A macroeconomic model of liquidity crises

Keiichiro Kobayashi
Faculty of Economics, Keio University
The Canon Institute for Global Studies

Tomoyuki Nakajima
Faculty of Economics, University of Tokyo,
The Canon Institute for Global Studies

October, 2017
A macroeconomic model of liquidity crises*

Keiichiro Kobayashi† Tomoyuki Nakajima‡

October 10, 2017

Abstract

We develop a model of liquidity crises based on debt overhang and credit networks. Firms need liquidity for its operation. Defaults of a group of firms may cause chain reaction of defaults of banks and firms through a credit network. Our model is consistent with the observation that the decline in output during the Great Recession is mostly attributable to the deterioration in the labor wedge, rather than in productivity.

Keywords: Systemic crises; liquidity demand; credit network; debt overhang.

JEL Classification numbers: E30, E44, G01.

*First version: May 2012. We would like to thank the editor and two anonymous referees for valuable comments. We have also benefitted from discussions with Tamon Asonuma, Noriyuki Yanagawa, and seminar participants at Kobe University, Kyoto University, Tohoku University, and the University of Zurich. Kobayashi gratefully acknowledges financial support from the JSPS Grant-in-Aid for Scientific Research (C) No. 23330061. Nakajima gratefully acknowledges financial support from the JSPS Grant-in-Aid for Scientific Research No. 16H02026 and 15H01939 and from the Inamori Foundation.

†Faculty of Economics, Keio University, and CIGS. Email: kobayasi@econ.keio.ac.jp

‡Faculty of Economics, University of Tokyo, and CIGS. Email: tomoyuki.nakajima@gmail.com.
1 Introduction

Liquidity plays an important role in facilitating economic transactions. Its abrupt reduction, a liquidity crisis, therefore tends to cause a deep recession.\(^1\) Indeed it has been argued that the recession in the late 2000s, “the Great Recession,” was induced and exacerbated by a liquidity crisis.\(^2\)

In this paper, we augment the real-business-cycle model with banks, and consider how a liquidity crisis emerges, and how its effect is propagated throughout the economy. In the quantitative analysis, we argue that the predictions of our model are roughly consistent with what happened in the Great Recession. In particular, it accounts for the fact that the decline in output in the Great Recession was mostly due to the deterioration in the labor wedge rather than in productivity (Arellano, Bai, and Kehoe, 2016; and Brinca, Chari, Kehoe, and McGrattan, 2016).\(^3\)

Our model has three key features. First, firms have to make wage payments in advance of production, so that liquidity is essential for the operation of firms.\(^4\) We in addition assume that firms rely on banks for the provision of liquidity. These assumptions help the model generate a deep recession following a liquidity crisis.

Second, firms and banks are both indebted with long-term debt. As long as short-term debt is not senior to long-term debt, debt overhang may arise: The ability of firms and banks to obtain short-term funds is restricted by the amount of their long-term debt. Firms and banks with severe debt overhang go default, which may trigger a liquidity crisis.

Third, the lending markets are segmented and represented by a credit network, which is exogenously given and held fixed over time. We suppose that the credit network reflects “relationship banking,” although the lending markets are assumed to be perfectly competitive and anonymous.\(^5\) The form of credit network determines how a crisis is propagated and becomes systemic.

Combining these elements together, a liquidity crisis emerges in our model in the following way. Suppose that some firms receive a bad productivity shock and default on their long-term debt. It

\(^{1}\)See, for instance, Borio (2009).

\(^{2}\)See, for instance, Lucas and Stokey (2011). For overviews of the crisis, see Adrian and Shin (2010), Brunnermeier (2009), Kacperczyk and Schnabl (2010), and Gorton (2010), among many others.

\(^{3}\)The labor wedge is the wedge between the marginal rate of substitution between consumption and leisure and the marginal product of labor. See, for instance, Chari, Kehoe, and McGrattan (2007), and Shimer (2009).

\(^{4}\)For the analysis on corporate demand for liquidity, see, for instance, Holmström and Tirole (2011).

\(^{5}\)See, for instance, Freixas and Rochet (2008) for the concept of relationship banking.
hurts the net worth of the banks which hold the debt issued by those firms, and may result in the default of those banks. This, in turn, leads to the failure of some other firms which are supposed to obtain short-term funds from those banks. Thus chain defaults may occur and the crisis is propagated through the credit network.

In the quantitative analysis of our model, we illustrate that it replicates some important features of the Great Recession. In particular, it is consistent with the observation emphasized, for instance, by Brinca, Chari, Kehoe, and McGrattan (2016), that is, the decline in output during the Great Recession is mostly due to the deterioration of the labor wedge, rather than in the level of TFP. Intuition behind this result is simple. In our model, most firms have a normal level of productivity even during a crisis. Massive defaults occur because of the unavailability of liquidity, rather than a decline in productivity. Thus, the decline in the aggregate productivity level remains small. On the other hand, the decline in employment caused by the lack of liquidity increases the labor wedge.

Related literature

Our model is related to several strands of literature. The first one is the theory of bank runs developed by Bryant (1980) and Diamond and Dybvig (1983). In this literature, a crisis occurs when there is a run on existing deposits, whereas in our model, the crisis occurs because of an evaporation of short-term loans. Arguably, both aspects are present in actual liquidity crises and the two approaches are considered to be complementary.

The second strand of literature is that on debt overhang, such as Myers (1977), Lamont (1995), Philippon (2010), and Occhino and Pescatori (2010). Liquidity crises occur in our model as a result of debt overhang: Firms and banks indebted with a large amount of long-term debt are not able to obtain short-term funds. Among the above papers, Lamont (1995) is closest to this paper in spirit. In a two-period model, Lamont (1995) shows that debt overhang can lead to multiple equilibria with different levels of investment. The key for multiple equilibria in the model of Lamont (1995) is aggregate demand externality due to monopolistic competition, similar to Kiyotaki (1988). The mechanism operating in our model is rather different. First, our model is perfectly competitive without externalities. Second, we focus on a crisis induced by a fundamental shock, rather than

For more recent developments of this theory, see Uhlig (2010), Ennis and Keister (2009, 2010), Keister (2016), Kato and Tsuruga (2012), and Gertler and Kiyotaki (2015), among many others.
self-fulfilling expectations. Third, financial intermediation and credit network are crucial elements here but not in Lamont’s (1995). In addition, we’d like to note that the levels of long-term debt for firms and banks are endogenously determined in our model, but are exogenously given mostly in the existing models of debt overhang.

We embed banks in the real business cycle framework in a way similar to Gertler and Karadi (2011), Gertler, Kiyotaki, and Queralto (2012), and Gertler and Kiyotaki (2015), among others. In particular, as in these papers, we assume that the amount of deposits that banks can collect is limited by their moral hazard constraint.

Our model is also related to the literature on contagions of crises through credit networks, such as Allen and Gale (2000), and Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015). Their focus is on comparisons of different forms of credit network regarding financial stability, and thus, their models are kept simple in the other respects. On the other hand, we consider only one type of credit network and do not ask its desirability or its empirical relevance. Instead, it is embedded in a standard real-business-cycle framework, and is adequate for analyzing macroeconomic implications. In this sense, we view our paper as complementary to the work in this literature.

The rest of the paper is organized as follows. In the next section, the basic structure of the model economy is described. The characterization of equilibrium are given in section 3. Concluding remarks are given in section 4. All the proofs are given in Appendix.

2 The model economy

Time is discrete and continues to infinity: \(t = 0, 1, 2, \cdots \). There is a unit mass of identical and infinitely lived households who consume, save, and supply labor. In addition, in every period, \(N \) types of “firms” and \(N \) types of “banks” are born in each household. For simplicity, we assume that firms and banks live only for two periods. We assume that all agents are price takers and all markets are perfectly competitive.

7For instance, their models are three-period endowment economies.

8This is surely a restrictive assumption: for instance, as we shall see, crises in our model do not have persistent effects due to this (and other) assumptions. We nevertheless assume it since our focus is on how a crisis occurs, and its relatively short-term effects on the economy. One way to introduce multiple periods of life for firms and banks in our model is to follow an approach similar to Gertler and Karadi (2011) and Gertler and Kiyotaki (2015). Such an extension is left for our future research.
Type-\(i\) firms and banks operate in sector (or island) \(i\), for \(i = 1, \cdots, N\). As the measure of households is unity, the respective measures of each type of firms and banks are also unity. Firms and banks are connected through a credit network, which is specified below. We abstract from capital accumulation and assume that the total supply of capital is fixed at a constant, \(N\), the number of sectors in the economy.

Financial intermediation is introduced within the representative household framework in the standard way.\(^9\) Funds flow from households to banks and from banks to firms. We assume that firms cannot obtain funds directly from households.\(^10\) Banks obtain funds in the form of equity from the households they belong to. They also collect funds from other households in the form of deposits.

Regarding loans and deposits, the following three assumptions are important for our argument. First, both loans and deposits take the form of risky debt, where borrowers make a fixed repayment as long as they are solvent.\(^11\) Second, there are loans and deposits with different maturity periods. Specifically, we assume that firms need two types of loans: inter-period ("long-term") and intra-period ("short-term"). Corresponding to these financial needs of firms, banks also collect short-term and long-term deposits. Third, all loans (deposits) have the same seniority, regardless of their maturity. Thus, the recovery rate for short-term and long-term loans (deposits) becomes identical.\(^12\)

Under these assumptions, bankruptcy of firms and banks can occur due to debt overhang: Providers of short-term funds are hesitant to lend to borrowers with a large amount of long-term debt. Bankruptcy of a relatively small number of firms and banks may bring about a systemic crisis because of propagation through a credit network.

\(^9\)This setting is similar to, for instance, Christiano, Motto, and Rostagno (2010), Gertler and Karadi (2011), and Gertler and Kiyotaki (2015).

\(^10\)Theories that account for why some firms need to borrow from banks include, among others, delegated monitoring (Diamond 1984) and superior auditing technology of relationship banks (Diamond and Rajan 2000, 2001). Gu, Mattesini, Monnet, and Wright (2013) develop a theory of banking based on limited commitment.

