Discouraging Deviant Behavior in Monetary Economics

Lawrence Christiano and Yuta Takahashi

Northwestern and Hitotsubashi

May 27, 2019
Multiple Equilibria Standard NK Model

- Standard, New Keynesian (NK) Monetary Model:
 - Interest rate rule with big coefficient on inflation (‘Taylor rule’) and passive fiscal policy:
 - Big coefficient on inflation: ‘Taylor Principle’.
Multiple Equilibria Standard NK Model

- Standard, New Keynesian (NK) Monetary Model:
 - Interest rate rule with big coefficient on inflation (‘Taylor rule’) and passive fiscal policy:
 - Big coefficient on inflation: ‘Taylor Principle’.

- Literature focuses on unique equilibrium local to unique interior steady state.
 - Referred to as ‘desired equilibrium’ here.
 - In practice, that equilibrium is ‘pretty good’ in a welfare sense.
Multiple Equilibria Standard NK Model

• Standard, New Keynesian (NK) Monetary Model:
 ▶ Interest rate rule with big coefficient on inflation (‘Taylor rule’) and passive fiscal policy:
 ▶ Big coefficient on inflation: ‘Taylor Principle’.

• Literature focuses on unique equilibrium local to unique interior steady state.
 ▶ Referred to as ‘desired equilibrium’ here.
 ▶ In practice, that equilibrium is ‘pretty good’ in a welfare sense.

• But, we have reasons to think that there are other equilibria in NK model:
 ▶ BSGU(01,JET) showed there are two steady states.
Multiple Equilibria Standard NK Model

• Standard, New Keynesian (NK) Monetary Model:
 ▶ Interest rate rule with big coefficient on inflation (‘Taylor rule’) and passive fiscal policy:
 ▶ Big coefficient on inflation: ‘Taylor Principle’.

• Literature focuses on unique equilibrium local to unique interior steady state.
 ▶ Referred to as ‘desired equilibrium’ here.
 ▶ In practice, that equilibrium is ‘pretty good’ in a welfare sense.

• But, we have reasons to think that there are other equilibria in NK model:
 ▶ BSGU(01,JET) showed there are two steady states.
 ▶ In simple monetary models there are also other equilibria:
 ▶ Hyperinflation, deflation, cycling, and chaos.
Multiple Equilibria Standard NK Model

- Standard, New Keynesian (NK) Monetary Model:
 - Interest rate rule with big coefficient on inflation (‘Taylor rule’) and passive fiscal policy:
 - Big coefficient on inflation: ‘Taylor Principle’.

- Literature focuses on unique equilibrium local to unique interior steady state.
 - Referred to as ‘desired equilibrium’ here.
 - In practice, that equilibrium is ‘pretty good’ in a welfare sense.

- But, we have reasons to think that there are other equilibria in NK model:
 - BSGU(01,JET) showed there are two steady states.
 - In simple monetary models there are also other equilibria:
 - Hyperinflation, deflation, cycling, and chaos.

- Message from models: Taylor rule not sufficient to stabilize inflation globally.
Implementation of Desired Equilibrium by Escape Clause

Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.

▶ In high inflation, money growth high.
▶ Just declare 'we refuse to allow high money growth'.
▶ In deflation, money growth slow.
▶ Just declare 'we refuse to allow slow (negative) money growth'.
▶ While inside an inflation monitoring range, follow Taylor rule.

There exists a unique equilibrium under this policy.

Practical examples of escape clauses:
▶ Exigent circumstances clause 13.3 in Federal Reserve Act.
▶ European Central Bank Two Pillar Policy.
Implementation of Desired Equilibrium by Escape Clause

• Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
Implementation of Desired Equilibrium by Escape Clause

- Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 - In high inflation, money growth high.
 - Just declare 'we refuse to allow high money growth'.
 - In deflation, money growth slow.
 - Just declare 'we refuse to allow slow (negative) money growth'.
 - While inside an inflation monitoring range, follow Taylor rule.

- There exists a unique equilibrium under this policy.
- Practical examples of escape clauses:
 - Exigent circumstances clause 13.3 in Federal Reserve Act.
 - European Central Bank Two Pillar Policy.
Implementation of Desired Equilibrium by Escape Clause

• Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 ▶ In high inflation, money growth high.
 ▶ Just declare ‘we refuse to allow high money growth’.

• There exists a unique equilibrium under this policy.

• Practical examples of escape clauses:
 ▶ Exigent circumstances clause 13.3 in Federal Reserve Act.
 ▶ European Central Bank Two Pillar Policy.
Implementation of Desired Equilibrium by Escape Clause

- Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 - In high inflation, money growth high.
 - Just declare ‘we refuse to allow high money growth’.
 - In deflation, money growth slow.
 - Just declare ‘we refuse to allow slow (negative) money growth’.

- There exists a unique equilibrium under this policy.

- Practical examples of escape clauses:
 - Exigent circumstances clause 13.3 in Federal Reserve Act.
 - European Central Bank Two Pillar Policy.
Implementation of Desired Equilibrium by Escape Clause

- Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 - In high inflation, money growth high.
 - Just declare ‘we refuse to allow high money growth’.
 - In deflation, money growth slow.
 - Just declare ‘we refuse to allow slow (negative) money growth’.
 - While inside an inflation monitoring range, follow Taylor rule.
Implementation of Desired Equilibrium by Escape Clause

- Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 - In high inflation, money growth high.
 - Just declare ‘we refuse to allow high money growth’.
 - In deflation, money growth slow.
 - Just declare ‘we refuse to allow slow (negative) money growth’.
 - While inside an inflation monitoring range, follow Taylor rule.

- There exists a unique equilibrium under this policy.
Implementation of Desired Equilibrium by Escape Clause

• Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 ▶ In high inflation, money growth high.
 ▶ Just declare ‘we refuse to allow high money growth’.
 ▶ In deflation, money growth slow.
 ▶ Just declare ‘we refuse to allow slow (negative) money growth’.
 ▶ While inside an inflation monitoring range, follow Taylor rule.

• There exists a unique equilibrium under this policy.

• Practical examples of escape clauses:
Implementation of Desired Equilibrium by Escape Clause

• Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 ▶ In high inflation, money growth high.
 ▶ Just declare ‘we refuse to allow high money growth’.
 ▶ In deflation, money growth slow.
 ▶ Just declare ‘we refuse to allow slow (negative) money growth’.
 ▶ While inside an inflation monitoring range, follow Taylor rule.

• There exists a unique equilibrium under this policy.

• Practical examples of escape clauses:
 ▶ Exigent circumstances clause 13.3 in Federal Reserve Act.
Implementation of Desired Equilibrium by Escape Clause

- Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 - In high inflation, money growth high.
 - Just declare ‘we refuse to allow high money growth’.
 - In deflation, money growth slow.
 - Just declare ‘we refuse to allow slow (negative) money growth’.
 - While inside an inflation monitoring range, follow Taylor rule.

- There exists a unique equilibrium under this policy.

- Practical examples of escape clauses:
 - Exigent circumstances clause 13.3 in Federal Reserve Act.
 - European Central Bank Two Pillar Policy.
Push Back Against Dramatic Conclusions in Two Papers

 ▶ Uniqueness proof with the escape clause is correct.
 ▶ Undesired equilibria ruled out by govt. commitment to do something impossible.
 ▶ Commitment to 'blow up the economy.'
 ▶ The policy delivering uniqueness is of no economic interest.

• Our finding is that Cochrane's conclusion is not correct in a production economy.
 ▶ While correct in his endowment economy.
Push Back Against Dramatic Conclusions in Two Papers

 ▶ Uniqueness proof with the escape clause is correct.
 ▶ Undesired equilibria ruled out by govt. commitment to do something impossible.
 ▶ Commitment to 'blow up the economy.'
 ▶ The policy delivering uniqueness is of no economic interest.

- Our finding is that Cochrane's conclusion is not correct in a production economy.
 ▶ While correct in his endowment economy.
Push Back Against Dramatic Conclusions in Two Papers

 - Uniqueness proof with the escape clause is correct.
- Commitment to 'blow up the economy.'
- The policy delivering uniqueness is of no economic interest.
- Undesired equilibria ruled out by govt. commitment to do something impossible.
- Our finding is that Cochrane's conclusion is not correct in a production economy.
 - While correct in his endowment economy.
Push Back Against Dramatic Conclusions in Two Papers

 - Uniqueness proof with the escape clause is correct.
 - Undesired equilibria ruled out by govt. commitment to do something impossible.
 - Commitment to ‘blow up the economy.’
 - The policy delivering uniqueness is of no economic interest.
Push Back Against Dramatic Conclusions in Two Papers

 - Uniqueness proof with the escape clause is correct.
 - Undesired equilibria ruled out by govt. commitment to do something impossible.
 - Commitment to ‘blow up the economy.’
 - The policy delivering uniqueness is of no economic interest.

- Our finding is that Cochrane’s conclusion is *not* correct in a production economy.
 - While correct in his endowment economy.
Push Back Against Dramatic Conclusions in Two Papers (See paper)

• ACK suggest shrinking the monitoring range to a singleton and letting the escape clause do all the work to uniquely implement desired equilibrium.

• ACK conclude: Taylor principle irrelevant to implement desired equilibrium.

• Equilibrium with ACK policy is knife-edge:
 ▶ Lacks robustness to trembles.
 ▶ Tiny trembles activate escape clause,
 ▶ Negative consequences for welfare if there are money demand shocks.
Push Back Against Dramatic Conclusions in Two Papers (See paper)

- ACK suggest shrinking the monitoring range to a singleton and letting the escape clause do all the work to uniquely implement desired equilibrium.

