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Abstract

To explain the observed stability in real GDP growth, existing endogenous growth
theories propose models in which the quantity, quality or variety of the final out-
put increases exponentially in the long run. However, such exponential increases
typically require a knife-edge degree of externality, which is not supported by micro-
level observations. This paper presents a new theory of long-term growth in which
a constant number of new goods are introduced per unit of time and focuses on the
movement of prices and quantities after introduction. We show that if the quality-
adjusted prices and quantities of individual goods follow a typical pattern of the
product lifecycle, then the long-term rate of real GDP growth, as measured by SNA
statistics, becomes positive without exponential growth in the quantity, quality or
variety of final outputs. We develop a prototype model and its extensions, showing
that the conditions for positive real GDP growth are less restrictive than typical
knife-edge assumptions. We also demonstrate that the long-term real GDP growth
rate in the non-exponential model is closely related to the rate of increase in the
money-metric utility.
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Figure 1: Long-term Evolution of Real GDP per Capita in the United States Since 1830
(2011 International Dollar). Source: Madison Project, Bolt and van Zanden (2025).

1 Introduction

Since around the time the First Industrial Revolution was completed, the growth in real
GDP per capita in the United States has been remarkably stable. Figure 1(a) depicts
the time series of the real GDP on a log scale, where the slope of the series represents the
growth rate. Although there have been short- to midterm fluctuations, the figure clearly
shows that the log of the real GDP per capita closely follows a linear trend, implying that
the long-term rate of per capita GDP growth is almost constant. Figure 1(b) shows the
time path of the U.S. real GDP per capita on a linear scale without taking the logarithm.
Given that the GDP growth rate is stable, it is well known that the level of real GDP
per capita is increasing exponentially in the long run.

Given these findings, it is natural for existing studies on endogenous growth to explain
the phenomenon of long-term growth via models in which the per capita output con-
tinues to grow exponentially. Initially, this was an extremely challenging task because
reproducible inputs are subject to diminishing returns, which implies that the accumu-

lation of those factors alone cannot explain the exponential growth. Seminal studies



in endogenous growth theory thus overcame this challenge by assuming the presence of
strong intertemporal knowledge spillovers.

In variety-expansion models (e.g. Romer, 1990; Grossman and Helpman, 1991a), the
productivity of new R&D is assumed to increase as knowledge accumulates with the
past stock of R&D. To sustain economic growth, the elasticity of this spillover ¢ needs
to equal one. Similarly, in quality ladder models (e.g. Grossman and Helpman, 1991b;
Aghion and Howitt, 1992), the increment in quality due to successful new R&D depends
on the quality of the existing good, which is a result of the past stock of R&D. Sustained
growth requires the increments to be proportional to the existing quality, which means
that the elasticity of the externality should again be one. Finally, in AK-type growth
models (e.g. Romer, 1986; Rebelo, 1991), the elasticity of production with respect to all
reproducible factors and the elasticity of their externality effects must add up to one.!
In almost all endogenous growth models, long-term growth can be sustained only when
one such knife-edge condition is satisfied.?

Nevertheless, a puzzle remains. Indeed, the externality and nonrivalry of knowledge
play essential roles in improving productivity (e.g. Griliches, 1998). However, if we
look at the spillover process more precisely, no concrete evidence supports any of these
assumptions. Klenow and Rodriguez-Clare (2005, Section 3) reviewed various AK-type

models. They concluded that such models are empirically implausible because of the

"When there are multiple sectors, at least one sector that produces a reproducible factor (typically
physical capital or human capital) must satisfy this restriction. For example, Lucas (1988) initially
introduced a human capital accumulation function h; = h{G(1 — u;) and then made the assumption
¢ = 1, following Uzawa (1965). After doing so, he wrote, “the feature that recommends his formulation
to us is that it exhibits sustained per capita income growth,” which gives a clear example of a case where
such a knife-edge assumption is justified not by microlevel observations but rather by the aggregate

”

outcome. Lucas noted that “human capital accumulation is a social activity,” which suggests that the

elasticity ¢ = 1 includes the effect of externalities.

2Growiec (2007, 2010) formally proved that, with any generalization in functional form, exponential
growth cannot be explained without imposing at least one knife-edge assumption in the model. An
exception is Peretto (2018), who showed that sustained growth can be obtained when ¢ > 1 in the
Schumpeterian growth model if the excessive portion of ¢ (i.e., ¢ — 1) is diluted by the proliferation of

products.



lack of a tight enough relationship between investment rates and growth rates in cross-
country data. For the elasticity of spillover ¢ in R&D-driven growth models, Jones (1995)
clearly stated, “¢ = 1 represents a completely arbitrary degree of increasing returns
and... is inconsistent with a broad range of time series data on R€D and TFP growth.”
He convincingly stated that ¢ = 0 is the most natural case, and while ¢ can either be
negative by the “fishing out effect” or positive by the “better tools effect,” it is reasonable
to assume that ¢ < 1. Bloom et al. (2020) estimated the degree of diminishing returns
(1 — ¢) in research productivity in various industries and reported that ¢ is significantly
less than one (even negative) for almost all industries. They concluded that improving
the quality of goods at a constant exponential rate is becoming more difficult.

A possible answer to this puzzle is semi-endogenous growth theory with ¢ € (0,1),
where the long-term rate of growth is ultimately driven by population growth. However,
Jones (2022) predicted that economic growth will eventually come to an end, given that
there are upper limits on population, research intensity, and education attainment. This
paper presents an alternative possibility, i.e., that the measured economic growth can

continue indefinitely with a constant population under the natural assumption of ¢ = 0.

Overview of the mechanism

This paper presents a theory that explains the stability of the observed real GDP growth
rate by considering the vintages of products and their product lifecycle. In this setting,
we will show that the measured GDP growth rate becomes positive under more agreeable
conditions than a knife-edge level of externality, as assumed in existing endogenous
growth models.

Recall that we first presented the (log) level of GDP in Figure 1, and then discussed
real GDP growth. However, in the System of National Accounts (SNA) statistics (the
NIPA in the U.S.), the GDP data are constructed in reverse order. Statistical agencies
first calculate the real GDP growth rate by comparing the quantities of various product

groups in adjacent years, using the same set of prices for both years. Then, they construct



the aggregate level of real GDP via the chain rule:

T
Real GDP at year T] = [Real GDP at reference year to} X H (14 gt4-1),
t=to+1

where g; ;1 is the measured real GDP growth rate between year t and year ¢ — 1.3 There-
fore, the fact that the time series of measured per capita real GDP exhibits exponential
growth only means that the series of g;;—1, from which the real GDP is calculated, is
positive and stationary. Because the composition of final goods differs across time, it
is not evident whether the stationarity in the g;;—1 series implies exponential growth
in the quantity or quality of any particular final good. In Appendices A.1 and A.2, we
provide two simple examples in which consumer expenditure gradually shifts to newer
final goods. In both examples, the g;;—1 series is sustained at a positive constant level
even though the quantity or quality of no particular good grows exponentially.

