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Abstract

This paper seeks to explore non neutrality of money in the disper-
sion of transition process following an unanticipated money injection.
It examines the responses of the output and nominal price to shocks.
We show that a certain class of money injection schemes will induce
quantitatively significant and persistent response in output, sluggish
price adjustment, and a short-run negatively-sloped Phillips curve.
The short-run trade-off between output and inflation is not exploitable
in the long run.

JEL Classification Number: C73, D82, E40
Key Words: Nonneutrality of money

1 Introduction

From the classical essay Of Money, Hume [10] offered a brilliant thought
regarding the short-run non neutrality of money following a money injection.

[T]hough the high price of commodities be a necessary consequence

of the encrease of gold and silver, yet it follows not immediately upon

that encrease; but some time is required before the money circulates

through the whole state, and makes its effect be felt on all ranks of

people. ...[I]t is only...between the acquisition of money and rise of

prices, that the encreasing quantity of gold and silver is favourable to

industry. When any quantity of money is imported into a nation, it is

not at first dispersed into many hands; but is confined to the coffers

of a few persons, who immediately seek to employ it to advantage.
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In his Nobel lecture, Lucas [13] reviewed a long historical line of thinking
on the short-run non neutrality that starts from Hume and ends with his
own prize-winning work [11]. As stressed in [13], any coherent theory on the
short-run non neutrality must account for questions in the following line.

If everyone understands that prices will ultimately increase in pro-

portion to the increase in money, what force stops this from happening

right away?

The key that prevents instantaneous price adjustment in [11] is that the
public has imperfect information of money injection. As a popular alternative
approach, the short-run non neutrality follows if it is assumed that old prices
cannot change immediately, as in the sticky-price models.1

Here we explore a third approach to non neutrality that is built on a sim-
ple logic—the initial distributional effect of money injection leads to a non
neutral dispersion process. Specifically, there exists the initial distributional
effect when the post-injection distribution of money differs from the pre-
injection distribution (after adjusted by the total quantity of money). Given
this effect, it may take time for the distribution of money to disperse to or re-
gain its pre-injection shape; money is non neutral in the dispersion/transition
process and it is neutral when the pre-injection shape is attained.

This simple logic may have been in Hume’s mind when he talked about
the dispersion and circulation of injected money across the state. In modern
time this logic has been recognized at least from Friedman.2 This logic,
however, has received not much attention from the literature. This might
be attributed to that, as recognized by Friedman and echoed by Lucas, it is
analytically challenging to say much about a dispersion/transition process.3

1These models appeal to the costs to adjust prices, typically referred to as menu costs
due to Mankiw [8], to justify the assumption. For example, it is standard to motivate
the pricing schemes of Taylor [16] and Calvo [5] by a large cost for one to change a price
outside a preset slot. Menu costs have more broad interpretation than the physical costs
(e.g., the amount of ink) to reset a price on a menu (cf. Ball and Mankiw [1]).

2In the context of non evenly distributed helicopter drop of money, Friedman [9] notes
that “The existence of the initial distributional effect has, however, one substantive im-
plication: the transition can no longer, even as a conceptual possibility, be instantaneous,
since it involves more than a mere bidding up of prices.”

3When discussing money injection in a cash-in-advance economy, Lucas [12] observes
that “This seems to me to mirror exactly Friedman’s statement, in a very similar context,
that while “it is easy to see what the final position [following a change in M] will be ... it
is much harder to say anything about the transition.”
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Indeed, it is far from evident that non neutrality in dispersion is even relevant
for the observed movement patterns of price, output, and employment.

By way of numerical methods, we test relevance of the above logic in an
off-the-shelf matching model. This model provides a natural environment
in which “some time is required before the money circulates through the
whole state, and makes its effect be felt on all ranks of people.” The model
is in a stationary equilibrium before an unanticipated money injection. We
test a few different money injection schemes and find that a certain way of
money injection can induce quantitatively significant and persistent response
in output and for some parameter values the output response follows a hump-
shaped pattern. Following the injection, the price adjustment is sluggish,
there is a short-run negatively-sloped Phillips curve. The short-run trade-
off between output and inflation is not exploitable in general. The one-shot
money injection increases aggregate output by exerting a positive force on
the extensive margin of aggregate output (i.e., change the distribution of
different buyer-seller pairs by increasing the numbers of high-output pairs and
decreasing the numbers of low-output pairs). However, once the authority
institutionalizes the injection, the permanently increased inflation will lower
the value of holding money, and hence the realized output in every buyer-
seller pair. When inflation rate is high enough, such negative effect on the
intensive margin outweighs the positive effect on the extensive margin, and
the aggregate output fall as a result, explaining the breakdown of the Phillips
curve.

To our knowledge, Williamson [18, 19] gives the only study on properties
of non neutrality in dispersion. To get around analytical difficulty, he intro-
duces a special large household structure that consists of both selfish and
unselfish household members, and a special market structure that ties one’s
preference over goods to whether he receives a money transfer. While some
of our findings are consistent with his, some are not. For example, we find a
short-run negatively-sloped Phillips curve and a more significant response in
output; he does not.
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2 The benchmark model

2.1 Environment

The basic model we set up here is the standard matching model à la Shi [15]
and Trejos and Wright [17].