- ACK conclude: Taylor principle irrelevant to implement desired equilibrium.

- Equilibrium with ACK policy is knife-edge:
 - Lacks robustness to trembles.
 - Tiny trembles activate escape clause, negative consequences for welfare if there are money demand shocks.
Push Back Against Dramatic Conclusions in Two Papers (See paper)

- ACK suggest shrinking the monitoring range to a singleton and letting the escape clause do all the work to uniquely implement desired equilibrium.

- ACK conclude: *Taylor principle irrelevant* to implement desired equilibrium.
Push Back Against Dramatic Conclusions in Two Papers (See paper)

- ACK suggest shrinking the monitoring range to a singleton and letting the escape clause do all the work to uniquely implement desired equilibrium.

- ACK conclude: *Taylor principle irrelevant* to implement desired equilibrium.

- Equilibrium with ACK policy is knife-edge:
Push Back Against Dramatic Conclusions in Two Papers (See paper)

- ACK suggest shrinking the monitoring range to a singleton and letting the escape clause do all the work to uniquely implement desired equilibrium.

- ACK conclude: *Taylor principle irrelevant* to implement desired equilibrium.

- Equilibrium with ACK policy is knife-edge:
 - Lacks robustness to trembles.
Push Back Against Dramatic Conclusions in Two Papers (See paper)

• ACK suggest shrinking the monitoring range to a singleton and letting the escape clause do all the work to uniquely implement desired equilibrium.

• ACK conclude: *Taylor principle irrelevant* to implement desired equilibrium.

• Equilibrium with ACK policy is knife-edge:
 ▶ Lacks robustness to trembles.
 ▶ Tiny trembles activate escape clause,
Push Back Against Dramatic Conclusions in Two Papers (See paper)

- ACK suggest shrinking the monitoring range to a singleton and letting the escape clause do all the work to uniquely implement desired equilibrium.

- ACK conclude: *Taylor principle irrelevant* to implement desired equilibrium.

- Equilibrium with ACK policy is knife-edge:
 - Lacks robustness to trembles.
 - Tiny trembles activate escape clause,
 - Negative consequences for welfare if there are money demand shocks.
Bigger Question

• What makes agents to think that other allocations don't realize under a certain policy?
 ◀ Competitive equilibrium concept is silent about these types of questions.

• We approach this question by reformulating economy as game.
 ◀ We can formally ask "what makes you think other equilibria do not arise?".

• We use a refinement of rationalizability to answer the big question.
 ◀ Rationalizable implementation is more desirable for policy design.

Bigger Question

- What makes agents to think that other allocations don’t realize under a certain policy?
 - Competitive equilibrium concept is silent about these types of questions.

- We approach this question by reformulating economy as game.
 - We can formally ask “what makes you think other equilibria do not arise?”

- We use a refinement of rationalizability to answer the big question.
 - Rationalizable implementation is more desirable for policy design.

Bigger Question

• What makes agents to think that other allocations don’t realize under a certain policy?
 ▶ Competitive equilibrium concept is silent about these types of questions.

• We approach this question by reformulating economy as game.
 ▶ We can formally ask “what makes you think other equilibria do not arise?”.
Bigger Question

• What makes agents to think that other allocations don’t realize under a certain policy?
 ▶ Competitive equilibrium concept is silent about these types of questions.

• We approach this question by reformulating economy as game.
 ▶ We can formally ask “what makes you think other equilibria do not arise?”.

• We use a refinement of *rationalizability* to answer the big question.
Bigger Question

• What makes agents to think that other allocations don’t realize under a certain policy?
 ▶ Competitive equilibrium concept is silent about these types of questions.

• We approach this question by reformulating economy as game.
 ▶ We can formally ask “what makes you think other equilibria do not arise?”.

• We use a refinement of *rationalizability* to answer the big question.
 ▶ Rationalizable implementation is more desirable for policy design.
Roadmap

- Model

Background results:

▶ Multiple equilibria with Taylor rule, uniqueness when escape clause is added.

▶ How does the escape clause eliminate the non-desired equilibria?

▶ How does it discourage deviant behavior?
Roadmap

- Model

- Background results:
 - Multiple equilibria with Taylor rule, uniqueness when escape clause is added.
Roadmap

- Model

- Background results:
 - Multiple equilibria with Taylor rule, uniqueness when escape clause is added.

- How does the escape clause eliminate the non-desired equilibria?
Roadmap

• Model

• Background results:
 ▶ Multiple equilibria with Taylor rule, uniqueness when escape clause is added.

• How does the escape clause eliminate the non-desired equilibria?
 ▶ How does it discourage deviant behavior?
Roadmap

• Model

• Background results:
 ▶ Multiple equilibria with Taylor rule, uniqueness when escape clause is added.

• How does the escape clause eliminate the non-desired equilibria?
 ▶ How does it discourage deviant behavior?

• Conclusion
Government

• Government levies taxes, provides monetary transfers:

\[\bar{\mu}_t - 1 \bar{M}_{t-1}, \bar{\mu}_t = \bar{M}_t / \bar{M}_{t-1}, \]

and balances budget in each period.

• Monetary policy:

\[\{\bar{\mu}_t\}_{t=0}^{\infty} \]

selected so that, in equilibrium,

\[\bar{R}_t = \bar{R}^* (\bar{\pi}_t \bar{\pi}^*) \phi, \quad \bar{\pi}_{t+1} = P_{t+1} / P_t, \]

\[\bar{R}^* = \bar{\pi}^* / \beta, \]

where \(\bar{\pi}^* \geq 1 \) and \(\bar{R}^* \) are desired inflation and interest rate.
• Government levies taxes, provides monetary transfers:

\[(\bar{\mu}_t - 1) \bar{M}_{t-1}, \quad \bar{\mu}_t = \bar{M}_t / \bar{M}_{t-1},\]

and balances budget in each period.
Government

- Government levies taxes, provides monetary transfers:

\[(\bar{\mu}_t - 1) \bar{M}_{t-1}, \quad \bar{\mu}_t = \bar{M}_t / \bar{M}_{t-1},\]

and balances budget in each period.

- Monetary policy: \(\{\bar{\mu}_t\}_{t=0}^{\infty}\) selected so that, in equilibrium,

\[\bar{R}_t = \bar{R}^* \left(\frac{\bar{\pi}_t}{\bar{\pi}^*} \right)^{\phi}\]
Government

- Government levies taxes, provides monetary transfers:

\[
(\bar{\mu}_t - 1) \bar{M}_{t-1}, \quad \bar{\mu}_t = \bar{M}_t/\bar{M}_{t-1},
\]

and balances budget in each period.

- Monetary policy: \(\{\bar{\mu}_t\}_{t=0}^\infty \) selected so that, in equilibrium,

\[
\bar{R}_t = \bar{R}^* \left(\frac{\bar{\pi}_t}{\bar{\pi}^*} \right)^\phi, \quad \bar{\pi}_{t+1} \equiv \frac{P_{t+1}}{P_t}
\]
Government

- Government levies taxes, provides monetary transfers:

\[(\bar{\mu}_t - 1) \bar{M}_{t-1}, \quad \bar{\mu}_t = \bar{M}_t / \bar{M}_{t-1},\]

and balances budget in each period.

- Monetary policy: \(\{\bar{\mu}_t\}_{t=0}^{\infty}\) selected so that, in equilibrium,

\[\bar{R}_t = \bar{R}^* \left(\frac{\bar{\pi}_t}{\bar{\pi}^*} \right)^\phi, \quad \bar{\pi}_{t+1} \equiv \frac{P_{t+1}}{P_t}, \quad \bar{R}^* \equiv \bar{\pi}^* / \beta,\]

where \(\bar{\pi}^* = \bar{\mu}^* \geq 1\) and \(\bar{R}^*\) are desired inflation and interest rate.
Representative Household

• A version of 'Limited participation model':
 ▶ Household gets wage at start of t, in time to satisfy cash in advance constraint.

• Household first order conditions:
 \[W_t P_t = c\gamma_t l\psi_t, \]
 \[c - \gamma_t = \beta c - \gamma_{t+1}\bar{R}_t \bar{\pi}_{t+1}, \]
 'Euler equation' plus transversality and cash in advance conditions.
Representative Household

- A version of ‘Limited participation model’:

\[
W_t P_t = c_t \gamma t L \psi_t, \\
\gamma t - c_t = \beta c_t - \gamma t + 1 \bar{R}_t \bar{\pi}_t + 1, \\
\text{‘Euler equation’ plus transversality and cash in advance conditions.}
\]
Representative Household

- A version of ‘Limited participation model’:
Representative Household

- A version of ‘Limited participation model’:
 - Household gets wage at start of t, in time to satisfy cash in advance constraint.
Representative Household

- A version of ‘Limited participation model’:
 - Household gets wage at start of t, in time to satisfy cash in advance constraint.

