Time-Varying Wage Risk, Incomplete Markets, and Business Cycles

Shuhei Takahashi

Institute of Economic Research, Kyoto University

May 25, 2015
How do changes in idiosyncratic labor income risk affect aggregate fluctuations?

In particular, how is labor market dynamics affected?
Growing interests in fluctuations in uncertainty
 - uncertainty shocks by Bloom 2009
 - various measures of uncertainty rose in the recent financial crisis

Cyclical variation in idiosyncratic labor earnings risk
 - Storesletten, Telmer, and Yaron 2004, Heathcote, Perri, and Violante 2010
 - previous DSGE analyses typically omit labor supply decisions
 \implies little is known about the impact on labor market dynamics
What this paper does

- Augment DSGE model widely used for labor market analyses
 - idiosyncratic wage/productivity risk
 - incomplete asset markets
 - indivisible labor
 - aggregate shocks
 - TFP shocks
 - uncertainty shocks (fluctuations in idiosyncratic wage risk)
- Analyze the impact of uncertainty shocks on business cycles through stochastic simulation
 - infer the size of uncertainty shocks using individual wage data
Main findings

- Uncertainty shocks move key statistics closer to data
 - $\text{corr}(H, Y/H)$ decreases from 0.83 to –0.40
 - σ_{wedge} increases from 17% of data to 90%

- Aggregation bias (composition effect)
 - Impacts of uncertainty shocks on employment differ across productivity groups
Related literature

- Varying uninsured idiosyncratic earnings risk
 - exogenous earnings or divisible labor

- Uninsured Idiosyncratic wage risk under indivisible labor
 - constant risk
Outline

- Model
 - Parameter values and steady state
 - Business cycle results
 - Conclusion
Individuals

- Momentary utility: $u(c, h)$
 - c: consumption
 - h: labor hours, $h \in \{\bar{h}, 0\}$

- Time-varying uninsured idiosyncratic wage risk
 - **Idiosyncratic wage risk**: person-specific labor productivity x
 $$\ln x' = \rho_x \ln x + \varepsilon'_x, \varepsilon'_x \sim N(0, \sigma_{\varepsilon_x}^2)$$
 - **Uninsured**: single asset k (physical capital), $k \geq k$ ($k \leq 0$)
 - **Time-varying**: σ_{ε_x} is a Markov chain
Beginning-of-period value

\[V(k, x; z, \sigma_{\varepsilon_x}, \mu) = \max \{ V^E(k, x; z, \sigma_{\varepsilon_x}, \mu), V^N(k, x; z, \sigma_{\varepsilon_x}, \mu) \} \]

- **Value functions**
 - \(V \): beginning-of-period value
 - \(V^E \): employment value
 - \(V^N \): nonemployment value

- **State variable**
 - \(k \): individual asset holding
 - \(x \): idiosyncratic productivity
 - \(z \): aggregate TFP, AR(1) process
 - \(\sigma_{\varepsilon_x} \): idiosyncratic wage risk, learned one period in advance
 - \(\mu \): individual distribution over \(k \) and \(x \), \(\mu' = \Gamma(z, \sigma_{\varepsilon_x}, \mu) \)
Value of employment

\[V^E(k, x; z, \sigma_{\epsilon_x}, \mu) = \max_{c, k'} \{ u(c, \bar{h}) + \beta E[V(k', x'; z', \sigma_{\epsilon_x}', \mu')] | x, z, \sigma_{\epsilon_x}, \mu] \} \]

s.t. \(c + k' = w(z, \sigma_{\epsilon_x}, \mu) x \bar{h} + [1 + r(z, \sigma_{\epsilon_x}, \mu)] k \)
\[k' \geq k \]
\[c \geq 0 \]

Law of motion for \(x, z, \sigma_{\epsilon_x}, \) and \(\mu \)
Value of nonemployment

\[V^N(k, x; z, \sigma_{\epsilon_x}, \mu) = \max_{c, k'} \{ u(c, 0) \}
\]

\[+ \beta E[V(k', x'; z', \sigma'_{\epsilon_x}, \mu') | x, z, \sigma_{\epsilon_x}, \mu] \}
\]

s.t. \(c + k' = [1 + r(z, \sigma_{\epsilon_x}, \mu)]k \)