\(^11\)As is well known, with asymmetric information and costly state verification, the optimal contract does take the form of risky debt (e.g., Townsend 1979, Gale and Hellwig 1985).

\(^12\)It is commonly assumed in the debt-overhang literature that long-term loans (deposits) are senior to short-term loans (deposits). Assuming such a seniority rule does not change our results qualitatively. It will indeed strengthen the mechanism causing a liquidity crisis in our model.
Credit network: We consider a very simple network of firms and banks, which is an extension to our model of the network called “ring” (e.g. Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015). Firms and banks are represented by nodes on two concentric rings, say, firms are on the inner ring, and banks on the outer ring. Here, nodes corresponds to sectors so that we may use a “sector” and a “node” interchangeably in what follows. Banks in node \(i \) make long-term loans to firms in node \(i \) and short-term loans to firms in node \(i + 1 \), for \(i = 1, 2, \ldots, N \) (modulo \(N \)).

Figure 1 shows an example of our credit network when \(N = 4 \). Squares and circles represent banks and firms, respectively. Each number in a square or circle indicates the index of a node. Solid and dashed arrows represent long-term and short-term loans, respectively. For example, banks in node 1 provide long-term loans to firms in node 1 and short-term loans to firms in node 2.

2.1 Model overview

Before going into the formal analysis, it may be useful to provide an intuitive overview on how a liquidity crisis occurs in our model. We consider productivity shocks as exogenous disturbances, and abstract from sunspot shocks, although sunspot equilibria may exist in our model as in the
bank-run model of Diamond and Dybvig (1983). Our focus on the productivity shock (or fundamental shocks, more broadly) is based on the argument such as Allen and Gale (1998) that historical evidence does not support theories with sunspot shocks as the main cause of financial crises.

Productivity shocks are denoted by a vector $s_t = (s_{1,t}, s_{2,t}, \ldots, s_{N,t})$, where $s_{i,t}$ is the productivity of firms in node i in period t (firms in the same node have a common productivity level). In our model, a bad productivity shock to just one sector of the economy can lead to a systemic financial crisis, even if firms in the rest of the economy are all sound and productive. To illustrate this, suppose specifically that firms in node i experience a bad productivity shock in period t. Firms have long-term debt, which constitutes fixed costs for them. Thus, with a sufficiently large (negative) productivity shock, firms in node i are not able to repay their long-term debt in full (even if they chose the profit-maximizing level of output), and declare bankruptcy.

The failure of firms in node i is propagated to other sectors through the credit network. Given that firms in node i default on the long-term debt that they owe to banks in node i, those banks become insolvent, that is, their net worth becomes zero. Under our assumption on financial frictions similar to Gertler and Karadi (2011) and Gertler and Kiyotaki (2015), banks need to have a strictly positive level of net worth in order to engage in financial intermediation. It follows that banks in node i are now unable to provide short-term loans to firms in node $i + 1$.

Then, in spite of the fact that the productivity of firms in node $i + 1$ has not fallen at all, they cannot obtain short-term working capital from their banks, which are necessary to produce a positive amount of output. Thus those firms have to default, which, in turn, causes default of banks in node $i + 1$. In this way, the bankruptcy of a relatively small number of firms (i.e., firms in one node/sector) causes a chain reaction of default of firms and banks, that is, a systemic crisis. Here, in particular, it is a “liquidity crisis,” because the failure of all firms other than those in node i is caused by their inability to obtain short-term loans (liquidity).

Without a prompt intervention of the government, the chain reaction of default would continue and all firms and banks would go bankrupt. As a simple form of policy intervention, we suppose that the government gives a subsidy to banks (only) in node $i + n$ (modulo N). Here n is a positive integer that measures the “delay” of the policy response. With such a policy, banks in nodes $i + n, \ldots, i - 1$ (modulo N) and firms in nodes $i + n + 1, \ldots, i - 1$ (modulo N) would be able to avoid the bankruptcy.
2.2 Households

Now we turn to the formal presentation of the model. A representative household has the flow budget constraint:

\[c_t + \sum_{i=1}^{N} d_{it}^L + \sum_{i=1}^{N} d_{it}^S + \sum_{i=1}^{N} e_{it} = \sum_{i=1}^{N} \xi_{i,t} B_i(R_{i,t}^D d_{i,t-1}^L + R_{i,t}^B d_{i,t}^S) + w_t l_t + \sum_{i=1}^{N} \tilde{R}_{i,t}^E e_{i,t-1} + \sum_{i=1}^{N} \pi_{i,t}^F - T_t, \]

(1)

where \(c_t \) denotes the amount of consumption in period \(t \), \(l_t \) the amount of labor supplied to firms (in other households), \(\pi_{i,t}^F \) the profits earned by its member firms, \(i = 1, \ldots, N \), and \(T_t \) the lump-sum taxes to the government.

The household provides funds to banks in two ways. First, it provides equity, \(e_{i,t} \), to its member banks \(i = 1, \ldots, N \). As shown below, a moral hazard problem of banks requires banks to hold some equity for financial intermediation. The return on equity is stochastic, and its realized rate is denoted by \(\tilde{R}_{i,t}^E \). Second, each household puts deposits in banks of other households. Deposits are of two types: long-term (inter-period), \(d_{i,t}^L \), and short-term (intra-period), \(d_{i,t}^S \). Their rates of interest are \(R_{i,t}^D \) and \(R_{i,t}^B \), respectively. Note that the long-term deposit rate between periods \(t - 1 \) and \(t \), \(R_{i,t-1}^D \), is determined in period \(t - 1 \).

If banks in node \(i \) (call them “bank \(i \)”) are insolvent in period \(t \), the depositors recover only a fraction \(\xi_{i,t} B_i \in [0, 1) \) of their claims to banks \(i \), where \(\xi_{i,t} B_i \) will be given later in equation (16) in Section 2.4. Let \(\tilde{\xi}_{i,t}^B \) denote the stochastic recovery rate of depositors of banks \(i \) in period \(t \):

\[\tilde{\xi}_{i,t}^B = \begin{cases} 1, & \text{if bank } i \text{ is solvent}, \\ \xi_{i,t} B_i, & \text{if bank } i \text{ is insolvent}. \end{cases} \]

Consumption goods produced in \(N \) sectors are perfect substitutes so that \(c_t = \sum_{i=1}^{N} c_{i,t} \), where \(c_{i,t} \) is the consumption good produced in sector \(i \). As we shall see below, under the laissez-faire policy, all firms go bankrupt during a liquidity crisis, and, as a result, \(c_t = 0 \). To keep the level of consumption bounded away from zero in equilibrium, we assume that there are other sources of output, which is determined outside of our model. Suppose for simplicity that the level of such output is constant and denoted by \(\zeta > 0 \). Thus, the total amount of output (consumption) is \(c_t + \zeta \) in each period \(t \), and the utility is defined for \(\{c_t + \zeta\}_{t=0}^{\infty} \).

Given stochastic processes \((\xi_{i,t}^B, R_{i,t-1}^D, R_{i,t}^B, \tilde{R}_{i,t}^E, w_t, \pi_{i,t}^F) \), the household chooses a non-negative
processes \((c_t, d_{i,t}^L, d_{i,t}^S, e_{i,t}, l_t)\) to solve:

\[
\max_{(c_t, d_{i,t}^L, d_{i,t}^S, e_{i,t}, l_t)} E_0 \sum_{t=0}^{\infty} \beta^t [\ln(c_t + \xi) + \gamma \ln(1 - l_t)],
\]

subject to the sequence of the flow budget constraint (1).

The first-order conditions for \(d_{i,t}^L\) and \(e_{i,t}\) are given by

\[
1 = E_t \left[\lambda_{t,t+1} \tilde{\xi}_{i,t+1} R_{i,t}^B \right] = E_t \left[\lambda_{t,t+1} \tilde{R}_{i,t+1}^E \right],
\]

where \(\lambda_{t,t+1}\) is the stochastic discount factor:

\[
\lambda_{t,t+1} = \beta \frac{c_t + \xi}{c_{t+1} + \xi}.
\]

For a bounded solution for \(d_{i,t}^S\) to exist, \(\tilde{\xi}_{i,t}^B R_{i,t}^B\) must satisfy

\[
\tilde{\xi}_{i,t}^B R_{i,t}^B \leq 1.
\]

2.3 Firms

There are \(N\) sectors of production. In each sector, a mass of firms with measure 1 is born in every period. Firms in all sectors produce a single homogeneous consumption good. All firms (banks) in the same sector are identical. We sometimes refer to a firm (bank) in sector \(i\) as a firm (bank) \(i\).

Consider a representative firm in sector \(i\) that is born in period \(t - 1\). It purchases physical capital, \(k_{i,t-1}\), in the first year of its life, and produces output \(y_{i,t}\), in the second. Its production technology is described as:

\[
y_{i,t} = s_{i,t} m_{i,t}^\nu k_{i,t-1}^{\alpha - \nu} l_{i,t}^{1 - \alpha},
\]

where \(s_{i,t}\) denotes the (sector-specific) productivity of firms in sector \(i\), \(k_{i,t-1}\) the capital input, \(l_{i,t}\) the labor input, and \(m_{i,t}\) the managerial input. The productivity level of each sector, \(s_{i,t}\), is a random variable which realizes at the beginning of period \(t\). While the capital input \(k_{i,t-1}\) is determined in period \(t - 1\), the other inputs are determined in period \(t\).

Each firm supplies one unit of managerial input inelastically, so that \(m_{i,t} = 1\) in equilibrium. The firm cannot obtain the other inputs, \(k_{i,t-1}\) and \(l_{i,t}\), directly from the household it belongs to. Instead, it has to purchase them at the market. Similarly, each household cannot directly consume what its member firms produce. Thus, firms have to sell their products to other households in the market. The earnings of a firm are transferred back to the household it belongs to.
To produce output in the second period (period \(t \)), the firm needs to receive both “long-term” and “short-term” loans. The long-term (inter-period) loans is needed to purchase capital, \(k_{i,t-1} \), in the first period. Let \(q_{t-1} \) denote the price of capital in period \(t - 1 \). Thus, the amount the firm needs to borrow is \(L_{i,t-1} = q_{t-1} k_{i,t-1} \). Under our assumption on the credit network, this should be obtained from banks in node \(i \). Let \(R^L_{i,t-1} \) denote the (gross) interest rate on inter-period loans for firms in node \(i \).