- Household first order conditions:

\[
\frac{W_t}{P_t} = \frac{c_t^{\gamma} \psi_t}{\psi_t}, \quad c_t^{1-\gamma} = \beta c_{t+1}^{1-\gamma} \frac{\bar{R}_t}{\bar{\pi}_{t+1}}, \quad \text{‘Euler equation’}
\]

plus transversality and cash in advance conditions.
Firms

- Competitive, final good firm production and profits:

\[Y_t = \left[\int_0^1 Y_{i,t}^{\frac{\varepsilon - 1}{\varepsilon}} di \right]^{\frac{\varepsilon}{\varepsilon - 1}}, \quad \varepsilon > 1. \]
Firms

- Competitive, final good firm production and profits:
 \[Y_t = \left[\int_0^1 Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} di \right]^{\frac{\varepsilon}{\varepsilon-1}}, \quad \varepsilon > 1. \]

- \(i^{th}\) intermediate good firm production: \(Y_{t,i} = l_{t,i}\).
Firms

- Competitive, final good firm production and profits:

\[
Y_t = \left[\int_0^1 Y_{i,t} \frac{\varepsilon-1}{\varepsilon} \, di \right]^{\frac{\varepsilon}{\varepsilon-1}}, \quad \varepsilon > 1.
\]

- \(i^{th}\) intermediate good firm production: \(Y_{t,i} = l_{t,i}\).

- Demand curve:

\[
Y_{i,t} = Y_t \left(\frac{p_{i,t}}{P_t} \right)^{-\varepsilon}, \quad P_t \triangleq \left[\int_0^1 p_{i,t}^{1-\varepsilon} \, di \right]^{\frac{1}{1-\varepsilon}}.
\]
Firms

• Competitive, final good firm production and profits:

\[Y_t = \left[\int_0^1 Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} di \right]^{\frac{\varepsilon}{\varepsilon-1}}, \quad \varepsilon > 1. \]

• \(i^{th} \) intermediate good firm production: \(Y_{t,i} = l_{t,i} \).

• Demand curve:

\[Y_{i,t} = Y_t \left(\frac{p_{i,t}}{P_t} \right)^{-\varepsilon}, \quad P_t \triangleq \left[\int_0^1 p_{i,t}^{1-\varepsilon} di \right]^{\frac{1}{1-\varepsilon}}. \]

• Optimizing price:
Firms

• Competitive, final good firm production and profits:

\[Y_t = \left[\int_0^1 Y_{i,t} \frac{1}{(1 - \varepsilon)} \, di \right]^{1/(1 - \varepsilon)}, \quad \varepsilon > 1. \]

• \(i^{th} \) intermediate good firm production: \(Y_{t,i} = l_{t,i} \).

• Demand curve:

\[Y_{i,t} = Y_t \left(\frac{p_{i,t}}{P_t} \right)^{-\varepsilon}, \quad P_t \triangleq \left[\int_0^1 p_{i,t}^{1-\varepsilon} \, di \right]^{1/(1 - \varepsilon)}. \]

• Optimizing price:

\[p_{i,t} = \]
Firms

- Competitive, final good firm production and profits:
 \[Y_t = \left[\int_0^1 Y_{i,t}^\frac{\varepsilon-1}{\varepsilon} \, di \right]^\frac{-\varepsilon}{\varepsilon-1}, \quad \varepsilon > 1. \]

- \(i^{th}\) intermediate good firm production: \(Y_{t,i} = l_{t,i} \).

- Demand curve:
 \[Y_{i,t} = Y_t \left(\frac{p_{i,t}}{P_t} \right)^{-\varepsilon}, \quad P_t \triangleq \left[\int_0^1 p_{i,t}^{1-\varepsilon} \, di \right]^{\frac{1}{1-\varepsilon}}. \]

- Optimizing price:
 \[p_{i,t} = \frac{\varepsilon}{\varepsilon - 1} \times \tilde{R}_t \times W_t \times (1 - \tau_t). \]
Firms

• Competitive, final good firm production and profits:

\[
Y_t = \left[\int_0^1 Y_{i,t}^{\frac{\varepsilon}{\varepsilon - 1}} di \right]^{\frac{\varepsilon - 1}{\varepsilon}}, \quad \varepsilon > 1.
\]

• \(i^{th}\) intermediate good firm production: \(Y_{t,i} = l_{t,i}\).

• Demand curve:

\[
Y_{i,t} = Y_t \left(\frac{p_{i,t}}{P_t} \right)^{-\varepsilon}, \quad P_t \triangleq \left[\int_0^1 p_{i,t}^{1-\varepsilon} di \right]^{\frac{1}{1-\varepsilon}}.
\]

• Optimizing price:

\[
p_{i,t} = \frac{\varepsilon}{\varepsilon - 1} \times \bar{R}_t \times W_t \times (1 - \tau_t) = W_t
\]
Firms

• Competitive, final good firm production and profits:

\[Y_t = \left[\int_0^1 Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} di \right]^{\frac{\varepsilon}{\varepsilon-1}}, \quad \varepsilon > 1. \]

• \(i^{th} \) intermediate good firm production: \(Y_{t,i} = l_{t,i} \).

• Demand curve:

\[Y_{i,t} = Y_t \left(\frac{p_{i,t}}{P_t} \right)^{-\varepsilon}, \quad P_t \triangleq \left[\int_0^1 p_{i,t}^{1-\varepsilon} di \right]^{\frac{1}{1-\varepsilon}}. \]

• Optimizing price:

\[p_{i,t} = \frac{\varepsilon}{\varepsilon - 1} \times \frac{\bar{R}_t}{\text{markup}} \times W_t \times (1 - \tau_t) = W_t \implies P_t = W_t. \]
Market Clearing and other Equilibrium Conditions

- Labor/goods market clearing and firm optimality:

\[1 = \frac{W_t}{P_t} = \frac{c_t^\gamma l_t^\psi}{MRS} \]
Market Clearing and other Equilibrium Conditions

- Labor/goods market clearing and firm optimality:

\[
1 = \frac{W_t}{P_t} = \text{MRS} \quad c_t^\gamma l_t^\psi = c_t^{\gamma+\psi}
\]
Market Clearing and other Equilibrium Conditions

- Labor/goods market clearing and firm optimality:

\[1 = \frac{W_t}{P_t} = MRS \quad c_t^\gamma l_t^\psi = c_t^\gamma + \psi \quad \Rightarrow \quad c_t = 1. \]
Market Clearing and other Equilibrium Conditions

- Labor/goods market clearing and firm optimality:

\[
1 = \frac{W_t}{P_t} = \text{MRS} \quad c_t^\gamma l_t^\psi = c_t^{\gamma+\psi} \implies c_t = 1.
\]

- In equilibrium, the Euler equation is the Fisher equation:

\[
c_t^{-\gamma} = \beta c_{t+1}^{-\gamma} \frac{\tilde{R}_t}{\bar{\pi}_{t+1}} \implies 1 = \beta \frac{\tilde{R}_t}{\bar{\pi}_{t+1}}.
\]
Scaling

• Scaled, logged Fisher equation

\[\bar{R}_t = \bar{\pi}_{t+1} + 1 \]

\[\bar{R}_t \equiv \ln(\bar{R}_t \bar{R}^*_t) \]

\[\bar{\pi}_{t+1} \equiv \ln(\bar{\pi}_{t+1} \bar{\pi}^*_t) \]

• Monetary policy in scaled terms:

\[\bar{R}_t = \bar{R}^* \left(\bar{\pi}_t \bar{\pi}^*_t \right)^\phi \rightarrow \bar{R}_t \bar{R}^*_t = \left(\bar{\pi}_t \bar{\pi}^*_t \right)^\phi \rightarrow R_t = \phi \pi_{t+1} \]

• Combining (\(\ast \)) and (\(\ast \ast \)), yields equilibrium difference equation:

\[\pi_{t+1} = \phi \pi_t \]

• Scaled money growth:

\[\mu_t = \ln(\bar{\mu}_t \bar{\pi}^*_t) \]
Scaling

- Scaled, logged Fisher equation $\beta \bar{R}_t = \bar{\pi}_{t+1}$:

\[
\bar{R}_t = \bar{\pi}_{t+1}^{\phi}, \quad (\ast\ast)
\]
Scaling

- Scaled, logged Fisher equation $\beta \tilde{R}_t = \bar{\pi}_{t+1}$:

\[
\frac{\beta \tilde{R}_t}{\beta \tilde{R}^*} = \frac{\bar{\pi}_{t+1}}{\bar{\pi}^*}
\]
Scaling

- Scaled, logged Fisher equation $\beta \bar{R}_t = \bar{\pi}_{t+1}$:

$$\frac{\beta \bar{R}_t}{\beta \bar{R}^*} = \frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \rightarrow R_t = \pi_{t+1}, \quad (*) \quad \text{where} \quad R_t \equiv \ln \left(\frac{\bar{R}_t}{\bar{R}^*} \right), \pi_{t+1} \equiv \ln \left(\frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \right).$$
Scaling

- Scaled, logged Fisher equation \(\beta \bar{R}_t = \bar{\pi}_{t+1} : \)

\[
\frac{\beta \bar{R}_t}{\beta \bar{R}^*} = \frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \rightarrow R_t = \pi_{t+1}, \quad (*) \quad \text{where} \quad R_t \equiv \ln \left(\frac{\bar{R}_t}{\bar{R}^*} \right), \pi_{t+1} \equiv \ln \left(\frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \right).
\]

- Monetary policy in scaled terms:

\[
\bar{R}_t = \bar{R}^* \left(\frac{\bar{\pi}_t}{\bar{\pi}^*} \right)^\phi
\]
Scaling

• Scaled, logged Fisher equation \(\beta \tilde{R}_t = \bar{\pi}_{t+1} \):

\[
\frac{\beta \tilde{R}_t}{\beta \tilde{R}^*} = \frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \rightarrow R_t = \pi_{t+1}, \quad (*) \text{ where } R_t \equiv \ln \left(\frac{\tilde{R}_t}{\tilde{R}^*} \right), \pi_{t+1} \equiv \ln \left(\frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \right).
\]