Given that there is no need to explain the exponential increase in any good, less
restrictive assumptions are sufficient to explain the fact that the measured real GDP
has been growing steadily. To replicate the environment where the real GDP growth
rate is calculated by statistical agencies, we consider a stylized model in which new final
goods are gradually introduced and explicitly focus on their prices and quantities over
their lifecycle. In this multiproduct setting, we show that the measured GDP growth
rate becomes a positive constant when the following is true: (i) new goods (or services)
are continually introduced to the market; (ii) the quality-adjusted prices of each good
decrease as they become older compared to newer goods; and (iii) the expenditure share
for very old goods is limited. Condition (i) does not require the number of goods to
increase exponentially. Conditions (ii) and (iii) state that the price and quantity for
each good should follow the well-observed pattern of the product lifecycle.* This type

of economic movement does not require a knife-edge level of externality. This contrasts

3The real GDP in reference year to can be set arbitrarily because this is simply an index. An often-used
method is to set it to the nominal GDP at time tg.
4 Appendix A.3 shows that the two examples in Appendices A.1 and A.2 satisfy the three conditions.

In addition, we explain how these two simple examples connect to the general equilibrium models in

Sections 3 and 4.



with existing endogenous growth models, which require some variables to grow exponen-
tially. Nevertheless, knowledge externalities are crucial for growth, as they often work
behind the product lifecycle, which includes quality improvements and cost reductions.
Our prototype endogenous model incorporates these, but the decline in quality-adjusted
prices does not need to occur at an exponential speed. As a result, a weaker externality
is sufficient for sustaining measured real GDP growth.

Our results may still seem paradoxical. Although the output, in terms of quantity,
quality, or variety, does not increase exponentially, the measured real GDP is increasing
exponentially. Do the real GDP statistics overestimate the actual growth? Not neces-
sarily. Like in recent studies (Bagaee and Burstein, 2023; Jaravel and Lashkari, 2024),
the measured real GDP in our model is closely related to the money-metric utility, which
evaluates the change in the utility of consumers using the equivalent variation. In the
prototype general equilibrium model, we show that the money-metric utility can increase
exponentially or even faster depending on how consumers value the arrival of new goods.
In particular, if there is an upper bound on the utility obtainable from existing goods
(measured in the unit of the utility function), the benefits of being able to buy new
goods can surpass the benefits of having an exponentially larger budget.® In fact, the
measured real GDP tends to underestimate the growth of money-metric utility because
it captures only a part of the utility gains related to the introduction of new goods.

Some recent studies view long-term growth differently than an exponential increase
in final output at the rate of measured GDP growth. Leén-Ledesma and Moro (2020)
considered a two-sector model and calculated the growth rate via the methodology em-
ployed by the NIPA. They showed that the shift in the expenditure share from goods to
services explains cross-country growth. In this paper, we propose that continual shifts in

expenditure shares from old goods and services to new goods and services are behind the

5For example, let us consider the change in money-metric utility from 200 years ago to the present.
At the beginning of the 19th century, most industrial goods were absent; thus, it was impossible to live
a life as convenient as that today, however rich one was. Effective medical services or drugs were almost
nonexistent, and as a result, mortality was high, even among wealthy people. Would you prefer to live
200 years ago if you were given an arbitrarily larger budget at that time? If the answer is no, the change

in the money-metric utility over 200 years is infinity. See Section 3.8 for a formal analysis.



stability in measured GDP growth. Aghion et al. (2019) examined the possibility that
the measured GDP growth rate underestimates the welfare gains from creative destruc-
tion, which is consistent with our findings. A notable difference is that we do not require
an exponential increase in the quality of individual products because the expenditure
shifts to the newer variety of goods. Philippon (2022) suggested that a linear trend fits
the TFP data better than an exponential trend for periods ranging from several decades
to a few centuries. According to his theory, long-term GDP growth can be sustained
only when there are occasional changes in the linear trend (e.g., by the arrival of general-
purpose technologies), and the slope of the linear trend needs to increase exponentially.
In this paper, we explore a mechanism that does not require exponential increases or a
knife-edge degree of externalities, even in the very long term.

The rest of the paper is constructed as follows. Section 2 presents a stylized but fairly
general theory that provides the conditions under which measured real GDP growth can
be sustained in a setting without exponential expansion. On the basis of this theory,
Section 3 develops a prototype R&D-based endogenous growth model. Without requiring
knife-edge conditions, the model shows that innovation continues and that the measured
GDP growth remains positive. Section 4 introduces the obsolescence of goods, and
Section 5 considers multiple sectors. In these two sections, we generalize the theory and
the prototype model to demonstrate that we can obtain a positive constant real GDP

growth rate in wider (even less restrictive) situations. Section 6 concludes the paper.

2 Theory

In this section, we theoretically derive the condition under which the real GDP growth
rate, as measured by the SNA, can be sustained. In a setting where new goods are con-
tinually introduced but not at an exponential speed, we show that the sustainability of
measured GDP growth depends on the pattern of changes in prices and quantities in the
product lifecycle. The results suggest various possibilities for constructing general equi-
librium models in which measured GDP growth can be sustained under less restrictive
assumptions than those found in typical endogenous growth models. A simple prototype

model is presented in Section 3.



2.1 Measuring GDP Growth with Vintages of Goods

Let us consider an economy with a constant population and many goods. While we
follow a convention in the variety expansion model by calling them goods, it is more
suitable to think of each good in theory as a group of products or services based on
the same technology. Each good is indexed by i € [0, N¢], where ¢ = 0 is the oldest,
and ¢ = Ny is the most recently introduced good. The number of goods N; increases
whenever new goods are introduced.®

Let py(i) and 7;(7) denote the price and quantity, respectively, of each good 7 at time
t. We normalize the price level and the quantity unit of each good so that the price and
quantity of the newest good are unchanged over time. As in SNA statistics, we define
pi(i) and 7,(7) as quality-adjusted values. For example, if the quality of good i is doubled
(so that consumers receive the same utility from half the quantity), then our measure of
Z4(1) is doubled, whereas that of p;() is halved.

In this stylized environment, we follow the method of the SNA statistics to calculate
the real GDP growth rate. This can be done by comparing the values of all final outputs
between two consecutive years, e.g., year ¢ — 1 and year t. Their values are measured
via the common set of prices, which is usually the set of observed prices in a given base
year. Because the base year is frequently updated in official statistics and because we
are interested in long-term dynamics, we suppose that there is no gap between the base
year and the year in which the growth rate is computed.” Then, the real GDP growth
rate between years t — 1 and t can be written as follows:

S, P @i+ 37 (i) (@(0) — T (i) di
Jo 1 Bu(i)E 1 (i) i '

This equation is composed of the integrals of two functions: py(i)x:(i) and py(i)xi—1 (7).

(1)

gtt—1 =

Figure 2 depicts the curves of these two functions against the index of varieties ¢ for two

5N; includes the number of goods that are no longer produced.

"In the U.S., the NIPA computes the growth rate in two ways, i.e., by setting the base year to ¢ and
by setting it to ¢ — 1. Then, the agency calculates the geometric average of the two values. For ease of
exposition, here, we show only the growth rate in which the base year is ¢t. In appendix B, we explain
the calculation of the real GDP growth rate when the base year is t — 1. The difference between the two

cases disappears at the limit where the period length approaches 0, as we consider in the next subsection.



Case 1: When 74(7) is always increasing in .

