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Abstract

In the Lagos-Wright model of money, monetary frictions alone cannot be a source

of equilibrium multiplicity. However, the conclusion depends on the assumption that

the agents always enter the centralized market after completing a transaction in the

decentralized markets. In this paper, we investigate a monetary model in which the

centralized market opens once, but the decentralized markets open twice in each

period. We show that as the seller’s money balances affect the buyer’s problem in

the first decentralized market, there may be multiple stationary equilibria.
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1 Introduction

The microfoundation of monetary models has been an important topic in macroeconomics.

In a seminal paper by Lagos and Wright (2005), henceforth LW, a tractable monetary

model is constructed in which the role of money is explicitly described. In LW, each

period is divided into two subperiods, day and night. Money facilitates trades in the day

market in which buyers and sellers are anonymous. The LW framework is now heavily

used in monetary economics.

In LW, the uniqueness of the steady state is shown only under specific restrictions on

the utility function.1 Recently, Wright (2010) relaxed the assumption and showed that

the steady state is always unique. Wright (2010) also argued that monetary frictions alone

cannot generate multiple equilibria.

In this note, we study a version of LW in which decentralized markets open twice

in each period. Each date is divided into three subperiods—morning, afternoon, and

night. The morning and afternoon markets are decentralized, while the night market

is centralized. We show that for some utility functions, there are multiple stationary

equilibria. This is because the objective function of the buyer in the morning market

depends on the seller’s money balances, and then the first-order conditions may not be

monotone in the equilibrium money balances. The uniqueness result in Wright (2010)

depends on the assumption that the agents always enter the centralized market after the

transactions in the decentralized market.2

Our set-up is similar to that of Ennis (2009), who investigated a variant of LW by

assuming that buyers may bypass the centralized market; however, he does not study

equilibrium multiplicity.

In the following, Section 2 describes our model and Section3 shows the equilibrium

multiplicity. Proofs are of the propositions are in the Appendix.

1LW shows the uniqueness when the utility function in the day market u satisfies u′u′′′ ≤ (u′′)2.
2Lagos and Wright (2003) studied a model which is similar to LW, but they showed that the steady

states can be multiple. The difference between the two papers is that the former introduce real return

on money, while the latter does not. Our model closely follows LW.
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2 Model

2.1 Set-up

Time is discrete and changes from t = 0 to +∞. There is a continuum of infinitely

lived agents with unit measure. Each date is divided into three subperiods—morning,

afternoon, and night. The morning and afternoon markets are decentralized and the

night market is centralized. In the following, consecutive period variables are indexed by

+1.

At the beginning of each period, the agent receives an idiosyncratic preference shock.

With probability α, he becomes a Type-1 agent, who consumes in the morning market

and produces in the afternoon market. Similarly, with probability α, he becomes a Type-2

agent, who produces in the morning market and consumes in the afternoon market. The

agent who consumes is called a buyer and the one who produces is called a seller. With

probability 1 − 2α, the agent becomes neither Type-1 nor Type-2, and enters the night

market directly. In Section 3.3, we investigate a case where the probability of becoming a

buyer (and also a seller) in the morning market is independent of the one in the afternoon

market.

In the morning market, the buyer obtains utility u(q) from consuming q units of

output. The cost function of the seller is q. We assume that there exists q∗ > 0, such

that u′(q∗) = 1. Similarly, in the afternoon market, the buyer obtains utility û(q̂) from

consuming q̂ units of output. The cost function of the seller is q̂. We let ŝ(q) = û(q) − q

denote the surplus. Let q̂∗ > 0 be such that û′(q̂∗) = 1. In the night market, each

agent obtains utility U(c) from consuming c units of general goods and disutility h from

producing h units of goods. Let c∗ > 0 be such that U ′(c∗) = 1. The function u, û and U

satisfy u′ > 0, û′ > 0, U ′ > 0, u′′ < 0, û′′ < 0, U ′′ < 0 and u′(0) = û′(0) = U ′(0) = +∞.

