A Theory of Public Debt Overhang

Keiichiro Kobayashi

Canon Institute for Global Studies

March 1, 2013

Keiichiro Kobayashi (CIGS)

Introduction

Benchmark Model

- Model without public debt overhang
- Model with public debt overhang

3 Modified model with multiple equilibria

Public debt overhang – Evidence

- Reinhart, Reinhart, and Rogoff (2012)
 - Decade-long stagnation in debt-ridden economy.
 - Growth rate declines by 1 % as public debt exceeds 90 % of GDP.
 - In some cases, low growth is associated with low interest rates (eg., Japan).

Source: Reinhart, Reinhart, Rogoff(2012)

Keiichiro Kobayashi (CIGS)

2013/03/01 4 / 40

What we do

- we propose a simple model in which
 - unsustainable debt undermines credibility of government's commitment,
 - commitment problem discourages adoption of new technology, leading to low growth and a low interest rate.
 - fiscal consolidation restores sustainability of public debt,
 - and leads to high growth and a high interest rate by restoring credibility of government commitments (basic model).
 - but cannot restore credibility of government commitments if it comes too late (second model).

Related literature

Empirics

- Reinhart, Reinhart and Rogoff (2012)
 26 episodes of advanced economies
- Checherita-Westphal and Rother (2012) 12 euro countries
- Baum, Checherita-Westphal and Rother (2013)
- Crowding out
 - expansionary fiscal policy leads to low investment associated with high interest rates. Galí, López-Salido and Vallés (2007), Romer (2011).

Related literature

- Non-Keynesian effect (Giavazzi and Pagano 1990, Bertola and Drazen 1993, Perotti 1999)
 - expansionary fiscal policy leads to low consumption.
 - inefficiency is caused by expectations of one-time tax distortion in the future.
 - it is not consistent with a decade of low growth.

Related literature

Growth theory

- Diamond (1960): public debt enhances growth in a neoclassical model.
- Saint-Paul (1992): public debt lowers growth in an endogenous growth model.
- Brauninger (2005): multiple equilibria.
- Arai, Kunieda, Nishida (2012); Futagami, Hori, and Ohdoi (2010): crowding out and higher interest rate when growth slows down.
- Political economy (Acemoglu and Robinson 2005, Acemoglu, 2009)
 - commitment problem due to political conflict lowers investment.

Introduction

Benchmark Model

- Model without public debt overhang
- Model with public debt overhang

Modified model with multiple equilibria

- Continuous time AK model. Capital does not depreciate.
- a consumer, a government, and N firms. $(N \gg 1)$
- Firms are owned by the consumer.
- the consumer's utility:

$$\int_0^\infty e^{-\rho t} \ln c_t, \quad \text{where} \quad 0 < \rho.$$

- the incumbent government wants to maximize the length of its tenure T. If $T = \infty$ the government maximizes welfare of consumers.
- A firm borrows ^{k_t}/_N from the consumer and produce the consumption good in period t.

Two technologies, A and B

$$0 < B < A.$$

- Technology A: a firm with k_t can produce Ak_t in period t. The government can impose the output tax $\tau_{kt}Ak_t$, where $0 \le \tau_{kt} \le 1$.
- Technology B: a firm with k_t can produce Bk_t in period t. The government cannot impose the output tax on Bk_t.
- Without public debt overhang, the government has no incentive to impose output tax.
- Thus firms choose technology A.

consumer's problem

$$\max_{c_t, \dot{k}_t} \int_0^\infty e^{-\rho t} \ln c_t,$$

s.t. $c_t + \dot{k}_t = R_t k_t + X_t.$

• a firm's problem

$$\max_{y} y - R_t \frac{k_t}{N},$$

s.t. $y \in \left\{ A \frac{k_t}{N}, B \frac{k_t}{N} \right\}$

- government's problem
 - tenure of incumbent government: $T = \infty$.
 - tax policy does not change the length of tenure.
 - government has no incentive to set $\tau_{kt} \neq 0$.
 - It is credible that $\tau_{kt} = 0$.
 - \Rightarrow Firms choose technology A.