A -
value of production pe(7) 7 (1)
for each good i
attime tand t-1, growh rate
measured with =(a+b)/c
price at time t

>

index of varieties

Case 2: When 7(i) decreases with ¢ sometime after introduction.

value of productionA pt(7) 7 (1)
for each good i
attime tand t-1,
measured with
price at time t

growth rate
=(a+b-d)/(c+d)

> 1

index of varieties

Figure 2: Calculation of the Real GDP Growth Rate: Two Cases.

cases, i.e., when the quantity of existing goods always increases with time (Case 1) and
when the quantity of existing goods decreases in some part of their lifecycle (Case 2).
In Case 1, area (a) represents the sum of the values of new goods introduced between
time ¢t — 1 and time ¢, evaluated by the prices at time ¢. Similarly, area (b) represents
the value of the increased production of goods that already existed at time ¢t — 1. These
two areas measure how economic activity has increased from time ¢t — 1 to time ¢ and
correspond to the two terms in the numerator of Equation (1). Area (c) represents the
value of total production at time ¢ — 1, evaluated again by the prices at time ¢. This area
corresponds to the denominator of Equation (1). In this way, the real GDP growth rate
can be understood as the ratio of area (a)+(b) to area (c), which measures the rate at
which the economic activity at time ¢ increases from time ¢ — 1.

This procedure can be generalized to the case where the output quantity z;(7) is not
monotonic in ¢. Case 2 in Figure 2 illustrates an example where the production of a

certain range of goods declines between periods ¢t — 1 and ¢t. A portion of curve p;(7)z(7)



then falls below curve p;(i)z¢—1(¢). In this case, the real GDP growth rate is given by
the ratio of area (a)+(b)—(d) to area (c)+(d).

2.2 Non-Exponential Steady State with a Product Lifecycle

The fact that the measured U.S. real GDP growth rate has been stable for almost two
centuries suggests that Ny, py(7), and Z4(i) in Equation (1) may have some steady-state
properties in the long run. This subsection presents a simple notion of a steady state in
the environment explained thus far. In particular, we focus on the steady-state dynamics
where neither variety, quantity, nor quality expands exponentially. For ease of analysis,
we describe the economy in continuous time throughout the rest of the paper.

Suppose that, in the long run, N; increases by a positive constant n per unit of time
as follows:

Ni—=n>0 as t— oo, (2)

Recall that existing variety expansion models require a strong and exact degree of knowl-
edge spillover to maintain the exponential expansion of varieties, where N, /Ny is con-
stant. In contrast, the linear increase in Ny in Equation (2) does not require such strong
knowledge spillovers within the R&D sector, as we will see in the general equilibrium
model in Section 3.

Let s(i) denote the time when good i is developed. It is convenient to label each
good by its age, 7 =t — s(i), i.e., the time passed from its introduction. Given that n
new goods are introduced per unit of time, an age 7 good is the nrth newest good. This

means that the index of a good 7 and its age 7 are related by the following:

N
i = Ny — n, or equivalently, 7 =t — s(i) = — L (3)
n

With this notation, let us say that the economy has reached a steady state if every
good’s price and quantity follow the same time evolution with respect to 7. Formally,
the economy can be said to be converging to a steady state if time-invariant functions

p(7) and z(7) exist such that

pi(1) = p(t —s(i)) =p(r), x4(i) = x(t —s(i)) =x(1) as t— oo. (4)



Let T > 0 denote the age beyond which the product is never produced. In typical
variety-expansion endogenous growth models, goods never retire from the market. In
this case, T' = co. However, in practice, many products disappear after some time. Our
theory can be applied to both cases, where T is finite or infinite. We assume that p(7)

and z(7) satisfy the following properties:

Assumption 1.

(i) Both p(T) and z(7) are nonnegative and continuous for all 0 < 7 < T, where T is
such that x(1) = 0 for all T > T. Additionally, they are differentiable for all0 <7 < T.
(ii) T can be infinite, but p(T) and z(7) do not increase exponentially: lim, o p'(7)/p(7) <
0 and lim, o 2'(7)/2(7) <0 if T = .8

(iii) The newest good’s price and quantity are both positive: p(0) > 0 and z(0) > 0.°

With Assumption 1(i), the present paper focuses on the continuous setting because
it is mathematically less demanding and does not sacrifice intuitions. Since x(7) rep-
resents the quality-adjusted quantity, Assumption 1(ii), combined with Equation (2),
guarantees that neither quantity, quality, nor variety grows exponentially in this econ-
omy. Assumption 1(iii) is an obvious assumption. When a new good appears in the

market, it should imply that the expenditure for the good, p(0)x(0), is positive.

Definition 1. A non-exponential asymptotic steady state is a situation in which the num-
ber of goods follows Equation (2), while the paths of quality-adjusted prices and quantities
of goods, i.e., py(i) and T.(i), respectively, satisfy Condition (4) and Assumption 1.

In the remainder of the paper, we use the term “steady state” unless doing so leads
to confusion. Figure 3 intuitively depicts the evolution of the quality-adjusted prices and
quantities in the above definition of the steady state. The graphs can be viewed in two
ways, i.e., drawn against the i-axis (index of goods) running from left to right or drawn

against the 7-axis (age of goods) running in the opposite direction. The two variables,

® Note that the time derivative of the quantity in the steady state is Z; (i) = La(t—s(i) =2’ (t—s(i)) =
' (7). Therefore, o' (7)/x(r) = Z:(i)/%+(i) represents the growth rate of the quantity of age 7 good, or
equivalently, that of index i = N; — n7 good. Similarly, p'(7)/p(7) = p,(i)/p:(i) in the steady state.

9In this paper, we use the term “positive” to mean greater than (not including) zero.

10
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Figure 3: Evolution of Prices and Quantities in a Non-Exponential Steady State.

i and 7, are related according to Equation (3); however, the relationship changes over
time as V; increases. At time ¢, the origin of the T-axis coincides with the point of i = Ny
on the i-axis because the newest good i = N; is age 7 = 0 at time t. Over time, the
origin of the T-axis moves to the right with the speed of the introduction of new goods,
N, = n, as does the position of the graph drawn against 7.

The upper panel of Figure 3 illustrates the schedule of quality-adjusted price p(7),
assuming that it decreases with age 7 because a product either becomes cheaper or
becomes higher quality over time after its introduction. Then, p;(i) is increasing in i at
any given time ¢ since the newer goods have a larger index i. The figure also explains
the movement of the price of each good p;(7) over time. Even in the steady state where
function p(7) is stationary, the price of individual good p;(7) shifts downward to the
dotted curve because the position of function p(7) continues to move to the right as new

goods are developed.'?

10 Although this is a convenient way to explain the steady-state dynamics, note that the economic

environment, such as technology, preference, and market structure, first determines the evolution of the

11



The lower panel of Figure 3 explains the evolution of quality-adjusted quantities of
goods over time. The panel is drawn under the assumption that z(7) is increasing in 7,
which naturally matches our example in which older goods have lower quality-adjusted
prices. In this case, the demand for each good 7;(i) increases over time as the z(7)
function shifts to the right. However, note that Assumption 1(ii) rules out exponential
growth in the quantity of any good. Even when T' = oo, the growth rate of x(7) must
be either zero or negative, as 7 — oo.