Our assumption on the need for short-term loans is motivated by historical evidence that financial crises had triggered severe declines in output (e.g., Reinhart and Rogoff, 2009, 2014). Such evidence suggests that liquidity plays an essential role in the production process. To incorporate this idea, we assume that firms have a limited ability to commit to pay for the factors of production. Specifically, we assume that firms have to pay wages in advance of production.\(^{13}\) This assumption creates demand for liquidity (short-term loans) by firms, and without it, firms are not able to produce output.

To hire labor services of amount \(l_{i,t} \), the firm needs to pay \(w_t l_{i,t} \) before production. Hence, the firm needs to borrow \(W_{i,t} \geq w_t l_{i,t} \) from banks in node \(i - 1 \) (under our assumption on the credit network). The short-term (gross) interest rate for firms \(i \) is \(R^F_{i,t} \). After production, the firm sells its capital to new-born firms at price \(q_t \).

Then the profit maximization problem of the firm is stated as: Given stochastic processes \((\lambda_{t-1,t}, q_{t-1}, q_t, w_t, R^L_{i,t-1}, R^F_{i,t})\), it chooses \((k_{i,t-1}, l_{i,t}, W_{i,t})\) so as to solve the profit maximization problem.\(^{14}\)

\[
\max_{k_{i,t-1} \geq 0} E_{t-1} \left[\lambda_{t-1,t} \max_{(l_{i,t},W_{i,t}) \geq 0} \pi^F_{i,t}(k_{i,t-1}, l_{i,t}, W_{i,t}) \right],
\]

s.t. \(w_t l_{i,t} \leq W_{i,t}, \)

\(^{13}\)This is also a common assumption in the New Keynesian model (e.g., Christiano, Eichenbaum, and Evans, 2005).

\(^{14}\)In this setup of the firm’s problem, we rule out the possibility that it borrows the wage payments \(W_{i,t} \) in advance in period \(t - 1 \). Depending on the parameter values, if it is allowed, the firm may want to do so in order to avoid the possibility of liquidity shortage. To simplify the analysis, however, we abstract from such a possibility here as a shortcut way to create corporate demand for liquidity.
where
\[\pi_{i,t}^F(k, l, W) = \max\{\hat{\pi}_{i,t}^F(k, l, W), 0\}, \tag{7} \]
\[\hat{\pi}_{i,t}^F(k, l, W) = s_{i,t} k^{\alpha - \nu} l^{1-\alpha} + q_t k - R_{i,t-1}^L q_{t-1} k - R_{i,t}^F W. \tag{8} \]

In equation (8) we have used the fact that the firm chooses \(m_{i,t} = 1 \).

Here, \(\hat{\pi}_{i,t}^F \) denotes the “profit of the firm,” while \(\pi_{i,t}^F \) is the “payment to the owner (household) of the firm.” To simplify exposition, we slightly abuse notation by using \(\hat{\pi}_{i,t}^F \) to denote \(\max_{(l_{i,t}, W_{i,t}) \geq 0} \hat{\pi}_{i,t}^F(k_{i,t-1}, l_{i,t}, W_{i,t}) \), and \(\pi_{i,t}^F \) to denote \(\max_{(l_{i,t}, W_{i,t}) \geq 0} \pi_{i,t}^F(k_{i,t-1}, l_{i,t}, W_{i,t}) \).

Due to the limited liability, if \(\hat{\pi}_{i,t}^F < 0 \), then the firm would choose to default and as a result the payment to the owner is zero, \(\pi_{i,t}^F = 0 \). In such an event, the firm is indifferent about the choice of \((l_{i,t}, W_{i,t}) \) because any choice would result in \(\pi_{i,t}^F = 0 \). Here, we resolve this indeterminacy issue by simply assuming that the firm chooses not to operate in the event of default:
\[l_{i,t} = W_{i,t} = 0, \quad \text{if} \quad \max_{(l_{i,t}, W_{i,t}) \geq 0} \hat{\pi}_{i,t}^F(k_{i,t-1}, l_{i,t}, W_{i,t}) < 0. \tag{9} \]

This could be justified by, for instance, assuming an (infinitesimally small and non-defaultable) fixed cost for production.

Since long-term and short-term loans have the same seniority, their recovery rates are identical, and denoted by \(\xi_{i,t}^F \). It is equal to one as long as \(\hat{\pi}_{i,t}^F \geq 0 \), but, otherwise, the firm can only repay a fraction \(\xi_{i,t}^F \in [0, 1) \) of its total debt. Since firms do not produce output in the event of default, the recovery rate of the loans to the firm, \(\xi_{i,t}^F \), is given by
\[
\xi_{i,t}^F = \begin{cases}
1, & \text{if } \pi_{i,t}^F > 0, \\
\xi_{i,t}^F, & \text{if } \pi_{i,t}^F = 0,
\end{cases}
\]

where
\[
\xi_{i,t}^F = \frac{q_t}{R_{i,t-1}^L q_{t-1}}.
\]

2.4 Banks

Consider a representative bank in node \(i \) that is born in period \(t - 1 \). As we see below, banks cannot operate without initial capital, so we assume that the household provides its new-born banks with funds \(e_{i,t-1} \) as equity. In period \(t - 1 \), the bank collects inter-period deposits \(d_{i,t-1}^L \) (from other households) and makes inter-period loans \(L_{i,t-1} \) to firms \(i \), where
\[L_{i,t-1} = d_{i,t-1}^L + e_{i,t-1}. \]
In period t, it collects intra-period deposits $d_{i,t}^S$ and makes intra-period loans $W_{i+1,t}$ to firms $i+1$, so that $d_{i,t}^S = W_{i+1,t}$.

The government gives the bank lump-sum subsidies, $T_{i,t} \geq 0$, which are financed by lump-sum taxes on households. How those subsidies are determined shall be discussed below in Section 2.6. If the bank chooses $(L_{i,t-1}, W_{i+1,t})$, its “profit,” $\hat{\pi}_{i,t}^B$, is then given by

$$\hat{\pi}_{i,t}^B(L_{i,t-1}, W_{i+1,t}) = T_{i,t} + \xi_{i,t}^F R_{i,t-1} L_{i,t-1} + \xi_{i+1,t}^F R_{i+1,t} W_{i+1,t}$$

$$- \left[R_{i,t}^D W_{i+1,t} + R_{i,t-1}^D (L_{i,t-1} - e_{i,t-1})\right].$$

To take into account frictions associated with financial intermediation, we assume that banks are subject to a moral hazard problem similar to the one considered by Gertler and Karadi (2011). It implies that only a fraction of the bank’s revenue can be pledged to its depositors. Here, we assume that the moral hazard problem is associated only with the short-term loans $W_{i+1,t}$.

To be specific, suppose that the bank can divert a fraction ψ of the revenue from short-term loans $\tilde{\xi}_{i+1,t}^F R_{i+1,t}^F W_{i+1,t}$. Then the pledgeable amount of the bank’s revenue is given by

$$T_{i,t} + \xi_{i,t}^F R_{i,t-1} L_{i,t-1} + (1 - \psi) \tilde{\xi}_{i+1,t}^F R_{i+1,t}^F W_{i+1,t}.$$

This sets the upper bound of the amount of deposits that the bank can collect. That is,

$$T_{i,t} + \xi_{i,t}^F R_{i,t-1} L_{i,t-1} + (1 - \psi) \tilde{\xi}_{i+1,t}^F R_{i+1,t}^F W_{i+1,t}$$

$$\geq \left[R_{i,t}^B W_{i+1,t} + R_{i,t-1}^D (L_{i,t-1} - e_{i,t-1})\right],$$

which is referred to as the moral hazard constraint for banks i.

The bank declares default if (11) is violated. That is, the payment to its owner, $\pi_{i,t}^B$, is written as

$$\pi_{i,t}^B(L_{i,t-1}, W_{i+1,t}) = \max \left\{\hat{\pi}_{i,t}^B(L_{i,t-1}, W_{i+1,t}), \psi \tilde{\xi}_{i+1,t}^F R_{i+1,t}^F W_{i+1,t}\right\}.$$

Note that when the bank defaults, the owner of the bank receives $\pi_{i,t}^B = \psi \tilde{\xi}_{i+1,t}^F R_{i+1,t}^F W_{i+1,t}$, which would be positive as long as $W_{i+1,t} > 0$. This is a consequence of our assumption that banks can divert a part of their revenue from short-term lending. As shown by Lemma 2 below, however, $W_{i+1,t} = 0$, and hence $\pi_{i,t}^B = 0$ whenever the bank i defaults.

15 We make this assumption for a technical reason as well. Without such an assumption, the bank’s size would become infinite in this model.
For a given value of \(L_{i,t-1}\), let \(\Gamma_{i,t}(L_{i+1,t-1})\) denote the set of values of short-term loans, \(W_{i+1,t}\), that are feasible for the bank:

\[
\Gamma_{i,t}(L_{i,t-1}) \equiv \{0\} \cup \{W \geq 0 : \text{Condition (11) is satisfied.}\}
\] \hspace{1cm} (13)

Then the profit maximization problem of the bank is defined as: Given stochastic processes \((\lambda_{t-1,t}, e_{i,t-1}, R_{i,t-1}^D, R_{i+1,t-1}^L, R_{i,t}^B, R_{i+1,t}^F)\), it chooses \((L_{i,t-1}, W_{i+1,t})\) so as to solve:

\[
\max_{L_{i,t-1} \geq e_{i,t-1}} E_{t-1} \left\{ \max_{W_{i+1,t} \in \Gamma_{i,t}(L_{i,t-1})} \pi_{i,t}^B(L_{i,t-1}, W_{i+1,t}) \right\},
\] \hspace{1cm} (14)

where the function \(\pi_{i,t}^B\) is defined in (12) and the correspondence \(\Gamma_{i,t}\) is in (13). As in the case of firms, we use \(\pi_{i,t}^B\) to denote \(\max_{W_{i+1,t} \in \Gamma_{i,t}(L_{i,t-1})} \pi_{i,t}^B(L_{i,t-1}, W_{i+1,t})\).

