The Implications of a Greying Japan for Public Policy.

R. Anton Braun
Federal Reserve Bank of Atlanta
Douglas Joines
University of Southern California

Canon Institute for Global Studies
August 19, 2011

1The views presented here are our own and not those of the Federal Reserve
Motivation: demographic change

Japan is experiencing sudden and large demographic changes.

- Birthrates are low.
- Babyboomers are aging.
- 1990 share of the over 65 year old population was 12 percent. Lowest in Group of Six.
- 2004 share is 20 percent. Largest in Group of Six.
- Share will rise to above 40 percent by 2050.
Motivation: Fiscal Situation

- Large Public Debt/GDP ratio (gross 200 percent, net 120 percent in 2010)

- Greying of Japan means
 1. Dependency ratio will rise.
 2. Government expenditures on Social Security will rise.
 3. Government expenditures on healthcare will rise.
Questions we consider

What constraints will the greying of Japan place on future fiscal policy?

- how will government indebtedness evolve over time?
- How big are the funding gaps in S.S. and health care?
- Can one reconcile current policy with medium and long-term objectives?
- What are the economic implications of alternative government policies:
 1. Waiting (kicking the can down the road.)
 2. Fiscal consolidation
 3. Positive Demographic shocks.
 4. Inflation
Our setup

- Overlapping generations: Agents of different ages are active every period.
- Quantitative: one model period is one year.
- Time variation in birth rates, mortality rates.
- Taxes on consumption, labor and asset income.
- Government health program: medical expenditures, long term care.
- Social security system reflects demographic adjustments legislated in 2004.
Household Problem, overview

- one adult member (age varies from 21-112)
- Number of children varies with the age of the adult.
- household enjoys consumption and leisure.
- Age specific health expenditures
- Labor income varies with age of the head of household.
- Faces taxes on savings, consumption and labor income.
- Mandatory retirement at age 65.
- Social Security
Household Problem

Utility Function

\[U_s = \sum_{j=1}^{J} \beta^{j-1} \pi_{j,t} \frac{(c_{j,t}^{\theta} \ell_{j,t}^{1-\theta})^{1-\gamma}}{1-\gamma}, \quad (1) \]

Budget constraint

\[(1 - \kappa_{j,t}) c_{j,t}^{m} + c_{j,t} + a_{j,t} \leq R_{t} a_{j-1,t-1} + w_t \epsilon_j (1 - \ell_{j,t}) + b_{j,t} + \zeta_t - \theta_{j,t} \]

Taxes

\[\theta_{j,t} = \tau_{t}^a (R_{t} - 1) a_{j-1,t-1} + (\tau_{t}^\ell + \tau_{t}^p) w_t \epsilon_j (1 - \ell_{j,t}) + \tau_{t}^c c_{j,t} \]
Firm’s Problem

Production function

\[Y_t = A_t K_t^\alpha H_t^{1-\alpha}, \]

- Perfect competition
- Uses labor and capital to produce single good.

\[r_t = \alpha A_t K_t^{\alpha-1} H_t^{1-\alpha}, \]
\[w_t = (1 - \alpha) A_t K_t^\alpha H_t^{-\alpha}, \]
Government: Overview

- Taxes households to finance government expenditures.
- Can borrow from private sector.
- Runs a social security program.
- Runs a health program.
- Provides long term care.
- Taxes bequests
Elements of Japan’s Social security program we model.

- Employees program
- Contributions gradually increase to a peak of 18.3% of income in 2017.
- Benefits are linked to contributions using Japan’s formulas.
- Benefits at age of retirement are not less than 50% of average wage.
 1. partial indexation of inflation (subtract 0.9%)
 2. partial indexation of real wage growth (subtract 0.9%)
 3. demographic adjustment for number of workers
 4. demographic adjustment for longer life expectancy.
- nominal floor (no cuts in nominal benefits).
- Funding gap covered out of general govt. revenue.
Health Care Program

- Medical care
- Long term care
- Copayment varies by age (0.2, 0.3, 0.1)
- Expenditures vary with age of individual.
- Source is Fukui and Iwamoto (2006).
Government Budget Constraint

\[T_t = Z_t + \sum_{j=1}^{J} \tau^a_t (R_t - 1) a_{j-1,t-1} + (\tau^\ell_t + \tau^p_t) w_t \varepsilon_j (1 - \ell_{j,t}) + \tau^c_t c_{j,t} \]

Tax on bequests

\[Z_t = \sum_{j=2}^{J+1} (1 - \psi_{j-1,t-1}) R(X_t) a_{j-1,t-1} (x_{j-1,t-1}; X_{j-1,t-1}) N_{j-1,t-1}. \]

Government debt

\[D_{t+1} = R(X_t) D_t + G_t + B_t + \Xi_0 - T_t \]

(2)
Definitions

Definition

Feasible government policy

A feasible period-t government policy is a set of taxes and transfers: $\Psi_t \equiv \{\{b_{j,t}, \kappa_{j,t}\}_{j=1}^J, \tau^a_t, \tau^p_t, \tau^l_t, G_t, D_{t+1}, \lambda_t, \Xi\}$ that satisfies the government budget constraint.