• Monetary policy in scaled terms:

\[
\tilde{R}_t = \tilde{R}^* \left(\frac{\bar{\pi}_t}{\bar{\pi}^*} \right)^\phi \rightarrow \frac{\tilde{R}_t}{\tilde{R}^*} = \left(\frac{\bar{\pi}_t}{\bar{\pi}^*} \right)^\phi
\]
Scaling

- Scaled, logged Fisher equation \(\beta \tilde{R}_t = \tilde{\pi}_{t+1} \):
 \[
 \frac{\beta \tilde{R}_t}{\beta \tilde{R}^*} = \frac{\tilde{\pi}_{t+1}}{\tilde{\pi}^*} \rightarrow R_t = \pi_{t+1}, \quad (*) \text{ where } \quad R_t \equiv \ln \left(\frac{\tilde{R}_t}{\tilde{R}^*} \right), \quad \pi_{t+1} \equiv \ln \left(\frac{\tilde{\pi}_{t+1}}{\tilde{\pi}^*} \right).
 \]

- Monetary policy in scaled terms:
 \[
 \tilde{R}_t = \tilde{R}^* \left(\frac{\tilde{\pi}_t}{\tilde{\pi}^*} \right)^\phi \rightarrow \frac{\tilde{R}_t}{\tilde{R}^*} = \left(\frac{\tilde{\pi}_t}{\tilde{\pi}^*} \right)^\phi \rightarrow R_t = \phi \pi_t \quad (**) \]

- Combining \((*)\) and \((**)\), yields equilibrium difference equation:
 \[
 \pi_{t+1} = \phi \pi_t.
 \]
Scaling

• Scaled, logged Fisher equation $\beta \tilde{R}_t = \bar{\pi}_{t+1}$:

$$\frac{\beta \tilde{R}_t}{\beta \tilde{R}^*} = \frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \rightarrow R_t = \pi_{t+1}, \quad (*) \quad \text{where} \quad R_t \equiv \ln \left(\frac{\tilde{R}_t}{\tilde{R}^*} \right), \pi_{t+1} \equiv \ln \left(\frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \right).$$

• Monetary policy in scaled terms:

$$\tilde{R}_t = \tilde{R}^* \left(\frac{\bar{\pi}_t}{\bar{\pi}^*} \right)^\phi \rightarrow \frac{\tilde{R}_t}{\tilde{R}^*} = \left(\frac{\bar{\pi}_t}{\bar{\pi}^*} \right)^\phi \rightarrow R_t = \phi \pi_t \quad (**) .$$

• Combining $(*)$ and $(**)$, yields equilibrium difference equation:

$$\pi_{t+1} = \phi \pi_t.$$
Scaling

• Scaled, logged Fisher equation \(\beta \tilde{R}_t = \bar{\pi}_{t+1} \):

\[
\frac{\beta \tilde{R}_t}{\beta \tilde{R}^*} = \frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \rightarrow R_t = \pi_{t+1}, \quad (*) \quad \text{where} \quad R_t \equiv \ln \left(\frac{\tilde{R}_t}{\tilde{R}^*} \right), \quad \pi_{t+1} \equiv \ln \left(\frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \right).
\]

• Monetary policy in scaled terms:

\[
\tilde{R}_t = \tilde{R}^* \left(\frac{\bar{\pi}_t}{\bar{\pi}^*} \right)^\phi \rightarrow \frac{\tilde{R}_t}{\tilde{R}^*} = \left(\frac{\bar{\pi}_t}{\bar{\pi}^*} \right)^\phi \rightarrow R_t = \phi \pi_t \quad (**).
\]

• Combining (*) and (**), yields equilibrium difference equation:

\[
\pi_{t+1} = \phi \pi_t.
\]

• Scaled money growth: \(\mu_t = \ln \left(\frac{\tilde{\mu}_t}{\tilde{\pi}^*} \right) \)
Properties of Taylor Rule Equilibrium
Multiplicty and Local Uniqueness of Desired Equilibrium

- Multiple equilibria, \(\{\pi_t\} \), each indexed by \(\pi_0 \).
- Desired equilibrium is unique equilibrium that never violates monitoring range, \([\pi_l, \pi_u]\).
 - If \(\pi_0 \neq 0 \), then \(|\pi_t| \to \infty \).
Taylor rule with Escape Clause

• Keep using Taylor rule while inflation remains inside monitoring range, \(\pi_t \in [\pi_l, \pi_u] \), \(\pi_l \leq 0 \leq \pi_u < \infty \).

• Activate escape clause: if for some \(t \), \(\pi_t / \in [\pi_l, \pi_u] \), then, in \(t + 1 \) switch forever to constant money growth, \(\mu = 0 \).

▶ Equilibrium is unique after the activation of the escape clause. (See paper)

• Result: under Taylor rule with escape clause, desired equilibrium is the globally unique equilibrium.
Taylor rule with Escape Clause

- Keep using Taylor rule while inflation remains inside monitoring range, $\pi_t \in [\pi_l, \pi_u]$, $\pi_l \leq 0 \leq \pi_u < \infty$.

- Activate escape clause: If for some t, $\pi_t / \in [\pi_l, \pi_u]$, then, in $t + 1$ switch forever to constant money growth, $\mu = 0$.

- Equilibrium is unique after the activation of the escape clause. (See paper)

- Result: Under Taylor rule with escape clause, desired equilibrium is the globally unique equilibrium.
Taylor rule with Escape Clause

• Keep using Taylor rule while inflation remains inside *monitoring range*, \(\pi_t \in [\pi_l, \pi_u] \),

\[
\pi_l \leq 0 \leq \pi_u < \infty.
\]

• Activate escape clause: if for some \(t \), \(\pi_t \notin [\pi_l, \pi_u] \),
Taylor rule with Escape Clause

• Keep using Taylor rule while inflation remains inside *monitoring range*, \(\pi_t \in [\pi_l, \pi_u] \),

\[
\pi_l \leq 0 \leq \pi_u < \infty.
\]

• Activate escape clause: if for some \(t \), \(\pi_t \notin [\pi_l, \pi_u] \),

 ▶ then, in \(t+1 \) switch forever to constant money growth, \(\mu = 0 \).

 ▶ Equilibrium is unique after the activation of the escape clause. (See paper)
Taylor rule with Escape Clause

- Keep using Taylor rule while inflation remains inside *monitoring range*, $\pi_t \in [\pi_l, \pi_u]$,

 $$\pi_l \leq 0 \leq \pi_u < \infty.$$

- Activate escape clause: if for some t, $\pi_t \notin [\pi_l, \pi_u]$,

 ▶ then, in $t + 1$ switch forever to constant money growth, $\mu = 0$.

 ▶ Equilibrium is unique after the activation of the escape clause. (See paper)

- Result: under Taylor rule with escape clause, desired equilibrium is the globally unique equilibrium.
Uniqueness of Equilibrium Under Escape Clause

- If $\pi_0 \neq 0$, then $|\pi_t| \to \infty$.

- Activation of escape clause is not consistent with the equilibrium conditions.

- Unique equilibrium associated with $\pi_0 = 0$.

\[\pi_t = \phi \pi_{t+1} \]

\[\pi_l \leq \pi_u \leq \pi_t \]
Activation of Escape Clause Not an Equilibrium

Suppose $\pi_T > \pi_u$. Then, Taylor rule: $R_T = \phi \pi_T > \pi_u$, because $\phi > 1$.

Fisher equation: $R_T = \pi_T + 1 = 0$.

Escape clause $\leq \pi_u$.

So, $R_T > \pi_u$ and $R_T \leq \pi_u$, contradiction!
Activation of Escape Clause Not an Equilibrium

- Suppose $\pi_T > \pi_u$.

$$\text{Taylor rule : } \frac{R_T}{\pi_T} > \frac{\pi_u}{\pi_T},$$

because $\phi > 1$

$$\text{Fisher equation : } \frac{R_T}{\pi_T} = \frac{\pi_T}{1} = 0$$

Escape clause $\leq \pi_u$

- So, $R_T > \pi_u$ and $R_T \leq \pi_u$, contradiction!
Activation of Escape Clause Not an Equilibrium

• Suppose $\pi_T > \pi_u$. Then,

\[
\text{Taylor rule} \quad R_T = \phi \pi_T > \pi_u, \text{ because } \phi > 1
\]
Activation of Escape Clause Not an Equilibrium

- Suppose $\pi_T > \pi_u$. Then,

 \begin{align*}
 \text{Taylor rule} & : \quad R_T = \phi \pi_T > \pi_u, \text{ because } \phi > 1 \\
 \text{Fisher equation} & : \quad R_T = \pi_{T+1} = 0 \leq \pi_u
 \end{align*}

 Escape clause
Activation of Escape Clause Not an Equilibrium

• Suppose $\pi_T > \pi_u$. Then,

\[
\text{Taylor rule} : \quad R_T = \phi \pi_T > \pi_u, \quad \text{because } \phi > 1
\]

\[
\text{Fisher equation} : \quad R_T = \pi_{T+1} = 0 \leq \pi_u
\]

\text{Escape clause}

• So,

$R_T > \pi_u$ and $R_T \leq \pi_u$, contradiction!
Uniqueness of Equilibrium Under Escape Clause

- If $\pi_0 \neq 0$, then $|\pi_t| \to \infty$.
- Activation of escape clause is not consistent with the equilibrium conditions.
- Unique equilibrium associated with $\pi_0 = 0$.

\[\pi_{t+1} = \phi \pi_t \]

\[\pi_l \quad \pi_u \]

\[\pi_t \quad \pi_t+1 \]

\[45^\circ \]
Cochrane’s Critique of Implementation Result

Cochrane concludes uniqueness is achieved by “blow-up-the-economy threat.”