Similar to Case 2 of Figure 2, we can also consider a steady state in which the
quantity may decrease with age, even though older goods are less expensive. Such a
pattern emerges when consumers do not like outdated goods or if newer goods replace

parts of functions that are provided by older goods, as we discuss later in Section 4.

2.3 Measured Real GDP Growth Rate in the Steady State

Now, we examine whether the non-exponential steady state explained in Section 2.2
implies a positive and constant real GDP growth rate. Note that the conventional
definition of real GDP growth in Equation (1) gives the average growth rate between
two discrete periods. To map this definition to a continuous-time growth model, it is
convenient to consider the instantaneous growth rate g; at time ¢. This can be obtained
by replacing ¢ —1 in Equation (1) with t — A and taking the limit of A — 0in gz a /A1

Gri—A N; - - pt(Ny)T(Ny) + feX Dt z):c (i)di — fith ()T (i)di

lim =2 = ~ )
7= X5 TA Jiex, P(0)T, (i) di

()

&?

where X; and §2; represent the set of goods that are in production and the set of goods
that reach the end of life, respectively, at time ¢. Suppose that the economy converges
to a steady state, as defined in Definition 1. The number of goods grows linearly, and
the evolution of prices and quantity in terms of age becomes stationary. The long-term

growth rate can be obtained by substituting Equations (2)-(4) into Equation (5). If T’

price of individual goods p(¢) in equilibrium. Then, the long-term pattern of movement in p:(i) shapes

the stationary p(7) function.

See Appendix B for the derivation of (5) when the prices of t — 1 are used to evaluate g ;1.

12



is finite,!?

T ’
g2 POO) 0 ] P (e DTy

n fOT p(T)z(7)dr

When T is infinite,!3

0)z(0) +n [} p(r)a’(1)d
gt — g = hm np(0)z( nfo ) (r)dr as t— oo. (7)
T—oo nfo dT

The interpretations of the growth rates in Equations (6) and (7) are essentially the
same as that in Equation (1), except that growth is now represented in terms of age and
in continuous time. In the numerator, np(0)z(0) represents the value of newly introduced
goods, whereas n fOT p(7)a’(7)dT represents the value of changes in quantities of existing
goods given price function p(r). When T is finite, —np(T)x(T) represents the loss of
the value of goods that retire from the market at the end of their life. All terms are
multiplied by n because there are n goods per unit of age. The sum of these terms
reflects the speed of increase in economic activity. The denominator of Equations (6)
and (7), n fo T)dr, gives the total value of existing production, i.e., the nominal
GDP of the economy given prices p(7). The ratio of the two yields the real GDP growth
rate.

The following proposition provides a simpler formula for the long-term GDP growth

rate in the steady state.

2Equation (6) can be obtained from Equation (5) as follows. First, we substitute p(7) and x(7) for
Pi(i) and F;(:). Similarly, (i) can be written as ' (7) (see footnote 8). Next, we change the integration
variable from di in Equation (5) to d7. By differentiating Equation (3) for a given ¢, we obtain di = —ndr.
We also need to change the integration interval. If T is finite, then X; = [N;—nT, N;]. From Equation (3),
i = Ny —nT and i = N; correspond to 7 = T and 7 = 0, respectively, as illustrated in Figure 3. From
these, the denominator of Equation (5) is hmt%o@fext pe(0)ZTe(1)di = limyo0 qu p(T)z(r)(—n)dr —
n fo 7)dr. Similarly, the second term in the numerator becomes n fo (t)2'(r)dr. The first and
third terms become np(0)z(0) and —np(T)z(T), respectively. Therefore, the limit of the numerator of
Equation (5) is np(0)z(0) + nfOTp(T)m'(T)dT —np(T)z(T).

3When T is infinite, X; = [0, N¢]. Note that i = 0 and i = N; correspond to 7 = ¢t and 7 = 0,
respectively. As t — oo, 7 = t approaches oo; therefore, the denominator approaches n fO°° p(T)z(7)dT.
Note that the third term in the numerator disappears because Q; = ) when T' = oo. Note also that in
the RHS of (7), we first consider the integration from 0 to (a finite value) T and then take the limit of

T — oo because [ p(7)x(7)dr can be infinite.
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Proposition 1. Suppose that the economy converges to a non-exponential asymptotic
steady state, as defined by Definition 1. Then, the real GDP growth rate g; asymptotes

to g in the long run, where g is given as follows:

(i) If fo 7)dT is finite (which is always true when T is finite), then'*
9=— f“ (®)
f() dT
(ii) Iffo 7)dT = 00, then g = 0.

Proof. (i) First, we consider the case of finite 7. In the numerator of ( ), integration
by parts implies that fOTp(T)x’(T)dT = p(T)z(T) — fo 7)dr. Since
p(0)z(0) and p(T)xz(T') cancel out, we obtain (8).

Next, we consider the case of T = co. Given that fOT P T):L’(T)dT is finite, we can
write the RHS of Equation (7) as follows: (p(0)z(0)+ [y p(7)’ )/ (fs P 7)dT).
Additionally, the finiteness of [;° p(7)x(7)dr implies that lim, p(T):c(T) =0 (1.e.,
p(00)z(00) = 0). Therefore, integration by parts implies that [ p(7)z/(7)dr = —p(0)(0)—

o P (T)z(r)dr, from which we obtain (8).

(ii) In this case, T is necessarily oo. If [(*p 7)d7 is finite, then the result
directly follows from Equation (7). Now, suppose that fo p(7)x’(T)dr is either +oo or
—o00. Since both the numerator and the denominator in Equation (7) are infinite, we

apply L’Hopital’s rule to Equation (7) to obtain the following:

J e PO (D)
T—oo p(T)x (T) T—oo x(T)

<0, (9)

where the last inequality follows from Assumption 1(ii). In the following, we show that
g < 0 does not occur by contradiction. For g to be strictly negative, z(7) needs to
shrink exponentially, which also means that z/(7) must shrink exponentially. However,
from lim,_, p'(7)/p(7) < 0 in Assumption 1(ii), fOT p(7)a’ (T)dr is finite since p(7)z’(7)
should shrink exponentially. Therefore, g < 0 contradicts the initial assumption that

fo 7)dr is either 4+o00 or —oo. O

Although Equation (8) has a simple form, it includes the contributions from the new

goods and disappearing goods since it is mathematically equivalent to Equations (6) and

" Note that fo 7)dp(T) is equivalent to fOT p’(T)z(7)dT given that p’(7) exists.
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(7) as long as fOT p(T)z(7)dT < 00. Proposition 1 immediately implies the requirements

for positive long-term GDP growth.

Corollary 1. The long-term real GDP growth rate g is a positive and finite constant if

and only if the following two conditions are satisfied:'>
T
—/ x(7)dp(T) is positive and finite, and (10)
0
T
/ p(T)x(7)dT is finite. (11)
0

The expression fOT p(7)x(7)dr in Condition (11) is the denominator of Equation (8).
It is the cumulative expenditure that one product attracts over its lifecycle. Note that
the nominal GDP in the steady state is nfOT p(7)x(7)dr. Therefore, Condition (11) also
means that the nominal GDP is constant, given our price normalization. The expression
in Condition (10), — fOTx(T)dp(T), is the numerator of Equation (8). It represents the
cumulative reduction in the quality-adjusted price of a good during its product lifecycle.
Given that the prices in the model are normalized so that nominal GDP in the steady
state is constant, the decline in the quality-adjusted price in the model means that the
growth of the quality-adjusted price of goods measured in currencies is slower than the
growth of nominal GDP.'® When this happens, consumers have more purchasing power,
which improves their utility. This income effect is more significant when the quantity of
the good is greater. Therefore, in Condition (10), the price reduction —dp(7) is weighted
by quantity z(7) and then integrated. The integrated sum gives the total income effect
that one product generates over its product lifecycle.

