

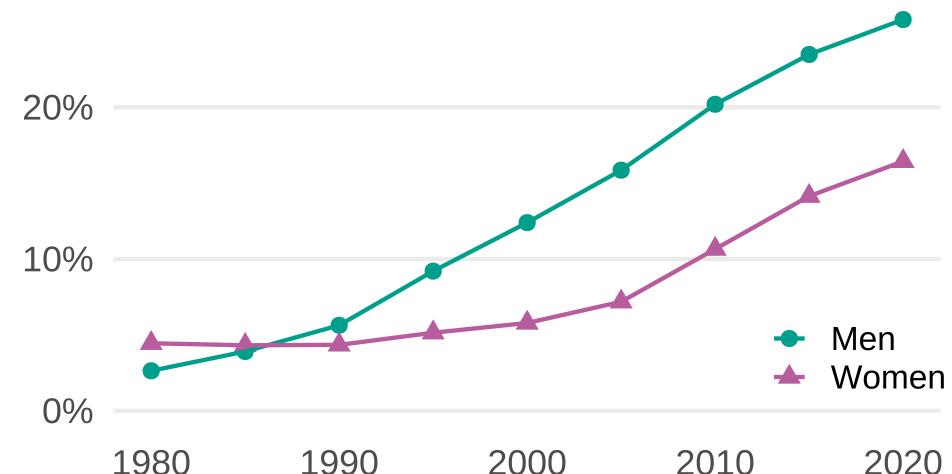
A Quantitative Model of Non-Marriage and Fertility

Bargaining over Leisure

Kazuharu Yanagimoto

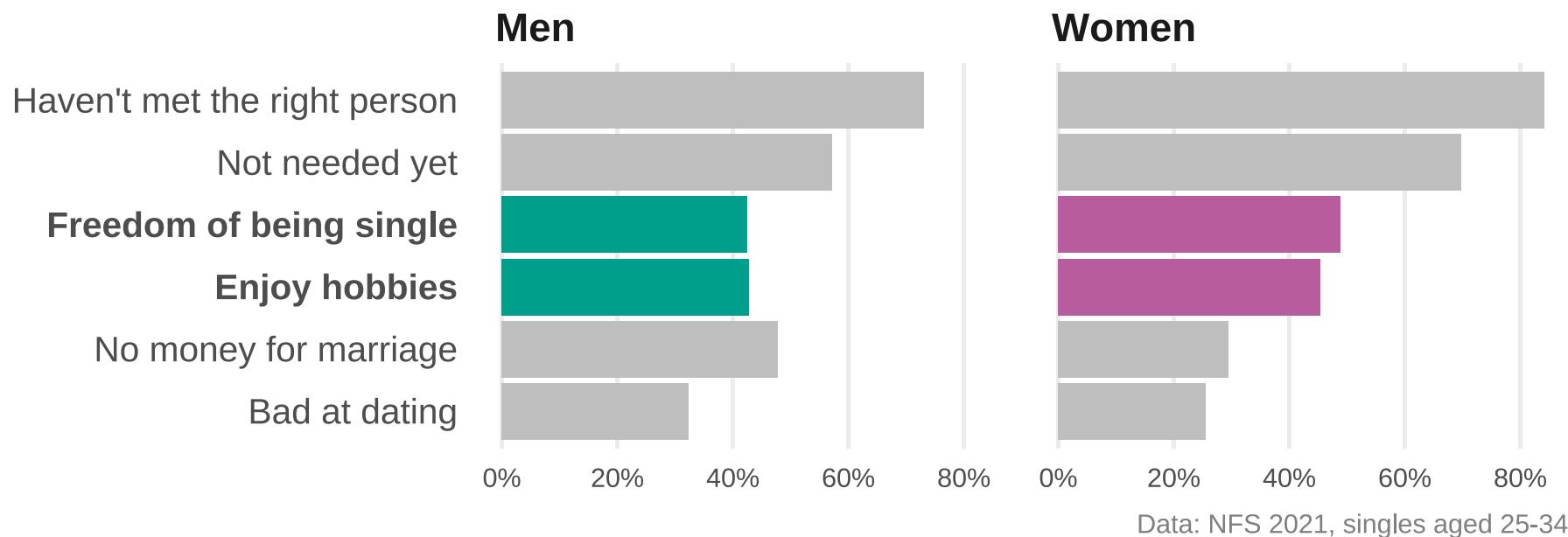
yanagimoto@econ.kobe-u.ac.jp

Kobe University


December 26, 2025

Fertility and Marriage Decline in Japan

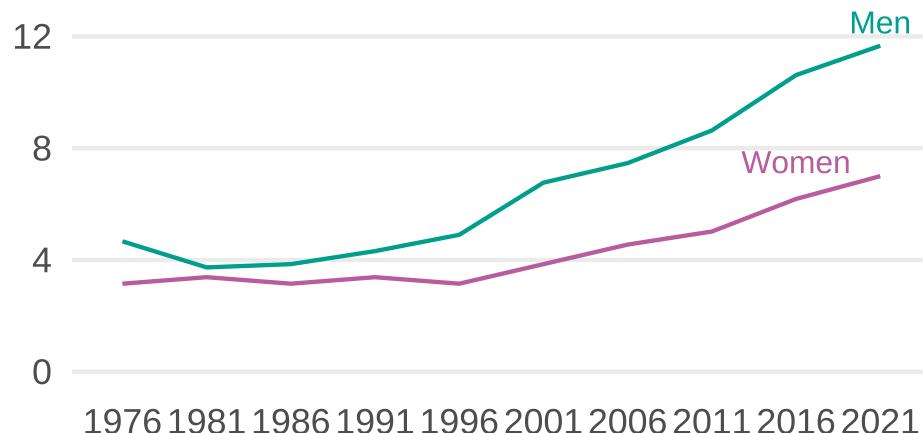
Fertility Rate of Women at Age 45



Share of Never-married at Age 45-54

- ▶ Cohort fertility started to decline in the 2000s
- ▶ Never-married increased since 1990s for men and 2000s for women
- ▶ Childbirth outside marriage is rare in Japan (2.4% in 2020)

Main Reasons for Being Single



- ▶ Marriage restricts the time for **leisure** and reduces the **freedom**

▶ 1992-2021

New Perspective: Leisure Technology Growth

Hours for Hobby Activities per Week

Data: Survey on time use and leisure activities. Age 25-29.