\(k' \geq k \)

\(c \geq 0 \)

Law of motion for \(x, z, \sigma_{\epsilon_x}, \) and \(\mu \)
Employment choice

\[h = \begin{cases}
\bar{h} & \text{if } V^E \geq V^N \\
0 & \text{otherwise}
\end{cases} \]
Representative firm

- Produce the good Y
- Rent capital K and labor L from individuals
- Production function
 - $Y = zF(K, L)$
 - constant returns to scale in K and L
- Maximize static profits
 $$\begin{align*}
 r(z, \sigma \epsilon_x, \mu) &= (1 - \alpha)zF_K(K, L) - \delta \\
 w(z, \sigma \epsilon_x, \mu) &= \alpha zF_L(K, L)
 \end{align*}$$
- δ: capital depreciation rate
Equilibrium

A recursive competitive equilibrium consists of a set of functions,

\[(w, r, V^E, V^N, V, c, k', h, K, L, \Gamma)\],

that satisfy the following conditions:

- Individual optimization
- Firm optimization
- Market clearing (labor, capital, and good)
 - Labor: \(L = \int x h(k, x; z, \sigma_{\epsilon_x}, \mu) \mu([dk \times dx]) \)
 - Hours: \(H = \int h(k, x; z, \sigma_{\epsilon_x}, \mu) \mu([dk \times dx]) \)
- Law of motion for the distribution across individuals is consistent with individuals’ behavior and the underlying stochastic processes
Outline

- Model
- Parameter values and steady state
- Business cycle results
- Conclusion
Parameter values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>0.9829</td>
</tr>
<tr>
<td>(B)</td>
<td>1.0203</td>
</tr>
<tr>
<td>(\bar{h})</td>
<td>1/3</td>
</tr>
<tr>
<td>(k)</td>
<td>–2.0</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.64</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0.025</td>
</tr>
<tr>
<td>(\rho_z)</td>
<td>0.950</td>
</tr>
<tr>
<td>(\sigma_{\varepsilon_z})</td>
<td>0.007</td>
</tr>
</tbody>
</table>

\[
u(c, h) = \begin{cases}
\ln c - B & \text{when work} \\
\ln c & \text{when not work}
\end{cases}
\]

\[
y = zF(K, L) = zK^{1-\alpha}L^\alpha
\]

\[
\ln z' = \rho_z \ln z + \varepsilon_z', \quad \varepsilon_z' \sim \mathcal{N}(0, \sigma_{\varepsilon_z}^2)
\]
Parameters on idiosyncratic productivity

\[
\ln x' = \rho_x \ln x + \varepsilon'_x, \quad \varepsilon'_x \sim N(0, \sigma^2_{\varepsilon_x})
\]

- \(\sigma_{\varepsilon_x}\) is a 3-state Markov chain
 - \((1 + \lambda)\bar{\sigma}_{\varepsilon_x}, \bar{\sigma}_{\varepsilon_x}, (1 - \lambda)\bar{\sigma}_{\varepsilon_x}\)
 - remain unchanged with prob \(\rho_{\sigma_{\varepsilon_x}}\), transition to each of the other states with \((1 - \rho_{\sigma_{\varepsilon_x}})/2\), independent of \(z\)

- Parameters

\[
\rho_x, \quad \bar{\sigma}_{\varepsilon_x}, \quad \lambda, \quad \rho_{\sigma_{\varepsilon_x}}
\]
Moments compared between PSID and model

\[\ln x_{i,t} = \rho_x \ln x_{i,t-1} + \varepsilon_{i,x,t}, \ varepsilon_{i,x,t} \sim N(0, \sigma^2_{\varepsilon_x,t}) \]

\[\ln w_{i,t} = \ln x_{i,t} + \ln w_t \]

\[\ln w_{i,t} = \rho_x \ln w_{i,t-1} + (\ln w_t - \rho_x \ln w_{t-1}) + \varepsilon_{i,x,t}, \ varepsilon_{i,x,t} \sim N(0, \sigma^2_{\varepsilon_x,t}) \]