Definition

A sustainable government policy

A sustainable government policy is a sequence of government policies $\{\Psi_t\}_{t=0}^\infty$ that are feasible for all t.

Braun and Joines

Greying Japan
Equilibrium

Definition

Competitive Equilibrium

Given an initial age-wealth distribution, a set of government policies, \(\{\Psi_t\}_{t=0}^{\infty} \), a sequence of technologies, birth rates and survival probabilities, \(\{A_t, n_{1t}, \Gamma_t\}_{t=0}^{\infty} \), a competitive equilibrium is a set of allocations and prices that satisfies the following restrictions:

1. Households are on their demand functions for consumption, leisure and assets at the given prices.
2. Firms are on their demand functions for labor and capital at the given factor prices.
3. The government policies are sustainable.
Per Capita Medical Expenditures by age in 2004

Interpolated Per Capita Medical Care Expenditure

Yen

Age

Total Per Capita Healthcare Expenditure

Braun and Joines

Greying Japan
Per Capita Long Term Health Expenditures by age in 2004

- Interpolated Per Capita Long-Term Care Expenditure
- Total Per Capita Healthcare Expenditure

Braun and Joines
Greying Japan
Per Capita Total Health Expenditures by age in 2004

Yen

Total Per Capita Healthcare Expenditure

Braun and Joines

Greying Japan
Japan’s demographic transition: Population
Japan’s demographic transition: retirees

Braun and Joines

Greying Japan
Japan’s demographic transition: dependency ratio
Initial condition set to reproduce facts from Japan in 2007

- Government purchases 14% of GDP
- Initial contribution rate to Social Security scaled to reproduce revenues of 7% of GDP.
- Consumption tax 5%.
- Labor tax 17.8%
- Initial govt. debt 0.83
- Copayments: children 0.2, working adults 0.3, retirees 0.1
- Initial scale of public health care spending 8.1% of GDP.
Baseline

An empirically relevant and sustainable policy.

- Increase the consumption tax to 10% in 2012.
- Increase consumption tax again in 2017.
 - Consumption tax is constant until 2068
 - Consumption tax never arises about this level after 2068.
- Consumption tax must increase to 33% in 2017.
- Government expenditures on Social Security, interest payments and health adjust.
- Other government expenditures are a constant 14% of GDP.
Evolution of Public Debt

Public Debt/GDP

- 2007
- 2009
- 2011
- 2013
- 2015
- 2017
- 2019
- 2021
- 2023
- 2025
Evolution of GDP and consumption, deviations from 2% trend.
Health expenditures

health expenditures/GDP

Braun and Joines
Greying Japan
Additional funding for Social Security (benefits-revenues)
Sum of Government outlays, for SS, health, interest

- S.S.
- S.S. + Interest
- S.S. + Interest + Health

Braun and Joines
Greying Japan
Alternative scenarios

- Kick the can down the road: Longer period of 10% consumption tax.
- 2% inflation rate (baseline assumes 1%)
- Early recovery in fertility.
Fiscal Consolidation: Size of Consumption tax

- Baseline: 33%
- Kick the can down the road: 37.5%
- Higher inflation rate: 2.55%
- Early recovery in fertility: 2.85%
Implications for public debt/GDP ratio

![Graph showing the implications for public debt/GDP ratio over time, with different scenarios such as Baseline, 2% inflation, Kick the can, and Early fertility.](image-url)
Implications for interest payments on debt relative to GDP

![Graph showing the implications for interest payments on debt relative to GDP over time. The graph includes lines for Baseline, 2% inflation, Kick the can, and Early fertility.](image-url)
Implications for Social security outlays relative to GDP

![Graph showing the impact on Social security outlays relative to GDP over time with different scenarios: Baseline, 2% inflation, Kick the can, and Early fertility.](image)

- **Baseline**
- **2% inflation**
- **Kick the can**
- **Early fertility**

Years: 2007, 2012, 2017, 2022, 2027
Implications for health expenditures relative to GDP

- Baseline
- 2% inflation
- Kick the can
- Early fertility

Graph showing health expenditures relative to GDP from 2007 to 2027.
Concluding Remarks

This is Work in Progress. Other things we plan to do.

- Increase the copayment for retirees. \((\text{ctax}=0.21)\).
- Labor tax adjustments
- Capital tax adjustments
- Welfare Analysis by cohort.