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Introduction
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Love-for-Variety (LLV): Utility (productivity) gains from increasing variety of consumer goods (inputs).

e A natural consequence of the quasi-concavity of the utility (production) function. That is, the convexity of the
indifference curve (isoquant curve).

e Roughly speaking, for a symmetric CRS production function, X (x), Love-for-Variety (LV) may be measured as:

olnW (V)

LWV) = T > 0,

where V 1s the variety of available inputs and
W (V) = max {X(x)| fOV x,dw < 1.}.
X

e Following the work of Dixit-Stiglitz (1977), Krugman (1980), Ethier (1982), Romer (1987), LV has become a
central concept in economic growth, international trade, and economic geography.

e Commonly discussed in monopolistic competition settings, but also useful in other contexts, such as gains from trade
in Armington-type competitive models of trade.

e The literature mostly discusses LV under the CES assumption.
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LV measure under CES:
0

1

1 o—1 1
X(X):Z[jﬂ X de] ﬁL(V):m>O

where o > 1 captures TWO related but distinct concepts,
= Elasticity of Substitution (ES) across different goods
= Price Elasticity (PE) of demand for each good.

Two Appealing Features:
» LV is inversely related to ES (and PE).
= Knowing PE tells you everything you need to know about ES and LV.
CES has only one parameter, g, so anything related to CES is a function of ¢ only.

Two Unappealing Features
= LV isindependent of I/, the variety of available goods. Intuitively, LV should decline as I/ increases.
In this regard, some may find “ideal-variety approach,” or “Lancaster’s characteristic theory” more appealing,
but they are less tractable & less flexible than “Love-for-Variety approach.”
= The relation btw PE, ES, & LV are hard-wired under CES, with no flexibility.
To “account for” the gap btw the revealed LV and CES-implied LV, one need to introduce “the Benassy
residual,” or “quality-adjustment,” whose estimate depends on CES.
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The Questions: How does the LV measure need to be modified if we move away from CES?

e How is LV related to the underlying demand structure, such as ES or PE?

ES and PE are distinct concepts outside of CES, which could play different roles shaping LV.

e How biased are our estimates of LV & of the “Benassy residuals” or “quality-term” if we incorrectly assume CES?
e Under what conditions does LV decline as the variety of available goods increases?

Does it help to introduce the empirically plausible Marshall’s 2" Law of demand (PE higher at a higher price)?

e Can we develop “Love-for-variety approach” with diminishing LV, which is also tractable?

Our Approach:
e Define the two measures: Substitutability, S (), & Love-for-Variety, L(1/), under homotheticity and symmetry
o Both depend only on V (the variety of available goods).
o Under CES, S(V) and L(V) are both constantand L(V) =1/(c — 1) =1/(S(V) — 1).
e Are there non-CES under which §(VV) and/or L(V) are constant?
o The answer turns out to be “yes”.
e What if S(V) varies with IV?
o One might intuitively think “The 2" Law of demand = Increasing S (V) = Diminishing £(1).”
o There are classes of demand systems under which this is true, but not true in general.
e The CES formula may
o underestimate LV; L(V) > 1/(8§(V) — 1), hence overestimate “Benassy Residuals” or “quality-term”.
o uverestimate LV; L(V) < 1/(S(V) — 1), hence underestimate “Benassy Residuals” or “quality-term”
Anything goes. Homotheticity & symmetry alone impose little restrictions btw PE, S(V) & L(V).
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Five Classes of non-CES
pairwise disjoint with the sole exception of CES.

HSA

Translog
®

GM-CES
production
function

GM-CES
unit cost
function

Homothetic symmetric demand systems
with gross substitutes

Two Classes: GM-CES
obtained by taking the weighted geometric means of CES unit cost or production functions with heterogenous o.
Theorem 1: Under GM-CES, §(V) & L(V) are both independent of V and

1 1
L(V) = LEMCES > =
V) SGMCES _ 1~ S(V) — 1

unless CES.

o S(V) = SEMCES determines the lower bound of L(V) = LEMCES Unbounded from above.

e The CES formula underestimates L(V) = LEMCES and overestimates the Benassy residuals or quality improvement
term, potentially by a wide margin.
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Three Classes: H.S.A., HDIA, and HIIA.
e PE=C(, = {(p,/A(p)), where A(p) is linear homogeneous, a sufficient statistic for the cross-price effects.