Time is discretely dated as t ≥ 0, and the horizon is infinite. There are
N ≥ 3 types of infinitely lived agents , as well as N types of nonstorable and
divisible consumption goods. The preferences are such that a type n agent
consumes only type n + 1 good and produces only type n good (modulo
N). Each agent maximizes his expected utilities with a discount factor β ∈
(0, 1). If a type n agent consumes yn+1 ≥ 0 (when he is buyer) and produces
yn ≥ 0 (when he is a seller), his realized utility in that date is given by
u (yn+1) − c (yn), where the functions u and c satisfy u′, c′ > 0, u′′ < 0,
c′′ ≥ 0, υ(0) = c(0) = 0, and u′(0) =∞.

In this economy, there exists an intrinsically useless good, which we shall
refer to as fiat money. Money is costlessly storable but not perfectly divisible.
We normalize its smallest unit as unity. Each agent is allowed to hold no
more than B unit of money, and B is sufficiently large. The initial total stock
of money is M .

At each date, each agent meets another agent at random. So he will
meet someone able to produce what he want with probability 1/N , or some-
one willing to consume what he produce with probability 1/N , but not both.
During each pairwise meeting, one can only observe each other’s money hold-
ings and specialization types, but not past trading histories, which rules out
credits between the two agents. Under such a setting, any production must
be accompanied by transferring money from the potential consumer to the
potential producer. In particular, we assume that in a pairwise meeting, the
potential consumer (which we shall refer to as the buyer) makes a take-it-
or-leave-it offer to the producer (seller). We follow Berentsen, Molico and
Wright [2] to allow such offers to include lotteries on monetary transfers, so as
to mitigate the limitation of the indivisible money and to introduce additional
pairwise divisibility4. Formally, when a seller with i ∈ {0, 1, . . . , B − 1}
units of money meets a buyer with j ∈ {1, 2, . . . , B} units of money, the
trade offer suggested by the buyer is represented by the pair (yij, σij), where

4One can assume that the trade offer includes lotteries on goods transfer as well as
on money transfer. However, given our preference settings, it is easy to show that only
lotteries which are degenerate on output are in the pairwise core.
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yij ∈ R+ is the output and the monetary lottery σij is a probability measure
on {0, 1, . . . , K (i, j)} with K (i, j) ≡ min (j, B − i).

2.2 Equilibrium

To define equilibrium, let πt denote a probability measure on {0, 1, . . . , B},
with πt (m) representing the fraction of agents with money holding m at the
beginning of period t. Let vt denote a value function on {0, 1, . . . , B}, with
vt (m) representing the expected discounted utility for an agent with money
holding m at the end of period t.

The trade in a pairwise meeting between a seller with with ms units of
money and a buyer with mb units of money can be described as follows.
Given vt, the problem for the buyer can be formulated as

f
(
mb,ms, vt

)
= max

y,σ
u (y) +

K(ms,mb)∑
d=0

(
σ (d) vt

(
mb − d

))
(1)

s.t.

K(ms,mb)∑
d=0

(σ (d) vt (ms + d))− c (y) > vt (ms) (2)

Denote the solution as
(
yms,mb , σms,mb

)
.

Given vt+1 and πt+1, vt satisfies

vt (m) =
N − 1

N
βvt+1 (m) +

1

N
β

B−1∑
ms=0

πt+1 (ms) f (m,ms, vt+1) (3)

Given πt, πt+1 satisfies

πt+1 (m) =
∑

δt (m′,m)πt (m′) (4)

where δt (m′,m) is the proportion of agents with m′ units of money who
leave with m after the random matching in period t. Note that δt (·, ·) is
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derived from the solution to 1. Specifically, we have

δt (m,m+ d) =
1

N

B∑
j=1

πt (j)σm,j (d) , for d ∈ {1, 2, ..., B −m}

δt (m,m− d) =
1

N

B−1∑
i=0

πt (i)σi,m (d) , for d ∈ {1, 2, ...m}

δt (m,m) =
N − 2

N
+

1

N

B∑
j=1

πt (j)σm,j (0) +
1

N

B−1∑
i=0

πt (i)σi,m (0)

where σ is the solution to the problem 1.
The relevant definitions of equilibria are now in order.

Definition 1 Given π0, a sequence {vt, πt+1}∞t=0 is an equilibrium in the
economy if it satisfies (1)-(4) . An equilibrium is a monetary equilibrium
if πt (0) < 1 for some t. A pair (v, π) is a steady state if {vt, πt+1}∞t=0 with
vt = v and πt = π for all t is an equilibrium.

Proposition 1 (i) For any given π0 there exists a Definition-1 monetary
equilibrium {vt, πt+1}∞t=0 such that vt is concave, all t. (ii) There exists a
Definition-1 monetary steady state (v, π) such that v is concave.

Proof. All proofs are in the appendix.

3 Money injection

In this section we introduce money injections into the basic model. At the
beginning of each period before the pairwise meetings, the monetary author-
ity may inject outside money into the economy by allowing individual agents
to receive some sort of helicopter drop of money. In the numerical analysis
to be conducted in the next section, we shall consider several different types
of money injection scheme. The first type is the uniform lump-sum injec-
tion, where all agents receives same amount of money regardless of his money
holding. Specifically, each agent receive x1 units of money with probability
p1, with p1 ∈ (0, 1] .

