Recurrent Bubbles and Economic Growth

Pablo A. Guerron-Quintana, Tomohiro Hirano, and Ryo Jinnai

Boston College
The University of Tokyo
Hitotsubashi University

CIGS (4 June 2018)
Motivation

- Hysteresis and super hysteresis.

- Renewed attention;
  - Great Stagnation hypothesis (Hansen, Summers),

- Bubbles may be important.
  - Japan’s lost decades.

- Construct a model; bring it to the data.
Plan

1. Model
2. Comparative Statics
3. Estimation
4. Conclusion
Model
Model

Otherwise standard model with

1. liquidity constraint (Kiyotaki and Moore 2012),

2. variable capacity utilization (Greenwood et. al. 1998),

Household’s Structure

- A continuum of households with measure one.
- Each household has a unit measure of members.
- Some become investors; others become savers.
Household’s Problem

- Household’s utility

\[ E_0 \left[ \sum_{t=0}^{\infty} \beta^t \left( \pi \log [c^i_t] + (1 - \pi) \log [c^s_t (1 - l_t)^{\eta}] \right) \right] \]

- \( c^i_t \) is investor’s consumption; \( c^s_t \) saver’s.

- Member’s roles ex ante unknown.

- Realize after separated.

- Equally divide the assets; give state-contingent plans.
Budget Constraints

- **Investor**
  \[
  x_t^i + i_t + q_t \underbrace{n_{t+1}^i} = q_t i_t + [u_t r_t + q_t (1 - \delta(u_t))] n_t.
  \]
  
  \[
  \text{gross equity purchase}
  \]

- **Saver**
  \[
  x_t^s + q_t n_{t+1}^s = w_t l_t + [u_t r_t + q_t (1 - \delta(u_t))] n_t.
  \]

- **Potluck party at night**
  \[
  \pi x_t^i + (1 - \pi) x_t^s = \pi c_t^i + (1 - \pi) c_t^s.
  \]

- **Equity holding at night**
  \[
  n_{t+1} = \pi n_{t+1}^i + (1 - \pi) n_{t+1}^s.
  \]
Liquidity Constraints

- Investors face

\[ n_{t+1}^i \geq (1 - \phi) [i_t + (1 - \delta (u_t)) n_t]. \]

- If \( \phi = 1 \), can sell everything.

- If \( \phi = 0 \), dividends \((u_t r_t n_t)\) are the sole liquidity.

- Intrinsically useless (liquid) assets may have a positive value.

- Fiat money in KM; bubbles in our model.
Capacity Utilization

- Capital can be intensively used, which means
  - more capital service;
    \[ KS_t = ut \]
    (capital service, utilization, capital stock)
  - faster depreciation;
    \[ K_{t+1} = \pi i_t + \left(1 - \delta(u_t)\right) K_t \]
    (gross investment, depreciation rate)
Learning-By-Doing

- Competitive firms maximize profits.

- Cobb-Douglas production function

\[ Y_t = A_t \left( u_t K_t \right)^{\alpha} \left( L_t \right)^{1-\alpha}. \]

  technology level

- \( A_t \) is endogenous;

\[ A_t = \bar{A} \left( K_t \right)^{1-\alpha}. \]

  scale parameter externality

- Individual firms take \( A_t \) as exogenous ("Big K, little k" trick).

- Growth is sustained by externality.
Regimes

- Bubbly and fundamental regimes.
- $M$ units of bubbly assets in bubbly regime.
- No bubbly assets in fundamental regime.
- Helicopter drop of bubbly assets when $f \to b$.
- Sudden disappearance when $b \to f$.
- Markov switching.
### Regimes

<table>
<thead>
<tr>
<th>period</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>regime</td>
<td>f</td>
<td>f</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>f</td>
<td>f</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>bubbly assets</td>
<td>0</td>
<td>0</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>M</td>
<td>M</td>
<td>...</td>
</tr>
</tbody>
</table>

**Table:** example
Bubbly Assets; Pros and Cons

- Intrinsically useless, no dividends (cons)
- May disappear (cons)
- Perfectly liquid (pros)
- Savers may find liquidity service attractive enough.
- Liquidity service depends on the resale value.
- Multiple equilibria.
Parameters
## Parameter Values