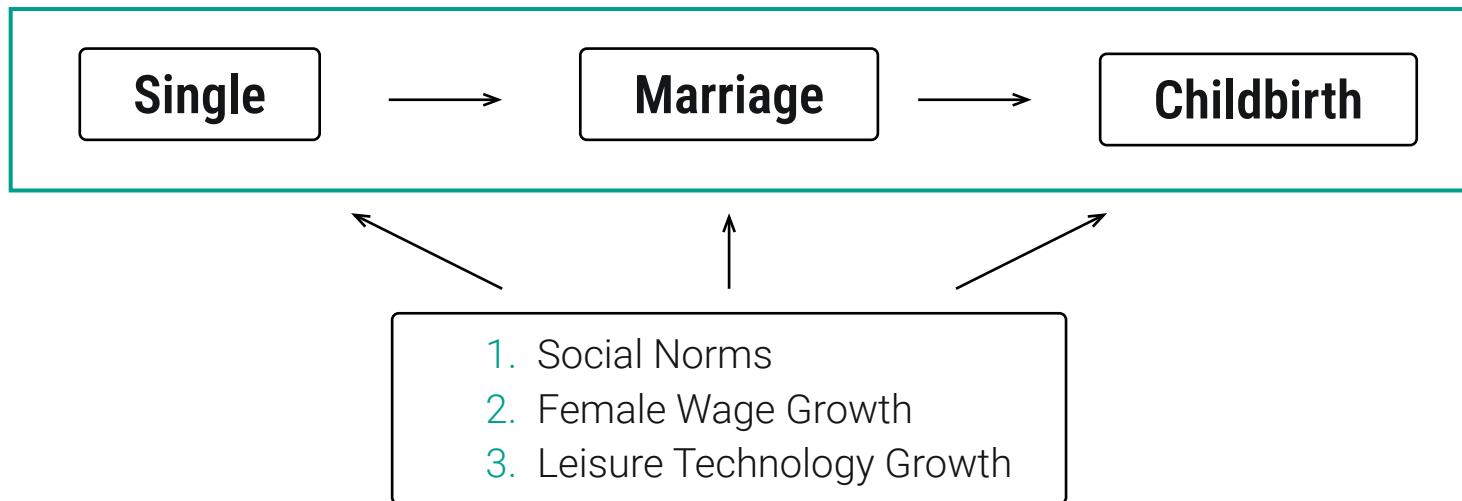
Participation in Hobby Activities

Videogames

60%
40%
20%
0%

1990 2000 2010 2020

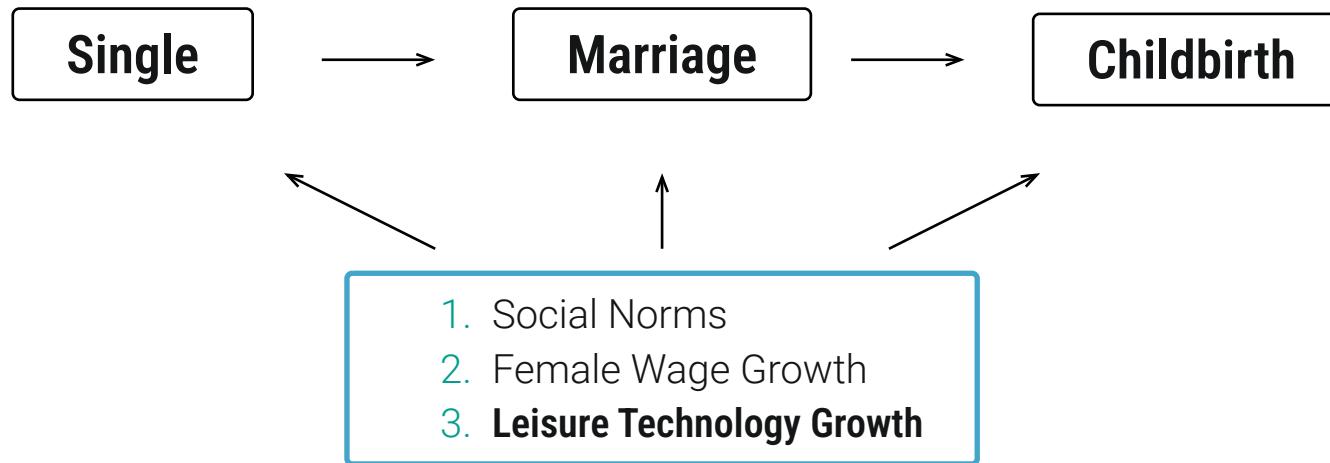
Movies at home


60%
40%
20%
0%

1990 2000 2010 2020

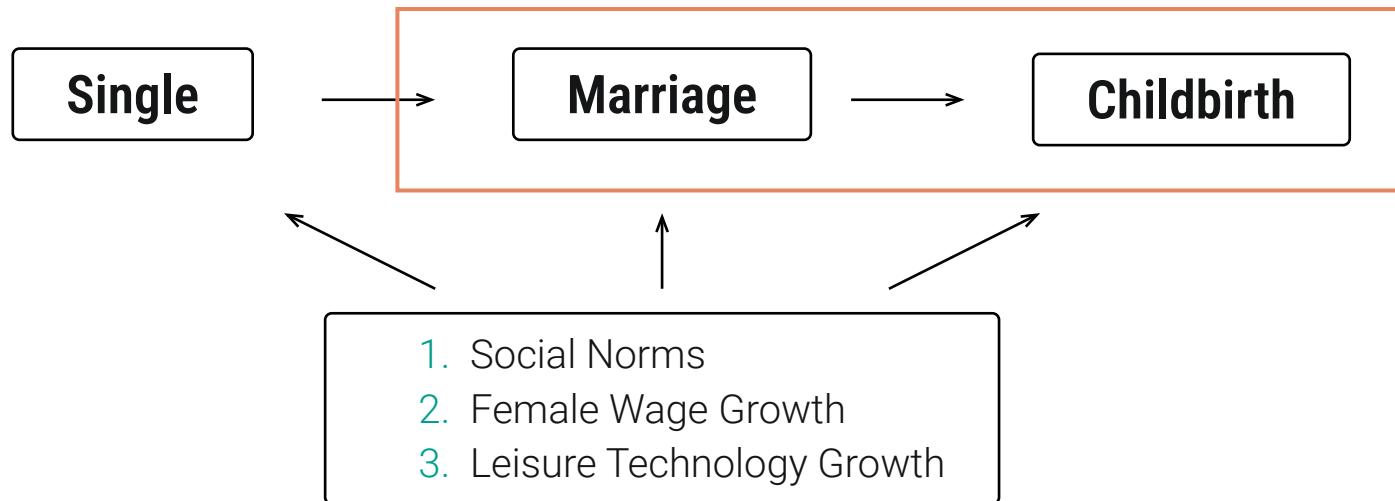
Data: Survey on time use and leisure activities. Age 25-29.

- ▶ Increase in hobby activities for both men and women
- ▶ Leisure technology growth (e.g., video games) ⇒ decline in working hours
→ Kopecky (2011); Kopytov, Roussanov, and Taschereau-Dumouchel (2023); Aguiar et al. (2021)


Question: Why Are Marriage and Fertility Declining?

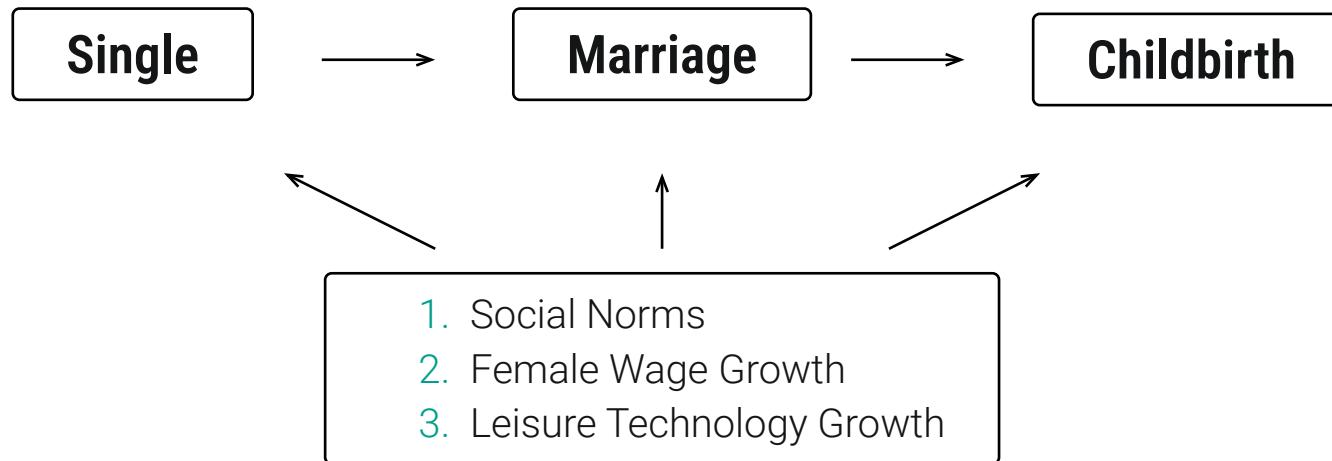
Build an Unified Model of Marriage and Fertility

- ▶ Dynamic model with **endogenous** marriage and childbirth decision
- ▶ Interaction with changes in female wage, social norms, and leisure


Question: Why Are Marriage and Fertility Declining?

Potential Driving Forces

- ▶ Female Wage Increase & Social Norms Change
- ▶ **Leisure Technology Growth**


Question: Why Are Marriage and Fertility Declining?

Labor/Macroeconomic Literature

- ▶ Many models with endogenous fertility start with married couples
 - e.g., Ahn and Mira (2002); Erosa, Fuster, and Restuccia (2016); Doepke and Kindermann (2019)
- ▶ Little is known about the dynamic decision of marriage and childbirth

Question: Why Are Marriage and Fertility Declining?

Contributions

1. **Leisure technology** as a new driver of marriage and fertility decline
2. **Dynamic** model with endogenous **marriage** and **childbirth** decision

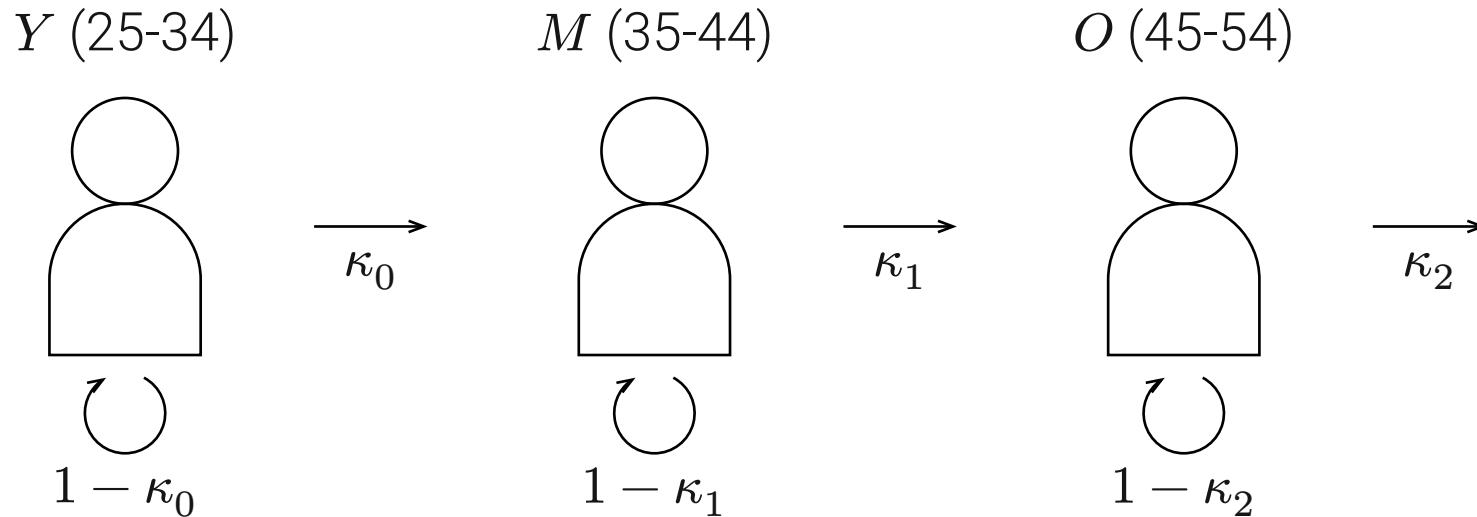
Roadmap

1. Model

- ▶ Dynamic model with endogenous marriage and childbirth decision
- ▶ **Bargaining power** are key elements