In the second type, we consider non-uniform injection schemes where
agents with different money holdings are affected differently by the policy.
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In particular, we work with injection schemes in which it is costly for agents
to receive the helicopter drop of money, and the cost may be either in the
form of disutility cost, or in the form of fiat money. For the former case,
we assume that in order to receive the helicopter drop of money, one has to
exert an effort that incur a disutility of ξ. Once the effort is spent, the agent
will receive x2 units of money with probability p2, with p2 ∈ (0, 1] . Since the
marginal value of money is different to agents holding different amount of
money, only a set of agents, which is endogenously determined, will choose to
receive the money. For the latter case, we assume that one has to pay κ units
of money to be eligible for the helicopter drop of money. If an agent pays
κ, the helicopter drop of money he will receive is random, with probability
p3 the receiver getting x3 units of money, and with probability 1 − p3 he
getting nothing, where p3 ∈ (0, 1) If an agent does not pay the cost κ, he will
not receive any money. This formulation is to roughly capture the idea that
only those connected to financial markets are on the receiving end, and that
such connections usually comes at a monetary cost or depends on monetary
wealth.

As a way of normalization, we assume that immediately after the in-
jected money is received by the agents, each unit of money in the economy
(held by the agents) will automatically disintegrate with probability δ. The
value of δ is such that after the disintegration the aggregate money stock
just returns to its pre-injection level. Such a drop-disintegrate policy is the
indivisible-money equivalent of the policy of injection followed by a propor-
tional deduction of money holding in divisible money models5, which implies
that the government finance the money injection by inflation tax imposed on
all money holders.

In our numerical exercises, we first examine the real effect of such expan-
sionary monetary policies when conducted in a one-shot fashion. Specifically,
we set the economy in the benchmark-case stationary equilibrium before an
unanticipated one-shot money policy takes place at the beginning of period 1.
And there will be no more injection in future periods and the environment is
the same as before the injection. As a result the economy will converge back
to its pre-injection steady state after an initial response in period 1. And the
dynamic path of transition will be studied. Next, we consider the long run
effect of such monetary policies when they are conducted every period before

5See Deviatov and Wallace [7], who first introduces such policy into indivisible money
models.
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the pairwise meeting. And the resulting steady states will then be compared
against the benchmark cases.

4 Numerical analysis

In this section we use numerical methods to analyze the effect of money
dispersion process following different schemes of money injections. We first
parameterize the model and then proceed to computations.

4.1 Parameterization

To begin with, we set the total money stock M = 30, so that the divisibility
level in our model is 1/30. Under such a divisibility level, the effect of indi-
visible money on aggregate variables and money distributions is negligible.
For the upper bound on money holding, we find that B = 70 works fine and
making it larger will not change the result much. The number of specializa-
tion types N , is 3. We set the length of per period as a quarter, so we get
β = 1/ (1 + 0.1) which implies an annual discount rate of 4%. In terms of
the preferences, we follow the standard money matching literature (such as
in [15]) to work with the utility function u (y) = y1−σ with σ = 0.4 and the
cost function is c (y) = y.6

For the part of money injections, we set the relevant parameter that
determines the amount of money received by agents as x1 = 1,x2 = 1, κ = 1
and x3 = 2, i.e., we choose the smallest possible unit available. As for ξ, p1,
p2, p3, we will vary their values to match different money growth rates and
examine their different effects.

4.2 The benchmark case: steady state

Now we compute the steady state equilibrium of the benchmark model with-
out money injections, as in Definition-1. The algorithm, which is essentially
an iteration on the mappings implied by (1)-(4), is described in the appendix.
Figure 1 illustrates the distribution of money holdings and value function in

6Molico [14], who also studies the money matching model using numerical methods,
adopts a different setting of preferences, with a utility function defined on domain [0,+∞)
and a cost function on [0, ȳ]. In the appendix, we discuss the difference between the two
settings and their effect on the results.
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Figure 1: Distribution and Value Function in the Steady State Equilibrium

the steady state. The distribution is non-degenerate and its shape resem-
bles a normal distribution, while the value function displays concavity. Note
that both functions show great smoothness despite their discreteness, this is
owing to the adoption of lottery trade which introduces additional pairwise
divisibility into our model of indivisible money7. In Figure 2, we plot ymb,ms ,
the pairwise output between a seller with money ms and a buyer with mb.
As is expected, y increases in mb and decreases in ms. The intuition is that
rich seller has lower marginal value of money and hence is less willing to pro-
duce, while rich buyer has lower marginal value of money and hence is more
willing to spend money which tends to elicit higher output from the seller.
When mb is close to ms, the margin value for buyer is close to that for seller,
therefore the resulting output ymb,ms is close to the ex-ante optimal output
y∗ that satisfies u′ (y∗) = c′ (y∗)8 . When mb is very small and ms very large,
the resulting ymb,ms is very small and close to zero. However, when mb is
very large and ms very small, ymb,ms remarkably larger than the other areas.
As is shown in Figure 2, ymb,ms can reach as high as 2.5, approximately nine
times y∗. Such a shape implies that given the shape of ymb,ms , the aggregate
output will be higher when the distribution of money holdings is more dis-
persed. On the other hand, a more dispersed distribution will lead to a lower
ex-ante welfare, which is given by the inner product of the value function

7Berentsen, Camera and Waller [3] is the first to observe that by adding randomized
monetary (lottery) trade into indivisible money matching model, one can generate aggre-
gate distributions which match those observed in numerically simulated economies with
fully divisible money.

