Paralyzed by Fear: Rigid and Discrete Pricing Under Demand Uncertainty

Cosmin Ilut Rosen Valchev Nicolas Vincent

Duke & NBER Boston College HEC Montreal

June 2018, CIGS Macro Conference

Motivation

- Why do we care?
 - Price rigidity: crucial to understanding propagation mechanism of monetary policy and business cycle fluctuations
- How to model?
 - ► Taylor, Calvo, menu costs, sticky information, rational inattention, etc.
- How to choose between models?
 - ▶ to guide us, large empirical literature on documenting price stickiness
 - rich set of 'overidentifying' restrictions on the theory
- This paper: a new model of rigid prices
 - intuitive and parsimonious

Key Mechanism: uncertainty about competition

- Uncertainty about demand function
 - Not confident about potentially complex shape of demand curve
 - Learn through noisy demand signals at posted price
 - ▶ Reduction in uncertainty: stronger locally, not confident to extrapolate
 - Uncertainty aversion \longrightarrow kinks in *as if* expected demand at past prices
 - ★ If increase price \Rightarrow worry demand is very elastic
 - ★ If decrease price \Rightarrow worry demand is very inelastic

Key Mechanism: uncertainty about competition

- Uncertainty about demand function
 - Not confident about potentially complex shape of demand curve
 - Learn through noisy demand signals at posted price
 - ► Reduction in uncertainty: stronger locally, not confident to extrapolate
 - Uncertainty aversion \longrightarrow kinks in *as if* expected demand at past prices
 - ★ If increase price \Rightarrow worry demand is very elastic
 - ★ If decrease price \Rightarrow worry demand is very inelastic

Incertainty about relevant relative price (the argument of demand)

- Relevant price index of competition is unknown; review it infrequently
- ► Short run: unknown relation b/w price index and observed aggr. price
- Firm takes action robust to worst-case demand schedule
 - ★ action: relative price against last observed competition price index
 - ★ worst case: agg prices are uninformative about competition price index

Key Implications

- Kinks from lower uncertainty at previously posted prices \Rightarrow prices that are endogenously:
 - sticky : do not want to move and face higher uncertainty
 - 2 discrete : conditional on price change, move to 'safer' prices
 - increasingly attractive: larger kinks if posted more often
 - both flexible and sticky: endogenous cost of adjustment
- Novel empirical implications: prices with unusually high demand realizations are stickier

Literature

- Sticky prices
 - Empirical
 - Micro data: Bils & Klenow (2004), Klenow & Kryvtsov (2008), Nakamura & Steinsson (2008), Eichenbaum et al. (2011), Vavra (2014)
 - Theory: pricing rigidities
 - * Real: Ball & Romer (1990), Kimball (1995), kinked demand curves (Stigler 1947, Stiglitz 1979)
 - Nominal: Calvo, Taylor, menu costs (eg. Kehoe & Midrigan, 2010), rational inattention (eg. Matejka (2014), Stevens (2014))
- Pricing under demand uncertainty
 - Parametric Bayesian learning: Rothschild (1974), Willems (2011), Bachmann & Moscarini (2011)
- Skinghtian uncertainty
 - Decision theory: Gilboa & Schmeidler (1989), Pires (2002), Epstein & Schneider (2007)

Outline

Analytical Model

- Learning under ambiguity
- Optimal pricing
 - ★ static and dynamic tradeoffs
 - * policy functions
- Quantitative Model
 - Nominal Rigidity
 - Quantitative Results
 - Novel Empirical Implications
 - Monetary Policy

Information structure

- The firm faces log marginal cost c_t , sells single good for price p_t
- Time t profit:

$$v(p_t, q_t, c_t) = (e^{p_t} - e^{c_t})e^{q(p_t)}$$

demand:

$$q_t = x(p_t) + z_t$$

- Information:
 - not observe x(p_t) and z_t separately
 - *z_t* is purely risky i.e. know that

$$z_t \sim iidN(0, \sigma_z^2)$$

- x(.) is ambiguous not know its probability distribution
- the firm learns about $x(p_t)$ through past sales data $\{q^{t-1}, p^{t-1}\}$