1. Pooled estimation

\[\Rightarrow \hat{\rho}_x, \hat{\sigma}_{\varepsilon_x} \]

- PSID, Model: OLS

2. Year-by-year estimation

\[\Rightarrow \text{std}(\hat{\sigma}_{\varepsilon_x,t}), \ corr(\hat{\sigma}_{\varepsilon_x,t}, \hat{\sigma}_{\varepsilon_x,t-1}) \]

- PSID: OLS, controlled OLS, Heckman-type estimation
- Model: OLS
Estimated idiosyncratic wage risk in PSID

![Graph](image)
Cyclical component of estimated wage risk

\[
\text{std}(\hat{\sigma}_{\epsilon_x,t}) = 0.032, \quad 0.035, \quad 0.039 \\
\text{corr}(\hat{\sigma}_{\epsilon_x,t}, \hat{\sigma}_{\epsilon_x,t-1}) = 0.185, \quad 0.236, \quad 0.056
\]
Moments and parameter values

<table>
<thead>
<tr>
<th>Moments (annual)</th>
<th>U.S.</th>
<th>Varying risk</th>
<th>Constant risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\rho}_x$</td>
<td>0.854</td>
<td>0.855</td>
<td>0.855</td>
</tr>
<tr>
<td>$\hat{\sigma}_{\epsilon_x}$</td>
<td>0.282</td>
<td>0.283</td>
<td>0.279</td>
</tr>
<tr>
<td>$\text{std}(\hat{\sigma}_{\epsilon_x,t})$</td>
<td>0.032</td>
<td>0.032</td>
<td>0.008</td>
</tr>
<tr>
<td>$\text{corr}(\hat{\sigma}{\epsilon_x,t}, \hat{\sigma}{\epsilon_x,t-1})$</td>
<td>0.185</td>
<td>0.158</td>
<td>–0.240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters (quarterly)</th>
<th>Varying risk</th>
<th>Constant risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_x</td>
<td>–</td>
<td>0.930</td>
</tr>
<tr>
<td>$\bar{\sigma}_{\epsilon_x}$</td>
<td>–</td>
<td>0.223</td>
</tr>
<tr>
<td>λ</td>
<td>–</td>
<td>0.090</td>
</tr>
<tr>
<td>$\rho_{\sigma_{\epsilon_x}}$</td>
<td>–</td>
<td>0.90</td>
</tr>
</tbody>
</table>
Steady state

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gini labor income</td>
<td>0.60~0.63</td>
<td>0.60</td>
</tr>
<tr>
<td>Gini wealth</td>
<td>0.78</td>
<td>0.69</td>
</tr>
<tr>
<td>corr(labor income, wealth)</td>
<td>0.23</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Outline

- Model
- Parameter values and steady state
- **Business cycle results**
- Conclusion
Business cycle statistics

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>Constant risk</th>
<th>Varying risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_Y</td>
<td>1.69</td>
<td>1.37</td>
<td>1.43</td>
</tr>
<tr>
<td>σ_C</td>
<td>0.54</td>
<td>0.32</td>
<td>0.33</td>
</tr>
<tr>
<td>σ_I</td>
<td>2.85</td>
<td>3.10</td>
<td>3.15</td>
</tr>
<tr>
<td>σ_H</td>
<td>1.00</td>
<td>0.57</td>
<td>0.81</td>
</tr>
<tr>
<td>$\sigma_{Y/H}$</td>
<td>0.63</td>
<td>0.48</td>
<td>1.00</td>
</tr>
<tr>
<td>$\text{corr}(Y, C)$</td>
<td>0.78</td>
<td>0.90</td>
<td>0.86</td>
</tr>
<tr>
<td>$\text{corr}(Y, I)$</td>
<td>0.80</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>$\text{corr}(Y, H)$</td>
<td>0.80</td>
<td>0.96</td>
<td>0.41</td>
</tr>
<tr>
<td>$\text{corr}(Y, Y/H)$</td>
<td>0.31</td>
<td>0.95</td>
<td>0.67</td>
</tr>
<tr>
<td>$\text{corr}(H, Y/H)$</td>
<td>-0.32</td>
<td>0.83</td>
<td>-0.40</td>
</tr>
</tbody>
</table>
Sensitivity analysis

\[\text{corr}(H, Y/H) \]