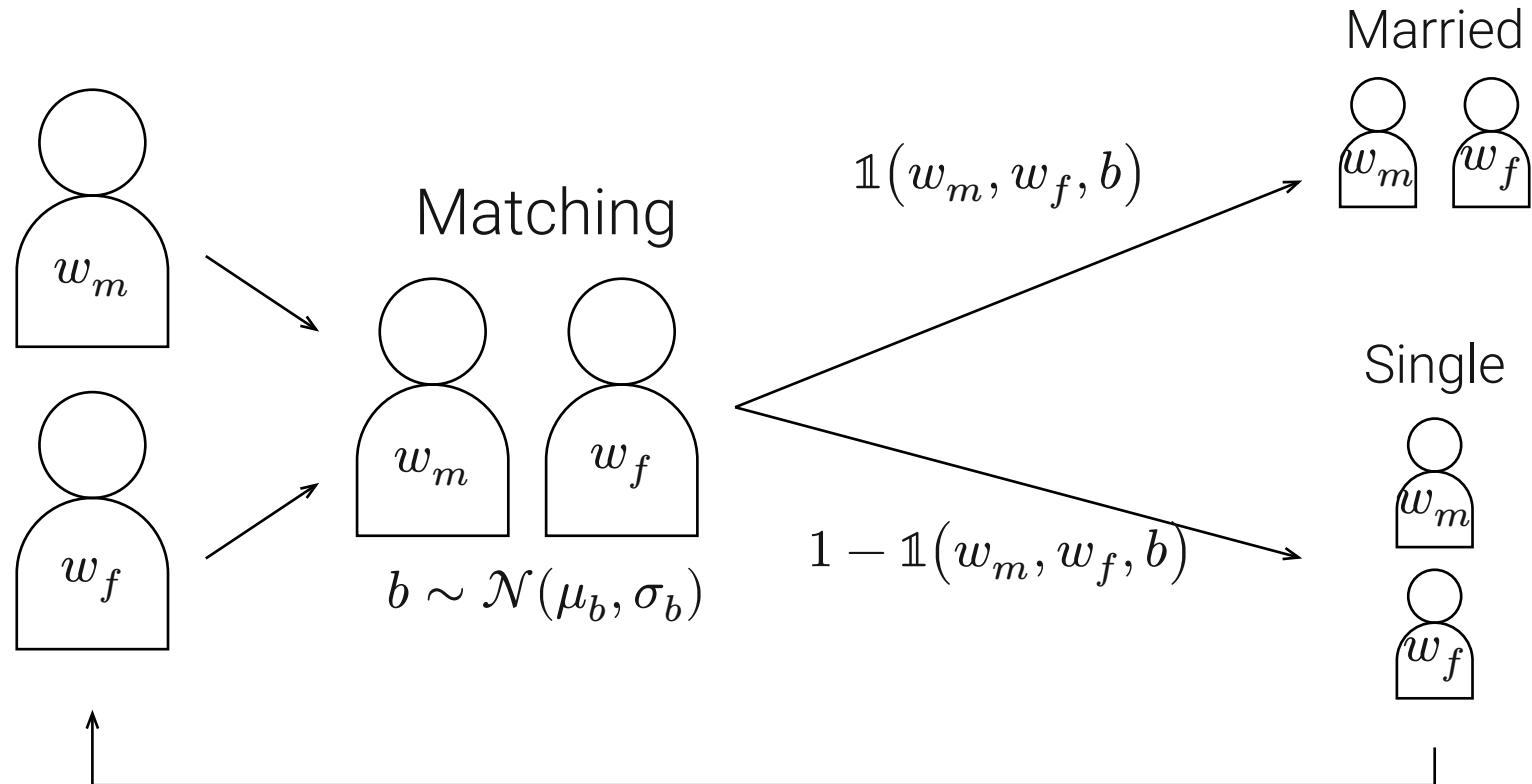
2. Calibration for 2018-2022

- ▶ Calibrate model parameters with data from 2018-2022
- ▶ Replicate marriage and fertility behavior

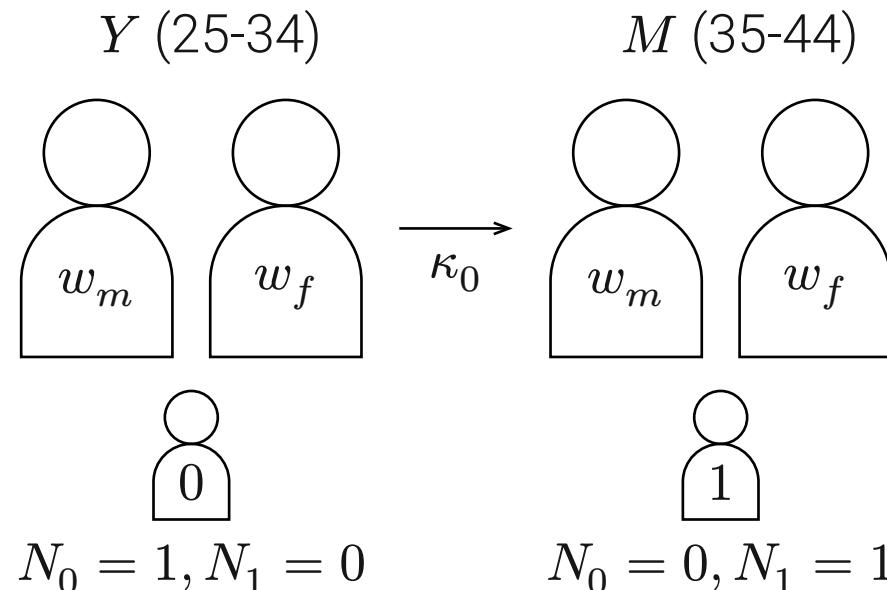

3. Simulation for 2005-2009

- ▶ Parameters for **female wage, social norms, and leisure technology**
- ▶ Simulate with parameters, fix other parameters

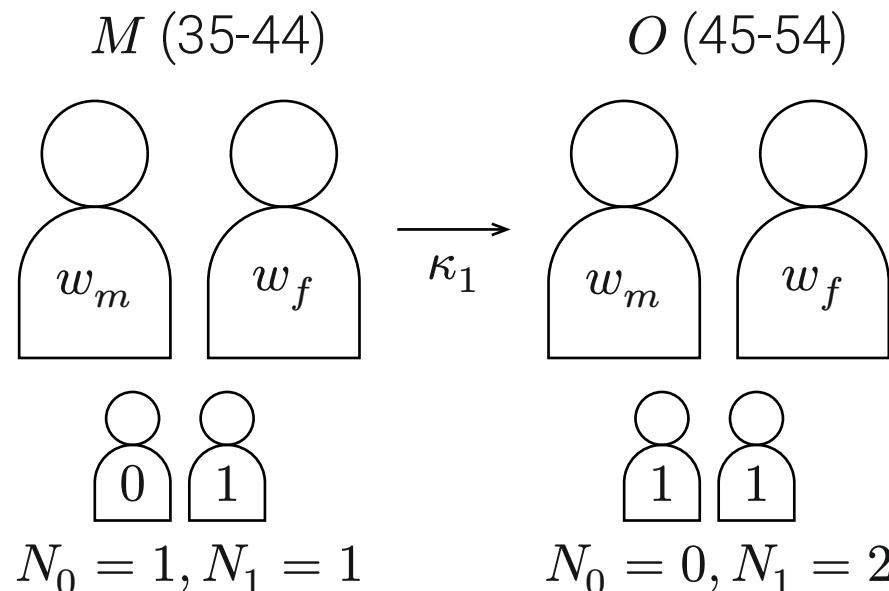
Model


Settings

Infinite Horizon with Stochastic Aging


- ▶ Individuals with gender $g \in \{m, f\}$
- ▶ One model period is **one year**. 3 stages of life (Y, M, O) and death
- ▶ In the period end, agents get aged with probability $\kappa_0 = \kappa_1 = \kappa_2 = 1/10$
- ▶ Individuals born at Y with wage $w_g \sim \log -\mathcal{N}(\mu_{w_g}, \sigma_{w_g})$. Fixed for life

Marriage Decision


- ▶ In each period, randomly matched with singles of the **same age**
- ▶ Draw a **match quality** $b \sim \mathcal{N}(\mu_b, \sigma_b)$. Fixed for life
- ▶ If both of them agree based on (w_m, w_f, b) , they get married

Children's Age

- ▶ Children has two age 0 (small kids) and 1 (teenagers)
- ▶ N_0 and N_1 are # of children at each age

Children's Age

- ▶ Children has two age 0 (small kids) and 1 (teenagers)
- ▶ N_0 and N_1 are # of children at each age
- ▶ Children got aged with their parents from 0 to 1 but not from 1 to more

Preferences

$$u(c, l, N) = \frac{c^{1-\gamma_c}}{1-\gamma_c} + \alpha_l \frac{l^{1-\gamma_l}}{1-\gamma_l} + \alpha_n \frac{(1+N)^{1-\gamma_n} - 1}{1-\gamma_n}$$

- ▶ c : Consumption
- ▶ l : Leisure
- ▶ $N = N_0 + N_1$: Number of children

Only married couples can have children \Rightarrow Single's utility is

$$u(c, l) = \frac{c^{1-\gamma_c}}{1-\gamma_c} + \alpha_l \frac{l^{1-\gamma_l}}{1-\gamma_l}$$