8With our parameter choice, y∗ = (1− σ)
1/σ

= 0.2789.
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Figure 2: Amount of Goods Traded Between Different Pairs in the Steady
State Equilibrium

and the distribution, because of the concavity of the value function showed
in Figure1.

4.3 Lump-sum injections

One-shot injection

We let the pre-injection economy be in the above-computed Proposition-1(ii)
steady state and the dynamic process following the injection is a Proposition-
1(i) equilibrium whose initial distribution π0 is implied by the specific injec-
tion scheme under study. We design our algorithm by assuming that the com-
puted Proposition-1(i) equilibrium converges to the Proposition-1(ii) steady
state after the initial response to the shock. For computation purpose, we
approximate the process by assuming that the equilibrium path reach the
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Figure 3: Transition paths after a one-shot lump-sum injection with 1%
inflation rate.

steady state after T periods. In our exercises, we find that T = 200, or 50
years, is good enough as an approximation; details about the algorithm can
be found in the appendix.

Without loss of generality, we work with the case of p1 = 0.3, which
correspond to a money growth rate of 1%. Figure 3 shows the responses
of aggregate output, mean price and ex-ante welfare to the unanticipated
monetary shock. Following the 1% one-shot injection, aggregate output first
drops by about 0.03% and then gradually returns to its pre-injection steady
state level. The mean price immediately adjust, in roughly the same propor-
tion to the increase of total money stock. The ex-ante welfare, with its i-th
element being the inner product of the value function and the distribution
at the beginning of period i, displays a initial increase, but with very small
magnitude.

To understand, note that because of the one-shot nature of the policy,
people’s expectation about the future gains in pairwise money-goods trades
changes remains almost the same. Hence the forward-looking value function v
changes very little throughout the transition process. So does ymb,ms , since it
depends only on v. On the other hand, the impact of the one-shot lump-sum
injection on the distribution are not so trivial. During the injection phase,
everyone receives one unit of injected money regardless of their initial money
holdings. But when the disintegration occurs, those with more money will
lose more. This implies that such a policy essentially serves to decrease the
dispersion of the distribution. As a result, the aggregate output experiences
an initial decrease while the ex-ante welfare an initial increase, and both
with small magnitudes since the change of distribution is also very small. In
addition, for both output and welfare, the transition paths exhibits a persis-
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Value of p1 0.25 0.50 0.75 1

Money growth rate 0.83% 1.67% 2.50% 1.33%
Avg payment 229.09% 337.34% 431.11% 514.44%

Aggregate output 90.50% 81.32% 72.64% 64.58%
Ex-ante welfare 97.97% 95.47% 92.49% 89.15%

Table 1: Steady states with lum-sum injections; output and welfare are ex-
pressed in relative to those of the benchmark model.

tent pattern. Due to the decentralized nature of trade, it takes many rounds
of exchange, hence a long time, for the injected money to disperse across
the economy and the distribution to restore its shape before the injection.
And the process of dispersion of money is accompanied by the long dynamic
processes of output and welfare as we observe in Figure 3. It takes about 50
periods, or quarters, for most of the impacts on output or welfare to die away,
as it is required for the distribution to regain its pre-injection shape. Finally,
note that because of the difference between the magnitudes of growth rate
and of output response, the price exhibits an immediate adjustment, instead
of a sluggish one, as is showed in Figure 3.

Permanent injection: steady state

Now we consider the case where the monetary authority conducts the above
mentioned lump-sum money injection every period. We compute for the
steady states with different values of p1 and compare them against the steady
state of the benchmark model. In Table 1, we illustrate our results. First note
that the average money traded in pairwise meetings increases significantly
with lump-sum injections. Expecting to receive money in the future, buyers
are more willing to part with money when trading. Also note that although
one-shot lump-sum injection induces a negative response in output and a
positive response in welfare, here when the injection is implemented in every
period, both output and welfare are lower than that of the benchmark case
with no injection. Moreover, both output and welfare decrease in p. To
understand this, we need to delve into further details. In Figure 4, we plot
the steady-state distributions and value functions with no injection, p1 = 0.25
and p1 = 0.75.

Unlike the one-shot case, here with lump-sum money injections, higher
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Figure 4: Distributions and Value Functions in the Steady State with Lump
Sum Injections.

money growth tends to increase the dispersion of the steady state money
holding distribution, because on average buyers are paying more money in
pairwise trades. According to the shape of ymb,ms as in Figure 2, such increase
in dispersion should lead to increase in aggregate output, if other things equal.
However, that is not the case here. Higher money growth also changes the
shape of value function by making it flatter, which leads to lower marginal
value of money. As a result, output in each pairwise meeting will be different,
and ymb,ms will no longer retain the shape as in the case of benchmark model
without injections. Table 2 shows the effect of such changes in value functions
on pairwise output. For illustrative purpose, we do so by picking sellers
and buyers with money holdings of M/2 units, M units, and 2M units,
and we compare the benchmark case against the inflationary case with p =
0.5. For most of seller-buyer pairs, the pairwise output falls significantly.
The intuition is straightforward, with money losing value to inflation (or
disintegration) every period, sellers in general are now having less incentive
to produce goods to get money. The only exceptions are those pairs with
poor buyers and rich sellers, whose output increases rather than decreases.
Anticipating that he will receive injected money every period while hardly
bearing the cost of losing money to inflation (disintegration), poor buyers
are hence more willing to spend money than they are without injections.
Although rich buyers are also less willing to produce, but it is offset by
the increase in poor buyers willingness to spend money. As a result, the
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No Injection Injection with p = 0.5