Let \(\xi_{i,t}^B\) be the recovery rate for depositors of banks in node \(i\) in period \(t\). From the discussion above it follows that

\[
\tilde{\xi}_{i,t}^B = \min\{\xi_{i,t}^B, 1\},
\] \hspace{1cm} (15)

where

\[
\xi_{i,t}^B = \frac{T_{i,t} + \tilde{\xi}_{i,t}^F R_{i,t-1}^L L_{i,t-1} + (1 - \psi)\tilde{\xi}_{i+1,t}^F R_{i+1,t}^E W_{i+1,t} R_{i,t}^B}{R_{i,t}^B W_{i+1,t} + R_{i,t-1}^D (L_{i,t-1} - e_{i,t-1})}.
\] \hspace{1cm} (16)

For depositors to make a positive amount of short-term deposits, \(d_{i,t}^S > 0\), the intra-temporal rate of return, \(\xi_{i,t}^B R_{i,t}^B\), must be no less than one: \(\tilde{\xi}_{i,t}^B R_{i,t}^B \geq 1\), which, together with (4), implies that

\[
\tilde{\xi}_{i,t}^B R_{i,t}^B = 1
\] \hspace{1cm} (17)

must hold whenever \(d_{i,t}^S > 0\) in equilibrium.

The realized rate of return on bank equity, \(\tilde{R}_{i,t}^E\), is given by

\[
\tilde{R}_{i,t}^E e_{i,t-1} = \pi_{i,t}^B.
\]

2.5 Productivity Shocks

Firms are subject to sector-specific productivity shocks, \(s_t = \{s_{1,t}, s_{2,t}, \ldots, s_{N,t}\} \in [0, s_{\text{max}}]^N\), where \(s_{i,t}\) is the productivity level of firms in sector \(i\) in period \(t\), and \(s_{\text{max}}\) is the exogenous upper limit. To simplify the analysis, we assume that in each period only one (randomly selected) sector experiences a shock.
Specifically, let $I(t) \in \{1, \ldots, N\}$ be an i.i.d. random variable that realizes in period t with probabilities $\Pr(I(t) = i) = 1/N$, for all i. It determines the sector that is hit by the shock in period t. Given $I(t)$, the productivity level $s_{I(t),t} \in [0, s_{\text{max}}]$ is determined according to a probability distribution $G(\cdot)$. We assume that the distribution $G(\cdot)$ is identical over time and across sectors. The productivity levels of the other sectors are unity: $s_{i,t} = 1$, for $i \neq I(t)$. As an example, consider a firm that is born in sector i in period $t - 1$. The probability distribution of its productivity in period t, $s_{i,t}$, is given by

$$
\Pr(s_{i,t} \leq z) = \begin{cases}
\frac{1}{N} G(z), & \text{for } z < 1, \\
\frac{N-1}{N} + \frac{1}{N} G(z), & \text{for } z \geq 1.
\end{cases}
$$

(18)

To define the support of s_t, let $s^{(i)}(z)$ be an N-vector of the following form:

$$
s^{(i)}(z) \equiv \left\{ \frac{1}{s_{1,t}}, \ldots, \frac{1}{s_{i-1,t}}, z, \frac{1}{s_{i,t}}, \frac{1}{s_{i+1,t}}, \ldots, \frac{1}{s_{N,t}} \right\}.
$$

(19)

That is, it denotes the productivity levels of the N sectors when sector i experiences shock $s_{i,t} = z$. Then the support of s_t, Ω, is expressed as

$$
\Omega = \left\{ s^{(i)}(z) \mid i = 1, 2, \ldots, N, \text{ and } z \in [0, s_{\text{max}}] \right\}.
$$

(20)

Let $F(s)$ be the probability distribution implied by our assumption on the probability shocks.

2.6 Government

We assume that there is a government, whose role is to limit the chain reaction of defaults. For this purpose, it collects taxes from the household, and give subsidies to banks.

Specifically, we consider the following kind of government interventions. In each period t, given that a productivity shock hits node $I(t)$, the government gives transfers to all banks at node $I(t) + n$ (modulo N), where the amount of transfers is determined so as to exactly cover their losses if firms at $I(t) + n$ default on their inter-temporal loans. That is, the transfers from the government to sector $i \in \{1, \ldots, N\}$ in period t are written as

$$
T_{i,t} = \begin{cases}
(1 - \tilde{\xi}_F) P_{i,t-1}^L L_{i,t-1}, & \text{for } i = I(t) + n, \\
0, & \text{for } i \neq I + n.
\end{cases}
$$

(21)
Note that if firms at node i are solvent, then $\tilde{\xi}_{i,t}^{F} = 1$ so that there are no subsidies to banks in node i, $T_{i,t} = 0$. The lump-sum taxes on the household are given by

$$T_{t} = \sum_{i=1}^{N} T_{i,t}.$$

Here, the government policy is parameterized by an exogenously given number, $n \in \{0, \ldots, N-1\}$. It measures how quickly and accurately the government can respond to a crisis. As we shall see below, bankruptcy of firms in node $I(t)$ leads to bankruptcy of banks in nodes $i = I(t), \ldots, I(t) + n - 1$, and of firms in nodes $i = I(t) + 1, \ldots, I(t) + n$. Thus, when $n = 0$, no banks will fail (even when firms $I(t)$ do). As n gets larger, the number of sectors where firms and banks go default increases in the event of a crisis. Our interpretation of a large value of n is that the government’s intervention is delayed and/or inadequate. The limiting case where the government chooses not to intervene at all (the laissez-faire case) is represented by $n = \emptyset$.

The type of policy considered here saves both depositors and shareholders of banks. This might be inconsistent with banking regulations in practice, which typically intend to save only depositors and not shareholders when banks default (e.g., the deposit insurance system). One reason why we consider policy that saves both is, of course, to keep our analysis simple. But another reason is that during the time of a crisis it is often difficult to design policy that saves depositors selectively, in particular when policy needs to respond quickly. For example, both depositors and bank shareholders have been saved by TARP (Troubled-Asset Relief Program) in 2008–2014.

3 Equilibrium

We consider equilibrium where a crisis occurs due to a productivity shock. For a given government policy $n \in \{0, 1, \ldots, N-1, \emptyset\}$, competitive equilibrium is defined in a standard manner: households, firms, and banks solve their optimization problems (2), (6), and (14), respectively; and all markets clear.

Furthermore, we restrict our attention to Markov equilibrium where all endogenous variables are written as functions of the current state of nature $s_{t} \in \Omega$.\footnote{That is, we adopt the minimal state variable (MSV) criterion (McCallum, 1983) for equilibrium selection.} In what follows, we use $s = (s_{1}, s_{2}, \ldots, s_{N}) \in \Omega$ to denote the state in the “current period,” $s_{-} = (s_{1,-}, s_{2,-}, \ldots, s_{N,-}) \in \Omega$.
in the “previous period,” and \(s' = (s'_1, s'_2, \ldots, s'_N) \in \Omega \) in the “next period.” We denote the equilibrium value of a variable \(x \) at state \(s \) by \(x(s) \). Also, let \(I(s) \) denote the node hit by the productivity shock for \(s \in \Omega \).

The main focus of this paper is to analyze “liquidity crises,” by which we mean chain defaults of firms and banks mediated through credit networks. Failures of banks reduce the supply of short-term loans (liquidity), which cause default of firms. The default of those firms, in turn, lowers the revenue of banks, which lead to their default.

Reflecting this, we say that there is a crisis at state \(s \in \Omega \) if banks in some sectors default, i.e., if \(\exists i \in \{1, \ldots, N\} \) such that \(\tilde{\xi}^B_i(s) < 1 \). For each sector \(i \), we define two sets \(\Omega^b_i \) and \(\Omega^g_i \) as

\[
\Omega^b_i = \{ s \in \Omega \mid \tilde{\xi}^B_i(s) < 1 \}, \quad (22)
\]
\[
\Omega^g_i = \{ s \in \Omega \mid \tilde{\xi}^B_i(s) = 1 \}, \quad (23)
\]

that is, banks in sector \(i \) go bankrupt if and only if \(s \in \Omega^b_i \). We also define \(\Omega^b \) as

\[
\Omega^b = \bigcup_{i=1}^{N} \Omega^b_i. \quad (24)
\]

It is the set of states \(s \) where there are defaults of banks in some sectors. That is, according to our definition, a liquidity crisis occurs if and only if \(s \in \Omega^b \). A state \(s \in \Omega^b \) is called a crisis state.

3.1 Basic characterization of equilibrium

In this subsection, we characterize some basic features of (Markov) equilibrium in our model, which are summarized in Lemmas 5 and 6.

First, observe that the inter-period rates of loans and deposits must be equal across all sectors:

\[
R^L_i(s) = R^L(s), \quad \forall i, \quad (25)
\]
\[
R^D_i(s) = R^D(s), \quad \forall i. \quad (26)
\]

This follows from the fact that firms and banks in different sectors are identical in their first period of life, when they obtain inter-period loans and deposits.

Then the inter-period rates of loans and deposits are proportional:

\[
R^L(s) = \Theta R^D(s). \quad (27)
\]
Here $\Theta \geq 1$ is a constant defined by

$$
\Theta \equiv \frac{\int_{\Omega_i} [c(s') + \underline{c}]^{-1} dF(s')}{\int_{\Omega_i} \tilde{\xi}^{R}(s')[c(s') + \underline{c}]^{-1} dF(s')},
$$

(28)

where $\tilde{\xi}^{R}(s)$ is the recovery rate of inter-period loans to firms adjusted for the policy intervention $\{T_i(s)\}$ (see equation 21), which is given by

$$
\tilde{\xi}^{R}_i(s) \equiv \begin{cases}
\tilde{\xi}^{F}_i(s), & \text{if } i \neq I(s) + n, \\
1, & \text{if } i = I(s) + n.
\end{cases}
$$

A formal derivation of equation (27) is given in Appendix A.7. But intuition is simply given. Equation (27) derives from the profit maximization of banks. The cost of obtaining inter-period funds (deposits) for banks at state s is given by $R^D(s)$. Banks in each node i lend those funds to firms in the same node with policy-adjusted recovery rate $\tilde{\xi}^{R}_i(s')$, which depends on the state in the next period, $s' \in \Omega$. With compensation for the risk of default of firms, the inter-period loan rate, $R^L(s)$, must be greater than or equal to the inter-period deposit rate, $R^D(s)$, that is, $\Theta \geq 1$.