Theorem 2: Under H.S.A., HDIA, and HIIA,
) ' (Po/AP)Z0=S8'(V) 20
i) S'(V) % O0forallV>0= L'(V) é 0 for all V > 0. The converse is not true.
iil) L'(V)=0forallV >0 < §'(V) =0 forall V > 0, which occurs iff CES.
Theorem 3: L'(V) S 0 < L(V) S 1/(S(V) — D).

The 2™ Law

{(py; P) is increasing in p,,
{*(x,;X) is decreasing in x,,

Diminishing The CES formula overestimates

@ ‘ Love-for-Variety = Love-for-Variety.
= :

L'(V)<OforallV > 0. L) <

S(V)—-1

Increasing Substitutability
S'(V)>O0forallV > 0.

Theorem 4: AsV — oo, L(V)—-1/(S(V)—-1) - 0.
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An Application: Gains from Trade in an Armington Model of Competitive Trade

e Theorems 1-4 are about the demand system, independent of the supply-side, hence they hold regardless of how the
variety change occurs E.g., the variety may change due to pure discovery, innovation by the public sector, or by the
private sector, which could be monopolistic, oligopolistic, or monopolistically competitive, etc.

e Here, we illustrate the implications in a simple Armington model of trade btw 2 countries, which produce different
sets of goods and differ in the variety of goods they produce = country size

Home Foreign
Domestic Expenditure Share 1= 4 2 v
V4V V4V
Gains from Trade V+v* dv V+V* dv
In(GT) = j L(v)7 In(GT*) = f L(v)7
v .

Among other things, we show:
e Under the 2 classes of GM-CES, £L(v) = LMCES and hence,

1 1 1
In(GT) = LEMCES | (I) > SGMCES — ] In (I)

unless CES.
The ACR formula holds with LEMCES | not with [SCMCES — 1]71. which would underestimate GT, potentially by a wide
margin. A possible solution for “elusive gains from trade.”
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e Under the 3 classes: A is no longer a sufficient statistic for GT.

o Controlling for the relative country size, hence for A, GT changes with the absolute sizes of the two countries.
GT 1s larger btw two smaller countries than btw two larger countries under diminishing LV.

o A smaller A increases GT, but its implications depend on whether it is due to a smaller V or due to a larger V".
= E.g., With the choke price, GT is increasing in the size of the trading partner, but it is bounded.
Under CES, it is unbounded. CES may overestimate gains from trade with a large country.

Notes:

e Though some existing studies have looked at § (V) under some parametric families of homothetic symmetric non-
CES, none have looked at L(V), or they took for granted that L(V) = 1/(§(V) — 1) would continue to hold under
non-CES.

e Neither symmetry nor homotheticity are as restrictive as they look.
o By nesting symmetric homothetic demand systems into an upper-tier asymmetric/nonhomothetic demand system,

we can create an asymmetric/nonhomothetic demand system.
o Homotheticity is indeed an advantage, which makes non-CES applicable to a sector-level analysis in multi-sector

settings.
o Moreover, one key message is that symmetry/homotheticity are not restrictive enough-- “Anything goes,”-- that we

need to look for more restrictions to make further progress.
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Plan of the Talk

e Introduction

General Symmetric Homothetic Demand Systems
o Substitutability Measure, S (V).
o Love-for-Variety Measure, L(V).

Two Classes of Geometric Means of CES.

Three Classes of H.S.A., HDIA, and HIIA.

An Application to an Armington Model of Trade

e Concluding Remarks
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General Symmetric Homothetic Demand Systems
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General Symmetric Homothetic (Input) Demand System

Consider demand system for a continuum of differentiated inputs generated by symmetric CRS production technology.

CRS Production Function

Unit Cost Function

X(x) = mpin {px = fﬂ DX dw |P(p) > 1}

P(p) = mxin {px = fﬂ DX, dw |X(X) > 1}

x = {x,; w € O}: the input quantity vector; p = {p,; w € Q}: the input price vector.

0, the continuum set of all potential inputs. Q € 0, the set of available inputs with its mass V = |Q].
O\Q: the set of unavailable inputs, x,, = 0 and p,, = o for w € Q\Q.