Singles

$$v_g(w_g) = \max_{c_g, h_g, l_g, k_g} u(c_g, l_g)$$

subject to

$$c = w_g h_g \quad (\text{Budget Constraint})$$

$$d_g = \psi_g^S \quad (\text{Domestic Labor Constraint})$$

$$h_g + l_g + d_g = 1 \quad (\text{Time Constraint})$$

- ▶ Hours worked h_g , leisure l_g , and domestic labor d_g
- ▶ Each individual is endowed a unit of time $h_g + l_g + d_g = 1$
- ▶ Domestic labor requirement is different by gender (ψ_m^S, ψ_f^S)
- ▶ Domestic labor is not a choice for singles

Couples

$$\max_{c, h_m, h_f, l_m, l_f, d_m, d_f} (1 - \lambda)u\left(\frac{c}{\Gamma(N)}, l_m, N\right) + \lambda u\left(\frac{c}{\Gamma(N)}, l_f, N\right)$$

subject to

$$c = w_m h_m + w_f h_f, \quad (\text{Budget Constraint})$$

$$D(d_m, d_f) = \psi_0 + \psi_1 \mathbb{1}\{N_0 > 0\} + \psi_2 \mathbb{1}\{N > 0\}, \quad (\text{Domestic Labor Constraint})$$

where

- ▶ $\Gamma(N) < 2 + N$: Economies of scales
- ▶ $D(d_m, d_f)$: Domestic labor production function (next slides)
- ▶ $\lambda = \lambda(w_m, w_f, N_0)$: Bargaining power (next slides)

Social Norms Parameter θ

Domestic Labor Production Function

$$D(d_m, d_f) = \left((1 - \theta)d_m^\xi + \theta d_f^\xi \right)^{\frac{1}{\xi}} \quad \text{where } \theta \in (0, 1), \xi < 1$$

From the FOCs of the couple's problem, we can derive

$$\theta = \frac{w_f d_f^{\frac{1}{1-\xi}}}{w_m d_m^{\frac{1}{1-\xi}} + w_f d_f^{\frac{1}{1-\xi}}}$$

- ▶ The higher wage earner works less domestic labor \Rightarrow **Specialization**
- ▶ **Larger θ** \Rightarrow more domestic labor hours for **women**
- ▶ Interpreted as the **social norms** parameter

Wife's Bargaining Power λ

Assume a parameteric form of bargaining power:

$$\lambda(w_m, w_f, N_0) = \frac{1}{1 + \exp(\rho_0 + \rho_1(\log w_m - \log w_f) + \rho_2 \mathbb{1}\{N_0 > 0\})}$$

Relative wage and children affect bargaining power

- ▶ $\rho_0 = \rho_1 = \rho_2 = 0$: $\lambda = \frac{1}{2}$
 - Equal bargaining power. Common assumption
- ▶ $\rho_1 = 1, \rho_0 = \rho_2 = 0$: $\lambda = \frac{w_f}{w_m + w_f}$
 - Proportion of wage. (Baudin, De La Croix, and Gobbi 2015)
- ▶ Similar formula used in the collective models
 - Lise and Yamada (2019); Guo and Xie (2024)

Bargaining Power λ and Leisure Allocation

$$\log l_m - \log l_f = \frac{\rho_0}{\gamma_l} + \frac{\rho_1 - 1}{\gamma_l} (\log w_m - \log w_f) + \frac{\rho_2}{\gamma_l} \mathbb{1}\{N_0 > 0\}$$

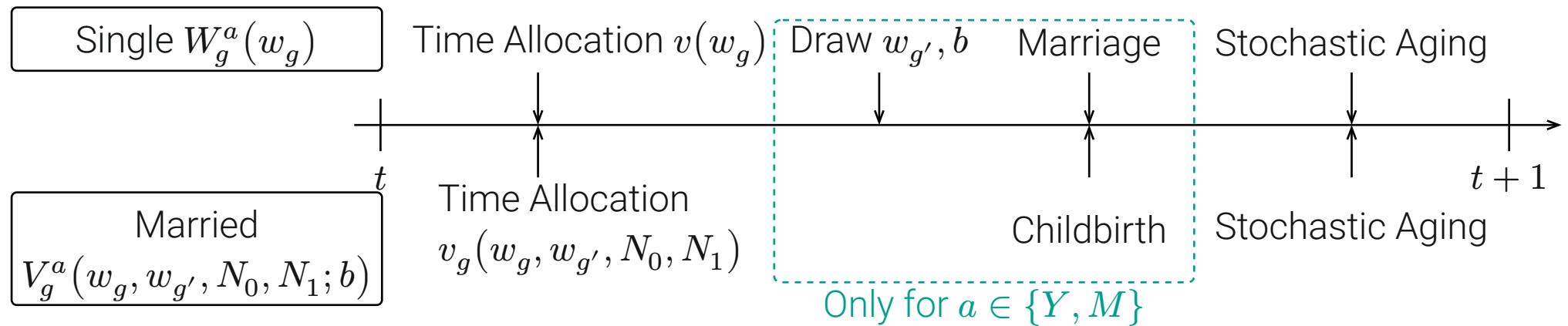
Data: JHPS2005-2022. Married couples aged 25-54.

- ▶ **Positive correlation:** $\log l_m - \log l_f \leftrightarrow \log w_m - \log w_f$ if $\rho_1 > 1$
- ▶ Marriage might constraint or reduce the leisure by bargaining power

Value Functions and Life Events

For age $a \in \{Y, M, O\}$, the value functions are

- ▶ **Single:** $W_g^a(w_g)$ ▶ Bellman Equation
- ▶ **Married:** $V_g^a(w_g, w_{g'}, N_0, N_1; b)$ ▶ Bellman Equation


Life Events

- ▶ Marriage and Childbirth decisions can be made only at Y and M
- ▶ **Marriage:** $V_m^a(w_m, w_f, 0, 0; b) > W_m^a(w_m)$ and $V_f^a(w_f, w_m, 0, 0; b) > W_f^a(w_f)$
- ▶ **Childbirth:** Decide based on $(1 - \lambda)V_m^a + \lambda V_f^a$
 - Can have a newborn child with probability δ_0 (at Y) or δ_1 (at M)

Marriage Market Equilibrium

- ▶ The distribution of singles does not change ▶ Equilibrium

Model Summary

Baseline Model (2018-2022)

Data

Japan Household Panel Survey (JHPS)

- ▶ Since 2004 on 4,000 households and 7,000 individuals nationwide
- ▶ Demographic variables, labor market outcomes

3 Usage of Hours

- ▶ **Hours worked** h : Hours worked per week + Commuting time per week
- ▶ **Domestic Labor** d : Hours spent on
 - housework (prepare meal, laundry, grocery shopping, cleaning) & childcare
- ▶ **Leisure** l : Hours spent on leisure per week
 - Measured as $l = 16(\text{hours}) \times 7(\text{days}) - h - d$

Calibration Strategy

2 Types of Parameters

1. **Exogenous Parameters**: Literature, Data
2. **Endogenous Parameters**: Minimizing distance by simulation

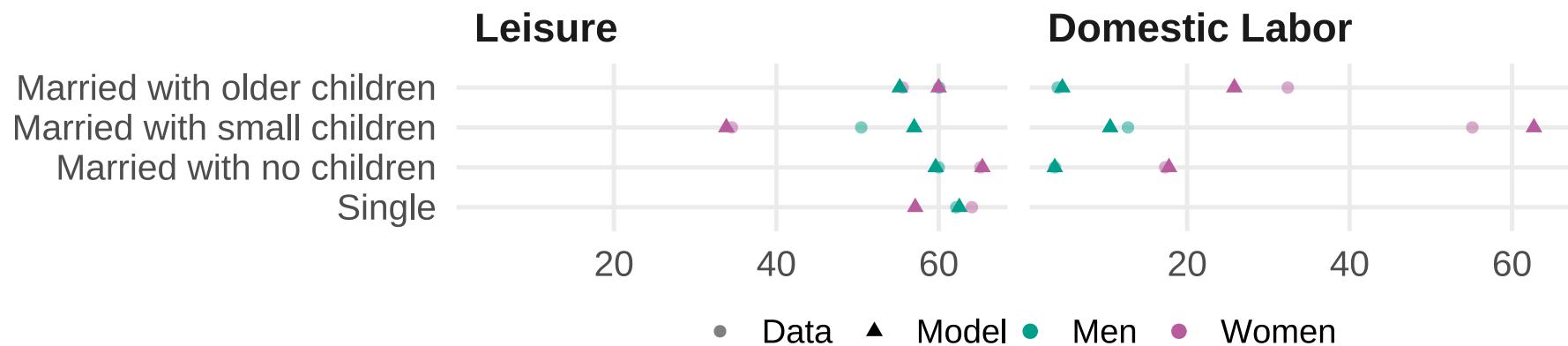
Exogenous Parameters

Parameter	Source
$\Gamma(N) = 1 + 0.5 + 0.3N$	OECD equivalence scale
$\beta = 0.96$	Literature (Prescott 1986)
$\kappa_0 = \kappa_1 = \kappa_2 = 1/10$	30-year lifespan
$\mu_{w_m} = 0$	Male wage is normalized to 1
$\psi_m^S = 0.007, \psi_f^S = 0.058$	Singles in JHPS2018-2022
$\sigma_{w_m} = 0.519$	Single and married men in JHPS2018-2022

