dt = \frac{\int_0^s \hat{g}(t; x) dt}{\int_0^1 \hat{g}(t; x) dt} \text{ (its cumulative distribution function)}.
\]

If \(\hat{g}(s; x) \) is **log-supermodular** in \(s \) and \(x \), i.e. \(\frac{\partial^2 \log \hat{g}(s; x)}{\partial s \partial x} > 0 \),

i) \(\frac{g(s; x)}{g(s; x')} \) is decreasing in \(s \) for \(x < x' \); **Monotone Likelihood Ratio (MLR)**

ii) \(G(s; x) > G(s; x') \) for \(x < x' \). **First-Order Stochastic Dominance (FSD)**

The happier households put more weights on the higher-indexed goods.
Household Maximization: Two-Stage Budgeting

1st Stage (Lower-level) Problem: Chooses $c^k_s(\nu)$ for $\nu \in \Omega_s$ to:

$$\text{Max } \tilde{C}_s^k \equiv \left[\int_{\Omega_s} \left(c^k_s(\nu)\right)^{1-\frac{1}{\sigma}} d\nu \right]^{\frac{\sigma}{\sigma-1}}, \text{ subject to } \int_{\Omega_s} p^k_s(\nu)c^k_s(\nu)d\nu \leq E^k_s,$$

$p^k_s(\nu)$ & $c^k_s(\nu)$: the unit consumer price and consumption of variety $\nu \in \Omega_s$;

E^k_s: Expenditure allocated to sector-s, taken as given.

Solution:

$$c^k_s(\nu) = \left(\frac{p^k_s(\nu)}{P^k_s}\right)^{-\sigma} C^k_s = \frac{(p^k_s(\nu))^{-\sigma}}{(P^k_s)^{1-\sigma}} E^k_s, \text{ where } P^k_s \equiv \left[\int_{\Omega_s} (p^k_s(\nu))^{1-\sigma} d\nu \right]^{\frac{1}{1-\sigma}}$$

C^k_s: the maximized value of \tilde{C}_s^k, satisfying $E^k_s = P^k_s C^k_s$.

©Kiminori Matsuyama, HME and Trade Between Rich & Poor
2nd stage (Upper Level) Problem: Choose $E_s^k = P_s^k C_s^k$ to:

$$\text{Max } \tilde{U}^k \text{, subject to } \int_0^1 \left(\frac{1}{\eta} \left(\tilde{U}^k \right) \right)^{\varepsilon(s)-\eta} \left(C_s^k \right)^{\eta-1} ds \equiv 1 \text{ and } \int_0^1 P_s^k C_s^k ds = \int_0^1 E_s^k ds \leq E^k.$$

Solution: the share of sector-s in k’s expenditure, m_s^k

$$m_s^k \equiv \frac{E_s^k}{E^k} \equiv \frac{P_s^k C_s^k}{E^k} = \frac{\beta_s \left(U^k \right)^{\varepsilon(s)-\eta} \left(P_s^k \right)^{1-\eta}}{\int_0^1 \beta_i \left(U^k \right)^{\varepsilon(i)-\eta} \left(P_t^k \right)^{1-\eta} dt},$$

where U^k is the maximized value of \tilde{U}^k, given implicitly by:

$$\left(E^k \right)^{1-\eta} \equiv \int_0^1 \beta_s \left(U^k \right)^{\varepsilon(s)-\eta} \left(P_s^k \right)^{1-\eta} ds. \quad (U^k \text{ is strictly increasing in } E^k.)$$

Notes:

- $\partial \log(m_s^k / m_s^{k'}) / \partial \log(U^k) = \varepsilon(s) - \varepsilon(s')$. Higher-indexed more income elastic; Income elasticity differences are constant across different per capita income levels.