Inputs are inessential, i.e., Q\Q # @ does NOT imply X(x) = 0 & P(p) = .

Duality: Either X(x) or P(p) can be a primitive, if lincar homogeneity, monotonicity & strict quasi-concavity satisfied

Demand System

Demand Curve (from Shepherd’s Lemma) Inverse Demand Curve
0P (p) 0X (x)
w = X(x) P(p )
apw Xw

From Euler’s Homogenous Function Theorem

B B (p)
PX = | PupXpodw = Do
Q Q

The value of inputs is equal to the total Value of output under CRS.

0

j [pw (p)]X(x)dw—P(p)X(x)—
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PwXw PwXw d1InP(p) d In X (x)
Sy = = = = s(Pw,P) = —
pXx P(p)X(x) dlnp, dlnx,
Homogeneity of degree zero — s, = s(1,p/p,) = s (1,x/x,,).
In general, it depends on the whole distribution of the prices (quantities) divided by its own price (quantity).

Budget Share of w € ():

= 5" (X, X)

Definition: Gross Substitutability

0l ; dlns*(x,; X
nS(pwp)<O(:) (a) )>O

dinp, dlnx,
The choke price p exists if s, = s(1,p/p,) = 0 for all p,, = p. (The choke price depends on the price vector.)

Under CES, o > 1 ensures both inessentiality & gross substitutability. In general, they need to be assumed separately.

Price Elasticity of dlnx, d1ns(p,;:p) R d1ns*(x,; X) -1 ¥
B wrss dlnx, '

Demand for w € () (w:—alnpw=f(29w;p)51—

dlnp,

Homogeneity of degree zero —» {, = ((1,p/p,) = (" (1,x/x,,).
In general, it depends on the whole distribution of prices (quantities) divided by its own price (quantity).
Under CES, it doesn’t depend on the prices at all.

Definition: The 2" Law of Demand
d In : dIn*(x,,;x
(PuwiP) _ o 0N (X0 %)
dinp, dinx,
Clearly, CES does not satisfy the 2" Law.

<0.
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Substitutability Measure Across Different Goods

. : , 1, = {(14),,: w € O}, where 5{1 for we £

Unit Quantity Vector: a =1{(la)e } (1a)o 0 for w € Q\Q
. Dt ) 11 = 1 where )y = or w€ &

Unit Price Vector: {(19 ) , W € Q} (19 ) - {oo for w € Q\Q

Note: [, (1g),dw = [, (lﬁl)wdw = Q| =

At the symmetric patterns, p = p1g® and x = x1,,
So = s(1,p/Pe) =s*(1,x/x,) =s(1,151) =s*(1,19) = 1/V

=, p/py) =" (Lx/x,) =(1,15") = {*(1,19) > 1
Clearly, this depends only on V. We propose:

Definition: The substitutability measure across goods is defined by

S =¢(L1g") =" (119 > 1.

We call the case of ' (V) > (<)0 for all V > 0, the case of increasing (decreasing) substitutability
Notes:

e We also consider the alternative definition of §(V) in terms of Allen-Uzawa Elasticity of Substitution evaluated at
the symmetric patterns. Perhaps surprisingly, it turns out to be equivalent.

e In general, the 2™ Law is neither sufficient nor necessary for increasing substitutability, S’ (V) > 0
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Love-for-Variety Measure: Commonly defined as the rate of productivity gain from a higher V, holding xV

dIn X(x)
dlnV

dinxX(1g) _dInX(1q)
dlnV ~ dlnV

x=x1q,xV=const. xV=const.

>0

Alternatively, LV may be defined as the rate of decline in P(p) from a higher V, at p = p15*, holding p constant.

dIn P(p)
dinV

_ dinP(15")

dInV > 0.

p=p1g', p=const.

Both are functions of V only, and equivalent because, by applying X = x1, and p = p1g" to px = P(p)X(x),
dInP(15') dInX(1y)

- -1 _
pxV = pP(15")xX(1g) = T TV

1>0.

Definition. The love-for-variety measure is defined by:
dinP(15') dInX(1y)
dlnV dInV

We call the case of L'(V) < (>)0 forall V > 0, the case of diminishing (increasing) love-for-variety.
Note: L(V) > 0 is guaranteed by the strict quasi-concavity.