\(\lambda \)
Sensitivity analysis

\[\text{corr}(H, \frac{Y}{H}) \]

\[\rho_{\sigma x} \]

\[
\begin{array}{c}
0.2 & 0.4 & 0.6 & 0.8 & -0.5 & -0.4 & -0.3 & -0.2 & -0.1 & 0
\end{array}
\]

\[
\begin{array}{c}
0 & -0.1 & -0.2 & -0.3 & -0.4 & -0.5
\end{array}
\]
One-period increase in idiosyncratic wage risk

Wage risk $\sigma_{\varepsilon x}$

Output Y

Hours worked H

Labor productivity Y/H

Horizontal axis – period
Vertical axis – percent deviation
Underlying two effects

- Uncertainty effect (period 0)
 - uncertainty about future wages rises $\Rightarrow H \uparrow, Y/H \downarrow$

- Distribution effect (period 1)
 - the productivity-wealth distribution shifts $\Rightarrow H \downarrow, Y/H \uparrow$
Uncertainty effect
Uncertainty effect

<table>
<thead>
<tr>
<th>Employment</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>low productivity</td>
<td>H</td>
</tr>
<tr>
<td>high productivity</td>
<td>Y/H</td>
</tr>
</tbody>
</table>

Legend:
- Density
- Not Work
- Work
- Productivity Inx
- Wealth In(k+2)
Uncertainty effect (period 0)
 - uncertainty about future wages rises $\implies H \uparrow, Y/H \downarrow$

Distribution effect (period 1)
 - the productivity distribution shifts $\implies H \downarrow, Y/H \uparrow$
Distribution effect

![Distribution effect graph](image)

Productivity $\ln x$

Density

Period 0

Period 1
Distribution effect

<table>
<thead>
<tr>
<th>Employment</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>low productivity</td>
<td>high productivity</td>
</tr>
<tr>
<td>↓↓</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>Y/H</td>
</tr>
<tr>
<td></td>
<td>↑</td>
</tr>
</tbody>
</table>
Uncertainty versus distribution effects

- Psych risk: only uncertainty effect, individuals receive signals for changes in σ_{ε_x}, but those changes in σ_{ε_x} never materialize (Bachmann and Bayer 2013)

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>Constant risk</th>
<th>Varying risk</th>
<th>Psych risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_Y</td>
<td>1.69</td>
<td>1.37</td>
<td>1.43</td>
<td>1.37</td>
</tr>
<tr>
<td>σ_C</td>
<td>0.54</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>σ_I</td>
<td>2.85</td>
<td>3.10</td>
<td>3.15</td>
<td>3.10</td>
</tr>
<tr>
<td>σ_H</td>
<td>1.00</td>
<td>0.57</td>
<td>0.81</td>
<td>0.61</td>
</tr>
<tr>
<td>$\sigma_{Y/H}$</td>
<td>0.63</td>
<td>0.48</td>
<td>1.00</td>
<td>0.52</td>
</tr>
<tr>
<td>corr(Y, C)</td>
<td>0.78</td>
<td>0.90</td>
<td>0.86</td>
<td>0.89</td>
</tr>
<tr>
<td>corr(Y, I)</td>
<td>0.80</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>corr(Y, H)</td>
<td>0.80</td>
<td>0.96</td>
<td>0.41</td>
<td>0.91</td>
</tr>
<tr>
<td>corr($Y, Y/H$)</td>
<td>0.31</td>
<td>0.95</td>
<td>0.67</td>
<td>0.87</td>
</tr>
<tr>
<td>corr($H, Y/H$)</td>
<td>-0.32</td>
<td>0.83</td>
<td>-0.40</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Implication for the labor wedge