Reaches this conclusion by studying the question: ‘what would happen if the out-of-equilibrium event, $\pi_T > \pi_u$ occurred?'

In his endowment economy, $c_t = y_t$ always, in and out of equilibrium.

Household Euler equation reduces to Fisher equation in and out of equilibrium.

Concludes that under escape clause monetary policy commits to setting R_T to two different values: Impossible!!!

R_T implied by Fisher equation and R_T implied by Taylor rule.

No equilibrium exists if $\pi_T > \pi_u$.

Cochrane’s answer: Escape clause achieves uniqueness by blowing up the economy if $\pi_T / \in [\pi_l, \pi_u]$.

No one would believe the escape clause so that hyperinflation is still a valid equilibrium.
Cochrane's Critique of Implementation Result

- Cochrane concludes uniqueness is achieved by “blow-up-the-economy threat.”
Cochrane’s Critique of Implementation Result

- Cochrane concludes uniqueness is achieved by “blow-up-the-economy threat.”
- Reaches this conclusion by studying the question: ‘what would happen if the out-of-equilibrium event, $\pi_T > \pi_U$ occurred?’
Cochrane’s Critique of Implementation Result

- Cochrane concludes uniqueness is achieved by “blow-up-the-economy threat.”
- Reaches this conclusion by studying the question: ‘what would happen if the out-of-equilibrium event, $\pi_T > \pi_u$ occurred?’
 - In his endowment economy, $c_t = y$ always, in and out of equilibrium
Cochrane’s Critique of Implementation Result

- Cochrane concludes uniqueness is achieved by “blow-up-the-economy threat.”
- Reaches this conclusion by studying the question: ‘what would happen if the out-of-equilibrium event, $\pi_T > \pi_u$ occurred?’
 - In his endowment economy, $c_t = y$ always, in and out of equilibrium
 - Household Euler equation reduces to Fisher equation in and out of equilibrium.
Cochrane’s Critique of Implementation Result

- Cochrane concludes uniqueness is achieved by “blow-up-the-economy threat.”
- Reaches this conclusion by studying the question: ‘what would happen if the out-of-equilibrium event, $\pi_T > \pi_u$ occurred?’
 - In his endowment economy, $c_t = y$ always, in and out of equilibrium
 - Household Euler equation reduces to Fisher equation in and out of equilibrium.
 - Concludes that under escape clause monetary policy commits to setting R_T to two different values:
Cochrane’s Critique of Implementation Result

• Cochrane concludes uniqueness is achieved by “blow-up-the-economy threat.”

• Reaches this conclusion by studying the question: ‘what would happen if the out-of-equilibrium event, $\pi_T > \pi_u$ occurred?’

 ▶ In his endowment economy, $c_t = y$ always, in and out of equilibrium
 ▶ Household Euler equation reduces to Fisher equation in and out of equilibrium.
 ▶ Concludes that under escape clause monetary policy commits to setting R_T to two different values: Impossible!!!
 ▶ R_T implied by Fisher equation and R_T implied by Taylor rule.
Cochrane’s Critique of Implementation Result

- Cochrane concludes uniqueness is achieved by “blow-up-the-economy threat.”
- Reaches this conclusion by studying the question: ‘what would happen if the out-of-equilibrium event, \(\pi_T > \pi_u \) occurred?’
 - In his endowment economy, \(c_t = y \) always, in and out of equilibrium.
 - Household Euler equation reduces to Fisher equation in and out of equilibrium.
 - Concludes that under escape clause monetary policy commits to setting \(R_T \) to two different values: Impossible!!!
 - \(R_T \) implied by Fisher equation and \(R_T \) implied by Taylor rule.
 - No equilibrium exists if \(\pi_T > \pi_u \).
Cochrane’s Critique of Implementation Result

- Cochrane concludes uniqueness is achieved by “blow-up-the-economy threat.”
- Reaches this conclusion by studying the question: ‘what would happen if the out-of-equilibrium event, $\pi_T > \pi_u$ occurred?’
 - In his endowment economy, $c_t = y$ always, in and out of equilibrium
 - Household Euler equation reduces to Fisher equation in and out of equilibrium.
 - Concludes that under escape clause monetary policy commits to setting R_T to two different values: Impossible!!!
 - R_T implied by Fisher equation and R_T implied by Taylor rule.
 - No equilibrium exists if $\pi_T > \pi_u$.
- Cochrane’s answer:
Cochrane’s Critique of Implementation Result

- Cochrane concludes uniqueness is achieved by “blow-up-the-economy threat.”
- Reaches this conclusion by studying the question: ‘what would happen if the out-of-equilibrium event, $\pi_T > \pi_u$ occurred?’
 - In his endowment economy, $c_t = y$ always, in and out of equilibrium
 - Household Euler equation reduces to Fisher equation in and out of equilibrium.
 - Concludes that under escape clause monetary policy commits to setting R_T to two different values: Impossible!!!
 - R_T implied by Fisher equation and R_T implied by Taylor rule.
 - No equilibrium exists if $\pi_T > \pi_u$.

- Cochrane’s answer:
 - Escape clause achieves uniqueness by blowing up the economy if $\pi_T \notin [\pi_l, \pi_u]$.
Cochrane’s Critique of Implementation Result

- Cochrane concludes uniqueness is achieved by “blow-up-the-economy threat.”
- Reaches this conclusion by studying the question: ‘what would happen if the out-of-equilibrium event, $\pi_T > \pi_u$ occurred?’
 - In his endowment economy, $c_t = y$ always, in and out of equilibrium
 - Household Euler equation reduces to Fisher equation in and out of equilibrium.
 - Concludes that under escape clause monetary policy commits to setting R_T to two different values: Impossible!!!
 - R_T implied by Fisher equation and R_T implied by Taylor rule.
 - No equilibrium exists if $\pi_T > \pi_u$.

- Cochrane’s answer:
 - Escape clause achieves uniqueness by blowing up the economy if $\pi_T \notin [\pi_l, \pi_u]$.
 - No one would believe the escape clause so that hyperinflation is still a valid equilibrium.
Uniqueness by Threatening to Blowing up Economy Not Interesting

• Diamond and Dybvig (1983) model of bank runs.
 ▶ In absence of regulation, two equilibria: run, no-run.

• Implementation problem:
 ▶ Design policy that rules out run equilibrium and keeps no-run equilibrium.

• Answer to the problem: deposit insurance.
 ▶ Everyone's dominant strategy is no-run.

• The answer is uninteresting if govt.'s deposit insurance is not feasible.
 ▶ Then no one would believe the insurance, and they might run.

• Cochrane calls such implementation Blowing up the Economy.
 ▶ In the monetary model, no one would believe such policy, and hyperinflation is not excluded!
Uniqueness by Threatening to Blowing up Economy Not Interesting

Uniqueness by Threatening to Blowing up Economy Not Interesting

 - In absence of regulation, two equilibria: run, no-run.
• Diamond and Dybvig (1983) model of bank runs.
 ▶ In absence of regulation, two equilibria: run, no-run.

• Implementation problem:

- In absence of regulation, two equilibria: run, no-run.

Implementation problem:

- Design policy that rules out run equilibrium and keeps no-run equilibrium.

Answer to the problem: deposit insurance.

- Everyone's dominant strategy is no-run.

The answer is uninteresting if govt.'s deposit insurance is not feasible.

- Then no one would believe the insurance, and they might run.

Cochrane calls such implementation Blowing up the Economy.

In the monetary model, no one would believe such policy, and hyperinflation is not excluded!
• Diamond and Dybvig (1983) model of bank runs.
 - In absence of regulation, two equilibria: run, no-run.

• Implementation problem:
 - Design policy that rules out run equilibrium and keeps no-run equilibrium.

• Answer to the problem: deposit insurance.
Uniqueness by Threatening to Blowing up Economy Not Interesting

 - In absence of regulation, two equilibria: run, no-run.
- Implementation problem:
 - Design policy that rules out run equilibrium and keeps no-run equilibrium.
- Answer to the problem: deposit insurance.
 - Everyone's dominant strategy is no-run.
Uniqueness by Threatening to Blowing up Economy Not Interesting

• Diamond and Dybvig (1983) model of bank runs.
 ▶ In absence of regulation, two equilibria: run, no-run.

• Implementation problem:
 ▶ Design policy that rules out run equilibrium and keeps no-run equilibrium.

• Answer to the problem: deposit insurance.
 ▶ Everyone’s dominant strategy is no-run.

• The answer is uninteresting if govt.’s deposit insurance is not feasible.
 ▶ Then no one would believe the insurance, and they might run.
Uniqueness by Threatening to Blowing up Economy Not Interesting

• Diamond and Dybvig (1983) model of bank runs.
 ▶ In absence of regulation, two equilibria: run, no-run.

• Implementation problem:
 ▶ Design policy that rules out run equilibrium and keeps no-run equilibrium.

• Answer to the problem: deposit insurance.
 ▶ Everyone’s dominant strategy is no-run.

• The answer is uninteresting if govt.’s deposit insurance is not feasible.
 ▶ Then no one would believe the insurance, and they might run.