If both conditions are satisfied in a non-exponential steady state, as defined in Def-
inition 1, the real GDP growth rate is strictly positive in the long run, even though no
variable grows exponentially. In Appendix C, we discuss the implications of Conditions

(10) and (11) in more detail.

>Note that fOT p(T)z(7)dT is always positive from Assumption 1; therefore, we require only finiteness
in Condition (11).

165ee Appendix C for a more detailed explanation.
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Another way to interpret the formula (8) is to rewrite it as follows:

T
=— o(T)dInp(7), where o(7) = p(r)x(7) 12
9== [ animp(r) ()= (12)

is the expenditure share given to age T goods, and dIn p(7) = dp(7)/p(7) = (p'(7)/p(7))dT
is the growth rate of the price of age 7 goods. In this version of the formula, the inte-
gral fOT o(7)dInp(7) represents the growth rate of the Divisia price index.!” Recall that
the prerequisite for the formula (8) implies that the nominal GDP (n fOTp(T):E(T)dT) is
constant under our price normalization. Given this, the formula (12) indicates that the
real GDP growth rate can be obtained by subtracting the growth of this Divisia price

index from the nominal GDP growth rate (i.e., zero).

2.4 Graphical Examples

Proposition 1 shows that the real GDP growth rate depends only on functions p(7) and
x(7). Therefore, we can represent the growth rate graphically via the shapes of these
two functions. Figure 4 provides three examples.

Example 1 shows the simplest case, where the quality-adjusted price (weakly) de-
creases with age throughout the product lifecycle. The left panel depicts the evolution
of {x(7),p(r)} in the z-p diagram. T is finite in this example. The good enters the
market at point {x(0),p(0)} and continues to be produced until its age reaches T' = 3.
Then, the numerator, — fOT x(7)dp(T), can be expressed by the area that is encompassed
by the locus of {p(7), z(7)} and the vertical axis in the z-p diagram (shown in blue). This
graphical representation can be interpreted as follows. Whenever the quality-adjusted
price falls by dp(7), either through cost reductions or through quality improvements,
consumers can save their purchasing power by the amount —x(7)dp(7). The blue area
shows the cumulative benefits of this good throughout its lifetime. The area is positive

and finite as long as p(0) > p(T).'8

17See Hulten (1973) for explanations of the Divisia index numbers. Jorgenson and Criliches (1971)
discusses the benefit of using Divisia index numbers in measuring productivity growth. Oulton (2025)

argues that Divisia indices represent the ideal to which real-world, discrete indices are an approximation.

18p(0) > p(T) requires the price to fall strictly with age at some point in a good’s life.
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Example 1: When 7 is finite and p(7) is weakly decreasing

p(7) p(r)z(T)

0 z(r) 0 T T2 T3 T

Example 2: When T is finite and p(7) is nonmonotonic

p(7)z(7)

0 z(7) 0 T1 T2 T3 T4 Ts 76

Example 3: When 7' = oo and p(7) is decreasing

p(7) p(r)z(7)

[constant] - 77

4

0 T1

Figure 4: Graphical Representation of the Real GDP Growth Rate.
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The right panel shows the evolution of expenditure for a good against its age,
p(7)x(7). The area below the curve (shown in yellow) gives the denominator, fOT p(T)x(T)dr.
According to Assumption 1, the expenditure for the good is positive at the time of intro-
duction, and it evolves within the nonnegative region during its lifetime. Since expen-
diture p(7)z(7) falls to zero at finite T' = 73, this area is positive and finite. According
to Proposition 1, the ratio of the blue area to the yellow area represents the real GDP
growth rate. Therefore, we can conclude that the real GDP growth rate in this example
is positive and finite.

Next, Example 2 considers a case where p(7) is not monotonic. As shown in the left
panel, the quality-adjusted price begins to increase after 73 years. When the price of the
good (relative to the newest good) increases during a part of its lifecycle (from 7 = 73
to 76), the area between this part of the z-p locus and the vertical axis (marked as (ii)
and (iii)) represents the loss of the purchasing power of consumers. This area needs to
be deducted from the benefits of the fall in quality-adjusted prices from 7 = 0 to 3.
Therefore, the numerator, — fOTx(T)dp(T), is given by area (i) minus area (iii) because
area (ii) cancels out. It can be either positive or negative but is always finite since T' = 74
is finite. The yellow area in the right panel gives the denominator, fOT p(7)z(7)dr, which
is positive and finite. Therefore, the real GDP growth rate is finite and is given by the
ratio of the blue area minus the red area to the yellow area. Additionally, note that the
growth rate becomes zero only by coincidence, when the blue and red areas are the same
size.

Finally, Example 3 shows a case in which the good remains in the market forever
(T = 00). The price p(7) (relative to the newest good) falls throughout the lifecycle,
and the quantity z(7) remains positive as 7 — co. For the yellow area to be finite,
the expenditure on very old goods has to decrease. More concretely, Condition (11) is

satisfied if the expenditure on old goods is bounded by a polynomial function of age with
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a power of less than —1:1?

p(7)z(7) < [constant] - 7~¢ for all 7 > 7, (13)

for some £ > 1 and 7 > 0. The dotted curve in the right panel gives an example of such
an upper bound. While we need a concrete model to determine whether Condition (13)
is satisfied, let us note that the condition does not require an exponential decrease in
expenditure. The RHS of Equation (13) decreases with age at the rate of {/7 for 7 > 7.
The rate of decline in the quality-adjusted price, £/7, can be arbitrarily close to zero
when we choose a large 7. Therefore, there is no minimum rate at which the expenditure
needs to decrease.

The blue area is positive, given that the quality-adjusted price falls throughout the
product lifecycle. Combined with Condition (13), the GDP growth rate is also positive.
The growth rate is finite if p(7) is bounded away from 0 as 7 — 00.20 If p(7) falls to
0 as 7 — oo, then the finiteness depends on the relationship between p(7) and z(7).
Specifically, if the quantity depends only on price, then the area becomes finite if the

price elasticity of the demand is less than one as the price approaches 0 from above.?!

3 A Prototype Non-Exponential Growth Model

This section presents a general equilibrium model that yields non-exponential steady-
state dynamics. While the theory in the previous section suggests many ways to construct

a model that achieves non-exponential growth while capturing various aspects of reality,

19Suppose that Condition (13) is satisfied. Then, the denominator of Equation (8) is I3 p(r)x(r)dr <
f:p(T)x(T)dT + [ [constant] - 78dr. The first term is finite, and the second term becomes [constant] -
717¢/(¢ — 1), which is also finite.

20Tn this case, x(7) must be finite as 7 — oo since otherwise, p(7)z(7) becomes infinite, contradicting
Condition (13). Given this, the blue area is finite.