The role of money is to facilitate trades in the morning and afternoon markets, where

buyers and sellers are anonymous. The buyers use money to pay. Money is divisible and

storable, but it is intrinsically useless. The growth rate of the money supply M is γ.
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2.2 Night market

We solve the model backward. At night, the agent solves

W (m) = max
c,h

{U(c) − h + βV+1(m+1)} (1)

subject to the budget constraint c = h + φ(m + T − m+1), where β > 0 is a discount

factor, φ is the price of money, T = γM is the lump-sum transfer, and V (m) denotes the

value function of the agents at the beginning of each period. The first-order conditions

are U ′(c) = 1 and

φ = βV ′
+1(m+1). (2)

As in LW, trades are efficient and the money balances at the beginning of each period

are the same across agents. From the quasi-linearity of the utility function, W is a linear

function of the nominal balance, and W (m) = φm + W (0).

2.3 Afternoon market

In the afternoon, the buyer (i.e., Type-2) makes a take-it-or-leave-it offer (q̂, d̂) to the seller

(i.e., Type-1), where q̂ is the quantity and d̂ is the monetary transfer. The participation

constraint of a seller is W (ms) ≤ −q̂ + W (ms + d̂). As W is linear, this is simplified as

φd̂ − q̂ ≥ 0. The buyer solves

V̂ b(m) = max
q̂,d̂

{û(q̂) + W (m − d̂)} s.t d̂ ≤ m and φd̂ − q̂ ≥ 0. (3)

The buyer chooses the offer so that the participation constraint binds. Eq. (3) reduces to

V̂ b(m) = max
d̂:d̂≤m

{û(φd̂) − φd̂} + φm + W (0). (4)

We let

v̂(x) = û(min{x, q̂∗}) − min{x, q̂∗} + x. (5)

It satisfies v̂(x) = û(x) if x < q̂∗, and v̂(x) = ŝ(q̂∗) + x if x > q̂∗. Eq. (4) implies that

V̂ b(m) = v̂(φm) + W (0). Since the participation constraint is binding, the value function

of the seller is V̂ s(m) = W (m).
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morning afternoon night

Type-1 (buyer→seller) m − d m − d + d̂ m+1

Type-2 (seller→buyer) m + d m + d − d̂ m+1

Table 1: Nominal balances

2.4 Morning market

In the morning, the buyer (i.e., Type-1) makes a take-it-or-leave-it offer (q, d) to the seller

(i.e., Type-2) where (q, d) is the terms of trade. The participation constraint of a seller

who has ms dollars is V̂ b(ms +d)−q ≥ V̂ b(ms). Table 1 summarizes the nominal balances

of the agents at the end of each sub-period.

Let V b(m,ms) denote the value function of the buyer who has m dollars when the

seller holds ms dollars. In the afternoon market, he becomes a seller with value function

W . Since the participation constraint is binding, we obtain

V b(m,ms) = max
d:d≤m

{u(V̂ b(ms + d) − V̂ b(ms)) − φd} + φm + W (0). (6)

As u and V̂ are increasing and concave, the objective function is concave in d. Therefore,

the choice of d is optimal if and only if it satisfies

V̂ b′(ms + d)u′(V̂ b(ms + d) − V̂ b(ms)) ≥ φ, (7)

and the equality holds if d < m. The value function of the seller is V s(m) = V̂ b(m).

As V (m) = αEms [V b(m,ms)] + αV s(m) + (1 − 2α)W (m), (2) implies that

i =
α

φ+1

(
Ems

[
∂V b

+1(m,ms)

∂m

]
+

∂V s
+1(m)

∂m

)
− 2α, (8)

where i = φ
βφ+1

− 1 is the nominal interest rate. In the steady state, i = (1 + γ)/β − 1.

We let z = φm be the real value of money balances. Similarly, we let ρ = φd denote the

real value of money transfer in the morning market.
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3 Multiple equilibria

Here we discuss steady states.

3.1 Equilibrium condition

First, we assume that the constraint d ≤ m binds in the morning. If ms = m, from (6),

∂V b(m,ms)
∂m

= V̂ b′(2m)u′(V̂ b(2m)− V̂ b(m)). As V̂ b′(m) = V s′(m) = φv̂′(φm), (8) reduces to

i = α{v̂′(2z)u′(v̂(2z) − v̂(z)) + v̂′(z) − 2}. (9)

The constraint d ≤ m is binding if and only if V̂ b′(2m)u′(V̂ b(2m) − V̂ b(m)) ≥ φ. This is

simplified as v̂′(2z)u′(v̂(2z) − v̂(z)) ≥ 1.