• Cochrane calls such implementation Blowing up the Economy.
Uniqueness by Threatening to Blowing up Economy Not Interesting

 - In absence of regulation, two equilibria: run, no-run.

- Implementation problem:
 - Design policy that rules out run equilibrium and keeps no-run equilibrium.

- Answer to the problem: deposit insurance.
 - Everyone’s dominant strategy is no-run.

- The answer is uninteresting if govt.’s deposit insurance is not feasible.
 - Then no one would believe the insurance, and they might run.

- Cochrane calls such implementation Blowing up the Economy.
 - In the monetary model, no one would believe such policy, and hyperinflation is not excluded!
Cochrane’s Critique in Our Production Economy
Euler Equation in our Production Economy

• Euler Equation in our model:

\[\frac{R}{T} = \pi_T + 1 + \gamma \log \left(\frac{c_T + 1}{c_T} \right) \]

▶ In equilibrium, our Euler equation reduces to Fisher equation because \(c_t = 1 \) all \(t \geq 0 \).

▶ Out of equilibrium, our Euler equation depends on the value of \(\frac{c_T + 1}{c_T} \).

• Euler equation in Cochrane's endowment economy:

\[\frac{R}{T} = \pi_T + 1 \]

▶ in and out of equilibrium because \(c_t = Y \) for all \(t \geq 0 \) (Cochrane (2010, p.574)).
Euler Equation in our Production Economy

- Euler Equation in our model:

\[R_T = \pi_{T+1} + \gamma \log \left(\frac{c_{T+1}}{c_T} \right). \]
Euler Equation in our Production Economy

- Euler Equation in our model:

\[R_T = \pi_{T+1} + \gamma \log \left(\frac{c_{T+1}}{c_T} \right). \]

- In equilibrium,
 - our Euler equation reduces to Fisher equation because \(c_t = 1 \) all \(t \geq 0 \).
Euler Equation in our Production Economy

- Euler Equation in our model:

\[
R_T = \pi_{T+1} + \gamma \log \left(\frac{c_{T+1}}{c_T} \right).
\]

- In equilibrium,
 - our Euler equation reduces to Fisher equation because \(c_t = 1 \) all \(t \geq 0 \).
- Out of equilibrium,
 - our Euler equation depends on the value of \(c_{T+1}/c_T \).
Euler Equation in our Production Economy

• Euler Equation in our model:

\[R_T = \pi_{T+1} + \gamma \log (c_{T+1}/c_T). \]

▶ In equilibrium,
 ▶ our Euler equation reduces to Fisher equation because \(c_t = 1 \) all \(t \geq 0 \).

▶ Out of equilibrium,
 ▶ our Euler equation depends on the value of \(c_{T+1}/c_T \).

• Euler equation in Cochrane’s endowment economy:

\[R_T = \pi_{T+1} \]

▶ in and out of equilibrium because \(c_t = Y \) for all \(t \geq 0 \) (Cochrane (2010, p.574)).
Cochrane’s Critique in our Production Economy

• The critique is only valid in Cochrane’s endowment model.

• Suppose $\pi_T > \pi_u$ in our production economy. Then, Taylor rule: $R_T = \phi \pi_T > \pi_u$, because $\phi > 1$.

− Euler equation: $R_T = \pi_T + 1 \frac{1}{c_T} \log \left(\frac{c_T + 1}{c_T} \right)$ endogenously determined.

− Apparently consistent with a familiar and coherent narrative:
 ▶ if $\pi_T > \pi_u$, then real rate, $R_T - \pi_T + 1$, is very high and c_T very low.
 ▶ looks like a stylized Volcker recession.
 ▶ escape clause looks like an (out-of-equilibrium) Taylor Principle.

• So, Cochrane’s blow-up-the-economy argument fails in production economy.
Cochrane’s Critique in our Production Economy

- The critique is only valid in Cochrane’s endowment model.
Cochrane’s Critique in our Production Economy

- The critique is only valid in Cochrane’s endowment model.
- Suppose $\pi_T > \pi_u$ in our production economy.
Cochrane’s Critique in our Production Economy

• The critique is only valid in Cochrane’s endowment model.
• Suppose $\pi_T > \pi_u$ in our production economy. Then,

 \[
 \text{Taylor rule : } R_T = \phi \pi_T > \pi_u, \text{ because } \phi > 1
 \]
Cochrane’s Critique in our Production Economy

• The critique is only valid in Cochrane’s endowment model.
• Suppose $\pi_T > \pi_u$ in our production economy. Then,

 Taylor rule : $R_T = \phi \pi_T > \pi_u$, because $\phi > 1$

 Euler equation : $R_T = \left(\pi_{T+1} + \gamma \log \left(\frac{c_{T+1}}{c_T} \right) \right)$

 low, by escape clause endogenously determined

Apparently consistent with a familiar and coherent narrative:
▶ if $\pi_T > \pi_u$ then real rate, $R_T - \pi_T + 1$, very high and c_T very low.
▶ looks like a stylized Volcker recession.
▶ escape clause looks like an (out-of-equilibrium) Taylor Principle.

So, Cochrane’s blow-up-the-economy argument fails in production economy.
Cochrane’s Critique in our Production Economy

- The critique is only valid in Cochrane’s endowment model.
- Suppose $\pi_T > \pi_u$ in our production economy. Then,

\[
\text{Taylor rule: } R_T = \phi \pi_T > \pi_u, \quad \text{because } \phi > 1
\]

\[
\text{Euler equation: } R_T = \pi_{T+1} + \gamma \log \left(\frac{c_{T+1}}{c_T} \right)
\]

low, by escape clause \hspace{1cm} \text{endogenously determined}

- Apparently consistent with a familiar and coherent narrative:
Cochrane’s Critique in our Production Economy

• The critique is only valid in Cochrane’s endowment model.

• Suppose $\pi_T > \pi_u$ in our production economy. Then,

 Taylor rule : $R_T = \phi \pi_T > \pi_u$, because $\phi > 1$

 Euler equation : $R_T = \pi_{T+1} + \gamma \log \left(\frac{c_{T+1}}{c_T} \right)$

 low, by escape clause endogenously determined

• Apparently consistent with a familiar and coherent narrative:

 ▶ if $\pi_T > \pi_u$ then real rate, $R_T - \pi_{T+1}$, very high and c_T very low.
Cochrane’s Critique in our Production Economy

- The critique is only valid in Cochrane’s endowment model.
- Suppose $\pi_T > \pi_u$ in our production economy. Then,

 \[
 \text{Taylor rule : } R_T = \phi \pi_T > \pi_u, \text{ because } \phi > 1 \\
 \text{Euler equation : } R_T = \pi_{T+1} + \gamma \log \left(\frac{c_{T+1}}{c_T} \right) \\
 \]
 low, by escape clause \hspace{1cm} \text{endogenously determined}

- Apparently consistent with a familiar and coherent narrative:
 - if $\pi_T > \pi_u$ then real rate, $R_T - \pi_{T+1}$, very high and c_T very low.
 - looks like a stylized Volcker recession.
Cochrane’s Critique in our Production Economy

• The critique is only valid in Cochrane’s endowment model.

• Suppose $\pi_T > \pi_u$ in our production economy. Then,

 \[
 \text{Taylor rule: } R_T = \phi \pi_T > \pi_u, \text{ because } \phi > 1
 \]

 \[
 \text{Euler equation: } R_T = \pi_{T+1} + \gamma \log \left(\frac{c_{T+1}}{c_T} \right)
 \]

 low, by escape clause \hspace{1cm} \text{endogenously determined}

• Apparently consistent with a familiar and coherent narrative:

 ▶ if $\pi_T > \pi_u$ then real rate, $R_T - \pi_{T+1}$, very high and c_T very low.
 ▶ looks like a stylized Volcker recession.
 ▶ escape clause looks like an (out-of-equilibrium) Taylor Principle.
Cochrane’s Critique in our Production Economy

- The critique is only valid in Cochrane’s endowment model.
- Suppose $\pi_T > \pi_u$ in our production economy. Then,

 \[
 \text{Taylor rule : } R_T = \phi \pi_T > \pi_u, \text{ because } \phi > 1
 \]

 \[
 \text{Euler equation : } R_T = \pi_{T+1} + \gamma \log \left(\frac{c_{T+1}}{c_T}\right)
 \]

 low, by escape clause

 endogenously determined

- Apparently consistent with a familiar and coherent narrative:
 - if $\pi_T > \pi_u$ then real rate, $R_T - \pi_{T+1}$, very high and c_T very low.
 - looks like a stylized Volcker recession.
 - escape clause looks like an (out-of-equilibrium) Taylor Principle.

- So, Cochrane’s blow-up-the-economy argument fails in production economy.
How Do We Answer Cochrane’s Question?

What is it about the escape clause that implies $\pi^T > \pi_u$ cannot occur in equilibrium?

We need an equilibrium concept which allows for out-of-equilibrium.
How Do We Answer Cochrane’s Question?

- What is it about the escape clause that implies $\pi_T > \pi_u$ cannot occur in equilibrium?
How Do We Answer Cochrane’s Question?

• What is it about the escape clause that implies $\pi_T > \pi_u$ cannot occur in equilibrium?

• We need an equilibrium concept which allows for out-of-equilibrium.
Exit Ramp Off Equilibrium
Equilibrium Concept that Allows for Out-of-Equilibrium Events

 - Reinterpret rational expectations equilibrium as a fixed point of a best response function.
 - Nash Equilibrium.
- Then we can understand the economics of why a non-fixed point fails to be an equilibrium.