- Labor wedge is calculated by

\[
\ln \text{wedge} = \ln MPL - \ln MRS = \ln \frac{Y}{H} - \ln BRH^{1/\gamma}C
\]

\[
U(C, H) = \ln C - \frac{BRH^{1+1/\gamma}}{1 + 1/\gamma}, \gamma = 1.5
\]

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>Constant risk</th>
<th>Varying risk</th>
<th>Psych risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{\text{wedge}})</td>
<td>1.40</td>
<td>0.23</td>
<td>1.26</td>
<td>0.38</td>
</tr>
<tr>
<td>(\text{corr}(H, \text{wedge}))</td>
<td>-0.94</td>
<td>-0.96</td>
<td>-0.84</td>
<td>-0.83</td>
</tr>
</tbody>
</table>

- Fluctuations in the labor wedge arise from those in the deviation of \(w\) and \(MRS\) (Karabarbounis 2014)
Countercyclical risk

- Introduce negative comovement of σ_{ϵ_x} with z
 - $z > (1 + 0.017) \bar{z} \implies \sigma_{\epsilon_x} = (1 - \lambda) \bar{\sigma}_{\epsilon_x}$
 - $z < (1 - 0.017) \bar{z} \implies \sigma_{\epsilon_x} = (1 + \lambda) \bar{\sigma}_{\epsilon_x}$
 - otherwise, $\sigma_{\epsilon_x} = \bar{\sigma}_{\epsilon_x}$
 - $\rho_{\sigma_{\epsilon_x}}$ is implied by z’s persistence, λ is unchanged

- Recalibrate varying risk model to match the volatility and persistence of σ_{ϵ_x} in the countercyclical risk model
 - $\lambda = 0.058$, $\rho_{\sigma_{\epsilon_x}} = 0.925$
Countercyclical risk

<table>
<thead>
<tr>
<th>Countercyclical risk</th>
<th>Recalibrated varying risk</th>
<th>Constant risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_Y</td>
<td>1.32</td>
<td>1.38</td>
</tr>
<tr>
<td>σ_C</td>
<td>0.37</td>
<td>0.33</td>
</tr>
<tr>
<td>σ_I</td>
<td>2.98</td>
<td>3.11</td>
</tr>
<tr>
<td>σ_H</td>
<td>0.56</td>
<td>0.68</td>
</tr>
<tr>
<td>σ_Y/H</td>
<td>0.61</td>
<td>0.74</td>
</tr>
<tr>
<td>σ_{wedge}</td>
<td>0.60</td>
<td>0.83</td>
</tr>
<tr>
<td>$\text{corr}(Y, C)$</td>
<td>0.91</td>
<td>0.88</td>
</tr>
<tr>
<td>$\text{corr}(Y, I)$</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>$\text{corr}(Y, H)$</td>
<td>0.84</td>
<td>0.68</td>
</tr>
<tr>
<td>$\text{corr}(Y, Y/H)$</td>
<td>0.87</td>
<td>0.73</td>
</tr>
<tr>
<td>$\text{corr}(H, Y/H)$</td>
<td>0.46</td>
<td>0.00</td>
</tr>
<tr>
<td>$\text{corr}(H, \text{wedge})$</td>
<td>-0.67</td>
<td>-0.77</td>
</tr>
</tbody>
</table>
Outline

- Model
- Parameter values and steady state
- Business cycle results
- Conclusion
Conclusion

- Examine how time-varying idiosyncratic wage risk affects aggregate fluctuations in the heterogenous-agent model commonly used for labor market analyses
- Including uncertainty shocks improves the model’s performance concerning labor market dynamics
- Future work
 - uncertainty on asset income, endogenous uncertainty
 - other shocks than aggregate TFP and uncertainty shocks
 - home production, family labor supply, and so on
Increase in wage uncertainty during recessions

TFP z

Wage risk $\sigma_{\varepsilon x}$

Hours H

Labor productivity Y/H
U.S. hours and labor productivity