Next we assume d < m. From the envelope theorem, ∂V b

∂m
= 1. Eq. (8) reduces to

i = α{1 + v̂′(z) − 2}. (10)

Since d < m, ρ < z. Further, Eq. (7) is written as v̂′(z + ρ)u′(v̂(z + ρ) − v̂(ρ)) = 1. As

u′(0) = +∞, there exists such ρ, if and only if v̂′(2z)u′(v̂(2z) − v̂(z)) < 1.

A stationary equilibrium (φ, q, q̂, d, d̂) is a tuple in which φ is the price of money, q(q̂)

is the quantity in the morning market (afternoon market), and d(d̂) is the transfer in the

morning market (afternoon market).

We obtain the following results.

Proposition 1 A stationary equilibrium (φ, q, q̂, d, d̂) exists if the following conditions

are satisfied:

1) the real balance z = φM satisfies i = α[max{v̂′(2z)u′(v̂(2z) − v̂(z)), 1} + v̂′(z) − 2],

where i = (1 + γ)/β − 1, and γ is the money growth rate.

2) the quantities q and q̂ and the money transfers d and d̂ satisfy the following condition:

a) if v̂′(2z)u′(v̂(2z) − v̂(z)) ≥ 1, q = v̂(2z) − v̂(z), φd = z and q̂ = φd̂ = min{2z, q̂∗}.
b) if v̂′(2z)u′(v̂(2z)−v̂(z)) < 1, q = v̂(z+ρ)−v̂(z), φd = ρ and q̂ = φd̂ = min{z+ρ, q̂∗},

where ρ is such that ρ ≤ z and v̂′(z + ρ)u′(v̂(z + ρ) − v̂(z)) = 1.

3) the price of money evolves according to φ/φ+1 = 1 + γ.
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The stationary welfare W = u(q) − q + û(q̂) − q̂ is maximized if q = q∗ and q̂ = q̂∗.

The next proposition deals with the optimal policy.

Proposition 2 The Friedman rule is the optimal monetary policy.

3.2 Number of equilibria

Let g(x) = max{v̂′(2x)u′(v̂(2x) − v̂(x)), 1} + v̂′(x). Then, z solves α(g(z) − 2) = i.

or equivalently g(z) = i/α + 2. We focus on the CRRA functions u(q) = A q1−σ

1−σ
and

û(q̂) = q̂1−θ

1−θ
, with σ = θ = 2. In this case, q̂∗ = 1; if x < 1, v̂(x) = −1/x, and if x ≥ 1,

v̂(x) = x − 2. Thus,

1) If 0 < z < 1/2, then g(z) = max{A, 1} + 1
z2 .

2) If 1/2 ≤ z ≤ 1, then g(z) = max{A(1
z

+ 2z − 2)−2, 1} + 1
z2 .

3) If z > 1, then g(z) = max{ A
z2 , 1} + 1.

The function g may be non-monotone if z ∈ [1/2, 1], because the function 1/z + 2z is

U-shaped.

Proposition 3 Suppose u(q) = A q1−σ

1−σ
and û(x) = x1−θ

1−θ
. If σ = θ = 2 and A > 4, there

are three steady state equilibria for some i.

Figure 1 illustrates the case where A = 9 and α = 0.5%. It shows that if i = 6%,

there are three equilibria, E1, E2, and E3.

The equilibrium can be multiple because the buyer’s objective function in (6) depends

on and may be non-concave in the seller’s nominal balance ms. In LW, the centralized

market always follows the decentralized market, and the seller’s nominal balance is inde-

pendent of the buyer’s objective function due to the quasi-linearity of the utility function.

Thus, the equilibrium is unique in LW.