21Suppose that we can define a static inverse demand function P(z). Focusing on the case of 2 — co
and P(z) — 0, the blue area can be written as p(0)z(0) + f;fo) P(x)dx. If the price elasticity of the
demand as p — 0 is less than one, then the elasticity of P(x) with respect to x as x — oo is greater than
one. This means that P(z) is bounded by [constant] -2~ for some & > 1 for large z. Therefore, the

integral is finite.
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this section presents the simplest prototype model to convey the substance of the non-
exponential growth theory as clearly as possible. We generalize the prototype model in

Sections 4 and 5.

3.1 Consumers

Consider an economy with infinitely lived representative consumers of constant popula-
tion L. At each point in time, each consumer supplies one unit of labor. The wage level

is normalized to one.?? The lifetime utility function of the representative consumer is

/0 b [ /0 " u(zt(z'))di] P, (14)

which is separable across both time and goods. Note that the sub-utility function is

given by

symmetric across goods; thus, we do not consider the obsolescence of older goods in this
simplest prototype model.

We assume that the sub-utility function u(c) is an increasing, continuous, differ-
entiable, and concave function of ¢ with u(0) = 0.2 In addition, we aim to model
consumers so that their demand behavior is reasonable when the price approaches zero
and infinity. In particular, we assume that the price elasticity of demand for individual
goods is less than one when the price is close to zero or, equivalently, when the quantity
is large.?* Otherwise, the expenditure for a single good becomes infinite such that p — 0,
which is unrealistic. At the same time, it is reasonable to assume that the price elasticity
is greater than one when the price is very high or, equivalently, when the quantity is
small. Otherwise, the expenditure for a single good increases without bound as p — oo,

which is also unrealistic.2> To satisfy these properties in the simplest way, we consider

22We later confirm that the price of the newest good is unchanged over time (p(0) = (1 + p)/q(0) =

1+ p). Therefore, this price normalization is consistent with the theory in the previous section.

21n a variety-expansion model, where the range of the integration (0 to N;) changes endogenously,

the utility from a nonexistent good should be zero; i.e., u(0) = 0.

24 As explained in Example 3 of Section 2.4, this condition also implies that the blue area is finite given
that the demand depends only on price. Therefore, this condition is crucial for obtaining g > 0 given

that goods are symmetric. We relax this assumption when obsolescence is introduced in Section 4.

251f the elasticity of u(c) were less than one for all ¢ > 0 (i.e., when € = 0 in Equation 15), then the
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u(c)
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continuous and smooth Eou_nded above
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>1 | Elasticity < 1
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|
|
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0 c ~=1/e
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Figure 5: Utility from Each Good (Left) and Expenditure for Each Good (Right)

a sub-utility function in which the elasticity changes at a threshold level ¢ > 0:

5)1/”5 v forgi)>¢ (0<e<l),

u(cy(i)) = (15)

where we specify constants by w = ¢/~ > 0and @ = (1/(1-1/8)4+1/(1/e—1))' "1/ >
0 so that both u(c) and u/(¢) are continuous at ¢ = ¢. The shape of u(c) is shown in the

left panel of Figure 5.

The dynamic budget constraint of the representative consumer is given by
. Nt
= ke + 1 — / B(i)a (i) di. (16)
0

In equilibrium, the aggregate asset holding, Lk;, should equal the value of all the firms
in the economy. Consumers maximize their lifetime utility (14) subject to the budget
constraint (16), given interest rate ry, prices of goods p:(i) for i € [0, Vy], initial asset
holding kg, and the standard non-Ponzi game condition.
From the above, we obtain a piecewise isoelastic demand function for individual
goods by the representative consumer:
A= O ST -
(Ae/w) " pe(i)=F i pli) > e HE A

first line of (15) would imply that u(0) = —oco, which is inconsistent with our assumption of «(0) = 0.
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As shown in the right panel of Figure 5, the expenditure for each good, p;(i)c:(i), has
a tent-shaped curve against its price, py(i), which means that the expenditure for an
individual good never explodes when the price approaches either zero or infinity. The
shadow price of the budget constraint A\; evolves according to the Euler equation A =
(p — rt)A. Its initial value is determined so that the transversality condition lim;_,

e P \ky = 0 is satisfied given the evolution of k; in Equation (16).

3.2 R&D and Production Technologies

Each consumer works either as a production worker or as a researcher. A researcher
succeeds in developing a new good with a Poisson probability of a per unit of time.
Let L denote the number of researchers in the economy, which is to be determined in

equilibrium. Over time, the number of goods increases according to
N; = aLl. (18)

Equation (18) is similar to standard variety expansion models, except that there is no
spillover term from the stock of past R&D.
Once developed, each individual good is produced with a linear production technology

that requires only labor. The output of good i is given by

Ty(1) = qu(i)le(2), (19)

where 1;(i) is the labor input and (i) is the marginal product of labor in producing
good i. Alternatively, we can interpret (i) as the quality-adjusted output and g;(7) as
the quality of good 7. In this case, one unit of labor produces one unit of good ¢ with
quality g;(7). In either interpretation, we call g;(7) the productivity for good i.

When any good is first developed, the productivity is normalized to 1. Then, as the
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production of this good proceeds, the productivity increases according to?®
Ge() = 1(@:() - fa()Y, 0<v <1, (20)

where I(7¢(7)) is an indicator function that takes a value of 1 when z;(¢) > 0 and 0 oth-
erwise. This means that productivity increases as long as production takes place. The
specification in Equation (20) is similar to those in the quality ladder models. There
are knowledge spillovers from the past productivity of technology to the current produc-
tivity increments. Parameter 1) € (0,1) specifies the degree of such spillovers. While
quality ladder models need to assume that 1) = 1 to achieve an exponential increase in
productivity (or quality), we do not make this knife-edge assumption. For the moment,
we consider the case of ¢ € (0,1) and later compare the result to the case of ¢ = 1.
The parameter 8 > 0 represents other possible factors that affect the speed at which
productivity increases.

As long as 7,(i) > 0, then Equation (20) is an autonomous differential equation in
Gt(7). Similar to Section 2, let 7 = ¢t — (i) denote the age of the good. Then, the solution

to the differential Equation (20) can be written as follows:
q(7) = k1 (7 + ro)’ (21)

where § = 1/(1—v) > 1, kg =0/ > 0, and k1 = (£/0)? > 0. Given that ) € (0,1), the
productivity improvement is less than exponential. The rate of increase in productivity

is given by
q(7) 0 B

W= T = )Er AT (22)

In this specification, g,(7) takes the highest value at the time of introduction (g4(0) = /)

and then then falls to 0 as a good becomes older (gq(co) = 0). This rules out the trivial
possibility that the exponential increase in the productivity of individual goods explains

the sustained GDP growth.

26For simplicity, we assume that only experience in terms of time matters for productivity improvement.
Alternatively, we can consider experience in terms of the cumulative production amount. Horii (2012)
analyzed a model in the latter setting and derived a GDP growth rate defined in the same way as in
Equation (1); however, it is a semi-endogenous growth model that requires an exponentially growing

population (c.f. Jones, 1995):
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3.3 Behavior of Firms

Let us now turn to the behavior of production firms. While any product is protected
by a patent forever, the patent breadth is limited (e.g. O’Donoghue, Scotchmer, and
Thisse, 1998). This means that while other producers are prohibited from using the
same technology as the original inventor, they are allowed to produce similar products
if they use a technology that is sufficiently different from the original. Alternatively,
we may suppose that a part of the technology is kept secret by the inventor and that
outsiders need to rely on less efficient technologies. In either case, outsiders face lower
productivity than the original firm does.