LWV) =- 1>0.
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Standard CES with Gross Substitutes:

1

X() = U xwl‘Edw] & o P(p)=%U Pwl_"dwr_a,
Q

where o > 1. (Z > 0 1s TFP or affinity in the preference, in the context of spatial economics)

CES
Budget Share ( Do )1—0 (wa )1—1/0
S, ., = =
©  \ZP(p) X(x)
Price Elasticity (o, =0>1
Substitutability SV)y=0>1

Love-for-variety

1
L(V)——>0

1

Under Standard CES,

e PE, {(p,;Pp) = {*(x,;X), is independent of p or x and equal to o.

e Substitutability, S(V/), is independent of VV and equal to a constant, o > 1.

e LV, L(V), is independent of V, and equal to a constant, L(V) = L

= 1/(0 — 1), inversely related to .
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Digression: Generalized CES with Gross Substitutes a la Benassy (1996).

o 1

1-0
j pwl‘(’da)] )
Q

1_3 o—1 1
X(x)::Z(V)[J; x,, adal = P(p)==ZEV5

Note: Z (V) allows variety to have direct externalities to TFP (or affinity)

Under Generalized CES

Budget Share Do, 1-¢ Z(Vx,, 1-1/0
S, ., = =
@ (Z(V)P(p)) ( X(x) )

Price Elasticity (o =0>1
Substitutability SV)y=0>1
Love-for-variety 1 dInZ(V)

LW =03t v

e PE, {,, and Substitutability, S (V), are not affected by d In Z(V)/d In V, “the Benassy residual”, which “accounts
for” the gap btw CES-implied LV (say, from the markup) & revealed LV (say, from productivity growth).
e Benassy (1996)setdInZ(V)/dInV =v —1/(o — 1), so that L(V) = v is a separate parameter.
Even if you believe in the direct externalities behind the Benassy residual, your estimate of its magnitude depends on
the CES assumption, which nobody believes.

In all the non-CES considered below, we could also let TFP vary directly with V, which would add the term,
dInZ(V)/dInV, to the expression for L(1/), without affecting the expression for § (V).
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Comparing Substitutability and Love-for-Variety Measures

In general, the relation btw § (), & L(IV) can be complex. For example, §(V) and L(V) could be positively related.

To see why, let’s compare their definitions side-by-side.

SV LWV)
In terms of P(p) 0 d1In P(p) dIn P(p)
L= amp. a1 T T4l
np, Npgy p=p1gl, p=const. nV p=p1g’, p=const.
In terms of X (x) 0 0In X (x) dIn X (x)
L =9mx. a1 dinV
nXxe N X x=x1qg, x=const. n x=x1q,xV=const.

L(V) captures the curvature of the utility (production) function.

S (V) captures the curvature of the budget share function, which is related to marginal utility (production) function.

Moreover, the relation btw {(p,,; p) = {*(x,; X) and S(V) or L(V) can be complex. For example, whether the 2" Law
holds or not says little about the derivatives of S (V) and L(VV).

To make further progress, we turn to 5 classes of demand systems, that are pairwise disjoint with the exception of CES.
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Two Classes of Geometric Means of CES
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Two Versions of GM-CES
Let G(-) the cdf of 0 € (1, ), and E;[f (0)]: the expected value of f (o).
Weighted Geometric Means of Symmetric CES (GM-CES) Unit Cost Function

InP(p) = jooln P(p;0)dG(o) = E;[In P(p; 0)]
1

Weighted Geometric Means of Symmetric CES (GM-CES) Production Function

InX(x) = J

(0.0]

InX(x;0)dG(c) = E;[InX(x;0)]

where

where

[P(p; 0)]'~° = jﬂ D170 de

X(x 0)]' = j %, 15 da
Q

Clearly, both satisfy linear homogeneity, strict quasi-concavity, and symmetry.