- $\beta_s \left(U^k \right)^{\varepsilon(s)-\eta} \left(P_s^k \right)^{1-\eta}$ is log-supermodular in s and U^k. From Lemma 1, for fixed prices, a higher E^k (and U^k) shifts the expenditure share towards higher-indexed.
The Rest of the model: Deliberately kept the same with Krugman (1980).

Iceberg Trade Costs: Only $1/\tau < 1$ fraction of exports survives shipping, reducing the export revenue to its fraction, $\rho \equiv (\tau)^{1-\sigma} < 1$

CES Demand for each good: $D_s(\nu) = A_s^j (p_s^j(\nu))^{-\sigma}$, $\nu \in \Omega_s^j$, where

$$A_s^j = b_s^j + \rho b_s^k \quad (k \neq j): \text{ Aggregate demand shifter for the producers in } j \text{ in } s$$

$$b_s^k = \beta_s \left(E_s^k \right)^\eta \left(U_s^k \right)^{\varepsilon(s)-\eta} N_s^k \left(p_s^k \right)^{\sigma-\eta}; \quad k's \text{ demand shifter for sector } s$$

Standard CES demand curve, but U^k affects b_s^k and hence A_s^j differently across s.

Constant Mark-Up: ψ_s units of labor to produce one unit of each variety in sector-s

$$p_s^j(\nu) = \frac{w_s^j \psi_s}{1 - 1/\sigma} \equiv p_s^j \quad \text{for } \nu \in \Omega_s^j$$

Free Entry (Zero-Profit) Condition: ϕ_s units of labor per variety to set up in sector-s.

Labor Market Equilibrium: $\int_0^1 f_s^j ds = 1$, f_s^j: sectoral share in employment (and value-added) and, if appropriately normalized, in the measure of firms (and varieties).
Autarky Equilibrium ($\rho = 0$):

Standard-of-Living:

\[
U^k_0 = u(x^k_0)
\]

where

\[
x^k_0 \equiv (h^k)^\sigma N^k = (h^k)^{\sigma - 1} L^k
\]

where \(u(x) \) is defined implicitly by

\[
(x)^{1-\eta} \equiv \int_0^1 \left(\beta_s (u(x))^{(\varepsilon(s) - \eta)} \right)^{\frac{\sigma - 1}{\sigma - \eta}} ds.
\]

- \(U^k_0 = u(x^k_0) \) is increasing both in \(h^k \) and in \(N^k \). **Aggregate increasing returns**
- Even if \(h^1 > h^2 \), \(U^1_0 < U^2_0 \) holds when \(L^1 / L^2 < (h^1 / h^2)^{1-\sigma} < 1 \).

Market Size (and Firm) Distributions:

\[
f^k_s = m^k_s = \frac{\left(\beta_s (u(x^k_0))^{(\varepsilon(s) - \eta)} \right)^{\frac{\sigma - 1}{\sigma - \eta}}}{\int_0^1 \left(\beta_t (u(x^k_0))^{(\varepsilon(t) - \eta)} \right)^{\frac{\sigma - 1}{\sigma - \eta}} dt}
\]

Notes:

- In autarky, firms (and labor) are distributed proportionately with market sizes.
- \(\left(\beta_s (u(x^k_0))^{(\varepsilon(s) - \eta)} \right)^{\frac{\sigma - 1}{\sigma - \eta}} \) is log-supermodular in \(s \) and \(x^k_0 \). From Lemma 1,

With a higher \(x^k_0 \equiv (h^k)^\sigma N^k \), the household becomes happier and spends relatively more on higher-indexed goods in equilibrium.
• Compare \(m_s^k = \frac{\left(\beta_s (u(x_0^k))^{(\varepsilon(s)-\eta)} \right)^{\sigma-1}}{\int_0^1 \left(\beta_i (u(x_0^k))^{(\varepsilon(t)-\eta)} \right)^{\sigma-1}} \) \(dt \) & \(m_s^k = \frac{\beta_s \left(U^k \right)^{(\varepsilon(s)-\eta)} \left(P_s^k \right)^{1-\eta}}{\int_0^1 \beta_i (U^k)^{(\varepsilon(t)-\eta)} \left(P_s^k \right)^{1-\eta}} \) dt and notice \(\frac{\sigma - 1}{\sigma - \eta} > 1 \) iff \(\eta > 1 \).