To formalize this idea, let us assume that there are potentially many outside firms.
These firms have partial access to the technology of the original inventor g;(7) to produce
the same good i. However, their productivity is 1/(1 4 p) times lower, where parameter
1 represents the patent breadth or the strength of the trade secret. For simplicity, we
assume that 0 < p < 1/(£—1). In this case, the profit-maximizing strategy is to set the
limit price, which is (14 ) times higher than the marginal cost.?” Given the production
function (19) and the fact that the wage is normalized to one, the pricing by a firm that

has 7 years of experience is

p(1) = : (23)

3.4 Steady-State Equilibrium

Now, we derive the long-term property of the equilibrium dynamics in this prototype

model. The following defines a notion of long-term equilibrium suitable for our model.

Definition 2. An equilibrium path that satisfies the following properties as t — oo is

called the asymptotic steady-state equilibrium (ASSE).

1. The speed of the introduction of new goods converges to a positive and finite con-

stant: Nt —n* > 0.

2TIf the patent breadth were infinite, then the firms would choose monopoly pricing. In that case, the
profit-maximizing markup would be 1/(€ — 1) if the demand elasticity were £ > 1 and infinity if the

elasticity were ¢ < 1. Since p is lower than both, the firms set the limit price.
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2. The Lagrange multiplier of the budget constraint, A\, converges to a positive and

nite constant: Ay — A* > 0.
fi

In the steady state, the equilibrium output of a good of age 7 is determined by
Equations (17) and (23) with Ay = A* and does not depend on t:

Ng(T)e  if g7 *el/e
o(r) = D(A\")q(r)* if q(7) = (14 p)A c/s, (24)

D(\)q(7)F  if q(7) < (1 + )NV,
where demand shifters D(A) = L((14+p)A) ¢ and D(A) = L((14p)A/u) ¢ are decreasing
functions of A. The following lemma gives the condition under which the production of all
existing goods is determined by the first line of Equation (24), where the price elasticity

of demand is € < 1.

Lemma 1. Suppose that ¢ is smaller than (a,uL fooo q(T)E_le_"’TdT)_l. Then, in the
ASSE, q(1) > (1 + p)NE'/¢ for all T > 0.
Proof: In Appendiz D.1.

In the main text, we focus on the simple case where ¢ is sufficiently small so that
the assumption in Lemma 1 is satisfied. We leave the analysis of the general case for
Appendix D.2. Then, from (23), (24), and the fact that the markup rate is u, the profit

of an age-7 firm is
() = pD(A)q(r) . (25)

The equilibrium values of n* and \* are determined by the free entry condition for
R&D and the labor market clearing condition. Let us first focus on the R&D condition.
Recall that the Euler equation is )'\t /At = p— . Since \; is stationary in the ASSE, the
interest rate necessarily converges to r; — p. Using interest rate r, = p and the profit
function (25), we can calculate the present value of a new firm just after it has succeeded

in developing a new good:

V(\*) = uD(XY) /000 q(t)" e PTdr. (26)

From the R&D function (18), the expected cost of developing a new good is 1/a.

Therefore, given that there is a positive flow of R&D, n > 0, and given that the financial
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market is complete, the value of the new firm (26) should be equalized to the expected
cost of development: V(A*) = 1/a. This condition gives the equilibrium value of D(\*)
in the ASSE:

ap
By substituting Equation (21) into Equation (27), we can calculate the value of D*,

D) = & (/Ooo q(T)EleﬂTdT> T e (27)

which is always positive and finite.?® We also obtain \* = ﬁ (L/D*)l/ ¢ from the
definition of D(\) = L((1+ p)A)~¢.

Next, let us turn to the labor market. First, Equation (18) implies that the number
of research workers in the ASSE is L®* = n*/a. Second, according to functions (19) and
(24), the aggregate demand for production workers in the ASSE is?°

M > a(r) >
LP* = lim ly(i)di — n*/ ——=dr = n*D*/ q(t)* tar. (29)
t=o0 Jo o a(7) 0

The labor supply is given by population L. Therefore, the labor market clearing condition
is
L=L% 41" = % +n*D* /Ooo q(t)=tdr. (30)
From Equation (21), the integral in the RHS, fooo q(7)*71dr, becomes finite if and only
if (1 —¢) > 1. Using the definition # = 1/(1 — 1), the condition is reduced to ¢ € (e, 1),
where 9 is the degree of knowledge spillover from past productivity to its increments. If
1 < g, then the integral is infinite; therefore, Equation (30) implies that n* = 0. Since
we are interested in the ASSE with n* > 0, the remaining analysis focuses on the case
of € (g,1).
Then, from Equation (30), we obtain the equilibrium research intensity in the ASSE:

N alL

= . 31
n 1+ aD* fooo q(T)EildT ( )

**Let I'(-,-) denote the upper incomplete Gamma function, defined as I'(s,z) = [ ¢*"'e " 'dt. The
values of I'(s, z) are available in most programming platforms. The function I'(s, z) is positive and finite
for all s € (—o0,00) and z € (0,00). By changing the variable of integration from 7 to 7 = (7 + ko) /p

and utilizing Equation (21), Equation (27) implies the following:

14-0(1—¢)
*

D* = L_P 2
aperoI'(1 —0(1 —¢€), pro) >0, (28)

Hlfe

*In Equation (29), the variable of integration is changed from i to 7 via Equation (3).
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From (31), L™ = n*/a and L™ = L — Lf* are also obtained. We can calculate
the explicit value of n* as follows. Using Equation (27) and then Equation (21), the
equilibrium ratio of the two types of labor is

LE) [ a(r)etermdr

the value of which can be expressed via the Gamma function.?® Using (L*'/ LR)*, the
ASSE research intensity can be written as

L
* LR* _ CL—
ne=a 1+ (LP/LRY™

(34)
which becomes a positive and finite constant given that ¢ € (g, 1).

The pair of D* = D(\*) in Equation (27) and n* in Equation (34) characterizes the
long-term equilibrium of this economy. These equations also explain how parameters
affect long-term dynamics. For example, a larger ;1 means that the breadth of patents is
wider (or that trade secrets are better maintained). A higher value of @ means that R&D
requires less labor. In these cases, innovation intensity n* increases because of greater
profitability, whereas the output of each good, proportional to D*, decreases because
there are more production firms to which the aggregate labor needs to be distributed.3!
The opposite occurs when the time preference p is greater because it increases the interest
rate, reducing the present value of profits.

When population L is larger, the research intensity n* is multiplied proportionally to
L. However, the production of each good (proportional to D*) does not change because
both the number of products introduced each year and the number of total production

workers are multiplied by the same factor. This outcome resembles the mechanism of the

30Using Equation (28), the value of (32) can be calculated as follows:

P\ K(l)—@(l—e) 146(1—¢) LEN\*
_ if =) = therwise. 3
(Tr) = s nomta—a=am 0> (x) = ot 69

31The derivative of the upper incomplete Gamma function with respect to the second argument,
OT(s,2)/0z = —z""'e™*, is always negative. Using this property, the properties in the text can be
confirmed from Equations (28), (33) and (34).
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second-generation endogenous growth models, where the horizontal number of sectors is
adjusted proportionally to the total population.3?