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \beta ) discount rate</td>
<td>0.99</td>
<td>standard</td>
</tr>
<tr>
<td>( \zeta ) elasticity of ( \delta (\cdot) )</td>
<td>0.33</td>
<td>Comin and Gertler (2006)</td>
</tr>
<tr>
<td>( \alpha ) capital share</td>
<td>0.33</td>
<td>standard</td>
</tr>
<tr>
<td>( \pi ) fraction of investors</td>
<td>0.06</td>
<td>Shi (2015)</td>
</tr>
<tr>
<td>( \delta (0) ) depreciation when idol</td>
<td>0.001</td>
<td>frictionless growth=1.005</td>
</tr>
<tr>
<td>( \delta (1) ) depreciation at full capacity</td>
<td>0.005</td>
<td>hand-picked</td>
</tr>
<tr>
<td>( \eta ) curvature in leisure</td>
<td>2.67</td>
<td>frictionless hours=0.27</td>
</tr>
<tr>
<td>( \bar{A} ) scale parameter</td>
<td>0.49</td>
<td>equilibrium condition</td>
</tr>
<tr>
<td>( \sigma_b ) prob. of ( b \to f )</td>
<td>0.015</td>
<td>hand-picked</td>
</tr>
<tr>
<td>( \sigma_f ) prob. of ( f \to b )</td>
<td>0.015</td>
<td>hand-picked</td>
</tr>
</tbody>
</table>
Comparative Statics
Permanent Fundamental

- Turn off the regime switch for a while.
- Always fundamental.
Fundamental Equilibrium

Non-linear relation when liquidity constraint binds.
Fundamental Equilibrium

Competing effects of marginal liquidity provision.

- Promote gross investment.
- Accelerate capital depreciation.

The diagram shows the relationship between quarterly growth and the liquidity constraint parameter $\phi$, with "tight" and "loose" liquidity constraints indicated.
Stochastic Bubble

- The economy starts with $b$.
- Transitions to $f$ with prob. 1.5% per quarter.
- Stays in $f$ forever (Weil 1987).
Stochastic Bubble

Multiple equilibria when liquidity constraint is tight.
Stochastic Bubble

Bubble is “special.” Fundamental is “normal.”
Stochastic Bubble

High growth with bubble? Lucky you!
Recurrent Bubble

- Turn on two-way regime switch.

- Both $b \rightarrow f$ and $f \rightarrow b$ with prob. 1.5% quarterly.
Recurrent Bubble

High growth in bubbly period; low in the other.
Recurrent Bubble

Inter-temporal (inter-regime) substitution at work.

- **Consumption-to-capital**
- **Investment-to-capital**
- **Labor**
- **Utilization**

- **Bubbly regime**
- **Fundamental regime**

- Invest more in bubbly period
- Work harder in bubbly period
Recurrent v.s. Stochastic

Discrepancy in fundamental regime.

Discrepancy observed even in the fundamental regime.
Recurrent v.s. Stochastic

Both wealth effect and price effect at work.
Takeaways

The economy may grow fast in the bubbly period.
Takeaways

Not necessarily means unconditionally high growth.

- High growth in bubbly period
- Low unconditional growth.
Takeaways

Bubbleless growth is slow just because people **expect** bubbles.

- **High growth in bubbly period**
- **Low unconditional growth.**
- **Expectation** about bubbles lowers growth in fundamental.
Takeaways (Growth and Volatility)

Bubbles will be unpopular in the advanced economy.
Takeaways (Growth and Volatility)

Bubbles may be welcomed in the developing economy.

High growth
High volatility
Takeaways (Growth and Volatility)

Seemingly puzzling views not so puzzling in our model.

Ranciere et. al. (2008 QJE) “Systemic Crises and Growth”

A Nobel Laureate “Bubbles reduce average growth and increase volatility.”
Estimation
Estimation (Method)

- Structural estimation detecting bubbles.
- Data: GDP growth and consumption-investment ratio.
- In a first pass;
  - estimate bubble and fundamental regimes,
  - estimate persistence and volatility of shocks (added),
  - retain rest of parameters.
- Absence of endogenous states facilitates estimation.
Estimation (U.S.)

Regime switches from bubble→fundamental→bubble.
Conclusion

- Recurrent bubbles.
- Two-way dynamic effects ($b \leftrightarrow f$ and $f \leftrightarrow b$).
- Super-hysteresis.
- Structural estimation.
Appendix
If bubbles arise in the future, why not now?

- We exclude it by assumption.
- No bubble markets in the fundamental regime.
- Neither spot nor future.
- No way to purchase bubbly assets (literally).
Depreciation Function

\[ \delta'(u_t) > 0, \quad \delta''(u_t) > 0, \quad \text{and} \quad u_t \delta''(u_t) / \delta'(u_t) = 0.33. \]
Depreciation Function

Advanced economy both invests and crashes a lot.
Stochastic Bubble

Welfare implication is similar.
Recurrent Bubble

Bubbles are disliked in the advanced economy.