Given price indices, \(U \uparrow \) shifts the expenditure toward the higher-indexed.

In equilibrium, this causes entries (exits) and hence more (less) varieties in the higher (lower)-indexed sectors, reducing the effective relative prices of higher-indexed goods, which amplifies (moderates) the shift if \(\eta > (<) 1 \).

\[\frac{d \log u(\lambda x)}{d \log \lambda} = \frac{\lambda xu'(\lambda x)}{u(\lambda x)} = \zeta(\lambda x) \] is increasing (decreasing) in \(x \), if \(\eta > (<) 1 \). Hence,

i) If \(\eta < 1 \), gains from a percentage increase in \(x \) is lower at a higher \(x \).

ii) If \(\eta > 1 \), gains from a percentage increase in \(x \) is higher at a higher \(x \).
Trade Equilibrium and Patterns of Trade
Figure 1: (Factor) Terms of Trade Determination

\[\frac{L^1}{L^2} = \Lambda(\omega; \rho) \equiv (\omega)^{2\sigma} \frac{1 - \rho(\omega)^{-\sigma}}{1 - \rho(\omega)^{-\sigma}}, \text{ where } \omega \equiv \frac{w^1}{w^2}. \]

\[(\rho)^{-1/\sigma} \]

\[(\rho)^{1/\sigma} \]

\[\omega \equiv \frac{w^1}{w^2} \]

\[\lambda \equiv \frac{L^1}{L^2} \]

- The factor price lower in the smaller economy (Aggregate increasing returns)
- Globalization (\(\tau \downarrow \) or \(\rho \uparrow \)) reduces the smaller country’s disadvantage and hence the factor price differences.
Standard-of-Living: summarized by a single index, x^k_ρ

$$U^1_\rho = u(x^1_\rho), \text{ where } x^1_\rho \equiv \frac{(1-\rho^2)x_0^1}{1-\rho(\omega)^{-\sigma}} > x_0^1; \quad U^2_\rho = u(x^2_\rho), \text{ where } x^2_\rho \equiv \frac{(1-\rho^2)x_0^2}{1-\rho(\omega)^{-\sigma}} > x_0^2$$

$u(x)$, defined as before.

Gains from trade

Market Size Distributions: $m^k_s = \frac{\left(\beta_s (u(x^k_\rho))^{(\varepsilon(s)-\eta)}\right)^{\frac{\sigma-1}{\sigma-\eta}}}{\left(x^k_\rho\right)^{\frac{1-\eta}{\sigma-\eta}}} = \frac{\left(\beta_s (u(x^k_\rho))^{(\varepsilon(s)-\eta)}\right)^{\frac{\sigma-1}{\sigma-\eta}}}{\int_0^1 \left(\beta_s (u(x^k_\rho))^{(\varepsilon(i)-\eta)}\right)^{\frac{\sigma-1}{\sigma-\eta}} dt}$

$\left(\beta_s (u(x^k_\rho))^{(\varepsilon(s)-\eta)}\right)^{\frac{\sigma-1}{\sigma-\eta}}$ is log-supermodular in s & x^k_ρ. From Lemma 1, if $u(x^1_\rho) < u(x^2_\rho)$

i) MLR:

$$\frac{m^1_s}{m^2_s} = \left(\frac{x^1_\rho}{x^2_\rho}\right)^{\frac{\eta-1}{\sigma-\eta}} \left(\frac{u(x^1_\rho)}{u(x^2_\rho)}\right)^{\frac{\sigma-1}{\sigma-\eta}}$$

is strictly decreasing in s:

ii) FSD:

$$\int_0^1 m^1_s dt > \int_0^1 m^2_s dt$$

The Rich (Poor) has relatively larger domestic markets in higher(lower)-indexed sectors.
Firm Distributions: \[f_s^1 = \frac{m_s^1 - \rho(\omega)^{-\sigma} m_s^2}{1 - \rho(\omega)^{-\sigma}}; \quad f_s^2 = \frac{m_s^2 - \rho(\omega)^{\sigma} m_s^1}{1 - \rho(\omega)^{\sigma}} \]