Learning Framework

• Prior is a Gaussian Process distr: for any price vector $\mathbf{p} = [p_1, ..., p_N]'$

$$x(\mathbf{p}) \sim N\left(\left[\begin{array}{ccc} m(p_1)\\ \vdots\\ m(p_N)\end{array}\right], \left[\begin{array}{ccc} K(p_1, p_1) & \dots & K(p_1, p_N)\\ \vdots & \ddots & \vdots\\ K(p_N, p_1) & \dots & K(p_N, p_N)\end{array}\right]\right)$$

• Ambiguity – the firm entertains a set of priors Υ

- Priors have different mean function m(p)
- Same covariance function (infinitely differentiable):

$$K(\boldsymbol{p},\boldsymbol{p}') = \sigma_x^2 \exp(-\psi(\boldsymbol{p}-\boldsymbol{p}')^2)$$

- On-parametric not restricted to a parametric family, just:
 - Lay inside some bounds

$$m(p) \in [\gamma_L - bp, \gamma_H - bp]$$

Non-increasing, i.e. is a demand curve

$$m(p') \leq m(p), \text{ for } \forall p' > p$$

► Maximum derivative (ensures continuity): |m'(p)| ≤ b_{max}

Admissible Prior Mean Functions

Learning: Prior-by-prior Bayesian updating

- The firm uses data $arepsilon^{t-1} = (p^{t-1},q^{t-1})$ to update each prior
- Recursive multiple priors utility (Epstein-Schneider (2007))

$$V\left(\varepsilon^{t-1}, c_{t}\right) = \max_{p_{t}} \min_{m(p)} E^{\widehat{x}_{t-1}(p_{t}; m(p))} \left[\upsilon(\varepsilon_{t}, c_{t}) + \beta V\left(\varepsilon^{t-1}, \varepsilon_{t}, c_{t+1}\right) \right]$$

- Min operator is conditional on price choice
 - * The firm looks for the p_t most robust to the set of possibilities it faces
- Price choice affects profits today and information set tomorrow

Learning: Prior-by-prior Bayesian updating

- The firm uses data $arepsilon^{t-1} = (p^{t-1},q^{t-1})$ to update each prior
- Recursive multiple priors utility (Epstein-Schneider (2007))

$$V\left(\varepsilon^{t-1}, c_{t}\right) = \max_{p_{t}} \min_{m(p)} E^{\widehat{x}_{t-1}(p_{t}; m(p))} \left[\upsilon(\varepsilon_{t}, c_{t}) + \beta V\left(\varepsilon^{t-1}, \varepsilon_{t}, c_{t+1}\right) \right]$$

- Min operator is conditional on price choice
 - ***** The firm looks for the p_t most robust to the set of possibilities it faces
- Price choice affects profits today and information set tomorrow
- Worst-case m(p) lowest expected demand $\hat{x}_{t-1}(p_t; m(p))$:

$$m^*(p; p_t) = \operatorname{argmin}_{m(p) \in \Upsilon} \widehat{x}_{t-1}(p_t; m(p))$$

Illustration

• Imagine firm has observed p_0 for N_0 times, with avg demand

$$q_0 = x(p_0) + \frac{1}{N_0} \sum_i z_i$$

• Then signal-to-noise ratio for a given p' is

$$\alpha(\boldsymbol{p}',\boldsymbol{p}_0) = \frac{\sigma_x^2}{\sigma_x^2 + \sigma_z^2/N_0} \exp(-\psi(\boldsymbol{p}'-\boldsymbol{p}_0)^2)$$

Kinks in expected demand

• Set of conditional expectations, indexed by priors

$$\widehat{x}_{0}(p'; m(p)) = \underbrace{(1 - \alpha(p', p_{0})) m(p')}_{\text{Prior demand at } p'} + \underbrace{\alpha(p', p_{0}) \left[q_{0} + m(p') - m(p_{0})\right]}_{\text{Signal } + \Delta \text{ in Demand between } p' \text{ and } p_{0}}$$

Kinks in expected demand

• Set of conditional expectations, indexed by priors

$$\widehat{x}_{0}(p'; m(p)) = \underbrace{(1 - \alpha(p', p_{0})) m(p')}_{\text{Prior demand at } p'} + \underbrace{\alpha(p', p_{0}) \left[q_{0} + m(p') - m(p_{0})\right]}_{\text{Signal} + \Delta \text{ in Demand between } p' \text{ and } p_{0}}$$