Equilibrium

- Firms choose technology A.
- Government chooses $\tau_{kt} = 0$
- standard AK outcome:

$$R_t = A,$$

$$X_t = 0,$$

$$k_t = k_0 e^{(A-\rho)t},$$

$$c_t = \rho k_t,$$

$$\zeta_t = \frac{\dot{c}_t}{c_t} = \frac{\dot{k}_t}{k_t} = A - \rho.$$

1 Introduction

Benchmark Model

- Model without public debt overhang
- Model with public debt overhang

Public debt overhang

- Outstanding government debt *b*₀.
- No tax is imposed in t = 0.
- For $0 \le t$ (< *T*), consumer's problem is

$$\max_{c_t, \dot{k}_t, \dot{b}_t} \int_0^\infty e^{-\rho t} \ln c_t,$$

s.t. $c_t + \dot{k}_t + \dot{b}_t = R_t k_t + r_t b_t + X_t.$

Debt evolves by

$$\dot{b}_t = r_t b_t.$$

Two taxes

- Lump-sum tax and output tax
 - Lump-sum tax, τ_{t+1} , on the consumer.
 - $\tau_t \in [0, \tau].$
 - The government loses power if the lump-sum tax is imposed.
 - If the lump-sum tax is imposed at *T*, the tenure of incumbent government is terminated at *T*.
 - Output tax, $\tau_{kt}Ak_t$, on the firms.
 - $\tau_{kt} \in [0, 1].$
 - Government can impose output tax without any cost.
 - Output by technology A is taxable, while output by technology B is **not** taxable.
 - Output tax can be imposed after observing production.

Transversality condition

• Government can continue until T, where

$$T = \arg \max_T b_T,$$

s.t. $\dot{b}_t = r_L b_t,$
 $r_H b_T \le \tau,$

where $r_H = A$ and $r_L = B$.

Transversality condition

• Lemma. Given that the lump-sum tax $\tau_t = \tau$ is imposed in period *T*, the TVC from *T* on is satisfied iff

$$r_H b_T \leq \tau$$
.

- Debt evolves by $\dot{b}_t = rb_t \tau_t$ for $t \ge T$, where $\tau_t = \tau$ if $b_t > 0$ and $\tau_t = 0$ if $b_t = 0$.
- Thus $b_{t+T} = \max\left\{0, \frac{\tau}{r} + \left(b_T \frac{\tau}{r}\right)e^{rt}\right\}$ if $b_T \le \frac{\tau}{r}$; and $b_{t+T} = \frac{\tau}{r} + \left(b_T - \frac{\tau}{r}\right)e^{rt}$ if $b_T > \frac{\tau}{r}$.
- TVC is $\lim_{t\to\infty} e^{-rt}b_t = 0$, which is equivalent to $b_T \leq \frac{\tau}{r}$.
- can show r ≠ r_L by contradiction: if r = r_L and TVC is satisfied, the government has no incentive to impose output tax; then firms choose technology A, leading the interest rate to r = r_H.
- The equilibrium interest rate is $r_t = r_H$ for $t \ge T$.

Transversality condition

• Define $r_H b_T = \tau$. Incumbent government cannot stay for t > T.

- Consumer does not buy b_t unless τ is introduced.
- If τ is introduced at T, incumbent loses power.
- If *τ* is not introduced at *T*, incumbent loses power because default on government bond occurs at *T*.
- Consumers accept to buy b_t for t > T iff τ is introduced and TVC is satisfied.

Lack of Commitment

- Firms choose technology B due to political economy distortion (Acemoglu 2009):
 - At every period *t*, government decides whether to introduce output tax after observing firms' choice of technology (A or B).
 - Government cannot precommit not to introduce output tax.
 - Equilibrium is Markov Perfect Equilibrium. Punishment strategy is excluded.