Buyer’s Money Buyer’s Money

M/2 M 2M M/2 M 2M

Seller’s M/2 0.2248 0.4489 0.7770 M/2 0.1728 0.2707 0.4249

Money M 0.1227 0.2437 0.4809 =⇒ M 0.1229 0.2007 0.3159

2M 0.0612 0.1231 0.2550 2M 0.0795 0.1288 0.1859

Table 2: Pairwise outputs in steady states without and with lump-sum in-
jections.

pairwise output between these pairs increase. However, note that the output
between these pairs is already close to zero, therefore this increase is negligible
and dominated by the decrease of output between other pairs. Therefore,
despite that lump-sum injection generates more dispersed distribution that
favors higher output, the decrease in individual pairwise output is even more
significant and eventually lead to a lower total output.

Finally, note that this result is different from Molico [14], who concludes
that small inflation tends to increase both output and welfare. We argue
that this difference stems from the difference in preference settings, and if we
instead adopt his functional forms for consumption utility and production
disutility but use a different parameter set. Our result is qualitatively the
same. We refer the readers to the appendix for more details.

4.4 Injections costly to receive: disutility cost

In reality, monetary policies rarely resemble the above discussed lump-sum
injections scheme under which everyone in the economy is equally affected
by the policy. Rather, only a subset of economic agents are at the receiving
end of the money injection, as is observed by Hume. In this subsection,
we consider a type of non-uniform money injection scheme. Namely, one
has to exert an effort that incur a disutility of ξ, in order to receive the
helicopter drop of 1 units of money with probability p2. Given the concave
value function, it is straightforward that there exist a threshold m̃ ≥ 0 such
that for all agents holding m ≤ m̃ units of money will choose to exert the
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Figure 5: Transition Paths after injection. Agents need to exert some effort
to receive the injected money.

effort and receive the money.

One-shot injection

Again we let the economy be in the steady state before the injection, and the
algorithm is similar to the one we used with lump-sum injection. Without
loss of generality, we fix ξ = 0.1 and try three values of p2: 0.6, 0.8, and 1.
We compute the dynamic process for these different values of p2 separately.
When p2 = 0.6, the temporary money growth rate is 0.008% and only 0.40%
of the agents exert the effort to receive the money injection. When p2 = 0.8,
the money growth rate is 1.144% and 42.90% of the agents choose to receive
the money injection. When p2 = 1.0, the money growth rate is 3.306% and
99.18% of the agents choose to receive the money injection. The computed
transition paths for output, price and welfare are depicted in Figure 5.

There are two remarks now in order. First, all three variables respond
qualitatively the same as in the case with one-shot lump-sum injection.
Namely, output decreases and welfare increases, both effects persistent; price
adjusts immediately, with slight over-shooting. This is because this injec-
tion scheme, by letting a fraction of poorest agents earn the injected money,
also serves to reduce the dispersion of money holding distribution. Second,
the significance of the response is not monotone in the aggressiveness of the
money injection (i.e. value of p2). Rather, the responses of output and wel-
fare are the most significant in the middle case with p2 = 0.8, i.e. when
42.90% of the agents seek to receive the injection. In response to a 1.144%
increase in money stock, output decreases by about 0.4%. This output re-
sponse is more significant than the other two cases, and more significant than
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Figure 6: Distribution before and after the one-shot injection. p2 = 0.8

under the lump-sum injection scheme. The reason is that the dispersion of
distribution falls by the greatest degree in this case, as is showed in Figure 6.
After the injection, there is a spike around the mean value of the distribution,
while the population of poorest agents and richest agents both declines, the
former due to the reception of injection and the latter due to the inflationary
tax (money disintegration). For both p2 = 0.6 and p2 = 1.0, dispersions
decrease only slightly because in the former case a small fraction of poorest
agents receive money and in the latter case almost all agents receive money
just as in the case of one-shot lump-sum injection. The resulting distribution
is therefore very similar to the pre-injection distribution and therefore not
plotted here.

Permanent injection: steady state

Now we study the case when such an injection scheme is permanently institu-
tionalized. Again we compute for the steady states for cases with p2 equal 0.6,
0.8 and 1.0. The results is shown in Table 3. For all three cases, the percent-
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Value of p2 0.6 0.8 1.0

Participation rate 0.001% 0.021% 0.125%
Money growth rate (Quarterly) 0.00002% 0.0006% 0.0042%

Avg payment 129.77% 150.91% 174.05%
Aggregate output 99.87% 99.81% 99.64%%
Ex-ante welfare 100.03% 100.00% 99.81%

Table 3: Steady states with money injections requiring disutility cost to re-
ceive; output and welfare are expressed in relative to those of the benchmark
model.
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Figure 7: Distributions and value functions in the steady state with injec-
tions.