- Worst-case priors: minimize
- Prior demand at p': $m^*(p') = \gamma_L bp'$
- 2 Change in demand from p' to p_0 : worst-case is conditional on price p'
 - For $p' > p_0$: worry demand is elastic between p' and p_0 $m^*(p') - m^*(p_0) = -b_{max}(p' - p_0)$
 - For $p' < p_0$: worry demand is inelastic between p' and p_0 $m^*(p') - m^*(p_0) = 0$

Worst-case is conditional on price

Ilut, Valchev, Vincent

Worst-case expected demand

- Kink in worst-case expected demand at *p*₀: from endogenous switch in worst-case prior
 - Demand elasticity to the left $(p' \rightarrow p_0^-)$:

$$-(1-rac{\sigma_x^2}{\sigma_x^2+\sigma_z^2/N_0})b$$

• Demand elasticity to the right $(p'
ightarrow p_0^+)$

$$-(1-rac{\sigma_x^2}{\sigma_x^2+\sigma_z^2/N_0})b-rac{\sigma_x^2}{\sigma_x^2+\sigma_z^2/N_0}b_{max}$$

As if kinked expected demand

As if kinked expected demand: $b_{max} \rightarrow \infty$

As if kinked expected demand: more exercises

As if kinked expected demand: 2 past prices

Optimal pricing: Myopic (static) maximization

- Perceived kinks lead to price stickiness
 - ▶ Intuition: higher uncertainty at new prices \Rightarrow kink at $p_0 \Rightarrow$ stickiness
- Inaction regions (stickiness) are price and history specific
 - Increase with information precision (N) and level of past demand (q)
- Past price not only 'sticky' but also attractive i.e. 'reference' prices
 - Memory / discreteness (positive probability of revisiting past prices)
 - 2 Declining hazard prob. of revisit increases with N
 - S Flexibility and stickiness small price changes could be optimal
- Theory of endogenous, time-varying cost of price change

Myiopic Optimal Price: kinked expected demand

Ilut, Valchev, Vincent

Paralyzed by Fear

Myiopic Optimal Price: kinked expected demand

Ilut, Valchev, Vincent

Paralyzed by Fear

Dynamics: Experimentation Motive

- Full model infeasible: infinite state space
 - Whole history of prices and demand observations
- Consider instead
 - Firm understands how action at t = 1 affects information set at $t \ge 2$

$$\max_{p_1} E(\pi(p_1,c_1)+\beta V(c_2,\mathcal{I}_1)|\mathcal{I}_0)$$

s.t.

$$\mathcal{I}_1 = \mathcal{I}_0 \cup \{p_1, q_1\}$$

• But thinks there are no updates to information for $t \ge 2$, so

$$V(c_t,\mathcal{I}_1) = \max_{p_t} E_t(\pi(p_t,c_t)) + \beta E_t(V(c_{t+1},\mathcal{I}_1),$$

- Puts an upper bound on experimentation motive
 - Today is last period in which you can acquire new information

Forward looking policy

Experimentation Motive: existing information matters

Reduced benefits of experimentation

- **9** Better information about $x(p_t) \Rightarrow$ get closer to true optimal price
 - More useful if you set price further away from p_0 (influential point)
 - Here: information is local, reducing effect of influential points
- 2 Option value of new information: if bad signal, go back to "safe" p_0
 - Higher value if close to p_0 (marginal cost is persistent)
 - ► Here (unlike independent arm bandit models): x(p) and x(p') are correlated ⇒ p₁ ≈ p₀ carries little new information
 - Likely to set p_0 again (sticky price) \Rightarrow best to draw new signal there
 - Why does higher N₀ reduce experimentation motive?
 - Cost of forgone profit of large experimentation is large
 - 2 New signal at $p_1 \approx p_0$ will have little effect on beliefs

Move a little when corr(x(p), x(p')) is low

Low experimentation motive with low signal-to-noise ratio

Ilut, Valchev, Vincent

Outline

Analytical Model

Quantitative Model

- Nominal Rigidity
- Calibration and Quantitative Results
- Novel Empirical Implications
- Monetary Policy Effects

A monopolistically competitive model with nominal prices

• Household: CES aggregator over goods produced by industries j

$$P_t = \left(\int P_{j,t}^{1-b} dj\right)^{\frac{1}{1-b}}$$

• Industry *j*: aggregates over interm. goods \Rightarrow demand for good *i*

$$q_{i,j,t} = h(p_{i,t} - p_{j,t}) \underbrace{-b(p_{j,t} - p_t) + c_t}_{= \text{demand for industry } j} + z_{i,t}$$