3.3 Extension

Thus far, we assumed that the role of the agent in the afternoon is determined at the

beginning of the morning. Here, we assume that the preference shocks are independent. In
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Figure 1: Multiple equilibria

the morning market, with probability α, the agent becomes a buyer and with probability

α, he becomes a seller. With probability 1 − 2α, the agent becomes neither buyer nor

seller. In the afternoon market, the agent becomes a buyer with probability α̂ and a seller

with probability α̂. With probability 1−2α̂, the agent enters the night market directly. If

α̂ = 0, the model coincides with the one in LW. As in the previous section, we assume that

the utility function in the morning market is u(q) = A q1−σ

1−σ
and the one in the afternoon

market is û(x) = x1−θ

1−θ
.

Proposition 4 When the preference shocks are independent, there are two stationary

equilibria for some parameter values.

In this set-up, every agent has a positive probability of becoming a buyer at the

beginning of each period. In this case, from the Inada condition û′(0) = ∞, the buyer’s

constraint d ≤ m in the morning market is never binding. This differs from the previous

model.
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Appendix

In the Appendix, we provide proofs for the propositions.

A Proof for Proposition 1

Eqs. (9) and (10) imply i = α[max{v̂′(2z)u′(v̂(2z)−v̂(z)), 1}+v̂′(z)−2]. If v̂′(2z)u′(v̂(2z)−
v̂(z)) ≥ 1, then ρ = z. In the afternoon, the real balances of the buyer are 2z. The

quantities are q = v̂(2z) − v̂(z) and q̂ = min{2z, q∗}. If v̂′(2z)u′(v̂(2z) − v̂(z)) < 1, then

ρ satisfies the first-order condition. In the afternoon the real balances of the buyer are

z + ρ. Thus, q = v̂(z + ρ) − v̂(z) and q̂ = min{z + ρ, q∗}. ¥

B Proof for Proposition 2

As v̂′(z) ≥ 1 for all z and v̂′(z) = 1 only if z ≥ q̂∗, i = 0 if and only if z ≥ q̂∗ and

v̂′(2z)u′(v̂(2z) − v̂(z)) ≤ 1. If z ≥ q̂∗, then q̂ = q̂∗. Moreover, v̂(2z) = ŝ(q̂∗) + 2z,

v̂(z) = ŝ(q̂∗) + z and v̂′(z) = v̂′(z + ρ) = 1. Thus, v̂′(z + ρ)u′(v̂(z + ρ)− v̂(z)) = u′(ρ) = 1

implies ρ = q∗ and then q = q∗. If we take z ≥ q∗, then we can take such ρ. This implies

that if we take a sufficiently large z, q = q∗ and q̂ = q̂∗. ¥

C Proof for Proposition 3

If z < 0.5, g(z) = A + 1
z2 is decreasing in z. If 0.5 ≤ z < 1, v̂(2z) − v̂(z) = −2 + 1

z
+ 2z.

As A > 4, A(−2 + 1/z + 2z)−2 > 1, and then g(z) = A(−2 + 1/z + 2z)−2 + 1
z2 . We have

g′(z) = 2A (z−2 − 2) (1/z + 2z − 2)−3 − 2z−3 and g′(1/2) = 4A − 16 > 0. Thus, v̂(z) is

strictly increasing in z if z is sufficiently close to 1/2. Note that g(1/2) > 2. If z > 1/
√

2,

then g′(z) < 0. If z > 1, then g(z) = max{u′(z), 1} + 1 = max{Az−2, 1} + 1. This is a

decreasing function if z <
√

A, and g(z) = 2 if z >
√

A. Therefore, if 2(1+i) = g(1/2)+ϵ,

for sufficiently small ϵ > 0, there are three values of z that solve g(z) = 2(i + 1). ¥
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D Proof for Proposition 4

The structure of the night market is the same as before. The value function of the agent

at night is w(m) = φm+w(0), and the value function of the agent at the beginning of the

afternoon market is F̂ (m) = α̂F̂ b(m) + (1 − α̂)w(m), where F̂ b(m) is the value function

of the buyer in the afternoon market. This simplifies to F̂ (m) = f̂(φm) + w(0), where

f̂(z) = α̂[û(min{z, q̂∗}) − min{z, q̂∗}] + z.

In the morning market, the buyer makes a take-it-or-leave-it offer (q, d) to the seller.