GM-CES Unit Cost Function

GM-CES Production Function

Budget Sh 0 ' w \'7TVO
R $(PoiP) = Eg [(p(}:)- a)) ] $"(%0i%) = Eg [(x(i- 0)) ]
Price Elasticity . Eglop,?/[P(p;0)]' 7] e Eg|(xe) Y7 /[X(x;0)]71/7]
S T 0] S M A A O I (T Bl
Substitutability S(V) = Eglo] S(V)=———
Eg[1/0]
Love-for-Variety 1 1 1 ) 1
L(V):]EGL—1]25(V)—1 L(V):EG[a—llch(V)—l

Note: These GM-CES demand systems are nof nested CES.
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Theorem 1 (GM-CES): Under the two classes of GM-CES demand systems,
1-1): §(V) and L(V) are both constant. For the GM-CES unit cost function,

1
SWV) = Eglo] > 1; L(V) = Eq [ - 1] > 0.
For the GM-CES production function:
1
SV)==———=>1, L(V)=E 0.
W)=t ti70”> b A0 G[0—1]>

1-i1): L(V) can be arbitrarily large, without any upper bound, while its lower bound is given by:

1
LV)>2—————>0.
W zseny=1”
where the equality holds if and only if G(-) is degenerate, i.e., only under CES.

Notes:
e For a non-degenerate G (-), Jensen’s inequality implies:

1
LWV) -

SV -1 ” E.[1/0]

o The Ist inequality may be interpreted as offering a microfoundation for the Benassy residual.

o The CES formula for LV underestimates LV under GM-CES or thus overestimates the Benassy residuals and/or
quality improvement term.

o The 2™ inequality implies that CES is the only intersection of the two classes of GM-CMS.

> 0, IEG [O']

e There exist any number of families of c¢df’s, G, such that §(V) and L(V) are positively related within each family.
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Three Classes: H.S.A., HDIA, and HITA
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Intuitively, one might think that, as variety increases,
e PE of demand for each good become larger.

e Different goods become more substitutable.

e LV becomes smaller.

Homotheticity is too general to capture this intuition!!
It 1s NOT restrictive enough.

To capture this intuition, we turn to

v Homothetic Single Aggregator (H.S.A.)
v Homothetic Direct Implicit Additivity (HDIA)
v Homothetic Indirect Implicit Additivity (HIIA)

HSA

Translog

Homothetic symmetric demand systems
with gross substitutes
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3 Classes of Symmetric Homothetic Demand Systems (with gross Substitutes & Inessentiality)
(HDIA): ¢(-)

M [-] is a monotone transformation.
ede ] ol
dw|=M ~ dw| = 1.
»(): R, - R, thus X(x), is independent of Z > 0, TFP.

¢(0) = 0; p(0) = o0; p'(0) = 0; p'() > 0> ¢"(9),0 < =4 " ()/¢P'(y) < 1, for Vy € (0, ).
CES with ¢(¢) = (¢)'"%?, 6 > 1. The choke price exists if ¢'(0) < co.
Homothetic Indirect Implicit Additivity

o[ ool ool

6(): R,. — R,, thus P(p), is independent of Z > 0 is TFP.
0(z)>0,0'(3) <0<0"(z),—230"(2)/0'(3) >1for0<z<3<,0(00)=0ow;0(5)=0"(3) =0forz >3
CES with 8(z) = ()79, 0 > 1. The choke price exists if 5 < oo.

Homothetic Direct Implicit Additivity [
]

Homothetic Single Aggregator (H.S.A.): 0 ln P(p) Do o De
*0) "~ np, (A(p)) ‘ fg ” (A(p)
s(:): R, = R, thus A(p), is independent of Z > 0, TFP.

s(z)>0>s"(z)for0<z<Z< ;s(z) =0forz =7z s(0) = o to be well-defined for any arbitrarily small V > 0.
CES with s(z) = yz'79,6 > 1. The choke price exists if Z < oo.

Z > 0 shows up when integrating the budget share s(p,,/A(p)) to obtain P(p) or X (x).

)dwzl.
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Key Properties of the Three Classes

Budget Shares: Price Elasticity:
_0lnP(p) _ _ Olnx, .
Sw=m—5(’ﬁw,p) (o = alnpw—((Pw»P)
CES . = ( P )1“’ .
Pw Zp(p)( ) (2)
H.S.A. w P(p) . 7!
() Sy =S (A(p)) 20p) # ¢, unless CES Z8 (AIZ )) 5(z)=1- < ; > 1
HDIA _ P(p) I
o) |7 P(p) <B(p)> ) 7 & eSSBS ¢° <(¢ ) (B(p))) "(y) = _% > 1
HIIA _ Pw ,,{ Pw P(p) Do _ 20"(3)
8() S = c(p) 6 (P(p)) ) # ¢, unless CES Z! (P(p)>; (z) = - 50 S 1.