Simulated Method of Moments

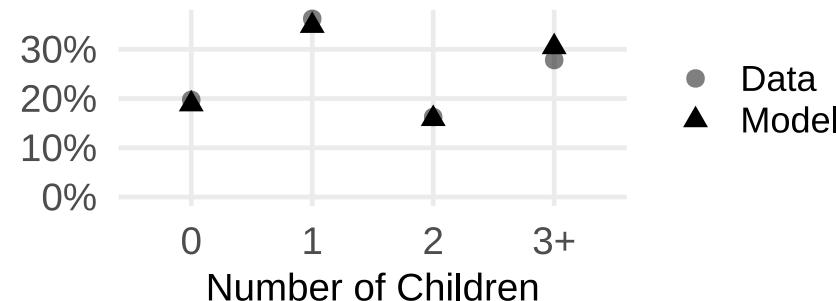
19 parameters remained

$$\omega = \left\{ \underbrace{\gamma_c, \gamma_l, \gamma_n, \alpha_l, \alpha_n}_{\text{Preference}}, \underbrace{\rho_0, \rho_1, \rho_2}_{\text{Bargaining}}, \underbrace{\mu_{w_f}, \sigma_{w_f}}_{\text{Wage}}, \underbrace{\mu_b, \sigma_b}_{\text{Match quality}}, \underbrace{\theta, \xi}_{\text{Home production}}, \underbrace{\psi_0, \psi_1, \psi_2}_{\text{Domestic labor}}, \underbrace{\delta_1, \delta_2}_{\text{Childbirth}} \right\}$$


Define

- ▶ $DATA$: 20 Moments from Japanese Data 2018-2022
- ▶ $\mathcal{M}(\omega)$: 20 moments produced by the model with ω
- ▶ $G(\omega) := \mathcal{M}(\omega) - DATA$

With a weighting matrix W , the parameters are estimated by


$$\hat{\omega} = \arg \min G(\omega)^\top W G(\omega)$$

Targeted Moments

	Data	Model
Single's $\log w_m - \log w_f$	0.129	0.129
S.D. of single's $\log w_f$	0.786	0.792
Share of never married	0.164	0.161

Endogenous Parameters

Category	Parameter Values
Preference	$\gamma_c = 1.572, \gamma_l = 1.316, \gamma_n = 1.319$ $\alpha_l = 2.425, \alpha_n = 3.242$
Bargaining	$\rho_0 = -0.286, \rho_1 = 1.465, \rho_2 = 0.784$
Female wage	$\mu_{w_f} = -0.153, \sigma_{w_f} = 0.757$
Match quality	$\mu_b = -1.579, \sigma_b = 1.333$
Home production	$\theta = 0.835, \xi = 0.026$
Domestic labor	$\psi_0 = 0.114, \psi_1 = 0.231, \psi_2 = 0.051$
Fertility	$\delta_1 = 0.246, \delta_2 = 0.192$

Endogenous Parameters

Category	Parameter Values
Preference	$\gamma_c = 1.572, \gamma_l = 1.316, \gamma_n = 1.319$ $\alpha_l = 2.425, \alpha_n = 3.242$
Bargaining	$\rho_0 = -0.286, \rho_1 = 1.465, \rho_2 = 0.784$
Female wage	$\mu_{w_f} = -0.153, \sigma_{w_f} = 0.757$
Match quality	$\mu_b = -1.579, \sigma_b = 1.333$
Home production	$\theta = 0.835, \xi = 0.026$
Domestic labor	$\psi_0 = 0.114, \psi_1 = 0.231, \psi_2 = 0.051$
Fertility	$\delta_1 = 0.246, \delta_2 = 0.192$

- ▶ $\gamma_c, \gamma_l, \gamma_n \in [1, 2] \Rightarrow$ Standard values in the literature

Endogenous Parameters

Category	Parameter Values
Preference	$\gamma_c = 1.572, \gamma_l = 1.316, \gamma_n = 1.319$ $\alpha_l = 2.425, \alpha_n = 3.242$
Bargaining	$\rho_0 = -0.286, \rho_1 = 1.465, \rho_2 = 0.784$
Female wage	$\mu_{w_f} = -0.153, \sigma_{w_f} = 0.757$
Match quality	$\mu_b = -1.579, \sigma_b = 1.333$
Home production	$\theta = 0.835, \xi = 0.026$
Domestic labor	$\psi_0 = 0.114, \psi_1 = 0.231, \psi_2 = 0.051$
Fertility	$\delta_1 = 0.246, \delta_2 = 0.192$

- ▶ $\alpha_l = 2.425 \Rightarrow$ Importance of leisure in utility

Endogenous Parameters

Category	Parameter Values
Preference	$\gamma_c = 1.572, \gamma_l = 1.316, \gamma_n = 1.319$ $\alpha_l = 2.425, \alpha_n = 3.242$
Bargaining	$\rho_0 = -0.286, \rho_1 = 1.465, \rho_2 = 0.784$
Female wage	$\mu_{w_f} = -0.153, \sigma_{w_f} = 0.757$
Match quality	$\mu_b = -1.579, \sigma_b = 1.333$
Home production	$\theta = 0.835, \xi = 0.026$
Domestic labor	$\psi_0 = 0.114, \psi_1 = 0.231, \psi_2 = 0.051$
Fertility	$\delta_1 = 0.246, \delta_2 = 0.192$

- $\rho_1 > 1 \Rightarrow$ Positive correlation $\log l_m - \log l_f \leftrightarrow \log w_m - \log w_f$

Endogenous Parameters

Category	Parameter Values
Preference	$\gamma_c = 1.572, \gamma_l = 1.316, \gamma_n = 1.319$ $\alpha_l = 2.425, \alpha_n = 3.242$
Bargaining	$\rho_0 = -0.286, \rho_1 = 1.465, \rho_2 = 0.784$
Female wage	$\mu_{w_f} = -0.153, \sigma_{w_f} = 0.757$
Match quality	$\mu_b = -1.579, \sigma_b = 1.333$
Home production	$\theta = 0.835, \xi = 0.026$
Domestic labor	$\psi_0 = 0.114, \psi_1 = 0.231, \psi_2 = 0.051$
Fertility	$\delta_1 = 0.246, \delta_2 = 0.192$

- ▶ $\mu_{w_f} = -0.153 \Rightarrow 14\% \text{ gender gap in median wage}$

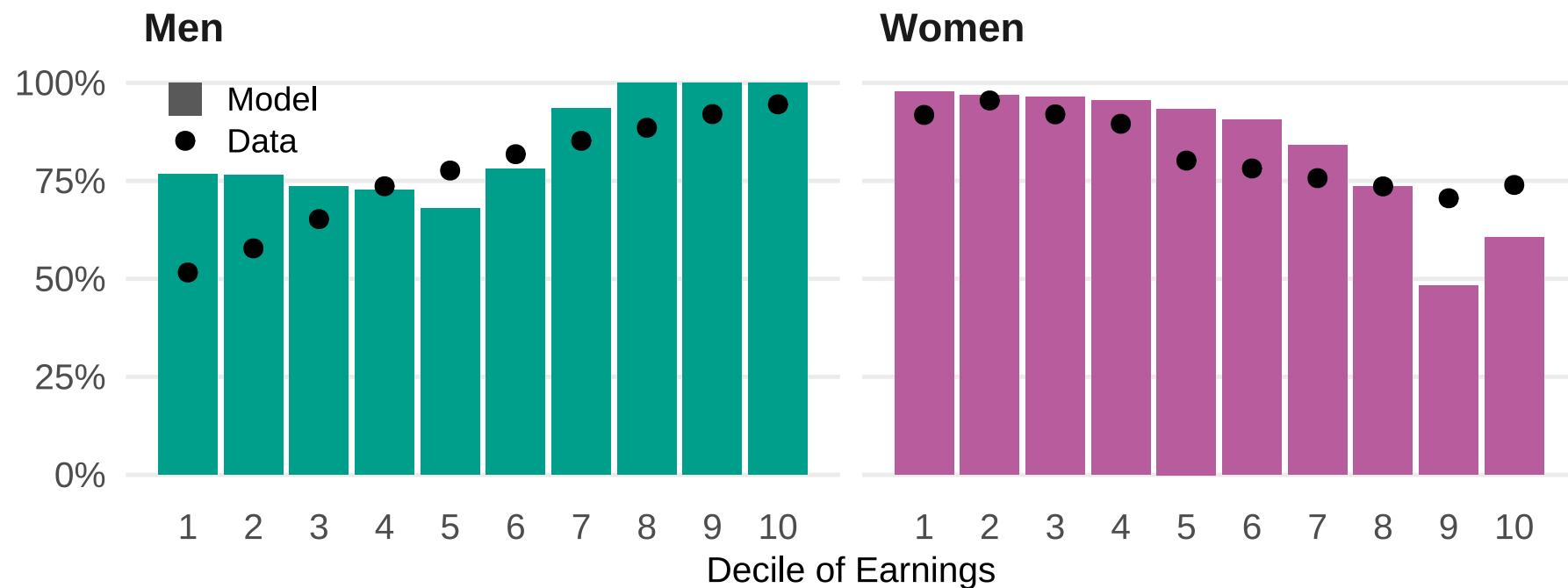
Endogenous Parameters

Category	Parameter Values
Preference	$\gamma_c = 1.572, \gamma_l = 1.316, \gamma_n = 1.319$ $\alpha_l = 2.425, \alpha_n = 3.242$
Bargaining	$\rho_0 = -0.286, \rho_1 = 1.465, \rho_2 = 0.784$
Female wage	$\mu_{w_f} = -0.153, \sigma_{w_f} = 0.757$
Match quality	$\mu_b = -1.579, \sigma_b = 1.333$
Home production	$\theta = 0.835, \xi = 0.026$
Domestic labor	$\psi_0 = 0.114, \psi_1 = 0.231, \psi_2 = 0.051$
Fertility	$\delta_1 = 0.246, \delta_2 = 0.192$