Lack of Commitment

- If firms choose technology A, government imposes output tax and sets τ_{kt} = 1. (government takes all output.)
 - Government can extend the tenure *T* by imposing output tax if technology A is adopted.
 - In continuous time model, tax revenue at *i* is infinitesimally small and does not affect the length of tenure *T*? We can justify the above statement by the following argument:
 - We assume that if firms choose technology A at *t* they cannot change technology until *t* + Δ, where Δ (≪ 1) is a very short time interval.
 - We assume that capital stock allocated to one firm cannot be reallocated to other firms; in other words, capital stock of each firm k_r must satisfy k_s ≥ k_r for all s ≥ t.
 - Suppose that a firm that owns $\frac{k_t}{N}$ chooses technology A at t.
 - At t' = t + Δ, the government debt b_{t'} becomes

$$b_{t'} \approx b_t + \left(r_t b_t - A \frac{k_t}{N}\right) \Delta < b_t + r_t b_t \Delta.$$

- Since the amount of debt is lower by approximately A ^k_t Δ with output tax than without it, the tenure can be extended by O(Δ) by imposing output tax if firms adopt technology A.
- Anticipating this, all firms choose technology B for $0 \le t < T$.

Equilibrium with Public Debt Overhang

- $T = \arg \max_t b_t$ subject to $\dot{b}_t = r_L b_t$ and $r_H b_t \le \tau$.
- Firms choose technology B for $0 \le t < T$.

$$r_{t} = \begin{cases} r_{L} = B, & \text{for } 0 \le t < T, \\ r_{H} = A, & \text{for } t \ge T, \end{cases}$$

$$b_{t} = \begin{cases} b_{0}e^{r_{L}t}, & \text{for } 0 \le t < T, \\ b_{T}, & \text{for } t \ge T, \end{cases}$$

$$k_{t} = \begin{cases} k_{0}e^{(r_{L}-\rho)t}, & \text{for } 0 \le t < T, \\ k_{T}e^{(r_{H}-\rho)(t-T)}, & \text{for } t \ge T, \end{cases}$$

$$c_{t} = \rho k_{t}.$$

Equilibrium with Public Debt Overhang

 Growth rate is low before fiscal consolidation, while it is high after fiscal consolidation.

$$\frac{\dot{c}_t}{c_t} = \frac{\dot{k}_t}{k_t} = \zeta_t = r_L - \rho, \quad \text{for} \quad 0 \le t < T,$$
$$\frac{\dot{c}_t}{c_t} = \frac{\dot{k}_t}{k_t} = \zeta_t = r_H - \rho, \quad \text{for} \quad t \ge T,$$

- Interest rate is low before fiscal consolidation, while it is high after fiscal consolidation.
- Output tax is not imposed in equilibrium.

Introduction

Benchmark Model

- Model without public debt overhang
- Model with public debt overhang

3 Modified model with multiple equilibria

4 Conclusion

Modified model – No credible fiscal policy

- AK model
- Output tax τ_k is already imposed.
- Two technology. A and B

$$A - \gamma < B < A$$

- Technology A: Firm produces Ak_t. Firm needs to pay output tax τ_kAk_t and political rent γk_t to consumer.
 - γk_i represents rent associated with education of workers and/or investment in infrastructure for new technology A.
- Technology B: Firm produces Bk_t . Firm needs to pay output tax $\tau_k Bk_t$. Firm with technology B does not have to pay political rent.

Modified model – Description of fiscal policy

• Fiscal policy g_t : government pays $g_t k_t$ to firms that use technology A.

- *g_tk_t* represents redistribution associated with education and/or public investment in infrastructure for new technology.
- Profit of firm that uses technology A

$$[(1-\tau_k)A-\gamma+g_t]k_t$$

Proft of firm that uses technology B

$$(1-\tau_k)Bk_t$$

Firm chooses A if

$$g_t \ge \gamma - (1 - \tau_k)(A - B).$$

• Tax revenue decrease if government pays g_t:

$$\tau_k A k_t - g_t \le \tau_k B.$$

Modified model – Government debt

• Large initial value
$$d_0 > \frac{\tau_k B k_0}{\rho} > 0$$
.