The participation constraint is F̂ (ms + d) − F̂ (ms) ≥ q. The buyer solves

F b(m,ms) = max
d:d≤m

{u(F̂ b(ms + d) − F̂ (ms)) + F̂ (m − d)}. (11)

The level of d is optimal if it satisfies the first-order condition:

F̂ ′(ms + d)u′(F̂ (ms + d) − F̂ (ms)) = F̂ ′(m − d). (12)

From the Inada condition u′(0) = û′(0) = F̂ ′(0) = +∞, the solution exists and is interior.

Thus, the constraint d ≤ m never binds. The seller’s value function is F s(m) = F̂ (m).

The value function in the morning is F (m) = αV b(m,ms) + (1−α)F̂ (m). We use the

envelop theorem to obtain F ′(m) = αF̂ ′(m− d) + (1− α)F̂ ′(m). In the steady state, the

first-order conditions φ = βF ′
+1(m+1) and (12) reduce to

1 + i = αf̂ ′(z − ρ) + (1 − α)f̂ ′(z), (13)

f̂ ′(z − ρ) = f̂ ′(z + ρ)u′(f̂(z + ρ) − f̂(z)). (14)

Eqs. (13) and (14) determine z and ρ.

Transactions in the afternoon depend on the buyer’s role in the morning. If he was

also a buyer, his real balances at the beginning of the afternoon market, say φm̂, are equal

to z + ρ and the quantity is q̂ = q̂1 ≡ min{z + ρ, q̂∗}. If he was a seller, φm̂ = z − ρ

and q̂ = q̂2 ≡ min{z − ρ, q̂∗}. If he was neither a buyer nor a seller, φm̂ = z and

q̂ = q̂3 ≡ min{z, q̂∗}. The real money transfer φd̂ is always equal to the quantity. A

stationary equilibrium is a vector (φ, d, q, q̂1, q̂2, q̂3), such that the real balance z = φM
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and the real money transfer in the morning market ρ = φd satisfy (13) and (14), and

q = f̂(z + ρ) − f̂(z), q̂1 = min{z + ρ, q̂∗}, q̂2 = min{z − ρ, q̂∗} and q̂3 = min{z, q̂∗}.
We assume that u(q) = A q1−σ

1−σ
and û(q̂) = q̂1−θ

1−θ
. We focus on the equilibria where

the real balances of all the buyers in the afternoon market are below q̂∗. This happens

if ρ + z < 1. We obtain f̂(y) = α̂ y1−θ

1−θ
+ (1 − α̂)y if y = z − ρ, z and z + ρ. If we set

α = α̂ = 0.5, θ = 2 and let x = ρ
z
∈ (0, 1), then (13) and (14) are simplified as

z = z(x) ≡ b
√

(1 − x)−2 + 1, (15)

(1 − x)−2 + z2

(1 + x)−2 + z2
= A

(
x

z(1 + x)
+ zx

)−σ

. (16)

with b = 1/
√

2(1 + 2i). Substituting (15) into (16) yields

ω(x) ≡ ln

[
x(1 − x)

h(x)(1 + x)
+ b2xh(x)

1 − x

]
+

1

σ
ln

[
(1 − x)−2 + z(x)2

(1 + x)−2 + z(x)2

]
= ln b +

ln A

σ
, (17)

where h(x) =
√

(1 − x)2 + 1. We show that (17) can have two solutions that satisfy

ρ + z = (1 + x)z(x) < 1. (18)

We let ω1(x) = ln[x(1−x)
h(1+x)

+ b2 xh
1−x

] denote the first term of ω. If b = 0, ω1 is inverted-U

shaped, and ω1(x) = C1 has two solutions for some C1. If b = 0, (18) obviously holds.

Thus, if b is sufficiently small, there are two solutions to ω1(x) = C2 for some C2, and

each satisfies (18). Fix such b and C2. If σ = +∞, ω(x) = ω1(x). Thus, if we take a

sufficiently large σ and let ln A = σ(C2 − ln b), ω(x) = ln b + ln A
σ

has two solutions and

each satisfies (18). One can easily check that there are two solutions when b = 0.026,

σ = 3 and ln A = 18.8. ¥
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