A(p), B(p), C(p): each defined implicitly by the adding-up constraint, | q Swdw = 1. Clearly, they are all linear
homogenous.

We focus on these three classes for two reasons.

e They are pairwise disjoint with the sole exception of CES.

e PE=(,=¢ (%), where A (p) is linear homogenous, a sufficient statistic, capturing all the cross-product effects.
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Key Properties of the Three Classes, Continued.

Price Elasticity: {(p,; p)

Substitutability: S(V)

Love-for-Variety: L(1)

H.S.A. _ 75 (_Po of _1(1 (1) _ 1

o =¢ <A(p)> ¢ <S (V)) ® (S (V)> -~ &u(sra/myy
where (°(2) = —Zg,lég) > 1 and$ =Ey(z) = —Zgég) > 0, with H(z) = fj% dé > 0.
HDIA 1 1

~n—1( Pow -1(Z _
o= <<¢ ) (B(p))> (¢ (7)) E;@ V)

where (P (y) = — ;;,,(,?;) >1and 0 < Ey(y) = y::(’x) < 1.
HITA A Po faa (L 1

‘o =¢ (ﬁ(p)> ¢ (9 (V)) Ee(671(1/V))
where {!(z) = —Z:,,;S) > 1and Eg(z) = —Zgég) > 0.

Note: In all three classes,
e L(V) depends on the curvature of a function of a single variable, H(*), ¢(+), 6 (")
e S(V) depends on the curvature of its derivative. H'(+), ¢'(+), 8'(").
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Theorem 2: Under H.S.A., HDIA, & HIIA,

2-i)  §'(V) > 0 iff the 2" law holds.

2-i)) §'(V) 2 0forallV € (Vy,0) = L'(V) S0 forall V € (V,, ).
The converse is not true in general. However,

2-iii) L'(V) =0forallV € (Vy,o) < §'(V) =0forall V € (V,, ).

In particular, L'(V) = 0forallV > 0 & §'(V) =0forallV > 0 & CES.

Theorem 3: Under H.S.A., HDIA, & HIIA,
1
'‘MS0e LWV) S S<aiy 7> 0

The 2™ Law

{(p,; P) is increasing in p,,
{*(x,;X) is decreasing in x,,

% Diminishing The CES formula overestimates
Love-for-Variety — Love-for-Variety.

@ & L'(V) < O0forallV > 0. LV <

SV)—-1

Increasing Substitutability
S'(V)>O0forallV > 0.

Theorem 4: Under H.S.A., HDIA, & HIIA, 11m L(WV) = llm . In particular, 11m S(V) =0 11m L) =0.

()
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An Application to an Armington Model of Trade
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An Armington Model of Competitive Trade:

Two Countries: Home & Foreign* differ only in labor supply L & L*(with the wage rates, w & w™) and goods they
produce, Q & Q*; QAN Q* =@, withV = |Q| & V™ = |Q7|.

Technology: One unit of Home (Foreign) labor produces one unit of each Home (Foreign) good.
No Trade Cost: In both countries, the unit prices of goods are p, = w (w € Q) and p;, = w* (w € Q).

Symmetric Homothetic Demand: Asymmetry of countries are due to the variety of goods they can produce.
D &M: Home demand for each Home & Foreign good; D* & M™: Foreign demand for each Foreign & Home good.

Home Foreign

Resource Constraint: V(D+M") =1L V(M +D*) =1L"
Budget Constraint: wVD +w*V*M = wlL wVM* +w*V*D* = w*L",
Trade-GDP Ratio: w*V*M B wVM* B VM* wVM* B w*V*M B V*M

wh  wL L wil*  w'lr L
Balanced Trade wVM* = w*V*M.
Relative Supply L/V B _D+M* D M w L\ < WS
= Relative Demand: L*/v*_RS_RD_M+D*_M_D*_g( *,V,V);1<=>W*21
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Consider the case where the two countries differ proportionally in size with f being the Home’s share.