• Debt evolves by $\dot{b}_t = r_t b_t - \tau_k B k_t$. Therefore,

$$b_t = \frac{\tau_k B k_0}{\rho} e^{(r_L - \rho)t} + \left(b_0 - \frac{\tau_k B k_0}{\rho}\right) e^{r_L t}.$$

Debt diverges at the rate r_L .

- Lump-sum tax, τ
 - Government can impose lump-sum tax τ on consumer to restore TVC.
 - If lump-sum tax is introduced at *T*, the incumbent's tenure is terminated at *T*.

Modified model – Lack of commitment

- Government decides whether to pay gk_t after observing choice of technology A or B.
- If firms choose technology A,
 - government revenue increases: τ_kAk_t (> τ_kBk_t) if the government does not pay g_tk_t.
 - government revenue decreases: $(\tau_k A g_t)k_t \ (< \tau_k B k_t)$ if it pays $g_t k_t$, where $g_t > \gamma - (1 - \tau_k)(A - B)$.

Modified model – Lack of commitment

• government wants to extend its tenure, T, by increasing revenue.

- government does not pay g_t if firms choose A.
 - In continuous time model, tax revenue at r is infinitesimally small and does not affect the length of tenure T? We can justify the above statement by the following argument:
 - We assume that if firms choose technology A at t they cannot change technology until t + Δ, where Δ (≪ 1) is a very short time interval.
 - Observing firms' choice of technology at t, government decides whether to pay gks for s ≥ t.
 - The amount of debt is lower by approximately gk_tΔ when government pays subsidy than when it does not.
 - The tenure is strictly longer by O(Δ) when government does not pays gk_t than when it does, whatever technology firms choose.
 - Government does not pay gkt.

anticipating this, all firms choose B.

Modified model – Optimization problems

Consumer's problem

$$\max \int_0^\infty e^{-\rho t} \ln c_t,$$

s.t. $c_t + \dot{k}_t + \dot{b}_t = R_t k_t + r_t b_t + X_t.$

- Firm's problem: max $[max \{(1 \tau_k)A \gamma + g_t, (1 \tau_k)B\} R_t, 0]$. Firms choose A iff $g_t \ge \gamma - (1 - \tau_k)(A - B)$.
- Government's problem

$$\max_{g_t} T,$$

s.t.
$$\begin{cases} \dot{b}_t = r_t b_t - (\tau_k A - g_t) k_t \mathbf{1}(g_t) - \tau_k B k_t (1 - \mathbf{1}(g_t)), \\ g_t \ge \gamma - (A - B), \\ \text{and TVC.} \end{cases}$$

Modified model – Transversality condition

TVC is either

$$b_T \le \frac{\tau}{r_H} + \frac{(\tau_k A - g)k_T}{\rho} \equiv B_E(T), \tag{1}$$

or

$$b_T \le \frac{\tau}{r_L} + \frac{\tau_k B k_T}{\rho} \equiv B_L(T).$$
⁽²⁾

• $B_E(T) < B_L(T)$ for all T.

• TVC is determined by the expectations on the path after introduction of lump-sum tax.

Modified model – Transversality condition

• After imposition of lump-sum tax, debt evolves by

$$\dot{b}_t = rb_t - \tau - \Gamma k_t, \quad \text{for} \quad t \ge T,$$

where $(r, \Gamma) = (r_H, \tau_k A - g)$ or $(r_L, \tau_k B)$, and $k_t = k_T e^{(r-\rho)(t-T)}$.

•
$$(r, \Gamma) = (r_H, \tau_k A - g)$$

if expectation is that technology A is dominant for $t \ge T$.

•
$$(r, \Gamma) = (r_L, \tau_k B)$$

if expectation is that technology B is dominant for $t \ge T$.

Solution is

$$b_{t+T} = x + ye^{(r-\rho)t} + (b_T - x - y)e^{rt},$$

where $x = \frac{\tau}{r},$
 $y = \frac{\Gamma k_T}{\rho}.$

Modified model – Transversality condition

• Consumer's Transversality condition is

$$\lim_{t\to\infty}b_{t+T}e^{-rt}=0.$$

TVC is equivalent to

$$b_T \leq x + y$$
,

where x + y is either $B_E(T)$ or $B_L(T)$.