The fact that Θ is independent of the current state follows from our focus on Markov equilibrium: The integrands of the right-hand side of equation (28) depend only on the next-period state s', and hence, their integrals are independent of the current-period state s.

We start with the following result, which is useful for computing equilibrium. We provide all proofs in Appendix.

Lemma 1. The equilibrium values of the following products of variables $R^D(s)q(s)$, $R^D(s)e(s)$, $[c(s') + \underline{c}]R^D(s)$, are constant and independent of the past, current, and future states.

The following lemma shows that banks which default do not provide short-term loans. Remember that Ω_i^b is the set of states where banks at node i default, as defined in (22).

Lemma 2. Defaulting banks do not provide short-term loans: $W_{i+1}(s) = 0$ for all $s \in \Omega_i^b$ and $i \in \{1, \cdots, N\}$.

Our next result plays a key role for chain defaults of firms and banks. It states that if banks at node i default, then firms at node $i + 1$ default as well. Those firms have to default, because, as shown in Lemma 2, they cannot obtain short-term loans from node-i banks and thus unable to produce output.
Lemma 3. Default of banks at node i leads to default of firms at node $i + 1$: $\xi_{i+1}(s) < 1$ for all $s \in \Omega^b_i$ and $i \in \{1, \cdots, N\}$.

The next lemma shows that, as long as banks recover their long-term loans fully, they are solvent, even if they do not supply any short-term loans.

Lemma 4. If $\xi_i(s) = 1$, then $\xi_i(s) = 1$.

Lemmas 3-4 imply that defaults are propagated “forwards” but not “backwards” along the credit network, that is, defaults of banks in node i lead to defaults of firms in node $i + 1$, but defaults of firms in node i do not induce defaults of banks in node $i - 1$.

To generate liquidity crises, we need to make some assumptions on parameters. In particular, we need to rule out the case where banks are solvent even when their long-term loans are defaulted on, and the case where firms with the normal level of productivity become insolvent even when banks supplying short-term loans for them are solvent.

Assumption 1. We restrict parameters values such that the following conditions are satisfied: (i) If $\xi_i(s) < 1$, then $\xi_i(s) < 1$; and (ii) If $i \neq I(s)$ and $\xi_{i-1}(s) = 1$, then $\xi_i(s) = 1$, where $I(s)$ denotes the node hit by the productivity shock.

Under Assumption 1 and using previous lemmas, we can characterize the set of states Ω as follows. As long as firms in the node hit by the productivity shock are solvent, there are no defaults. If those firms default, on the other hand, chain default will occur, the extent to which is determined by the policy parameter n.

Lemma 5. Let Assumption 1 hold. Then, for a fixed policy parameter n, there are two possible equilibrium outcomes for each state $s \in \Omega$.

(i) No firms or banks default: $\xi_i(s) = 1$ for all i.

(ii) Firms in the node hit by the productivity shock default: $\xi_{I(s)}(s) < 1$. If $n \geq 1$, chain defaults occur: $\xi_i(s) < 1$ for $i = I, I + 1, \cdots, I + n$ (modulo N), and $\xi_i(s) < 1$ for $i = I, I + 1, \cdots, I + n - 1$ (modulo N). Firms and banks in the other nodes are solvent. If $n = 0$, defaults of firms in node $I(s)$ do not cause any other defaults. In the laissez-faire case, $n = \emptyset$, all firms and banks default.
The proof is straightforward and so is omitted. Roughly, case (i) is given by Lemma 4 and Assumption 1, and case (ii) follows from Assumption 1 and Lemma 3.

Since our focus here is on a liquidity crisis, unless otherwise stated, we shall restrict the policy parameter to be \(n \neq 0 \) so that defaults of firms in node \(I(s) \) cause defaults of some banks and firms in other nodes.\(^{17}\) Then, Lemma 5 implies that the set of states \(\Omega \) is divided into two disjoint subsets \(\Omega^g \) and \(\Omega^b \), where \(\Omega^g \) is the set of states where (i) of Lemma 5 holds and \(\Omega^b \) is those states associated with (ii). (This is consistent with our former definition of \(\Omega^b \) in equation 24.)

It follows from Lemma 5 that

\[\Theta = 1. \]

To see this, suppose that the productivity shock hits node \(I \). In the states where banks \(I \) go bankrupt, both banks and firms in nodes \(i \) go bankrupt for \(i = I, \ldots, I + n - 1 \) (modulo \(N \)), whereas both of them survive in nodes \(i = I + n + 1, \ldots, I - 1 \) (modulo \(N \)). In node \(I + n \), firms go bankrupt but banks are bailed out by the policy in such a way that their long-term loans are fully recovered, i.e., \(\bar{\xi}^R_{I+n} = 1 \). Thus, equation (28) implies that \(\Theta = 1 \).

Another implication of Lemma 5 is given in the next lemma. It says, the level of aggregate output is identical across crisis states \(s \in \Omega^b \).

Lemma 6. Let Assumption 1 hold. Then for each policy parameter \(n \in \{1, \ldots, N - 1, \emptyset\} \) there exists a constant \(c^b > 0 \) such that

\[c(s) = c^b, \quad \forall s \in \Omega^b. \]

3.2 Detailed description of equilibrium

In this subsection, we formally derive the equilibrium conditions.

Remember that the distribution of \(s'_i \) conditional on the current state \(s \) is identical across sectors and independent of \(s \), as shown in (18). It follows that inter-temporal choices of capital

\(^{17}\)It is straightforward to include the case \(n = 0 \) in our argument below, with slight complication of notation. For instance, when \(n = 0 \), there are no states where banks default so that \(\Omega^b = \emptyset \) according to our definition (24). Thus \(\Omega \) is no longer written as \(\Omega^g \cup \Omega^b \) (as long as \(\Omega^g \) denotes the set of states without any defaults of firms and banks). We would need to introduce another set of states where only firms in node \(I(s) \) default. Thus our restriction to the case where \(n \neq 0 \) is for the sake of notational simplicity as well.
are identical across sectors: \(k_i(s) = k(s) \) for all \(i \) and \(s \). Similarly, since all banks are identical in their first period of life, \(d^L_i(s) = d^L(s) \) and \(e_i(s) = e(s) \) for all \(i \) and \(s \).

Since the total supply of capital is \(N \), and the measures of households, firms \(i \), and banks \(i \) are all equal to unity, the market clearing conditions for the capital stock, managerial inputs, loans, deposits, labor, and consumption are given as

\[
k_i(s) = m_i(s) = 1, \quad d^L_i(s) = d^L(s), \quad e_i(s) = e(s),
\]

\[
L_i(s) = q(s) = d^L(s) + e(s),
\]

\[
W_{i+1}(s) = d^S_i(s), \quad l(s) = \sum_{i=1}^{N} l_i(s),
\]

and

\[
c(s) = \sum_{i=1}^{N} s_i l_i(s)^{1-\alpha}, \tag{29}
\]

for all \(s \in \Omega \).

We derive the equilibrium conditions in two steps. First, given the equilibrium values of \(R^D(s_-)q(s_-) \) and \(R^D(s_-)e(s_-) \), the conditions for the “intra-temporal variables,” \(\{w(s), l_i(s), \xi^F_i(s), \xi^B_i(s), R^F_i(s), R^B_i(s)\} \), for \(i = 1, 2, \cdots, N \), are derived in Section 3.2.1. Then the equilibrium conditions for the “inter-temporal variables,” \(R^D(s), R^E(s), q(s), \) and \(e(s) \), are obtained in Section 3.2.2.

3.2.1 Intra-temporal conditions for Markov equilibrium

Here, the intra-temporal variables \(\{w(s), l_i(s), \xi^F_i(s), \xi^B_i(s), R^F_i(s), R^B_i(s)\} \), for \(i = 1, 2, \cdots, N \), are solved for each \(s \). In this subsection, we fix a state \(s \in \Omega \) and take the values \(R^D(s_-)q(s_-) \) and \(R^D(s_-)e(s_-) \) as already determined.

Utility maximization of the representative household implies that for all \(s \in \Omega \),

\[
w(s) = \gamma \frac{[c(s) + c]}{1 - l(s)}, \tag{30}
\]

where \(c(s) \) is given by (29).

Consider banks in node \(i \) and firms in node \(i + 1 \). We consider separately the states where banks \(i \) are solvent and short-term loans are provided to sector \(i + 1 \) (Case 1); and the states where banks \(i \) are insolvent and short-term loans are not provided to sector \(i + 1 \) (Case 2).
\textbf{Case 1: Short-term loans are provided to firms }i+1. Suppose that \(W_{i+1}(s) > 0 \). It follows from Lemma 2 and condition (17) that

\[
\tilde{\xi}^B_i(s) = 1, \quad R_i^B(s) = 1. \tag{31}
\]

The fact that firms \(i + 1 \) hire labor at state \(s \) \((W_{i+1}(s) > 0)\) implies that they are solvent (see equation 9):

\[
\tilde{\xi}^F_{i+1}(s) = 1. \tag{32}
\]

Then the profit maximization problem of firms (6) yields the first-order conditions with respect to \(l_{i+1} \), which can be solved as

\[
l_{i+1}(s) = \left(\frac{(1 - \alpha)s_{i+1}}{R_i^E(s_{i+1})w(s)} \right)^{\frac{1}{\alpha}}. \tag{33}
\]

The moral hazard constraint of banks \(i \), (11), implies that

\[
W_{i+1}(s) = w(s)l_{i+1}(s) \leq \frac{[\tilde{\xi}^F_i(s) - 1]R^D_i(s_-)q(s_-) + R^D_i(s_-)e(s_-) + T_i(s)}{1 - (1 - \psi)R_i^B(s_{i+1})}. \tag{34}
\]

The denominator of the right-hand side of (34) is positive, as shown in the following lemma.