age of agents willing to spend the effort to receive the injections is remarkably
small in the inflationary steady states, and the resulting money growth rate
is close to zero. Yet these low money growth lead to some non-neutrality in
the long run. The output is always lower than in the non-inflationary steady
state, while welfare is slightly improved for p2 = 0.6 and 0.8, but deteriorates
once p2 is large enough. In Figure 7 we plot the steady-state distributions
and value functions with no injection, p2 = 0.6 and p2 = 1.0 (we leave out the
case with p2 = 0.8 only for illustrative convenience). Such injection schemes
increase the dispersion of money holding distributions and flatten the value
functions. The two effects have opposite impacts on total output, just like
in the scenario of lump-sum injections we discussed previously. And here
money injections also lead to lower output than in the benchmark case.
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Value of p3 0.5031 0.5036 0.5041

Participation rate 24.04% 51.06% 74.22%
Increase in money stock 0.004% 0.012% 0.020%

Table 4: Choices of different p3 and corresponding participation rates
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Figure 8: Transition Paths after injection. Agents need to pay some monetary
cost to receive the injected money.

4.5 Injections costly to receive: monetary cost

One-shot injection

Next we focus on another type of non-uniform injection schemes. We assume
that one has to some cost in form of money to be eligible for the helicopter
drop of money. Therefore for those in for the money injection, with proba-
bility p3 they receive x− κ unit of money and with 1− p3 they lose κ unit of
money. The monetary cost κ (which we set to 1), once paid by the agents to
the monetary authority, flows back into the economy as part of the injected
money. Because of the concavity of the value function, such a lottery-like
money injection is more attractive to rich agents than to poor agents. The
number of agents who are willing to pay the cost is endogenously determined
by and positively correlated with p3. We select a set of different value of p3,
corresponding to different levels of participation. Since the participation rate
is very sensitive to the value of p3, we choose three different p3 to roughly
match participation rates of 25%, 50% and 75%, as is showed in Table 4.

In Figure 8, we document the computed response of output, price and
welfare after a injection occurring at period 0.

In all scenarios, we find that after the injections aggregate output rises
in response to the money injection. For money stock increase of 0.004%,
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0.012% and 0.020%, output initially increases by 0.009%, 0.044% and 0.057%
respectively. And the more aggressive is the injection (higher p3), the more
significant is the response.9 In other word, there is a short-run relationship
between inflation rate and aggregate output, as in the Phillips Curve. More
interestingly, we find that when p3 = 0.5031 (the solid line), the output
response is hump-shaped with the peak occurs after three or four periods
(quarters). This is consistent with the empirically based consensus among
economists (e.g., Christiano, Eichenbaum and Evans [6]) that monetary pol-
icy shocks have a short-run effect on real economic activities which follows
a hump-shaped pattern in which the peak impact is reached several quar-
ters after the initial response and then gradually dies out. Next, note that
although prices eventually rise in proportion to the increase in money, such
adjustments are sluggish. In all scenarios, it takes several years for the mean
prices to reach its long-run level after the injection. In other words, price
adjustment displays some rigidity. To understand, note that the price here
is implied by the terms of trade between a trading pairs. Since the injec-
tion increase both the amounts of goods traded and the quantity of money
changed hand, the implied price will only rise in a smaller magnitude. Un-
like the sticky-price models where sluggish price adjustment leads to non
neutrality of money on output, here in our model the causality chain runs
the other way around. Finally, the money injection has a negative, persistent
but insignificant effect on welfare.

Why does this type of money injection can induce response so different,
with such a significantly positive response, while the other injection schemes
we considered in previous sections fail to do so? The answer lies again in
the change of distributions brought about by the injections under study.
With the current injection scheme, 1−p3 of the prospect recipients of money
injection will end up with a net loss of −κ from the injection, while the rest
p3 of them receive the injected money and leave with a net gain of x−κ. By
making a fraction of a certain group of people poorer but the rest of them
richer, the money injection scheme here effectively increases the dispersion of
money holding distribution immediately. The distributions at period 1 and
at period 3 are plotted in Figure 9, where both the case of p3 = 0.5031 and

9When making this argument, we exclude very large values of p3. Note that if p3 is set
very high, for instance p3 = 0.9, such injection will induce a negative response of output.
The reason is that, in this case the problem facing the agents regarding the decision of
paying the κ is trivial. Everyone will pay κ, and the injection is very much similar to a
lump-sum injection.
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Figure 9: Distributions after money injection, for the case of p3 = 0.5031
(left) and p3 = 0.5041 (right).

the case of p3 = 0.5041 are shown.

Permanent injection: steady state

The short-run relationship between inflation and aggregate output we ob-
served in the one-shot experiment makes one wonder what will happen if the
authority exploit such seemingly stable trade-off in the long-run by letting
such injections last for ever. Will the short-run relationship breaks down in
our new steady state just like how Phillips Curve dissolves in the 1970s? We
compute the steady state equilibria with permanent injection for different
value of p3. The results, which are summarized in Table 5, suggest that such
this short-run relationship is not exploitable. When p3 is small, or the rate
of monetary expansion is low, an increase in p3 tends to increase aggregate
output. However when p3 is large enough, further raising p3 will only lead to
lower output. This coincides with the empirical evidences (e.g. Bullard and
Keating [4]) of positive effects of inflation on output for low-inflation coun-
tries and negative effects for high-inflation countries. Nevertheless, note that
such money injection, when implemented permanently, deteriorates rather
than improve welfare, regardless of the rate of expansion or p3.