Modified model – Good Equilibrium

- Lump-sum tax is imposed at T_E , which is defined by $b_T = B_E(T)$.
- Tenure of new government is ∞. Credibility of fiscal policy is restored.
- Firms choose technology A and new government pays gk_t to firms for

$$\geq T_E$$
, where $g = \gamma - (1 - \tau_k)(A - B)$.

$$\begin{split} r_t &= \begin{cases} r_L = B, & \text{for } 0 \le t < T_E, \\ r_H = A, & \text{for } t \ge T_E, \end{cases} \\ b_t &= \begin{cases} \tau_k B k_0 \rho^{-1} e^{(r_L - \rho)t} + (b_0 - \tau_k B k_0 \rho^{-1}) e^{r_L t}, & \text{for } 0 \le t < T_E, \\ \tau r_H^{-1} + (\tau_k A - g) k_T \rho^{-1} e^{(r_H - \rho)t}, & \text{for } t \ge T_E, \end{cases} \\ k_t &= \begin{cases} k_0 e^{(r_L - \rho)t}, & \text{for } 0 \le t < T_E, \\ k_T e^{(r_H - \rho)(t - T)}, & \text{for } t \ge T_E, \end{cases} \end{split}$$

 $c_t = \rho k_t.$

t

Modified model – Bad Equilibrium

- Lump-sum tax is imposed at T_L , which is defined by $b_T = B_L(T)$.
- Tenure of new government becomes ∞.
- Too late to restore credibility of fiscal policy.
 - Proof by contradiction: Suppose fiscal policy is credible for $t \ge T_L$; firms would choose A and interest rate be $r_t = r_H$; because of high rate r_H , debt would increase exponentially; the equilibrium path would be unsustainable for $t \ge T_L$.
- Firms choose technology B and new government does not pay gk_t to firms for t ≥ T_L.

Modified model – Bad Equilibrium

• Bad equilibrium:

$$\begin{aligned} r_t &= r_L = B, & \text{for } t \ge 0, \\ b_t &= \begin{cases} \tau_k B k_0 \rho^{-1} e^{(r_L - \rho)t} + (b_0 - \tau_k B k_0 \rho^{-1}) e^{r_L t}, & \text{for } 0 \le t < T_L, \\ \tau r_L^{-1} + \tau_k B k_T \rho^{-1} e^{(r_L - \rho)t}, & \text{for } t \ge T_L, \end{cases} \\ k_t &= k_0 e^{(r_L - \rho)t}, & \text{for } t \ge 0, \\ c_t &= \rho k_t. \end{aligned}$$

Modified model – Comparison

- Good Equilibrium
 - Growth rate

$$\frac{\dot{c}_t}{c_t} = \frac{\dot{k}_t}{k_t} = \zeta_t = \begin{cases} r_L - \rho, & \text{for } 0 \le t < T_E, \\ r_H - \rho, & \text{for } t \ge T_E. \end{cases}$$

Interest rate

$$r_t = \begin{cases} r_L, & \text{for } 0 \le t < T_E, \\ r_H, & \text{for } t \ge T_E. \end{cases}$$

- Bad Equilibrium
 - Growth rate

$$\frac{\dot{c}_t}{c_t} = \frac{\dot{k}_t}{k_t} = \zeta_t = r_L - \rho, \quad \text{for} \quad t \ge 0.$$

Interest rate

$$r_t = r_L$$
, for $t \ge 0$.

Keiichiro Kobayashi (CIGS)

Introduction

Benchmark Model

- Model without public debt overhang
- Model with public debt overhang

3 Modified model with multiple equilibria

Conclusion

- We analyzed
 - effect of unsustainable public debt on technology choice and economic growth.
- We have shown
 - unsustainable debt undermines credibility of government policy because government will do whatever possible to postpone fiscal consolidation.
 - lack of commitment makes choice of technology inefficient.
- Fiscal consolidation can restore credibility and high growth (basic model).
- Fiscal consolidation may not be able to restore credibility and growth if it comes too late (second model).