\textbf{Lemma 7.} If \(W_{i+1}(s) > 0 \), then \(R_i^E(s_{i+1}) \) satisfies \(1 \leq R_i^E(s_{i+1}) < \frac{1}{1 - \psi} \).

When the moral hazard constraint is non-binding, \(R_i^E(s_{i+1}) = 1 \). Thus the following condition must be satisfied in equilibrium.

\[
R_i^E(s_{i+1}) = \max \left\{ 1, \frac{1}{1 - \psi} \left[1 - \frac{[\tilde{\xi}^F_i(s) - 1]R^D_i(s_-)q(s_-) + R^D_i(s_-)e(s_-) + T_i(s)}{w(s)l_{i+1}(s)} \right] \right\}. \tag{35}
\]

Note that \(R_i^E(s_{i+1}) \) in (35) satisfies \(R_i^E(s_{i+1}) \geq R_i^B(s) = 1 \).

To be consistent with our presumption that \(W_{i+1}(s) > 0 \), the variables derived above, \(\{l_{i+1}(s), \tilde{\xi}^F_{i+1}(s), R_i^E(s_{i+1}), \tilde{\xi}^B_i(s), R_i^B(s)\} \), must satisfy

\[
\tilde{\xi}^F_{i+1}(s) \geq 1, \quad \text{and} \quad \xi_i^B(s) \geq 1, \tag{36}
\]

where

\[
\xi_i^F(s) = \frac{s_{i+1}l_{i+1}(s)^{1-\alpha} - R_i^E(s_{i+1})w(s)l_{i+1}(s) + q(s)}{R^D_i(s_-)q(s_-)}, \tag{37}
\]

\[
\xi_i^B(s) = \frac{T_i(s) + \tilde{\xi}^F_i(s)R^D_i(s_-)q(s_-) + (1 - \psi)\tilde{\xi}^F_i(s)R_i^E(s_{i+1})w(s)l_{i+1}(s)}{W_{i+1}(s) + R^D_i(s_-)[q(s_-) - e(s_-)]}. \tag{38}
\]

If conditions in (36) are satisfied, the values \(\{l_{i+1}(s), \tilde{\xi}^F_{i+1}(s), R_i^E(s_{i+1}), \tilde{\xi}^B_i(s), R_i^B(s)\} \) obtained by solving equations (31), (32), (33), (35) indeed constitute Markov equilibrium at state \(s \). Otherwise, we should consider Case 2 in the next paragraph.
Case 2: Short-term loans are not provided to firms \(i + 1 \). In the above calculations, if some of the conditions in (36) are violated, then short-term loans are not supplied to firms in node \(i + 1 \), and their output is zero. Consequently, \(\xi^B_{i+1}(s), \xi^F_{i+1}(s), l_{i+1}(s), \) and \(W_{i+1}(s) \) are given by

\[
\begin{align*}
\xi^B_{i+1}(s) &= \min \left\{ T_i(s) + \frac{\xi_j^F(s) R^D(s_-) q(s_-)}{R^D(s_-) \{ q(s_-) - e(s_-) \}}, 1 \right\}, \\
\xi^F_{i+1}(s) &= \frac{q(s)}{R^D(s_-) q(s_-)}, \\
l_{i+1}(s) &= 0, \quad W_{i+1}(s) = 0.
\end{align*}
\] (39) (40) (41)

The rates for intra-temporal loans \(\{ R^B_i(s), R^F_{i+1}(s) \} \) are not uniquely determined, but can take any values as long as the following conditions are satisfied:

\[
\xi^B_i(s) R^B_i(s) \leq 1, \quad \text{and} \quad \xi^F_{i+1}(s) R^F_{i+1}(s) \leq R^B_i(s).
\]

3.2.2 Inter-temporal conditions for Markov equilibrium

Here we derive the equilibrium conditions for the variables \(\{ R^D(s), \tilde{R}^E_i(s), q(s), e(s) \} \) for each state \(s \in \Omega \), which involve inter-temporal optimization.

Let us start with the condition for \(q(s) \). Consider the profit maximization problem of firms (7). Then for each \(s \in \Omega \) and \(i \in \{1, \ldots, N\} \), the first-order condition with respect to \(k_i(s) \) is given by

\[
\int_{s' \in \Omega^f_i} \frac{1}{[c(s') + \xi]} dF(s') R^D(s) q(s) = \int_{s' \in \Omega^f_i} \frac{1}{[c(s') + \xi]} \{ r_i(s') + q(s') \} dF(s'),
\] (42)

where \(\Omega^f_i \) is the set of states where firms \(i \) are solvent, and \(r_i(s) \) is the returns to capital:

\[
\Omega^f_i \equiv \{ s \in \Omega | \xi^F_i(s) = 1 \}, \quad r_i(s) \equiv \begin{cases} \left(\frac{\alpha - \nu}{\beta} \right) \left(\frac{1 - \alpha}{R^F_i(s) w(s)} \right)^{\frac{1}{1 - \alpha}}, & \text{if } W_i(s) > 0, \\ 0, & \text{otherwise}. \end{cases}
\] (43)

A formal derivation of equations (42) and (43) is given in Appendix A.8. Note that equation (42) requires that the product \(R^D(s) q(s) \) be identical for all \(s \in \Omega \) in Markov equilibrium.

Next, let us turn to the equilibrium conditions for the return on bank equity, \(\tilde{R}^E_i(s) \), and the inter-temporal deposit rate, \(R^D(s) \), which are derived from the household’s first-order conditions (3). Let us write the stochastic discount factor in (3) as \(\lambda(s, s') \), so that

\[
\lambda(s, s') = \beta \frac{c(s) + \xi}{c(s') + \xi}.
\]
Then (3) implies that

$$E\left[\lambda(s, s') \tilde{\xi}^B_i(s') R^D(s) \mid s \right] = E\left[\lambda(s, s') \tilde{R}^E_i(s') \mid s \right] = 1. \tag{44}$$

From Lemma 2 and equation (12), the realized profit of a bank i at each state $s' \in \Omega$ can be expressed as

$$\pi^B_i(s') = \begin{cases} \hat{\pi}^B_i(s'), & \text{for } s' \in \Omega_i^g, \\ 0, & \text{for } s' \in \Omega_i^b, \end{cases}$$

where

$$\hat{\pi}^B_i(s') = \Psi_i(s') \Lambda_i(s'),$$

and

$$\Lambda_i(s') \equiv \left\{ \left[\tilde{\xi}^E_i(s') - 1 \right] R^D(s) q(s) + T_i(s') + R^D(s) e(s) \right\},$$

$$\Psi_i(s') \equiv \begin{cases} \frac{\psi R^E_{i+1}(s')}{1 - (1 - \psi) R^E_{i+1}(s')}, & \text{if } W_{i+1}(s') > 0, \\ 1, & \text{if } W_{i+1}(s') = 0. \end{cases}$$

Here, $\Lambda_i(s')$ is written as a function of s' only, because, as stated in Lemma 1, the products $R^D(s) q(s)$ and $R^D(s) e(s)$ take constant values (independent of s).

Then the rate of return on bank equity, realized at state $s' \in \Omega$, is given by

$$\tilde{R}^E_i(s') = \frac{\pi^B_i(s')}{e(s)} = \begin{cases} \frac{\Psi_i(s') \Lambda_i(s')}{R^D(s)e(s)} R^D(s), & \text{for } s' \in \Omega_i^g, \\ 0, & \text{for } s' \in \Omega_i^b, \end{cases}$$

Thus, the expected value of the return on bank equity becomes

$$E\left[\lambda(s, s') \tilde{R}^E_i(s') \mid s \right] = \beta \left\{ \int_{s' \in \Omega_i^g} \frac{[c(s') + c]}{c(s')} \frac{\Psi_i(s') \Lambda_i(s')}{c(s') + c} R^D(s) dF(s') \right\} R^D(s). \tag{45}$$

Similarly, the expected value of the inter-temporal deposit rate is given by

$$E\left[\lambda(s, s') \xi^B_i(s') R^D(s) \mid s \right]$$

$$= \beta \left\{ \int_{s' \in \Omega_i^g} \frac{[c(s') + c]}{c(s')} dF(s') + \int_{s' \in \Omega_i^b} \frac{[c(s') + c]}{c(s')} \xi^B_i(s') dF(s') \right\} R^D(s). \tag{46}$$

Using (45) and (46), the first equation in (44) can be rewritten as

$$\int_{s' \in \Omega_i^g} \frac{1}{c(s') + c} \Psi_i(s') \left[\tilde{\xi}^E_i(s') - 1 \right] \frac{R^D(s) q(s) + T_i(s') + R^D(s) e(s)}{R^D(s)e(s)} dF(s')$$

$$= \int_{s' \in \Omega_i^g} \frac{1}{c(s') + c} dF(s') + \int_{s' \in \Omega_i^b} \frac{1}{c(s') + c} \xi^B_i(s') dF(s'), \tag{47}$$

23
and the second equation as
\[
\beta \left\{ \int_{s' \in \Omega^g} \frac{1}{c(s') + \xi} dF(s') + \int_{s' \in \Omega^b} \frac{1}{c(s') + \xi} \xi^B(s') dF(s') \right\} [c(s) + \xi] R^D(s) = 1. \tag{48}
\]
Note here that, given that \(R^D(s) q(s) \) is constant, equation (47) implies that \(R^D(s) e(s) \) is constant; and equation (48) implies that \([c(s) + \xi] R^D(s)\) is constant in our Markov equilibrium.

The description of the equilibrium conditions is now complete. To summarize, the Markov equilibrium in our economy is given by a collection of (positive) functions, namely, \{\(c(s) \), \(l_i(s) \), \(w(s), e(s), r(s), q(s), R^D(s), R_i^B(s), R_i^L(s), \tilde{\xi}_i^F(s), \tilde{\xi}_i^B(s) \}\) that satisfy (29), (30), (31) or (39), (32) or (40), (33) or (41), (35), (42), (43), (47), and (48).

3.3 Numerical results

In this subsection we report the results of our numerical experiments, and argue that the predictions of our model are consistent with the recent financial crisis (the “Great Recession”) in some important respects.