HME; \[\frac{f_s^1}{f_s^2} > \frac{m_s^1}{m_s^2} > 1; \quad \frac{f_s^1}{f_s^2} = \frac{m_s^1}{m_s^2} = 1; \quad \text{or} \quad \frac{f_s^1}{f_s^2} < \frac{m_s^1}{m_s^2} < 1. \]

Sectoral Trade Balances: From \[NX_s^1 = -NX_s^2 \equiv V_s^1 \rho b_s^2 (w^1)^{1-\sigma} - V_s^2 \rho b_s^1 (w^2)^{1-\sigma}, \]

\[NX_s^1 = -NX_s^2 = \frac{\rho w^2 L^2}{(\omega)^{-\sigma}} - \rho (m_s^1 - m_s^2) = \frac{\rho w^1 L^1}{(\omega)^{\sigma}} - \rho (m_s^1 - m_s^2) \propto (m_s^1 - m_s^2). \]

Determined by the difference in the Demand Composition, not in the Market Size.

\[U_\rho^1 = u(x_\rho^1) < U_\rho^2 = u(x_\rho^2) \rightarrow m_s^1 / m_s^2 \text{ is strictly decreasing in } s \rightarrow \]

a unique cutoff sector, \(s_c \in (0,1) \), such that

\[NX_s^1 = -NX_s^2 > 0 \text{ for } s < s_c; \quad NX_s^1 = -NX_s^2 < 0 \text{ for } s > s_c. \]
Figure 2: Home Market Effect and Patterns of Sectoral Trade Balances:

For $U^1_\rho = u(x^1_\rho) < U^2_\rho = u(x^2_\rho)$

The Rich (Poor) runs surpluses in the higher-(lower-) indexed sectors, which produce with higher (lower) income elastic goods.
Figure 3: Ranking the Countries

Red Curve: $U^1_0 < U^2_0$ below, $U^1_0 > U^2_0$ above

Black Curve: $U^1_\rho < U^2_\rho$ below, $U^1_\rho > U^2_\rho$ above
Comparative Statics
Uniform Productivity Improvement: \((\partial \log(h^1) = \partial \log(h^2) = \partial \log(h) > 0)\)

\(h^1 / h^2, L^1 / L^2, \omega = w^1 / w^2, x^1_0 / x^2_0, x^1_\rho / x^2_\rho\) all unchanged, with \(\partial \log(x^1_\rho) = \partial \log(x^2_\rho) = \sigma \partial \log(h) > 0\).

- Both \(U^1_\rho = u(x^1_\rho)\) and \(U^2_\rho = u(x^2_\rho)\) go up. Since \(\left(\beta_s (u(x^k_\rho))^{(e(s) - \eta)}\right)^{\frac{\sigma - 1}{\sigma - \eta}}\) is log-supermodular in \(s\) and \(x^k_\rho\), from Lemma 1, the market size distributions shift toward higher-indexed sectors in both countries, in the sense of MLR and FSD.

- \(\text{sgn} \frac{\partial \log(U^1_\rho / U^2_\rho)}{\partial \log(h)} = \text{sgn}(\eta - 1) \text{sgn}(x^1_\rho - x^2_\rho)\), from Lemma 2.

Welfare gaps widen (narrow) if sectors produce substitutes (complements).