L Vv
L v
Then, from the RS = RD condition,
L/V w D M
—le—=lo-—-=
L*/V* w* M D*
Balanced Trade condition becomes VM™ = V*M.
L_V_M_D(:)V_V*D MM
L v M* D* L L'L L L
Per capita term, Home and Foreign become identical.
Home Foreign
Domestic Expenditure 4 2 v
Share V+V* RN
- : V* /4
Trade-GDP Ratio {_ = | =
V+V* V+V*

Gains from Trade: EquivalenttoV - V+V* =V /A for Homeandto V* -V 4+ V*

= I/* /A" for Foreign.

Foreign

Home

Gains from Trade

GT =

P(15')

P(1g50:)

V/A d
= exp U L(v) ke
v v

GT* =

(153)

V*/A*
= exp U L(v) —

The effect of Home openness, A =V /(V + V*) |, on Home GT may depend on whether it is due toVlorV*T.
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General Implications:

Theorem 5 (The Effects of Country Sizes, V and V* on Gains from Trade):
5-1) GT is larger for the smaller country than for the larger country.

GTZGT*" VIV S AS A
5-11) If the two countries are proportionately larger, GT are diminishing for both countries under diminishing LV.

dInV e dlinV* |,
=const. A*=const.
5-1i1) For any given V, GT is increasing in V™ (thus decreasing in A1),
o0ln(GT)
P — =1-ADLW/A) >0
dlnV*
V=const.

with the range,
0 dv
0 <In(GT) < j L(v) -
v
The upper bound is infinite if L(c0) > 0. It may be finite if L(c0) = 0. If finite, the upper bound is decreasing in V.

5-1v) For any given VV*, GT may be nonmonotone in V (thus in 1 ) in general. Under non-increasing LV,
dIn(GT)

dlnV V*=const.
hence GT is decreasing in V (thus in A1), with the range

=ALWV/A)—-LIV) <O

v dv

0 <In(GT) < f L(v) -
0

The upper bound is finite if L(0) < oo, It may be infinite if L(0) = oo. If finite, the upper bound is increasing in V",
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Gains from Trade under CES

Substitutability: S(V)

Love-for-Variety: L(V)

Home Gains from Trade

SCES =g >1

LCES — 1

oc—1

1 1 1
lIl(GT) — LCES In (Z) — mln (I)

S(V) and L(V) are constant under CES.
GT satisfies the familiar ACR formula.

Gains from Trade under GM-CES

Decreasing in A (thus increasing in the openness, 1 — A4).
GT goes to infinity as A = 0, or V/ V* = 0. Once A is controlled for, V and V* play no role.

Substitutability: S(1/)

Love-for-Variety: L(V)

Home Gains from Trade

SGMCES = E . [o] for GM-CES unit cost fn.

SGMCES — [E¢[1/5]]”" for GM-CES

production fn.

[GMCES _ E, [
o—1

1 1 1
In(GT) = LEMCES | (A) SGHCES — 7 In (Z

)

e S(V) and L(V) are also constant under GM-CES.
o GT satisfies the familiar ACR formula, with LEMCES but not with SEMCES,
For the ACR formula, what 1s crucial is that LV is constant.

e GT is decreasing in A (thus increasing in the openness, 1 — A4).
e GT goes to infinity as A = 0,or V/ V* — 0. Once A is controlled for, VV and VV* play no role.

e For any level of A, GT under GM-CES can be arbitrarily large, with GT under CES being the lower bound.
If one views S “MCES being constant as the evidence for CES, one would underestimate GT under GM-CES.
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Gains from Trade under H.S.A.

Substitutability: S(1/)

Love-for-Variety: L(1)

Home Gains from Trade

)

()

GT

_ s71(A/V) exp[@(s~1(A/V))]
s~1(1/V) exp[CID(S_l(l/V))]

e ForagivenV, V* T (thus A4 ) increases Home GT, with the upper bound

GT <

exp[P(2)]

s~H(1/V) exp|[@(s~1(1/V))] S

0 & 7z < o0,

If finite, the upper bound is decreasing in V. CES & GM-CES overestimate gains from trade with a large country.
e ForagivenV*, V | (thus A |) increases Home GT, under non-increasing LV. The upper bound is infinite.

sTH(1/V") exp[@(1/V)]

GT <

s71() exp|®(s~1(0))] -7

Parametric Examples of H.S.A. All feature the 2" law, Increasing Substitutability, Diminishing LV, the choke price.