- Firm *i* observes aggregate and own realizations: $\{p_t, c_t, p_{i,t}, q_{i,j,t}\}$
- I Firm i observes relevant prices $p_{j,t}$ infrequently, with prob. λ_T
- Sirms exit with exogenous probability λ_{ϕ}
- Ambiguity about competition: two layers

argument of demand function: ambiguity about p_{j,t}

Ambiguous demand $y_{i,j,t} = h(p_{i,t} - p_{j,t}) - bp_{j,t} + bp_t + c_t + z_{i,t}$

• Relation between $p_{j,t}$ and p_t . If $p_{j,s}$ last observed ind price

$$p_{jt} - p_{js} = \phi(p_t - p_{js}) + \nu_{jt}$$

Long-run cointegrated but in short-run ambiguous relationship:

$$\phi(p_t - p_{js}) \in [-\gamma_p, \gamma_p]$$
, for $|p_t - p_{js}| \leq K$.

We empirically document imprecise industry - aggregate inflation link
 Inflation Evidence

Ambiguous demand $y_{i,j,t} = h(p_{i,t} - p_{j,t}) - bp_{j,t} + bp_t + c_t + z_{i,t}$

• Relation between $p_{j,t}$ and p_t . If $p_{j,s}$ last observed ind price

$$p_{jt} - p_{js} = \phi(p_t - p_{js}) + \nu_{jt}$$

Long-run cointegrated but in short-run ambiguous relationship:

$$\phi(p_t - p_{js}) \in [-\gamma_p, \gamma_p]$$
, for $|p_t - p_{js}| \leq K$.

- We empirically document imprecise industry aggregate inflation link
 Inflation Evidence
- Identification problem: nature draws jointly h(.) and $\phi(.)$

$$h(p_{it} - p_{jt}) = \frac{h(p_{it} - p_{js}) - \phi(p_t - p_{js}) + \nu_{jt}}{=\hat{r}_{it}}$$

Ambiguous demand $y_{i,j,t} = h(p_{i,t} - p_{j,t}) - bp_{j,t} + bp_t + c_t + z_{i,t}$

• Relation between $p_{j,t}$ and p_t . If $p_{j,s}$ last observed ind price

$$p_{jt} - p_{js} = \phi(p_t - p_{js}) + \nu_{jt}$$

Long-run cointegrated but in short-run ambiguous relationship:

$$\phi(p_t - p_{js}) \in [-\gamma_p, \gamma_p]$$
, for $|p_t - p_{js}| \leq K$.

- We empirically document imprecise industry aggregate inflation link
 Inflation Evidence
- Identification problem: nature draws jointly h(.) and $\phi(.)$

$$h(p_{it} - p_{jt}) = h(\underbrace{p_{it} - p_{js}}_{=\hat{r}_{it}} - \phi(p_t - p_{js}) + \nu_{jt})$$

• Firm's action is robust against worst-case demand schedule:

$$h^*(\hat{r}_{it}, \nu_{jt}) \approx x(\hat{r}_{it}) + \varepsilon_{it}; \varepsilon_{it} \sim N(0, \sigma_{\varepsilon}^2)$$

 \blacktriangleright no p_t because nature chooses some (unidentifiable) $\phi^*(p_t - p_{js}) = ar{\phi}$

Nominal rigidity from learning the worst-case demand

• Demand signals

$$y_{i,j,t} = x(\hat{r}_{it}) + c_t + b(p_t - p_{js}) + \varepsilon_{it} + z_{it}$$

- Ambiguity about competition
- **0** demand function: kinks formed in relative prices $\hat{r}_{it} = p_{it} p_{js}$
- **2** argument of demand function: p_{jt} beliefs constant in the short-run \Rightarrow nominal rigidity
- Potential for 'pricing regimes': sticky nominal prices with memory

Quantitative model

- GE model with measure zero of ambiguity-averse firms
 - Aggregate shocks: money supply and TFP
 - endogenous aggregates evolve as with flex prices
- Ergodic distribution: beliefs of firms converge to a stable distribution
 - ► Learning friction still present at aggregate & individual firm level
 - * Endogenous reference prices means firms select from coarse set
 - $\star\,$ Never learns demand at all possible prices, friction remains in long-term
- Parameters:
 - macro: calibrate to standard moments on inflation and aggregate TFP
 - micro: use micro-data pricing and quantity moments (IRI dataset)
 - take out sales (V-shape filter)
 - some direct evidence:

Parameter	Value	Source/Target
λ_{ϕ}	0.0075	mean lifespan of a product 2.5 yrs (Argente-Yeh 2017)
σ_z	0.61	median demand forecast error

Calibration micro parameters: SMM

Parameter	Value	Description				
ρ_w	0.784	Persistence of idiosyncratic productivity				
σ_w	0.047	St. dev. of idiosyncratic productivity shock				
ν	1.15	Ambiguity parameter				
ψ	4	Prior covariance function smoothing parameter				
σ_{x}	0.51	Prior variance of $x(.)$				
b _{max}	3.4*b	Maximum derivative				
λ_T	0.015	Frequency of price reviews				
Target Mon	nents		Data	Model		
Frequency of price changes			0.11	0.11		
Fraction of price increases			0.54	0.55		
Mean size of abs price changes			0.19	0.20		
Lower quartile of abs price change distribution			0.069	0.069		
Upper quartile of abs price change distribution			0.27	0.28		
Frequency of modal price change (13 week window)			0.027	0.029		
Mean duration of pricing regimes (weeks - Stevens, 2017) 29.1				32.1		

Additional Implications: discrete prices with memory

Moment	Data	Model
Probability of revisiting a price (last 26 weeks)	0.62	0.68
Avg $\#$ uniq. prices (26 weeks) / ($\#$ price changes + 1)	0.77	0.73
Fraction of time at modal price	0.83	0.85
Prob. price change goes to modal price	0.43	0.51

Price change hazard

Additional Implications: demand signals matter for pricing

- Model predicts that stickiness is stronger for a price:
- posted more often ('high N')
 - ▶ already some evidence to this: e.g. declining hazard
- **2** with unusually positive demand realizations ('high \bar{z} ')
 - intuitive: more likely to remain at prices that appear 'profitable'
 - stronger effect at young prices: kink mostly driven by \bar{z}
 - at older prices: \bar{z} changes little the large kink that comes from N
 - novel empirical implications: link quantity data to stickiness

Demand signals matter for pricing: data and model

• Regression that tests those predictions

$$I(p_{i,t} \neq p_{i,t-1}) = \alpha_i + \xi_t + \beta_Z \bar{z}_{i,t-1} + \beta_N N_{i,t-1} + \varepsilon_t$$

▶ $\beta_Z < 0$ ($\beta_N < 0$): less likely to change a price $p_{i,t-1}$ with high \bar{z} (N)

subsample with young prices: effects stronger for Z

Young $(N_{i,t-1} \leq 8)$				All $(N_{i,t-1} \le 26)$		
Data	$Pr(\Delta>0)$ 0.14	Z effect - 7.9%	N effect - 6.5%	$\Pr(\Delta > 0)$ 0.1	Z effect - 5%	N effect - 23%
Model	0.15	- 6.1%	- 9.7%	0.1	- 3.9%	- 15.6%

Monetary Policy IRF

Conclusions

- Firm exploits demand curve under ambiguity
 - learning about non-parametric demand
 - firm acts as if kinked expected demand at previously observed prices
 - generates 'price memory' and makes them endogenously:

sticky, discrete, increasingly attractive

- With imperfect info on competitors' prices: nominal rigidity
- Endogenous cost of price change: rigidity is history and state dependent
 - implications for policy

Evidence on weak aggregate - industry prices link

Figure: 3-year rolling regressions of 3-month industry inflation on 3-month aggregate inflation. Back

Ilut, Valchev, Vincent

Demand regression

• Regression to recover $z_{ijt} > 0$ realizations

$$q_{ijt} = \beta_0 + \beta_1 q_{i,j,t-1} + \beta_2 p_{ijt} + \beta_3 p_{ijt}^2 + \beta_4 cp_{it} + week_t'\theta_1 + store_j'\theta_2 + item_i'\theta_3 + z_{ijt}$$

where

- q_{ijt}, p_{ijt} are quantities and prices in logs
- cpi_t is the consumer price index for food and beverages
- week_t is a vector of week dummies
- store_i is a vector of store dummies
- *item_i* is a vector of item dummies

▶ Back