- ▶ $\mu_b < 0 \Rightarrow$ Expected match quality is negative. Wait for the right partner

Endogenous Parameters

Category	Parameter Values
Preference	$\gamma_c = 1.572, \gamma_l = 1.316, \gamma_n = 1.319$ $\alpha_l = 2.425, \alpha_n = 3.242$
Bargaining	$\rho_0 = -0.286, \rho_1 = 1.465, \rho_2 = 0.784$
Female wage	$\mu_{w_f} = -0.153, \sigma_{w_f} = 0.757$
Match quality	$\mu_b = -1.579, \sigma_b = 1.333$
Home production	$\theta = 0.835, \xi = 0.026$
Domestic labor	$\psi_0 = 0.114, \psi_1 = 0.231, \psi_2 = 0.051$
Fertility	$\delta_1 = 0.246, \delta_2 = 0.192$


- $\theta > 0.5 \Rightarrow$ Social norms on female domestic labor

Endogenous Parameters

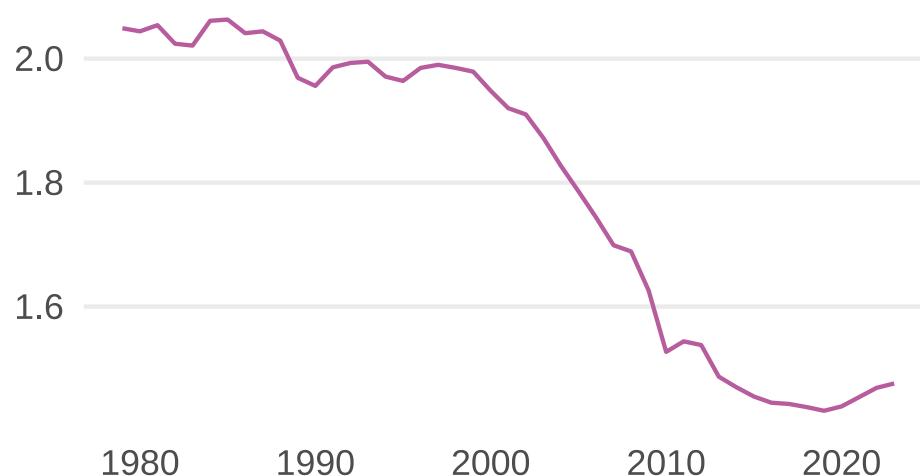
Category	Parameter Values
Preference	$\gamma_c = 1.572, \gamma_l = 1.316, \gamma_n = 1.319$ $\alpha_l = 2.425, \alpha_n = 3.242$
Bargaining	$\rho_0 = -0.286, \rho_1 = 1.465, \rho_2 = 0.784$
Female wage	$\mu_{w_f} = -0.153, \sigma_{w_f} = 0.757$
Match quality	$\mu_b = -1.579, \sigma_b = 1.333$
Home production	$\theta = 0.835, \xi = 0.026$
Domestic labor	$\psi_0 = 0.114, \psi_1 = 0.231, \psi_2 = 0.051$
Fertility	$\delta_1 = 0.246, \delta_2 = 0.192$


- $\delta_1 > \delta_2 \Rightarrow$ Higher fertility for younger couples

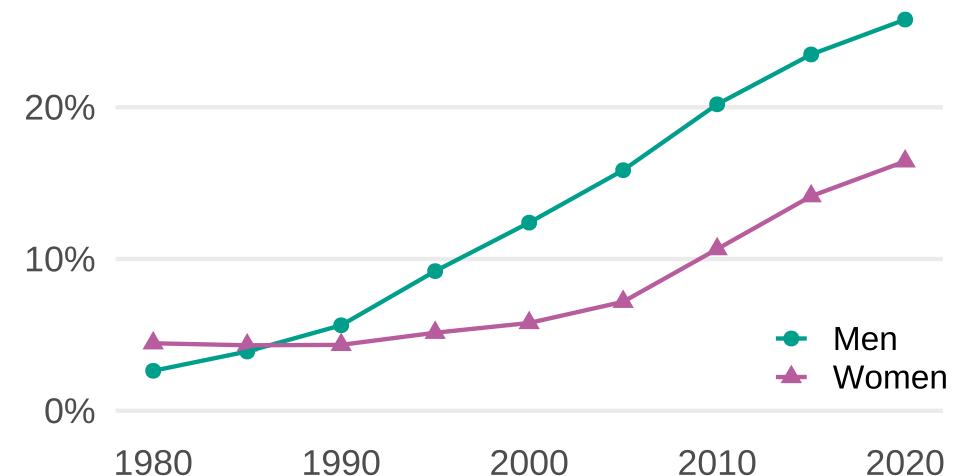
Marrige Rate by Earnings (Untargeted)

- ▶ Captures the pattern increasing for men and decreasing for women

Child Penalty (Untargeted)

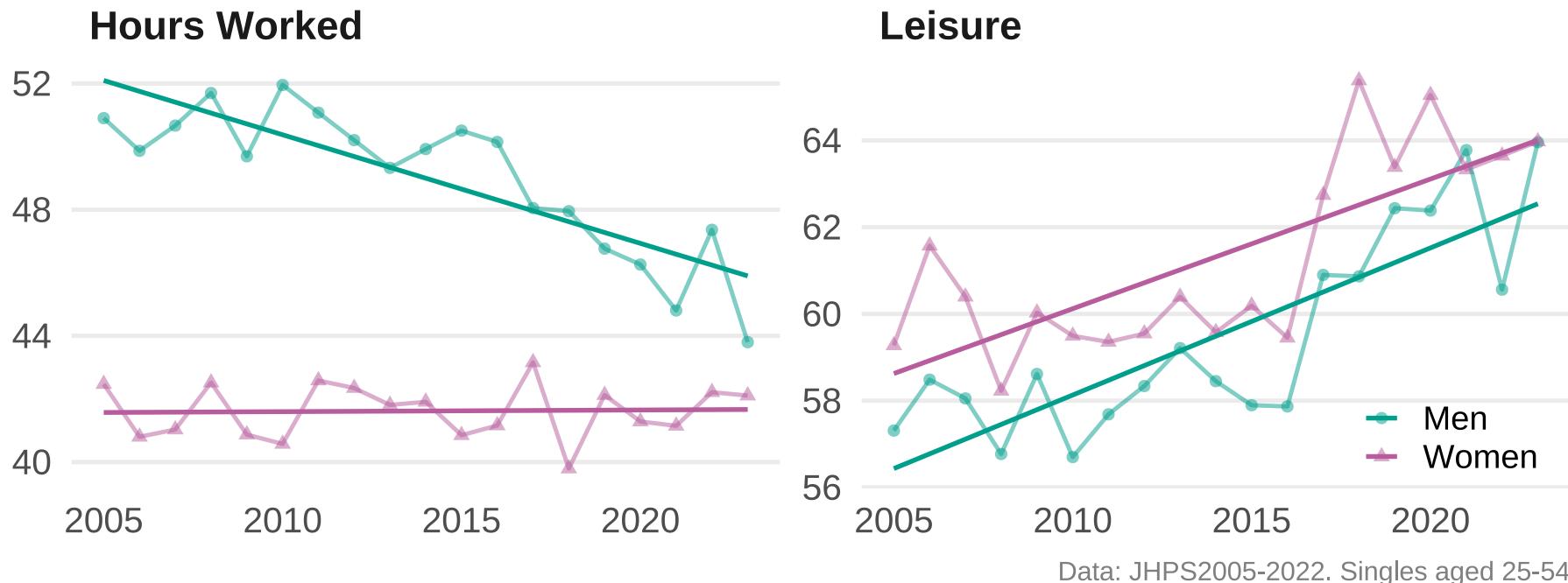


► Specification


Back to 2005-2009

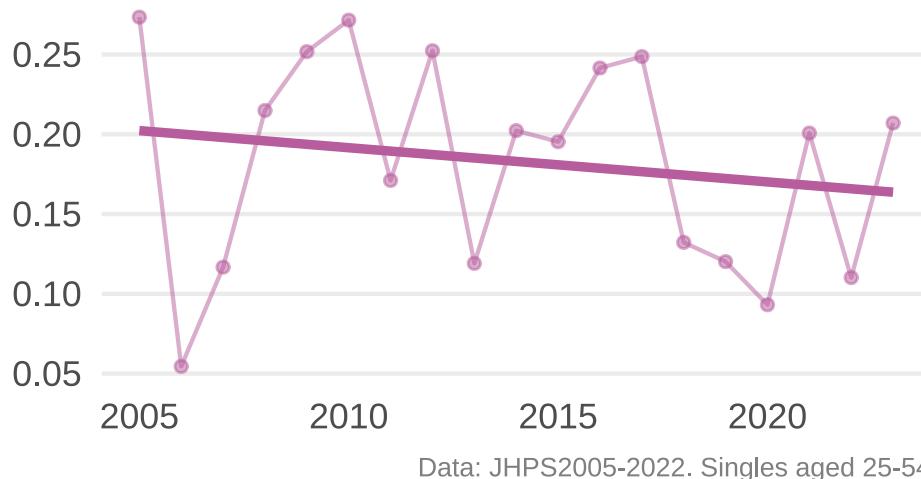
Driving Forces of the Marriage and Fertility Decline