- Best response analysis goes back at least to Diamond and Dybvig (1983)
 - Describe what would happen, off-equilibrium paths, and discourage undesirable actions.
Equilibrium Concept that Allows for Out-of-Equilibrium Events

Equilibrium Concept that Allows for Out-of-Equilibrium Events

 - Reinterpret rational expectations equilibrium as a fixed point of a best response function.
 - Nash Equilibrium.
 - Best response analysis goes back at least to Diamond and Dybvig (1983)
 - Describe what would happen, off-equilibrium paths, and discourage undesirable actions.
Equilibrium Concept that Allows for Out-of-Equilibrium Events

 - Reinterpret rational expectations equilibrium as a fixed point of a best response function.
 - Nash Equilibrium.
 - Then we can understand the economics of why a non-fixed point fails to be an equilibrium.
Equilibrium Concept that Allows for Out-of-Equilibrium Events

 ▶ Reinterpret rational expectations equilibrium as a fixed point of a best response function.
 ▶ Nash Equilibrium.
 ▶ Then we can understand the economics of why a non-fixed point fails to be an equilibrium.

• Best response analysis goes back at least to Diamond and Dybvig (1983)
 ▶ Describe what would happen, off-equilibrium paths, and discourage undesirable actions.
Introduce Firms’ Best Response Function

To set a price, intermediate firms need a belief about W_t. Why?

▶ W_t is jointly determined in labor market and labor supply depends on P_t.

▶ So, intermediate firms need a conjecture, P_{ct}, about aggregate prices, P_t.

\[
p_{it} = P_{ct} \times W_t P_{ct}.
\]

We divide the period into morning and afternoon.

▶ In the morning, intermediate firms set p_{it} simultaneously given conjecture P_{ct}.

▶ In the afternoon, the rest happens so W_t/P_{ct} is determined as a function of "history," (h_{t-1}, P_{ct}).

\[
p_{it} = P_{ct}(c_{bt}(h_{t-1}, P_{ct}))^{\gamma} + \psi = P_{ct}(c_{bt}(h_{t-1}, P_{ct}))^{\gamma} + \psi.
\]
Introduce Firms’ Best Response Function

- To set a price, intermediate firms need a belief about W_t. Why?
Introduce Firms’ Best Response Function

- To set a price, intermediate firms need a belief about W_t. Why?
 - W_t is jointly determined in labor market and labor supply depends on P_t.

\[
p_{it} = P_{ct} \times W_t/\bar{P}_{ct} = P_{ct}(c_b(t))^{\gamma} + \psi = P_{ct}(c_b(t_{t-1}, P_{ct}))^{\gamma} + \psi.
\]
Introduce Firms’ Best Response Function

• To set a price, intermediate firms need a belief about W_t. Why?
 ▶ W_t is jointly determined in labor market and labor supply depends on P_t.
 ▶ So, intermediate firms need a conjecture, P_t^c, about aggregate prices, P_t.

$$p_{i,t} = P_t^c \times \frac{W_t}{P_t^c}.$$
Introduce Firms’ Best Response Function

• To set a price, intermediate firms need a belief about \(W_t \). Why?
 ▶ \(W_t \) is jointly determined in labor market and labor supply depends on \(P_t \).
 ▶ So, intermediate firms need a conjecture, \(P_t^c \), about aggregate prices, \(P_t \).

\[
p_{i,t} = P_t^c \times \frac{W_t}{P_t^c}.
\]

• We divide the period into morning and afternoon.
 ▶ In the morning, intermediate firms set \(p_{i,t} \) simultaneously given conjecture \(P_t^c \).
Introduce Firms’ Best Response Function

• To set a price, intermediate firms need a belief about W_t. Why?
 ▶ W_t is jointly determined in labor market and labor supply depends on P_t.
 ▶ So, intermediate firms need a conjecture, P^c_t, about aggregate prices, P_t.

\[
p_{i,t} = P^c_t \times \frac{W_t}{P^c_t}.
\]

• We divide the period into morning and afternoon.
 ▶ In the morning, intermediate firms set $p_{i,t}$ simultaneously given conjecture P^c_t.
 ▶ In the afternoon, the rest happens so W_t/P^c_t is determined as a function of “history,” (h_{t-1}, P^c_t).

\[
p_{i,t} = P^c_t \times \frac{W_t}{P^c_t} = P^c_t \left(\left(c^b_t \cdot h_{t-1}, P^c_t \right) \right)^{\gamma + \psi}.
\]
Best Response Function

\[
\ln p_i \left(t \right) - \bar{\mu}^* \times \left(c_{bt} \left(h_{t-1}, P_{ct} \right) \right)^\gamma + \psi \equiv F(h_{t-1}, \pi_{ct}).
\]
Best Response Function

- Scaling and logging, we get the individual best response F.

$$
\ln \frac{p_{i,t}}{P_{t-1}\bar{\mu}^*} = \ln \left[\frac{P_t}{P_{t-1}\bar{\mu}^*} \times \left(c_t^b (h_{t-1}, P_t^c) \right)^{\gamma+\psi} \right] \equiv F\left(h_{t-1}, \pi_t^c\right).
$$
Scaling and logging, we get the individual best response F_i.

$$\ln \frac{p_{i,t}}{P_{t-1}\bar{\mu}^*} = \ln \left[\frac{P_t}{P_{t-1}\bar{\mu}^*} \times \left(c_t^b (h_{t-1}, P_t^c) \right)^{\gamma+\psi} \right] \equiv F (h_{t-1}, \pi_t^c).$$

$F (h_{t-1}, \pi_t^c)$ is the best response function

$$x_{i,t} = F (h_{t-1}, \pi_t^c).$$
Continuation Equilibrium

- Let

\[a_t = (l_t, \pi_t, c_t, R_t, W_t, \mu, \bar{M}_t) \]

\[h_{t-1} = (a_0, a_1, ..., a_{t-1}) . \]
Continuation Equilibrium

• Let

\[a_t = \left(l_t, \pi_t, c_t, R_t, W_t, \mu, \bar{M}_t \right) \]

\[h_{t-1} = (a_0, a_1, ..., a_{t-1}). \]

Definition

A *continuation equilibrium* conditional on \((h_{t-1}, \pi^c_t) \) is a sequence, \(a_{t+s} \), for \(s \geq 0 \), with two properties:

(a) \(a_{t+s}, s > 0 \) satisfies all \(t + s \) equilibrium conditions.

(b) \(a_t \) satisfies all time \(t \) equilibrium conditions except intermediate good firm optimality.
Strategy Equilibrium

Definition

A strategy equilibrium is a competitive equilibrium with the property that for each possible history h_{t-1}: (i) there is a well-defined continuation equilibrium corresponding to any value of π^c_t and (ii) there exists a π^c_t that is a fixed point:

$$\pi^c_t = F(h_{t-1}, \pi^c_t).$$

Comment:

- Property: for on-path h_{t-1} and when competitive equilibrium unique, then π^c_t equals competitive π_t.
- Part (i) provides an exit-ramp from the competitive equilibrium in each t.
 - Allows us to think coherently about why people privately choose not to take the exit ramp.
 - Can ask 'why does the escape strategy' trim non-desired equilibria?
Strategy Equilibrium

Definition
A strategy equilibrium is a competitive equilibrium with the property that for each possible history h_{t-1}: (i) there is a well-defined continuation equilibrium corresponding to any value of π^c_t and (ii) there exists a π^c_t that is a fixed point:

$$\pi^c_t = F(h_{t-1}, \pi^c_t).$$

Comment:
- Property: for on-path h_{t-1} and when competitive equilibrium unique, then π^c_t equals competitive π_t.
Strategy Equilibrium

Definition

A strategy equilibrium is a competitive equilibrium with the property that for each possible history h_{t-1}: (i) there is a well-defined continuation equilibrium corresponding to any value of π^c_t and (ii) there exists a π^c_t that is a fixed point:

$$\pi^c_t = F(h_{t-1}, \pi^c_t).$$

Comment:

- Property: for on-path h_{t-1} and when competitive equilibrium unique, then π^c_t equals competitive π_t.
- Part (i) provides an exit-ramp from the competitive equilibrium in each t.
 - Allows us to think coherently about why people privately choose not to take the exit ramp.
 - Can ask ‘why does the escape strategy’ trim non-desired equilibria?
Why is $\pi^c_T > \pi_u$ not an Equilibrium Under Escape Clause?

- Easy to show that actual inflation would be:

$$F(h_{T-1}, \pi^c_T) = \pi^c_T + (\gamma + \psi) \left[\frac{\phi}{1 - \gamma} \pi^c_T \right].$$

- Intermediate firms expect govt. to depress economy (i.e., reduce c_T) by raising real rate.
Why is $\pi^c_T > \pi_u$ not an Equilibrium Under Escape Clause?

- Easy to show that actual inflation would be:

 $$F(h_{T-1}, \pi^c_T) = \pi^c_T + (\gamma + \psi) \frac{\phi}{1 - \gamma} \left(\ln c_T \right).$$

- Intermediate firms expect govt. to depress economy (i.e., reduce c_T) by raising real rate.

- With low output, labor demand is low
Why is $\pi^c_T > \pi_u$ not an Equilibrium Under Escape Clause?

- Easy to show that actual inflation would be:

$$F(h_{T-1}, \pi^c_T) = \pi^c_T + (\gamma + \psi) \left[\frac{\phi}{1 - \gamma} \pi^c_T \right].$$

- Intermediate firms expect govt. to depress economy (i.e., reduce c_T) by raising real rate.