Temporary increase in p3

Now, we examine whether the results we obtained regarding the short-run
effect of one-shot money injections are robust to alternative versions of policy
shocks. Instead of hitting a non-inflationary economy with a shock of an
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Figure 10: Output response when a policy shock raises p3 temporarily.

21



Value of p3 0.504 0.506 0.508 0.510 0.52 0.54

Money growth rate 0.019% 0.038% 0.053% 0.067% 0.133% 0.267%

Aggregate output 100.93% 101.34% 101.34% 101.23% 100.55% 99.01%

Ex-ante welfare 99.45% 99.13% 99.04% 98.99% 98.82% 98.57%

Table 5: Steady states with injections requiring monetary cost to receive;
output and welfare are expressed in relative to those of the basic model

one-shot increase of money stock, here we hit an inflationary economy with
a shock which temporarily increase p3. To proceed, we set the economy in a
steady state with some p3 > 0 before the shock. And when the shock takes
place at the beginning of period 1, it raises p3 to p̃3 > p3. From period 2
and onward, p3 is resumed and the economy converges back to the pre-shock
steady state equilibrium. We compute the transitional processes for different
values of p3 and p3, and plot the result in Figure 10. For all the scenarios we
consider, there are significantly positive and persistent responses in output.
And for some scenarios, we again observe hump-shaped output responses.
In other words, given the current money injection scheme, if the one-shot
shock is a temporary increase in the monetary expansion, the output will
still respond significantly, as in the case of one-shot increase of money stock
via such injection.

5 Discussions

So far we have studied different types of unproportional money injection
schemes. In all cases, one-shot money injection leads to a non-neutral re-
sponse in output, because it changes the distributional of money holdings
and hence the distribution of different seller-buyer pairs, which we identify
as the extensive margin of the aggregate output. On the other hand, the
individual output between each of these pairs, or the intensive margin of the
aggregate output, is almost unaffected by the money injection because of its
one-shot nature. Therefore, the distributional effect of money injection on
aggregate output is about how the aggregate output is affected along the the
extensive margin. Our numerical results suggested that pattern of pairwise
output actually favors more dispersed distributions. Therefore, when the
money injection is such that the recipients has to pay some monetary cost,
it increases the dispersion of money holding distribution, which is translated
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into a positive and significant response in aggregate output immediately after
the injection. And the output will return to its pre-injection level only when
the pre-injection distribution of money holdings is resumed, which occurs
only when the newly injected money disperse across the whole economy by
way of transactions. The decentralized pattern of trade makes such disper-
sion a long process, therefore distributional effect induced by money injection
is very persistent.

However, if such money injection is permanently implemented as higher
inflation in the long run, there emerges a negative effect along the intensive
margin of the aggregate output, because inflation erodes the value of money
and hence suppresses individual output between every buyer-seller pair. If the
inflation is high enough, the negative effect on the intensive margin dominates
the positive effect on the extensive margin, and output is lower under such
inflation rate.

6 Concluding Remarks

In this paper, we study the distributional effect of monetary policy in the
form of different schemes of direct money injection. By applying numerical
methods to a standard off-the-shelf money matching model, we find the dis-
tribution of money holdings plays a significant role. First, unproportional
money injection change the distribution of money holdings. We show that
under certain schemes of money injection will initially change the distribu-
tion or disperse the money in such a way that can immediately generate a
significant response of aggregate output. Second, since it takes time for the
distribution of money to disperse back to its pre-injection shape in the de-
centralized economy, such effect on output is very persistent. Moreover, we
find that following the injection, the price adjustment is sluggish and there
is a short-run negatively-sloped Phillips curve. However, such short-run re-
lationship is not exploitable in the long run.

Note that the randomness of the centralized market plays an important
role here. Therefore, a potential extension of the work is to include a phase of
centralized market transaction between decentralized pairwise transactions,
and to see whether the results still hold.

The framework developed in this paper, as well as the numerical approach
to solve for it, can be utilized by adding other elements so as to answer other
topics and questions regarding money. For example, what roles do illiquid
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bonds play in such a model? How monetary policy via raising or reducing
the interest rate of such bonds can affect the economy?

24



Appendix

A. Proofs of Propositions 1

The proof is standard and follows directly from Zhu [20].

B. Numerical algorithms

In this section we describe the numerical algorithms we adopted to compute
the steady state and transition paths of the models. The FORTRAN 90
codes for the algorithms, are available upon request.

B1. Computing steady states of the benchmark model

The algorithm is essentially an iteration on the mappings defined by the
following steps.

1. Begin with an initial guess {π0, v0} , where π0 is consistent with the
total money stock M .

2. Given vi, we can solve for problem 1 for all pairs of
{
mb,ms

}
, which

gives us
(
yms,mb , σms,mb

)
10, f

(
mb,ms, vi

)
and δ

(
mb,ms

)
. By applying

them together with πi to 3 and 4, we get a new pair {πi+1, vi+1}

3. Repeat step 2 until the convergence criterion is satisfied: ‖vi+1 − vi‖ <
10−6, ‖πi+1 − πi‖ < 10−6 .

4. Denote the final result {π∗, v∗}

B2. Computing transition paths following money injections

The computation for the transition path is essentially about iterations on the
series of χ ≡ {vt, πt}Tt=1, where T is the number of periods it takes for the
economy to reach a new steady state. Since the the transition path converges
to the pre-injection steady state computed in B1, we set vT = v∗. We also
have to apply the effect of money injection on the pre-injection distribution
π∗ to get the distribution immediately after the injection. We denote this
beginning distribution as π1.