Remember that state \(s \in \Omega \) in our model takes the form of \(s(i)(z) \) in (19), which denotes that firms in node \(i \) are hit by productivity shock \(z \in [0, s_{\text{max}}] \). We conjecture that the crisis states, \(\Omega^b \), are characterized by a threshold value of productivity \(\bar{z} \in [0, s_{\text{max}}] \), defined by
\[
\xi^F_i(s(i)(\bar{z})) = 0,
\]
where \(\xi^F_i(s) \) is defined in (37). Using \(\bar{z} \), the sets of states \(\Omega^g \) and \(\Omega^b \) are described as
\[
\Omega^g = \{ s \in \Omega \mid s_{I(s)} \geq \bar{z} \}, \quad \text{and} \quad \Omega^b = \{ s \in \Omega \mid s_{I(s)} < \bar{z} \},
\]
where \(I(s) \) denotes the node hit by the productivity shock at state \(s \). This conjecture is verified in all the numerical exercises conducted here.

When the productivity shock is greater than \(\bar{z} \), the equilibrium outcome is as described by case (i) of Lemma 5 and \(c(s) \) varies with the value of \(s_{I(s)} \). When it is less than \(\bar{z} \), case (ii) of Lemma 5 occurs, and \(c(s) = c^b \) which is independent of \(s_{I(s)} \).

Let \(c^g_{\text{min}} \) be the minimum value of output in those states without defaults:
\[
c^g_{\text{min}} \equiv \min_{s \in \Omega^g} c(s)
\]
This is the amount of output when the productivity shock is equal to the threshold value \(\bar{z} \). The difference between \(c^b \) and \(c^g_{\text{min}} \) can be sizable (depending on parameter values). In such a case,
a small change in the productivity shock from slightly above \bar{z} to below \bar{z} generates a sharp and large drop of aggregate output from c_{\min}^d to c^b.

Parameter values are set as $\beta = 0.96$, $\nu = 0.05$, $\alpha = 0.3$, $\gamma = 0.6533$, $\zeta = 1.3609$, $\psi = 0.1$, and $N = 12$. The productivity shock $\ln(z)$ is assumed to follow a normal distribution with mean 0 and standard deviation 0.02.

For the policy parameter, we consider two cases: $n = 1$ and $n = \emptyset$. The policy with $n = \emptyset$ is the laissez-faire policy, which does not intervene the market at all. With such policy, once a crisis occurs, all firms and banks go bankrupt, and total output goes down to $c_{\bar{z}}$. With $n = 1$, on the other hand, the government responds to the crisis rather quickly. The failure of banks occurs only in one node (and that of firms occurs in two nodes). We roughly interpret the case of $n = 1$ as corresponding to the U.S. experience of the Great Recession. We consider the laissez-faire case $n = \emptyset$ as a counterfactual case that might have happened in the absence of the policy intervention. We set the value of ζ so that the decline in GDP would be comparable to that during the Great Depression in such a case (about 40 percent according to, for instance, Cole and Ohanian, 1999).

For the numerical simulation, we assume the following realization of the productivity shock:

$$z_t = \begin{cases}
1 & \text{for } t \neq 2009, \\
\bar{z} (< \bar{z}) & \text{for } t = 2009.
\end{cases} \tag{49}$$

Thus, a liquidity crisis occurs in 2009. Since our model does not have endogenous state variables and the exogenous shock is i.i.d. across periods, the crisis does not have any persistent effects. In equation (49), the threshold value \bar{z} depends on the policy parameter n. Note that we do not need to specify the exact value of z for 2009, as long as $z < \bar{z}$, because of Lemma 6.

Let us start with the laissez-faire case: $n = \emptyset$. In this case, the threshold is given by $\bar{z} = 0.9575$ and $\Pr(z < \bar{z}) = G(\bar{z}) = 0.015$. That is, a crisis would occur, on average, once in 67 years. With our parameterization, it results in about a 40 percent drop in total output, $y_t = c_t + \zeta$, when z_t changes from 1 to below \bar{z}. As illustrated in Figure 2, the predicted fall in output is far bigger than the actual decline in detrended output during the Great Recession.

Next, consider the case where $n = 1$. In this case, the threshold value of productivity is given by $\bar{z} = 0.9564$ with $G(\bar{z}) = 0.013$. Thus, a crisis occurs, on average, once in 77 years. With $n = 1$, policy “quickly” responds in order to limit the crisis so that banks (firms) default only in one (two)

18 One period in this model corresponds to a year. γ is chosen such that the labor supply in the deterministic steady state equals 0.3. ζ is chosen such that ζ is 60 percent of the total consumption in the steady state.
Figure 2: Output under the laissez-faire policy: $n = \emptyset$. We have used the data sets provided by Karabarkounis (2014) and Cocius, Prescott, and Uederfeldt (2009). The data on real GDP is Hodrick-Prescott filetered with the smoothing parameter 6.25. Its value in 2007 is normalized to zero.
Figure 3: Output under the benchmark policy: $n = 1$. We have used the data sets provided by Karabarkounis (2014) and Cocius, Prescott, and Uederfeldt (2009). The data on real GDP is Hodrick-Prescott filtered with the smoothing parameter 6.25. Its value in 2007 is normalized to zero.

As a result, the decline in output during the crisis is much smaller, about 3.2 percent. Figure 3 compares the model’s predicted path of output and the actual path of GDP per person. The data on GDP are detrended using the Hodrick-Prescott (HP) filter, and its value in 2007 is normalized to zero. The smoothing parameter for the HP filter is set to 6.25 following Ravn and Uhlig (2002). The figure shows that the detrended level of GDP in 2009 is about 4 percent lower than the 2007 level in the data, which is similar to the prediction of the model. But this is just a direct consequence of our choice of parameter values, in particular, n and N.

To examine its applicability, let us see some other predictions of the model which are not targeted in the calibration. Specifically, motivated by the Business Cycle Accounting approach developed by Chari, Kehoe and McGrattan (2007), we look at the efficiency and labor wedges. The efficiency wedge is measured TFP, which is in our model given by $\ln y_t - (1 - \alpha) \ln l_t$, where $y_t \equiv c_t + c$. The labor wedge is defined as the gap between the marginal rate of substitution of
consumption for leisure (MRS) and the marginal product of labor (MPL), which is in our model given by $\ln \left[\frac{\gamma y_t}{1 - l_t} \right] - \ln \left[(1 - \alpha) \frac{y_t}{l_t} \right]$.

Figures 4 and 5 plot the paths of the TFP and labor wedge predicted by the model and estimated from the data. The data on both the TFP and labor wedge are detrended by the HP filter, and their values in 2007 are normalized to zero. As argued in, for instance, Brinca, Chari, Kehoe, and McGrattan (2016), during this period, the fluctuations in the TFP are much smaller than those in the labor wedge. These two figures show that the predictions of the model are well within the ball park: The TFP in 2009 is 0.57 percent lower than the 2007 level in the data, while it is 0.49 percent in the model’s prediction; The labor wedge in 2009 is 5.54 percent worse than the 2007 level in the data, while it is 5.46 percent in the model’s prediction.

The reason why our model generates a relatively large deterioration in the labor wedge, and a small decline in the TFP is simple. First, a crisis occurs in our model because firms are unable to obtain liquidity. Concerning productivity, firms in all but one nodes have the normal level of productivity even during a crisis. Thus, we do not need a large decline in the aggregate TFP to trigger a crisis. Second, during a crisis, firms without liquidity reduce employment and stop operating. Thus, a liquidity crisis is directly translated to a deterioration in the labor wedge in the macro data.

4 Conclusion

In this paper we have developed a model of liquidity crises with the following features. First, liquidity is essential for the operation of firms. Second, both banks and firms are indebted with long-term debt, which may cause debt overhang and obstruct the flow of short-term funds (liquidity). Firms without enough liquidity would have to default. Third, the lending market is segmented and represented by a credit network. Then the default of firms and/or banks in one sector may cause chain defaults propagated through the credit network, resulting in a systemic financial (liquidity) crisis.

As argued, for instance, by Brinca, Chari, Kehoe, and McGrattan (2016), the labor wedge has played a much more important role than the efficiency wedge (TFP) in the Great Recession. This observation is consistent with our model. During a crisis, most firms have a normal level of productivity, so that the decline in the aggregate TFP remains small. In addition, defaulting
Figure 4: Total factor productivity under the benchmark policy: $n = 1$. We have used the data sets provided by Karabarkounis (2014) and Cocius, Prescott, and Uederfeldt (2009). The data on the TFP is Hodrick-Prescott filtered with the smoothing parameter 6.25. Its value in 2007 is normalized to zero.
Figure 5: Labor wedge under the benchmark policy: $n = 1$. We have used the data sets provided by Karabarkounis (2014) and Cocius, Prescott, and Uederfeldt (2009). The data on the labor wedge is Hodrick-Prescott filtered with the smoothing parameter 6.25. Its value in 2007 is normalized to zero.
firms stop producing, which causes a deterioration of the labor wedge. We also illustrate that
our model reproduces quantitatively the fluctuations in output, TFP, and labor wedge during the
Great Recession.

For the sake of transparency and tractability we have deliberately kept our model as simple
as possible. It should be extended in several dimensions for a further understanding of financial
crises. Here we discuss some of the potential extensions, which are left for future research.

First, our specification of government policy may be too simplistic. In particular, government
intervention during a crisis has only benefits without any costs. To conduct a meaningful normative
analysis, we would need both.

Second, we have assumed a simplest form of credit network here. But, as discussed, for instance,
in Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), the form of network affects the stability of the
financial system.

Third, the effect of a financial crisis is purely temporary in our model. But historical evidence
such as Reinhart and Rogoff (2009, 2014) shows the opposite: a financial crisis has a very persistent
effect. Persistence can be introduced in our model in different ways. For instance, we should allow
firms and banks to live more than two periods. For this we could follow the approach of Gertler
and Kiyotaki (2015), or alternatively, it may be useful to adopt the framework of Lagos and Wright
(2005).

Lastly (but not the least), we have chosen a reduced-form approach regarding financial con-
tracts. For instance, we have assumed that all financial contracts are in the form of risky debt;
financial intermediation by banks are necessary; firms need to borrow short-term funds to pay for
their workers; short-term debt is not senior to long-term debt. These are not derived from the first
principle. It would be desirable to extend the model so that these features arise endogenously as
an equilibrium outcome.