- \(\text{sgn} \frac{\partial \log(m^1_s / m^2_s)}{\partial \log(h)} = \text{sgn}(x^2_\rho - x^1_\rho) \rightarrow s_e \text{ goes up.}\)
Figure 4: Product Cycles Due to Uniform Productivity Improvement

- As everyone becomes more productive, they shift their spending towards the higher-indexed.
- The relative weights of the sectors in which the Rich runs surpluses go up.
- To keep the overall trade account between the two countries in balance, the Rich’s trade account in each sector must deteriorate.
- The Rich switches from being the net-exporter to the net-importer in middle sectors.
Globalization, a higher $\rho = (\tau)^{1-\sigma}$, when two countries are equal in size: $L^1 = L^2 = L$

$$\omega = 1 \rightarrow x^k_\rho = (1 + \rho)x^k_0 = (1 + \rho)(h^k)^\sigma N^k = (1 + \rho)(h^k)^{\sigma-1} L$$

The relative factor price fixed at $\omega = 1$ and independent of ρ. No ToT change
- The country with higher per capita labor endowment is richer.
- A higher $1 + \rho$ is isomorphic to a uniform increase in h^k.

Figure 4: Product Cycles Due to Globalization
Globalization, a higher $\rho = (\tau)^{1-\sigma}$, when two countries are unequal in size:

Leapfrogging and Reversal of the Patterns of Trade

For $h^1 / h^2 > 1$ and below the Red curve,

$U^1_\rho < U^2_\rho$ at a low ρ,
Closer to autarky, Country 1 is poorer due to its disadvantage of being smaller, running surpluses in lower-indexed.

$U^1_\rho > U^2_\rho$ at a high ρ,
Globalization leads to a factor price convergence, which makes the smaller but smarter 1 richer, running surpluses in higher-indexed.

Figure 5
HME with Exogenous Taste Variations: A Comparison
An Extension of Krugman (1980):

Keep the same structure, except the upper-level preferences are homothetic CES,

\[
U^k \equiv \left[\int_0^1 (\beta_s^k)^{\eta} \left(\tilde{C}_s^k \right)^{1-\eta} \, ds \right]^{\frac{\eta}{\eta-1}}, \quad \text{normalized to } \int_0^1 (\beta_s^k)^{\sigma-\eta} \, ds = 1
\]

with different weights \(\beta_s^k\), and \(\beta_s^1 / \beta_s^2\) strictly decreasing in \(s\).

Then,

Standard-of-living: \(U_{\rho}^k = \left(x_{\rho}^k \right)^{\frac{1}{\sigma-1}}\)

Market Size Distribution: \(m_s^k = \left(\beta_s^k \right)^{\frac{\sigma-1}{\sigma-\eta}} \) \(\Rightarrow m_s^1 / m_s^2 = \left(\beta_s^1 / \beta_s^2 \right)^{\frac{\sigma-1}{\sigma-\eta}}\) strictly decreasing in \(s\).

Otherwise, the same
Figure 2

Notes:
- m_s^1 / m_s^2 depends solely on the exogenous preferences parameters. Independent of ρ and h^k. Effects on s_c in the previous model are entirely due to nonhomotheticity.
- Uniform productivity growth cannot change the welfare gap.
- Leapfrogging can occur; Reversal of Patterns of Trade cannot.
- Krugman (1980), a special case with $\eta = 1$, $L^1 = L^2$, and $\beta_s^1 / \beta_s^2 = \gamma > 1$ for $0 \leq s < 1/2$; $\beta_s^1 / \beta_s^2 = 1/\gamma < 1$ for $1/2 < s \leq 1$.