10To solve for the lottery σms,mb , we can first solve for the money traded if no lottery is
allowed. Denote the money traded in this case dms,mb . Then utilizing the concavity of v,
we set the lottery space to be on

{
dms,mb − 1, dms,mb , dms,mb + 1

}
and solve for σms,mb .
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1. Take an initial guess with v0t = v∗ for all t, and π0
1 = π1.

2. Start from t = 1 and set πi1 = π1. Given πit and vit, solve the problem

in (1), and get the solution as
(
yi
ms,mb (t) , σi

ms,mb (t)
)

for all
{
ms,mb

}
.

Then use the solution to derive πit+1 according to (4). Repeat this
process until t = T , and we get

(
yi·,· (t) , σ

i
·,· (t)

)
for all t. Then use them

backward, from period T to 1, to get an updated series of
{
vi+1
t

}T
t=1

.

3. Repeat step 2 until the convergence criterion is satisfied: maxt
(∥∥πi+1

t − πit
∥∥) <

10−6 and maxt
(∥∥vi+1

t − vit
∥∥) < 10−6 .

B3. Computing steady states with injections

The computation for the inflationary steady state is similar to B1. But
the algorithm is complicated by money injection and disintegration at the
beginning of every period, especially when the recipients of the injection are
endogenously determined. To proceed, in addition to πt and vt, we denote the
distribution after the injection and disintegration but before pairwise meeting
in period t as θt, and the value function after the injection but before the
disintegration in period t as wt.

1. Begin with an initial guess {θ0, w0} , where θ0 is consistent with the
total money stock M .

2. Begin the (i+ 1)-th iteration with {θi, wi}. Given the value function
after the injection wi, we can solve for problem of agents deciding
whether or not to receive the money injection. As a result we get the
value function before the injection vi, which is also the value function
after pairwise meetings. Use vi and θi, we can solve the problem in (1),
and get πi accordingly. With πi, we solve for the set of agents seeking
to receive the injection, and the disintegration probability δ needed
to normalize the money stock. And we can update θi+1 accordingly.
Finally, we can build the transition matrices implied by the pairwise
meetings and money injections, which allow us to update wi+1.

3. Repeat step 2 until the convergence criterion is satisfied: ‖wi+1 − wi‖ <
10−6, ‖θi+1 − θi‖ < 10−6 .

4. Denote the final result {θ∗, w∗}, and which is accompanied by {π∗, v∗}.
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C. Differences with the literature

In the literature, Molico [14] also employs numerical methods to examine
the effect of inflation on output, but arriving at different results from ours.
Specifically, he show that lump-sum money injection, when conducted per-
manently, can increase both the total output and ex-ante welfare, while in our
model, lump-sum injection has just the opposite effect. There are some differ-
ence in the model setup between his and our works, for example, he assumes
divisible money and uses approximations methods to compute distributions
and value functions, while we assume indivisible money with lottery trade
and directly compute distributions and value functions, but the different re-
sults is indeed due to the difference in preference settings. In our model, the
utility function of consumption and disutility function of production follow
the standard form in the literature: u (y) = y1−σ and c (y) = y, where y is
allowed to take any value in (0,+∞)

In Molico [14], the utility function of consumption and disutility function
of production take the following forms:

u (y) = A · log (1 + y)

c (y) = B

(
1

ȳ − y
− 1

ȳ

)
, for all y ∈ [0, ȳ] ,

where A,B ∈ R+, ȳ > 0 and A > B/ȳ2.
Note that under such setting, the ex-ante pairwise optimal quantity y∗

such that u′ (y∗) = c′ (y∗) (and y∗ ∈ [0, ȳ]), is

y∗ = ȳ +
B

2A
−

√(
B

2A

)2

+
B

A
(ȳ + 1)

< ȳ

Moreover, he take A = 100, B = 1, and ȳ = 1, which immediately gives
us y∗ = 0.8635, very close to ȳ. In other words, under such parameter values
there is a very restrictive upper bound on pairwise output11. We argue that
it is because of the specialty of such values of A and B (A � B) that lead

11We mention y∗ here and compare it, instead of other possible value of y, with y∗,
because y∗ is close to the pairwise output between a buyer and a seller both with M units
of money. Note that such a pair has the largest probability mass, and all our numerical
results showed that the aggregate output is always close to y∗.
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to the results in [14]. We hold B = 1, and try different values of A. We
computes the steady state of the model with permanent lump-sum injection,
where p1 is the probability of an agent receiving injected money. The results
are reported in Table 6. Note that as A decreases, the upper bound of
y becomes less restrictive, the effect of lump-sum injection on output and
welfare will diminish, and eventually becomes negative, just like in our model.
In addition, for small values of A, the value function, distribution function,
and pairwise output are all similar to what we have in this paper.
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