SV) Love-for-Variety: L(1/) Home Gains from Trade
Translo 1+yV 1/2 _1-4
g 14 / In(6T) =5
yV
Generalized n/(1+n) | N g 1= @Y
n(GT) =
Translog | 1+ (o —1)(yV)/" (0 — DGV oot M W
CoPaTh v 1%’) 1 - ™ 1P nt1) 1-p 115
oav)# > Z P [ 1 . In(6T) = - )’ 1+(1p p)nl_(’ni(nﬂ)ﬂn 1+—1_(1’1_)pp ‘
= 1 + 1 - n ;p n=0 N e P —

Generalized Translog (0 < < o): The case of n = 1 is isomorphic to Translog. CES is the limit case, n — co.
CoPaTh (0 < p < 1): CES is the limit case, p — 1.
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Gains from Trade under HDIA

Substitutability: S (1) Love-for-Variety: L(1) Gains from Trade
(1 1 A/V) ¢ *(1/V)
D (= -1 GT =
(07 (7)) Eo(@1(1/V)) $TIGA/V)_(/V)
e ForagivenV, V* T (thus A4 ) increases Home GT, with the upper bound
GT < ¢'(0) »—(/V) <& ¢p'(0) <o
(1/v) '

If finite. the upper bound is decreasing in V. CES and GM-CES overestimate gains from trade with a large country.
e Foragiven IV*,V | (thus 4 1) increases Home GT, under non-increasing LV. The upper bound is infinite.
(/v 1

VDI CS R

Gains from Trade under HIIA

Substitutability: S(1/) Love-for-Variety: L(1/) Gains from Trade
1 1 0-1(A/V)
siwv) = 9-1(—) LW) = GT =
m=¢(o (7 V= g am) 0=11/7)
e ForagivenV, V* T (thus A | ) increases Home GT, with the upper bound
z
GT &3 :
<9-1(1/V)<°° Z < oo

If finite. the upper bound is decreasing in V. CES and GM-CES overestimate gains from trade with a large country.
e ForagivenV*, V | (thus A |) increases Home GT, under non-increasing LV. The upper bound is infinite.
0-1(/v)

T
GT < 9-1(0)
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Concluding Remarks

Page 35 of 37



What We Did in This Paper
e Investigated how LV depends on the underlying demand structure outside of CES.
e Defined Substitutability & Love-for-Variety measures, both depend only on V under homotheticity & symmetry

o GM-CES: Both measures are constant like CES, but the CES formula would underestimate LV under GM-CES (and
overestimate the Benassy residuals and/or quality improvement term).

e 3 classes (H.S.A., HDIA, HIIA):
o 2nd Law < Increasing Substitutability = Diminishing LV= The CES formula would overestimate LV (and
underestimate the Benassy residuals and/or quality improvement term)
o LV goes asymptotically to zero, as V goes to infinity, if the choke price exists

e We illustrated some implications on gains from trade (GT) in a simple Armington model of trade.
o GM-CES: Though ACR formula holds, CES underestimate GT, controlling for the openness.
o H.S.A. HDIA and HITA with the choke price. GT 1s increasing in the size of the trading partner, but it is bounded,
unlike CES. CES may overestimate gains from trade with a large country.
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Other Applications
e Implications on Gravity Law: Armington models with finite trade costs. This would require parametric restrictions.

e Static Monopolistic Competition: Under GM-CES, insufficient entry. Under all 3 classes, the 2™ Law <
Procompetitive Entry = Excessive Entry, as shown in Matsuyama-Ushchev (2020), which we need to revise.

e Romer-type Endogenous Growth with Expanding Variety/Knowledge Spillover

o Under CES and GM-CES, too little R&D in equilibrium.
o Under the 3 classes with the 2™ law, R&D can be too much in equilibrium, as in a vertical innovation model.

Some Extensions
e Geometric Means of HSA/HDIA/HIIA

e Nonhomothetic Preferences
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