Fertility Rate of Women at Age 45

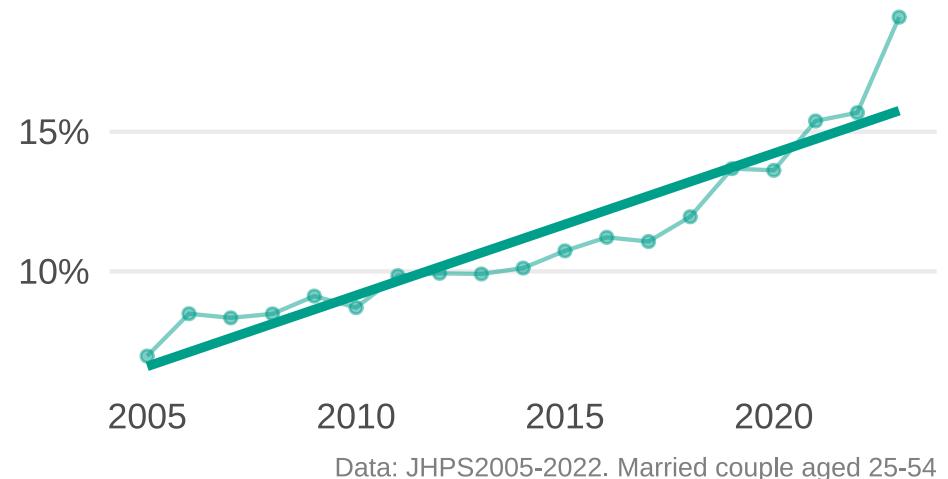


Share of Never-married at Age 45-54

1. Leisure technology growth \Rightarrow Increase in α_l
2. Female wage growth \Rightarrow Increase in μ_{w_f}
3. Shift in social norms \Rightarrow Decline in θ


Increase in Leisure Hours

- Decline in working hours & Increase in leisure hours for singles
- Consistent with leisure technology growth \Rightarrow Increase in α_l


Other Potential Factors

Gender Gaps in Single's Log Wage

Data: JHPS2005-2022. Singles aged 25-54

Husband's Share in Domestic Labor

Data: JHPS2005-2022. Married couple aged 25-54

- ▶ Decline of the gender wage gap \Rightarrow Increase in μ_{w_f}
- ▶ Increase the husbands' domestic labor \Rightarrow Decrease in θ
 - Weaker social norms on domestic labor for women

Calibration for 2005-2009

To simulate the model for 2005-2009,

- ▶ Calibrate only α_l , μ_f , θ and keep the rest of the parameters
- ▶ Target the following moments from the data in 2005-2009

2005-2009		Target	Data	Model
α_l	1.846	Single's l_m	0.516	0.516
μ_f	-0.157	Single's $\log w_m - \log w_f$	0.181	0.181
θ	0.913	Couple's $d_m/(d_m + d_f)$	0.917	0.917

Estimated parameters captures

- ▶ $\alpha_l = 2.425$ in 2018-2022 \Rightarrow Leisure technology growth
- ▶ $\mu_f = -0.153$ in 2018-2022 \Rightarrow Female wage growth
- ▶ $\theta = 0.835$ in 2018-2022 \Rightarrow Shift in social norms

Results

	α_l	μ_f	θ	Marriage Rate		Fertility Rate	
				Model	Data	Model	Data
Baseline (2018-2022)				0.839	0.836	1.622	1.446
Leisure Technology		✓		0.847		1.699	
Female Wage			✓	0.839		1.622	
Social Norms				✓	0.855		1.723
All (2005-2009)	✓	✓	✓	0.859	0.928	1.794	1.709

Results

	α_l	μ_f	θ	Marriage Rate		Fertility Rate	
				Model	Data	Model	Data
Baseline (2018-2022)				0.839	0.836	1.622	1.446
Leisure Technology	✓			0.847		1.699	
Female Wage		✓		0.839		1.622	
Social Norms			✓	0.855		1.723	
All (2005-2009)	✓	✓	✓	0.859	0.928	1.794	1.709

- ▶ Model captures 22% of the decline in marriage and 66% of the fertility

Results

	α_l	μ_f	θ	Marriage Rate		Fertility Rate	
				Model	Data	Model	Data
Baseline (2018-2022)				0.839	0.836	1.622	1.446
Leisure Technology	✓			0.847		1.699	
Female Wage		✓		0.839		1.622	
Social Norms			✓	0.855		1.723	
All (2005-2009)	✓	✓	✓	0.859	0.928	1.794	1.709

- ▶ Model captures 22% of the decline in marriage and 66% of the fertility
- ▶ Leisure technology growth is 9% for the marriage and 29% of the fertility

Results

	α_l	μ_f	θ	Marriage Rate		Fertility Rate	
				Model	Data	Model	Data
Baseline (2018-2022)				0.839	0.836	1.622	1.446
Leisure Technology	✓			0.847		1.699	
Female Wage		✓		0.839		1.622	
Social Norms			✓	0.855		1.723	
All (2005-2009)	✓	✓	✓	0.859	0.928	1.794	1.709

- ▶ Model captures 22% of the decline in marriage and 66% of the fertility
- ▶ Leisure technology growth is 9% for the marriage and 29% of the fertility
- ▶ Female wage growth does not play a role on the marriage and fertility

Results

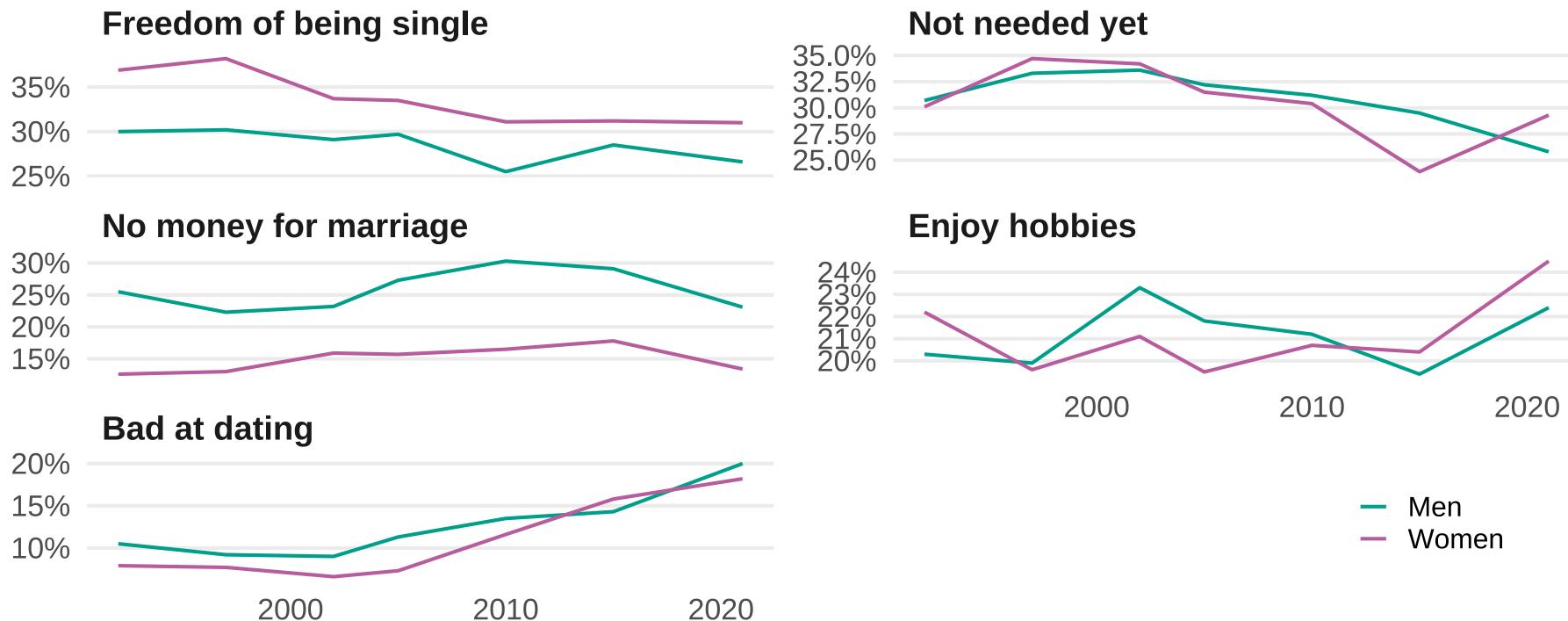
	α_l	μ_f	θ	Marriage Rate		Fertility Rate	
				Model	Data	Model	Data
Baseline (2018-2022)				0.839	0.836	1.622	1.446
Leisure Technology	✓			0.847		1.699	
Female Wage		✓		0.839		1.622	
Social Norms			✓	0.855		1.723	
All (2005-2009)	✓	✓	✓	0.859	0.928	1.794	1.709

- ▶ Model captures 22% of the decline in marriage and 66% of the fertility
- ▶ Leisure technology growth is 9% for the marriage and 29% of the fertility
- ▶ Female wage growth does not play a role on the marriage and fertility
- ▶ Social norms does 17% for the marriage and 39% of the fertility