Adding An Outside Goods Sector

The same structure as before, except

Homogeneous Good (Numeraire): competitive, CRS (1-to-1), zero trade cost

Household Preferences: Three-Tier structure

\[\tilde{C}^k_s \equiv \left[\int_{\Omega} \left(c^k_s(v) \right)^{1-\frac{1}{\sigma}} d\nu \right]^{\frac{\sigma}{\sigma-1}} ; \sigma > 1, \quad s \in [0,1] \]

Lower-level, \(\tilde{C}^k_s \)

\[\tilde{C}^k_s \]

Middle-level, \(\int_0^1 (\beta_s)^{\eta} (\tilde{U}^k_s)^{\eta} (\tilde{C}^k_s)^{\eta-1} ds \equiv 1 ; \beta_s > 0 \text{ and } \sigma > \eta \neq 1 \)

Upper-level, \(\tilde{W}^k = (1-\alpha) \log \tilde{C}^k_o + \alpha \log(\tilde{U}^k) \)

\(\tilde{C}^k_o \): Household consumption of the numeraire

\(\alpha \): (Fixed) expenditure share of differentiated goods
With a sufficiently small α, both countries produce the numeraire.

- $L^j - \int_0^1 V^j_s ds > 0$; a positive employment in the numeraire sector.
- $w^j = 1$; (Factor) Terms of Trade uniquely pinned down and independent of ρ.
- Each household earns h^k and spends $E^k = \alpha h^k$ on differentiated goods.

The Equilibrium Conditions would be the same otherwise.

Autarky Equilibrium

Standard-of-Living: $W^k_0 = (1 - \alpha) \log((1 - \alpha)h^k) + \alpha \log(u(x^k_0))$,

with $x^k_0 \equiv (\alpha h^k)^\sigma N^k = \alpha (\alpha h^k)^{\sigma - 1} L^k$

Market Size Distributions: $m^k_s = \frac{\left(\beta_s \left(u(x^k_0)\right)^{(\varepsilon(s)-\eta)}\right)^{\frac{\sigma - 1}{\sigma - \eta}}}{\int_0^1 \left(\beta_t \left(u(x^k_0)\right)^{(\varepsilon(t)-\eta)}\right)^{\frac{\sigma - 1}{\sigma - \eta}} dt}$
Trade Equilibrium:

Standard-of-Living: \(W_k^\rho = (1 - \alpha) \log((1 - \alpha)h^k) + \alpha \log(u(x^k_\rho)) \),

where \(x^k_\rho \equiv (1 + \rho)(\alpha h^k)^\sigma N^k = (1 + \rho)x^k_0 \)

Market Size Distributions: \(m^k_s = \frac{\left(\beta_s \left(u(x^k_\rho) \right)^{(e(s) - \eta)} \right)^{\frac{\sigma - 1}{\sigma - \eta}} \int_{0}^{1} \left(\beta_t \left(u(x^k_\rho) \right)^{(e(t) - \eta)} \right)^{\frac{\sigma - 1}{\sigma - \eta}} dt \)}{\left(\beta_t \left(u(x^k_\rho) \right)^{(e(t) - \eta)} \right)^{\frac{\sigma - 1}{\sigma - \eta}} dt} \)

Firms Distributions:

From \(V^1_s = \frac{m^1_s(\alpha L^1) - \rho m^2_s(\alpha L^2)}{1 - \rho} > 0; \quad V^2_s = \frac{m^2_s(\alpha L^2) - \rho m^2_s(\alpha L^2)}{1 - \rho} > 0, \)

\(f^1_s = \frac{m^1_s L^1 - \rho m^2_s L^2}{L^1 - \rho L^2} > 0; \quad f^2_s = \frac{m^2_s L^2 - \rho m^1_s L^1}{L^2 - \rho L^1} > 0 \quad \text{for} \quad \rho < \frac{m^1_s L^1}{m^2_s L^2} < \frac{1}{\rho}. \)
Sectoral Trade Balances:

\[NX_s^1 = -NX_s^2 \equiv V_s^1 \rho b_s^2 - V_s^2 \rho b_s^1 = \frac{\rho}{1 + \rho} (V_s^1 - V_s^2) = \frac{\alpha \rho}{1 - \rho} (m_s L^1 - m_s L^2) \propto (m_s L^1 - m_s L^2) \]

What matters is the cross-country difference in the market size in each sector itself.