References

603–618, September.

A Appendix

A.1 Proof of Lemma 1

In a Markov equilibrium, equations (42), (47), and (48) should be satisfied for all s, s', s_-. These equations imply that $R^D(s)q(s)$, $R^D(s)e(s)$, $[c(s) + c]R^D(s)$, are constant.

A.2 Proof of Lemma 2

Suppose that $W_{i+1}(s) > 0$. Then, the assumption that $\tilde{\xi}_i^B(s) < 1$ in equilibrium implies that condition (11) is violated. Thus, $W_{i+1}(s)$ cannot be positive. Thus, $W_{i+1}(s) = 0$. The definition (10), together with the fact that $\tilde{\xi}_i^B(s) < 1$ and $W_{i+1}(s) = 0$, implies that $\hat{\pi}_i^B(s) < 0$.

A.3 Proof of Lemma 3

Since $\tilde{\xi}_i^B(s) < 1$, $\hat{\pi}_i^F(s) < 0$ and $W_{i+1}(s) = 0$. Thus,

$$\hat{\pi}_i^B(s) = T_i(s) + q(s) - R^D(s_-)[q(s_-) - e(s_-)] < 0,$$

hence

$$q(s) < R^D(s_-)[q(s_-) - e(s_-)] - T_i(s).$$

Now,

$$\hat{\pi}_{i+1}^F(s) = q(s) - \Theta R^D(s_-)q(s_-)$$

$$< R^D(s_-)[q(s_-) - e(s_-)] - \Theta R^D(s_-)q(s_-) - T_i(s)$$

$$= -(\Theta - 1)R^D(s_-)q(s_-) - R^D(s_-)e(s_-) - T_i(s)$$

$$< 0.$$

Thus, $\hat{\pi}_{i+1}^F(s) < 0$ and hence $\tilde{\xi}_{i+1}^F(s) < 1$.

A.4 Proof of Lemma 4

$\tilde{\xi}_{i+1}^F(s) < 1$ implies that $W_{i+1}(s) = 0$ due to (9). As (28) shows, $\Theta \geq 1$. $\tilde{\xi}_i^F(s) = 1$ and $\Theta \geq 1$ imply that

$$\hat{\pi}_i^B(s) = T_i(s) + \Theta R^D(s_-)q(s_-) - [R^D(s_-)q(s_-) - R^D(s_-)e(s_-)]$$

$$= T_i(s) + (\Theta - 1)R^D(s_-)q(s_-) + R^D(s_-)e(s_-) > 0,$$

36
which means that \(\bar{\xi}_i^B(s) = 1 \).

A.5 Proof of Lemma 6

Suppose that the productivity shock, \(z \), hits node \(I \). As long as \(s \in \Omega^b \), it is the case that \(l_I(s) = 0 \), which is independent of the value of \(z \). Hence, the aggregate consumption \(c(s) \) and labor \(l(s) \) are both independent of the value of \(z \).

A.6 Proof of Lemma 7

When \(W_{i+1}(s) > 0 \), Lemma 2 implies that \(\bar{\xi}_i^B(s) = 1 \) and (9) implies that \(\bar{\xi}_{i+1}^F(s) = 1 \). In this case, the households’ optimization implies that \(R_i^B(s) = 1 \). Thus, the bank profit is written as

\[
\hat{\pi}_i^B(s) = T_i(s) + \bar{\xi}_i^F(s)\Theta R_D^D(s_-)q(s_-) - R_D^D(s_-)[q(s_-) - e(s_-)] + [R_{i+1}^F(s) - R_i^B(s)]W_{i+1}(s).
\]

In order for the bank to choose \(W_{i+1}(s) \) nonnegative, it must be the case that \(R_{i+1}^F(s) \geq R_i^B(s) = 1 \). The moral hazard constraint is written as

\[
[R_i^B(s) - (1 - \psi)R_{i+1}^F(s)]W_{i+1}(s) \leq T_i(s) + \bar{\xi}_i^F(s)\Theta R_D^D(s_-)q(s_-) - R_D^D(s_-)[q(s_-) - e(s_-)].
\]

If \(R_{i+1}^F(s) \geq \frac{1}{1-\psi}R_i^B(s) \), then the bank would choose to make \(W_{i+1}(s) \) infinity, which is not possible in equilibrium. Thus, it must be the case that \(R_{i+1}^F(s) < \frac{1}{1-\psi}R_i^B(s) = \frac{1}{1-\psi} \).

A.7 Proof of equation (27)

Consider a bank born in period \(t - 1 \) and an arbitrary state in period \(t - 1 \), \(s_{t-1} = s_- \in \Omega \). We write \(s_t \) as \(s \in \Omega \). Given \((e_{t-1}, L_{t-1}) = (e, L) \), define the following:

\[
\Gamma_i(e, L, s, s_-) \equiv \{0\} \cup \{W > 0 : \text{Condition (50) is satisfied}\},
\]

\[
\pi_i^B(e, L, W, s, s_-) \equiv \max \{\hat{\pi}_i^B(e, L, W, s, s_-), 0\},
\]

\[
\hat{\pi}_i^B(e, L, W, s, s_-) \equiv T_i(s) + \bar{\xi}_i^F(s)R_L^L(s_-)L + \bar{\xi}_{i+1}^F(s)R_{i+1}^F(s)W
\]

\[
- [R_D^D(s_-)L + R_i^B(s)W - R_D^D(s_-)e],
\]

\[
\Omega_i^{B+}(e, L, s_-) \equiv \left\{ s \in \Omega : \max_{W \in \Gamma_i(e, L, s, s_-)} \pi_i^B(e, L, W, s, s_-) > 0 \right\},
\]

37
where the condition is given by
\[T_i(s) + \tilde{\xi}_i(s)R^L(s) + (1 - \psi)\tilde{\xi}_{i+1}(s)R^F_{i+1}(s)W \geq \left[R^B_i(s)W + R^D(s) - R^D(s)\right]. \] (50)

Then, the maximand in (14) can be expressed as
\[\tilde{\pi}_i^B(e, L|s_\rightarrow) = E \left[\lambda(s_, s) \max_{W \in \Gamma(e, L, s_\rightarrow)} \pi_i^B(e, L, W, s, s_\rightarrow) | s_\rightarrow \right] \]
\[= \int_{\Omega_i^B(e, L, s_\rightarrow)} \lambda(s_, s) \max_{W \in \Gamma(e, L, s, s_\rightarrow)} \pi_i^B(e, L, W, s, s_\rightarrow) dF(s). \]

Now, consider profit maximization with respect to \(L \). Note first that in equilibrium, \(\Omega_i^B(e, L, s_\rightarrow) = \Omega_i^B \). Second, on the boundary of \(\Omega_i^B(e, L, s_\rightarrow) \), \(\max_{W \in \Gamma(e, L, s, s_\rightarrow)} \pi_i^B(e, L, W, s, s_\rightarrow) = 0 \). It then follows that
\[\frac{\partial \tilde{\pi}_i^B}{\partial L}(e, L|s_\rightarrow) = R^L(s_\rightarrow) \int_{\Omega_i^B} \tilde{\xi}_i^R(s) \lambda(s_, s) dF(s) - R^D(s_\rightarrow) \int_{\Omega_i^B} \lambda(s_, s) dF(s) = 0. \]

\(\tilde{\xi}_i^R(s) \) appears here because the government transfer \(T_i(s) \) is dependent on \(L_i \) for \(i = I + n \). Thus, \(R^L(s_\rightarrow) = \Theta R^D(s_\rightarrow) \) for all \(s_\rightarrow \), where \(\Theta \) is defined by (28). As \(\tilde{\xi}_i^F(s) \leq 1 \), it follows that \(\Theta \geq 1 \). In the above derivation of \(\Theta \), we used that \(\lambda(s_, s) = \beta \frac{[c(s_\rightarrow) + \xi]}{[c(s) + \xi]} \).

A.8 Derivation of equation (42)

Define the following profit for a firm \(i \):
\[\pi_i^F(k, s', s) \equiv \max \left\{ \tilde{\pi}_i^F(k, s', s), 0 \right\}, \]
\[\tilde{\pi}_i^F(k, s', s) \equiv \max_{(l, W) \geq 0} s'_l k^{\alpha - \nu} l^{1 - \alpha} + q(s')k - R^L(s)q(s)k - R^F(s')W, \]
\[\text{s.t. } w(s')l \leq W; \]
which can be rewritten as
\[\pi_i^F(k, s', s) = \begin{cases} \frac{[(1 - \alpha)s_i']^\alpha k^{\frac{\nu}{\alpha}}}{(R^F(s')w(s'))^{1 - \alpha}} + q(s')k - R^L(s)q(s)k, & \text{if } W > 0, \\ 0, & \text{otherwise}, \end{cases} \]

because \(W > 0 \) if \(\tilde{\pi}_i^F(k, s', s) \geq 0 \) due to the Inada condition for the labor input.

Then the maximand in (6) is written as
\[\tilde{\pi}_i^F(k|s) \equiv E \left[\lambda(s, s')\pi_i^F(k, s', s) | s \right] = \int_{\Omega_i^F} \lambda(s, s')\pi_i^F(k, s', s) dF(s'). \]
Now, consider profit maximization with respect to k. An argument similar to the one in Appendix A.7 implies that the first-order condition with respect to k is written as

$$\frac{\partial \pi^F_i(k|s)}{\partial k} = \int_{\Omega_i} \lambda(s, s') \frac{\partial \pi^F_i(k, s', s)}{\partial k} dF(s') = 0.$$

It follows that

$$\frac{\partial \pi^F_i(k, s', s)}{\partial k} = [q(s') + r_i(s')] - R^L(s)q(s),$$

where $r_i(s)$ is defined in (43). Using $\lambda(s, s') = \beta[c(s) + c]/[c(s') + c]$, the FOC with respect to k is rewritten as

$$0 = \int_{s' \in \Omega_i} \frac{\beta[c(s) + c]}{[c(s') + c]} \left\{ [q(s') + r_i(s')] - R^L(s)q(s) \right\} dF(s')$$

that leads to (42).