- With low output, labor demand is low $\rightarrow W_T/P_T$ low.
Why is $\pi^c_T > \pi_u$ not an Equilibrium Under Escape Clause?

- Easy to show that actual inflation would be:

$$F(h_{T-1}, \pi^c_T) = \pi^c_T + (\gamma + \psi) \left[\frac{\phi}{1 - \gamma} \pi^c_T \right].$$

- Intermediate firms expect govt. to depress economy (i.e., reduce c_T) by raising real rate.
- With low output, labor demand is low $\rightarrow W_T/P_T$ low.
- So, intermediate firms post lower prices, and actual inflation is low,

$$\pi^c_T > F(\pi^c_T)$$

- No fixed points.
Why Can Agents Come Up with a Rational Expectation?

• We use a refinement of "rationalizability" for a theory of expectation.

▶ Pick an arbitrary big compact set $\Pi \subset \mathbb{R}$ for firms' action space.

▶ Firms are certain that other firms only choose their action from $F(\Pi)$.

▶ A firm knows others are rational.

▶ Then firms are now certain that other firms only choose from $F(F(\Pi))$.

▶ A firm knows others know firms are rational.

▶ Keep continuing this forward induction...

▶ Firms only play an action from $F^\infty(\Pi)$.

Proposition

If $\gamma > 1$ and $1 < \phi \leq 2\gamma - \frac{1}{\gamma} + \psi$, then for any large compact set Π, $F^\infty(\Pi) = \{0\}$.

• Rational firms convince themselves that desired equilibrium occurs!

▶ A desired property for policy design.
Why Can Agents Come Up with a Rational Expectation?

• We use a refinement of “rationalizability” for a theory of expectation.

Proposition

If $\gamma > 1$ and $1 < \phi \leq 2^{\gamma-1} + \psi$, then for any large compact set Π, $F_\infty(\Pi) = \{0\}$.

• Rational firms convince themselves that desired equilibrium occurs! A desired property for policy design.
Why Can Agents Come Up with a Rational Expectation?

- We use a refinement of “*rationalizability*” for a theory of expectation.
 - Pick an arbitrary big compact set $\Pi \subset \mathbb{R}$ for firms’ action space.
Why Can Agents Come Up with a Rational Expectation?

- We use a refinement of “rationalizability” for a theory of expectation.
 - Pick an arbitrary big compact set \(\Pi \subset \mathbb{R} \) for firms’ action space.
 - Firms are certain that other firms only choose their action from \(F(\Pi) \).
 - A firm knows others are rational.

Proposition

If \(\gamma > 1 \) and \(1 < \phi \leq 2 \gamma - 1 \gamma + \psi \), then for any large compact set \(\Pi \),

\[
F_{\infty}(\Pi) = \{0\}.
\]
Why Can Agents Come Up with a Rational Expectation?

- We use a refinement of “rationalizability” for a theory of expectation.
 - Pick an arbitrary big compact set $\Pi \subset \mathbb{R}$ for firms' action space.
 - Firms are certain that other firms only choose their action from $F(\Pi)$.
 - A firm knows others are rational.
 - Then firms are now certain that other firms only choose from $F(F(\Pi))$.
 - A firm knows others knows firms are rational.
Why Can Agents Come Up with a Rational Expectation?

- We use a refinement of “rationalizability” for a theory of expectation.
 - Pick an arbitrary big compact set $\Pi \subset \mathbb{R}$ for firms’ action space.
 - Firms are certain that other firms only choose their action from $F(\Pi)$.
 - A firm knows others are rational.
 - Then firms are now certain that other firms only choose from $F(F(\Pi))$.
 - A firm knows others knows firms are rational.
 - Keep continuing this forward induction...
 - Firms only play an action from $F^\infty(\Pi)$.

Proposition

If $\gamma > 1$ and $1 < \phi \leq 2\gamma - \frac{1}{\gamma} + \psi$, then for any large compact set Π, $F^\infty(\Pi) = \{0\}$.

- Rational firms convince themselves that desired equilibrium occurs!
 - A desired property for policy design.

32/34
Why Can Agents Come Up with a Rational Expectation?

- We use a refinement of "rationalizability" for a theory of expectation.
 - Pick an arbitrary big compact set \(\Pi \subset \mathbb{R} \) for firms' action space.
 - Firms are certain that other firms only choose their action from \(F(\Pi) \).
 - A firm knows others are rational.
 - Then firms are now certain that other firms only choose from \(F(F(\Pi)) \).
 - A firm knows others knows firms are rational.
 - Keep continuing this forward induction...
 - Firms only play an action from \(F^\infty(\Pi) \).

Proposition

If \(\gamma > 1 \) *and* \(1 < \phi \leq 2 \frac{\gamma-1}{\gamma+\psi} \), *then for any large compact set* \(\Pi \), \(F^\infty(\Pi) = \{0\} \).

- Rational firms convince themselves that desired equilibrium occurs!
 - A desired property for policy design.
Put Simply

• Escape clause prevents undesired inflation by a feasible threat to crash the economy (like Volcker did) if it happened.

• Logic by which it works looks like an 'Out-of-equilibrium Taylor Principle'.

• Common knowledge of rationality is enough to ensure that firms spontaneously come up with the rational expectation.
Put Simply

- Escape clause prevents undesired inflation by a feasible threat to crash the economy (like Volcker did) if it happened.
Put Simply

- Escape clause prevents undesired inflation by a feasible threat to crash the economy (like Volcker did) if it happened.

- Logic by which it works looks like an ‘Out-of-equilibrium Taylor Principle’.
Put Simply

• Escape clause prevents undesired inflation by a feasible threat to crash the economy (like Volcker did) if it happened.

• Logic by which it works looks like an ‘Out-of-equilibrium Taylor Principle’.

• Common knowledge of rationality is enough to ensure that firms spontaneously come up with the rational expectation.
Concluding Observations

- Taylor Principle: When inflation is high, raise R_t sharply and (hopefully) this will slow down the economy and stabilize inflation around desired rate.

- Often, $\phi > 1$ is referred to as the 'Taylor Principle'.
 - But, only seems to deliver on its promise in neighborhood of desired equilibrium.
 - Does not rule out other, non-desired, equilibria.

- We showed that the Taylor rule with $\phi > 1$ and an escape clause:
 - Rules out non-desired equilibria by an off-equilibrium version of Taylor Principle.
 - Caveat: regime-shift to constant money rule does not always work when money demand is interest elastic.
 - Need to revisit New Keynesian canon that thinking about money demand is unnecessary.
Concluding Observations

- Taylor Principle: When inflation is high, raise R_t sharply and (hopefully) this will slow down the economy and stabilize inflation around desired rate.
- Often, $\phi > 1$ is referred to as the ‘Taylor Principle’.
 - But, only seems to deliver on its promise in neighborhood of desired equilibrium.
 - Does not rule out other, non-desired, equilibria.
- We showed that the Taylor rule with $\phi > 1$ and an escape clause:
 - Rules out non-desired equilibria by an off-equilibrium version of Taylor Principle.
 - Caveat: regime-shift to constant money rule does not always work when money demand is interest elastic.
 - Need to revisit New Keynesian canon that thinking about money demand is unnecessary.
Concluding Observations

• Taylor Principle: When inflation is high, raise R_t sharply and (hopefully) this will slow down the economy and stabilize inflation around desired rate.

• Often, $\phi > 1$ is referred to as the ‘Taylor Principle’.
 ▶ But, only seems to deliver on its promise in neighborhood of desired equilibrium.
 ▶ Does not rule out other, non-desired, equilibria.

• We showed that the Taylor rule with $\phi > 1$ and an escape clause:
Concluding Observations

- Taylor Principle: When inflation is high, raise R_t sharply and (hopefully) this will slow down the economy and stabilize inflation around desired rate.

- Often, $\phi > 1$ is referred to as the ‘Taylor Principle’.
 - But, only seems to deliver on its promise in neighborhood of desired equilibrium.
 - Does not rule out other, non-desired, equilibria.

- We showed that the Taylor rule with $\phi > 1$ and an escape clause:
 - Rules out non-desired equilibria by an off-equilibrium version of Taylor Principle.
Concluding Observations

• Taylor Principle: When inflation is high, raise R_t sharply and (hopefully) this will slow down the economy and stabilize inflation around desired rate.

• Often, $\phi > 1$ is referred to as the ‘Taylor Principle’.
 ▶ But, only seems to deliver on its promise in neighborhood of desired equilibrium.
 ▶ Does not rule out other, non-desired, equilibria.

• We showed that the Taylor rule with $\phi > 1$ and an escape clause:
 ▶ Rules out non-desired equilibria by an off-equilibrium version of Taylor Principle.
 ▶ Caveat: regime-shift to constant money rule does not always work when money demand is interest elastic.
Concluding Observations

• Taylor Principle: When inflation is high, raise R_t sharply and (hopefully) this will slow down the economy and stabilize inflation around desired rate.

• Often, $\phi > 1$ is referred to as the ‘Taylor Principle’.
 ▶ But, only seems to deliver on its promise in neighborhood of desired equilibrium.
 ▶ Does not rule out other, non-desired, equilibria.

• We showed that the Taylor rule with $\phi > 1$ and an escape clause:
 ▶ Rules out non-desired equilibria by an off-equilibrium version of Taylor Principle.
 ▶ Caveat: regime-shift to constant money rule does not always work when money demand is interest elastic.
 ▶ Need to revisit New Keynesian canon that thinking about money demand is unnecessary.