Trade Balances in Differ. Goods Sectors:

\[\int_0^1 NX_s^1 ds = -\int_0^1 NX_s^2 ds = \frac{\alpha \rho}{1 - \rho} (L^1 - L^2) \]

Instead of having a higher factor price, the larger country runs an overall surplus in the differentiated goods sectors, with a deficit in the outside good sector.

Factor Price Equalization Condition; \(\alpha < \text{Min} \left\{ \frac{(1 - \rho)L^1}{L^1 - \rho L^2}, \frac{(1 - \rho)L^2}{L^2 - \rho L^1} \right\} \)
Patterns of Trade: Home Market Effect

- m_s^1 / m_s^2 is strictly decreasing in s, for $x_0^1 < x_0^2 \Leftrightarrow L^1 / L^2 < (h^1 / h^2)^{1-\sigma}$

- When L^1 and L^2 are not too different, a unique cutoff sector, $s_c \in (0,1)$ such that

$$NX_s^1 = -NX_s^2 = \frac{\alpha\rho L}{1 - \rho} (m_s^1 L^1 - m_s^2 L^2) > 0 \text{ for } s < s_c; < 0 \text{ for } s > s_c.$$

Comparative Statics: With a uniform productivity improvement and globalization,

- m_s^k shifts towards the higher-indexed in the sense of MLR and FSD.
- $\text{sgn} \frac{\partial \log(U^1_\rho / U^2_\rho)}{\partial \log(h)} = \text{sgn} \frac{\partial \log(U^1_\rho / U^2_\rho)}{\partial \log(1 + \rho)}$

 $$= \text{sgn}(\eta - 1) \text{sgn}(x^1_\rho - x^2_\rho).$$

- $\text{sgn} \frac{\partial \log(m_s^1 / m_s^2)}{\partial \log(h)} = \text{sgn} \frac{\partial \log(m_s^1 / m_s^2)}{\partial \log(1 + \rho)}$

 $$= \text{sgn}(x^2_\rho - x^1_\rho) \Rightarrow s_c \in (0,1) \text{ moves up.}$$

Rich’s Sectoral Trade Balances switch from Surpluses to Deficits
In Summary:

- With the ToT pinned down by the numeraire good, a higher ρ does not change ToT change, even when the country sizes are different.
- With no ToT change, the effect of a higher ρ is isomorphic to the effects of uniform productivity improvement (an equi-proportional increase in h^k), as in the $L^1 = L^2$ case of the previous model.
- With no ToT change, Leapfrogging and A Reversal of Patterns of Trade cannot occur.

Two Caveats: Unlike in the $L^1 = L^2$ case of the previous model, $L^1 \neq L^2$ generates the possibility:

- $U^1_\rho < U^2_\rho \iff L^1 / L^2 < (h^1 / h^2)^{1-\sigma}$ may occur, even if $h^1 > h^2$.
- If L^1 and L^2 are too different, the larger country may run a surplus in all s.
Concluding Remarks
• Empirically, goods differ widely in their income elasticities; rich (poor) countries tend to export goods with high (low) income elasticities.

• We aim to explain why the rich (poor) have CA in high (low) income elastic goods with two ingredients, *Nonhomothetic Preferences & Home Market Effect*

• Simple intuition
 ✓ Demand composition of the Rich (Poor) more skewed towards high (low) income elastic goods
 ✓ With scale economies and positive but finite trade costs, such cross-country differences in the demand composition become a source of comparative advantage.

• No previous studies capture this intuition in a setup flexible and yet tractable enough to allow for a variety of comparative static exercises, because GE models with *imperfect competition, scale economies, positive but finite trade costs, and nonhomotheticity* would be intractable
 ✓ *Explicitly additively separable nonhomothetic preferences*, such as Stone-Geary or CRIE, are too restrictive and too intractable

• *Implicitly additively separable nonhomothetic preferences* enables us to overcome this difficulty