▶ cumulative results

Conclusion

Build a Model of Endogenous Marriage and Fertility


- ▶ Dynamic decision of mate selection, marriage, and childbirth
- ▶ Integrate heterogeneous wage, leisure technology, and social norms

Model explains the decline from 2005-2009 to 2018-2022:

- ▶ Leisure technology growth explains 9% for marriage and 29% for fertility
- ▶ Social norms on domestic labor explain 17% for marriage and 39% for fertility

Appendix

Reasons for Being Single Overtime

▶ back to main

Berman Equations (Single)

$$W_g^Y(w_g) = v(w_g) + \beta(1 - \kappa_0) \int_{\mathcal{B}} \int_{\mathcal{W}} (1 - \mathbb{1}^Y) W_g^Y(w_g) + \mathbb{1}^Y V_g^Y(w_g, w_{g'}, 0, 0; b) d\hat{S}_{g'}^Y(w_{g'}) dG(b)$$

$$+ \beta \kappa_0 \int_{\mathcal{B}} \int_{\mathcal{W}} (1 - \mathbb{1}^M) W_g^M(w_g) + \mathbb{1}^M V_g^M(w_g, w_{g'}, 0, 0; b) d\hat{S}_{g'}^M(w_{g'}) dG(b)$$

$$W_g^M(w_g) = v(w_g) + \beta(1 - \kappa_1) \int_{\mathcal{B}} \int_{\mathcal{W}} (1 - \mathbb{1}^M) W_g^M(w_g) + \mathbb{1}^M V_g^M(w_g, w_{g'}, 0, 0; b) d\hat{S}_{g'}^M(w_{g'}) dG(b)$$

$$+ \beta \kappa_1 W_g^O(w_g)$$

$$W_g^O(w_g) = v(w_g) + \beta(1 - \delta) W_g^O(w_g)$$

where

$$\mathbb{1}^a(w_g, w_{g'}, b) = \begin{cases} 1 & V_m^a(w_m, w_f, b) > W_m^a(w_f) \text{ and } V_f^a(w_f, w_m, b) > W_f^a(w_f) \\ 0 & \text{otherwise} \end{cases}$$

► back to main

Berman Equations (Married)

$$\begin{aligned} V_g^Y(w_g, w_{g'}, N_0, 0; b) &= v_g(w_g, w_{g'}, N_0, 0) + b \\ &+ \beta(1 - \kappa_0)\delta V_g^Y(w_g, w_{g'}, N_0^*, 0; b) + \beta(1 - \kappa_0)(1 - \delta)V_g^Y(w_g, w_{g'}, N_0, 0; b) \\ &+ \beta\kappa_0\delta V_g^M(w_g, w_{g'}, 0, N_0^*; b) + \beta\kappa_0(1 - \delta)V_g^M(w_g, w_{g'}, 0, N_0; b) \\ V_g^M(w_g, w_{g'}, N_0, N_1; b) &= v_g(w_g, w_{g'}, N_0, N_1) + b \\ &+ \beta(1 - \kappa_1)\delta V_g^M(w_g, w_{g'}, N_0^*, N_1; b) + \beta(1 - \kappa_1)(1 - \delta)V_g^M(w_g, w_{g'}, N_0, N_1; b) \\ &+ \beta\kappa_1 V_g^O(w_g, w_{g'}, 0, N_0^* + N_1; b) + \beta\kappa_1(1 - \delta)V_g^O(w_g, w_{g'}, 0, N_0 + N_1; b) \\ V_g^O(w_g, w_{g'}, 0, N_1; b) &= v_g(w_g, w_{g'}, 0, N_1) + b + \beta(1 - \kappa_2)V_g^O(w_g, w_{g'}, 0, N_1; b). \end{aligned}$$

► back to main

Wage Distribution of Singles

$$S_g^Y(w_g) = (1 - \kappa_0) \int_{\mathcal{B}} \int_{\mathcal{W}_{g'}} \int_{\mathcal{W}_g}^{w_g} (1 - \mathbb{1}^Y(w'_g, w'_{g'}, b)) dS_g^Y(w'_g) d\hat{S}_{g'}^Y(w'_{g'}) dG(b) + \frac{\delta \kappa_0 \kappa_1}{\kappa_0 \kappa_1 + \delta(\kappa_0 + \kappa_1)} \int_{\mathcal{W}}^{w_g} dF_g(w'_g),$$

$$S_g^M(w_g) = \kappa_0 \int_{\mathcal{B}} \int_{\mathcal{W}} \int_{\mathcal{W}}^{w_g} (1 - \mathbb{1}^Y(w'_g, w'_{g'}, b)) dS_g^Y(w'_g) d\hat{S}_{g'}^Y(w'_{g'}) dG(b) \\ + (1 - \kappa_1) \int_{\mathcal{B}} \int_{\mathcal{W}} \int_{\mathcal{W}}^{w_g} (1 - \mathbb{1}^M(w'_g, w'_{g'}, b)) dS_g^M(w'_g) d\hat{S}_{g'}^M(w'_{g'}) dG(b),$$

$$S_g^O(w_g) = \kappa_1 \int_{\mathcal{B}} \int_{\mathcal{W}} \int_{\mathcal{W}}^{w_g} (1 - \mathbb{1}^M(w'_g, w'_{g'}, b)) dS_g^M(w'_g) d\hat{S}_{g'}^M(w'_{g'}) dG(b) + (1 - \delta) \int_{\mathcal{W}}^{w_g} dS_g^O(w'_g).$$

where $\hat{S}_{g'}^a(w'_{g'})$ is the normalized wage distribution of the opposite gender

$$\hat{S}_{g'}^a(w'_{g'}) = \frac{S_{g'}^a(w'_{g'})}{\int_{\mathcal{W}} dS_{g'}^a(w'_{g'})}$$

► back to main

Specification of Child Penalty

For individual i at time t ,

$$y_{it} = \alpha_i + \lambda_t + \sum_{q \neq -1, -\infty} \beta_q \{q = t - c_i\} + \varepsilon_{it}$$

- ▶ α_i : Individual fixed effect
- ▶ λ_t : Year fixed effect
- ▶ c_i : Year of first childbirth
- ▶ y_{it} : Working hours, domestic labor hours, or leisure hours

Data: JHPS 2005-2022

- ▶ **Treated**: First childbirth in 2005 or later
- ▶ **Control**: People never had a child until 2022

On the line of works of **Child Penalty** (Kleven, Landais, and Søgaard 2019)

▶ back to main

Cumulative Results

	α_l	μ_f	θ	Model	Data	Model	Data
Baseline (2018-2022)				0.839	0.836	1.622	1.446
	✓			0.847		1.699	
		✓		0.839		1.622	
	✓	✓		0.847		1.699	
			✓	0.855		1.723	
	✓		✓	0.859		1.794	
		✓	✓	0.855		1.723	
All (2005-2009)	✓	✓	✓	0.859	0.928	1.794	1.709

▶ back to main

References

Aguiar, Mark, Mark Bils, Kerwin Kofi Charles, and Erik Hurst. 2021. "Leisure Luxuries and the Labor Supply of Young Men". *Journal of Political Economy* 129 (2): 337–82. <https://doi.org/10.1086/711916>.

Ahn, Namkee, and Pedro Mira. 2002. "A Note on the Changing Relationship between Fertility and Female Employment Rates in Developed Countries". *Journal of Population Economics* 15 (4): 667–82. <https://doi.org/10.1007/s001480100078>.

Baudin, Thomas, David De La Croix, and Paula E. Gobbi. 2015. "Fertility and Childlessness in the United States". *American Economic Review* 105 (6): 1852–82. <https://doi.org/10.1257/aer.20120926>.

Doepke, Matthias, and Fabian Kindermann. 2019. "Bargaining over Babies: Theory, Evidence, And Policy Implications". *American Economic Review* 109 (9): 3264–3306. <https://doi.org/10.1257/aer.20160328>.

References

Erosa, Andres, Luisa Fuster, and Diego Restuccia. 2016. "A Quantitative Theory of the Gender Gap in Wages". *European Economic Review* 85 (June):165–87. <https://doi.org/10.1016/j.eurocorev.2015.12.014>.

Guo, Naijia, and Anning Xie. 2024. "Childbirth and Welfare Inequality: The Role of Bargaining Power and Intrahousehold Allocation."

Kleven, Henrik, Camille Landais, and Jakob Egholt Søgaard. 2019. "Children and Gender Inequality: Evidence from Denmark". *American Economic Journal: Applied Economics* 11 (4): 181–209. <https://doi.org/10.1257/app.20180010>.

Kopecky, Karen A. 2011. "THE TREND IN RETIREMENT*". *International Economic Review* 52 (2): 287–316. <https://doi.org/10.1111/j.1468-2354.2011.00629.x>.

References

Kopytov, Alexandr, Nikolai Roussanov, and Mathieu Taschereau-Dumouchel. 2023. "Cheap Thrills: The Price of Leisure and the Global Decline in Work Hours". *Journal of Political Economy Macroeconomics* 1 (1): 80–118. <https://doi.org/10.1086/723717>.

Lise, Jeremy, and Ken Yamada. 2019. "Household Sharing and Commitment: Evidence from Panel Data on Individual Expenditures and Time Use". *The Review of Economic Studies* 86 (5): 2184–2219. <https://doi.org/10.1093/restud/rdy066>.

Prescott, Edward C. 1986. "Theory Ahead of Business Cycle Measurement". *Quarterly Review* 10 (4). <https://doi.org/10.21034/qr.1042>.