Before closing this subsection, let us briefly compare those results against the case
of ¥ = 1. When ¢ = 1, the solution to the differential equation (20) is exponential:

q(7) = €57, Then, we can calculate n* and D* in the ASSE as follows:

1+ —e)B+p ap

(35)

The comparative static properties with respect to u, p, L and a are the same as those
in the case of 1 € (g,1). Therefore, the exponential growth in productivity (¢» = 1) can
be viewed as a particular case of our model, although we do not focus on it because it is

a knife-edge case.

3.5 Measured Real GDP Growth Rate

Now, we are ready to examine the long-term GDP growth rate, as measured according to
the SNA, in this prototype model.33 In this subsection, we assume that ¢ € (g, 1) so that
the economy has an ASSE with finite n* > 0 and A* > 0. In addition, using Equations
(21), (23) and (24), we can confirm that p(7) and x(7) satisfy Condition (11) given that
Y € (g,1).3* Therefore, we can apply Formula (8) in Proposition 1, or equivalently (12),
to calculate the measured real GDP growth rate in the ASSE.

Given that the markup ratio p is constant, the growth formula (12) becomes

g = /000 gq(T)o(T)drT. (36)

32However, note that the long-term growth in these models is typically maintained by the exponential
increase in productivity (or quality) in each sector, whereas this paper focuses on the case where such
exponential improvements cannot be sustained (1 < 1 in Equation 20).

33We continue to focus on the case where ¢ is sufficiently small so that Lemma 1 holds. We examine
the general case in Appendix D.3 and show that the measured GDP growth rate becomes positive under
the same conditions as in the main text.

34Using the definitions of ¢(7) in Equation (21) and § = 1/(1 — %) > 1, we find that the denominator
of the formula is [ p(7)z(7)dr = D* (14 p)(1 7w)ﬂ(1)7(wfe)/(17w)/(¢ —e¢). It is positive and finite given
that o € (e, 1).
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The growth formula in this form clarifies that real GDP growth is the weighted average of
the rate of productivity increase among goods of various ages, gq(7), where the weights
are the expenditure shares, (7). This result is known as Hulten’s theorem (Hulten,
1978; Baqaee and Farhi, 2019). Using the formula, we obtain the GDP growth rate in
the ASSE as®®

. _ Y-

g ?zﬁ for e < 9 < 1. (37)

Recall that, in our specification of the technology, the newest goods have the fastest rate
of productivity improvement, 5, whereas the rate of improvement is lower for older goods
because g;(7) < 0 (see Equation 22). In particular, the rate of productivity improvement
gq(7) is almost zero for very old goods with large 7. Therefore, it is natural that the
aggregate GDP growth rate in Equation (37) is between zero and f.

The growth rate ¢* in Equation (37) is decreasing in the price elasticity of demand,
€. Recall that € also represents the elasticity of substitution across goods. With a higher
€, consumers spend more on old and low-priced goods and less on new and expensive
goods. Since the rate of productivity increase in Equation (22) is lower for older goods
(with high age 7), the weighted average is also low.

Equation (37) shows that the measured growth rate takes a positive and finite value
when the degree of knowledge spillover in production, ), is greater than . The re-
quirement ¥ > e can be understood in terms of Condition (11) in Corollary 1. Given
that ¥ < 1, the expenditure for an age-7 good in the ASSE can be written as follows:
p(T)z(7) = [constant] - (7 + ko)~ 179, For Jo" p(T)z(T)dT to be finite, the power of
(7 4 ko)~ =9 must be less than —1. This is a particular case of Condition (13) in
Section 2. Intuitively, for the expenditure on existing goods to be finite, the expenditure
for a single good must decline reasonably fast with age. In this prototype model envi-
ronment, the condition is met if the degree of spillover in the productivity increase, 1,

is greater than e. Otherwise, [~ p(7)x(7)dr becomes infinite, and Proposition 1 implies

¥Using p'(r) = —(1 4+ w)gqe(r)/q(r) and Equation (22), we find — [°p/'(r)z(r)dr =
D*(1 + u)ma(w75>/(17w)/(1 — e). Combined with calculations from footnote 34, we obtain
— [P (nx(r)dr/ [F p(r)x(r)dr = (¢ — €)/(1 — €)(1 — ¢)ro. Using definitions ko = 6/ and
0 =1/(1—1) gives Equation (37).
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that the long-term GDP growth rate is zero.

Given that ¥ > &, growth rate g* increases with . As ¢ increases, the schedule of
the g4(7) function in Equation (22) increases, as does the real GDP growth rate because
it is a weighted average of g4(7). When v reaches 1, the long-term growth rate increases
to 8. This is an anticipated result; when v = 1, the productivity of all goods, both the
new and the old, increases with a common constant exponential rate of 5. Therefore,
the case of 1 = 1 corresponds to conventional growth theory, where labor productivity
increases exponentially and uniformly. However, the main finding is that even when
the productivity of each product does not increase exponentially (i.e., with ¢ < 1), the
economy as a whole can exhibit a constant measured growth rate, although it is lower

than £.

3.6 Comparative Dynamics and Transition

In the simple prototype setting, the long-term rate of growth in Equation (37) does not
depend on the equilibrium values of n* and D*, as long as they are positive.?> When the
research intensity n* is high, more economic activity is added per unit of time. However,
in the long run, there is also proportionally more “stock” of existing activities. The real
GDP growth rate expresses the ratio between the two, which is unchanged.?” Similarly,
when D* is larger, each good will have more demand. This means that the production
of new goods, as well as the increase in the production of other goods over time, will be
greater. In the long run, however, the total value of existing products will also be higher,

exactly canceling out the effects on ¢*.3® As a result, even when changes in population

36This property depends on the simplistic settings in this prototype model. For example, when the
aggregate R&D intensity n* has some positive spillovers on the rate of productivity increases in individual
goods gq(7), then n* will affect g*. Additionally, when the amount of production has some effect on
9q(7), g* will depend on D*.

3"Nonetheless, it is essential that there is a positive flow of new innovations n* > 0, since otherwise,

g™ becomes 0.

38This can also be seen in Example 3 of Figure 4. When D* is increased, the left panel is stretched
horizontally (along the z(7) axis), whereas the right panel is stretched vertically (along the p(7)z(7)

axis) by the same magnification ratio. As a result, the growth rate, given by the ratio of the two areas,
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Figure 6: Response of innovation per unit time (n;: Left panel) and the GDP growth

rate (g;: Right panel) after a permanent increase in R&D productivity a.

L, R&D productivity a, or patent policy u affect n* and D*, they do not affect the
long-term real GDP growth rate.

However, those parameter changes affect the GDP growth rate in the short run. In
Appendix F, we explain the transitional dynamics of this economy. Figure 6 depicts the
response of the economy when R&D productivity a is increased permanently by 10%.3
Equations (32) and (33) imply that innovation per unit time n; will increase by the same
10% in the long run, which can be confirmed from the left panel. However, in the short
run, there is an overshoot in n;. This can be interpreted as follows. In the long run,
the number of competitors (except for very old and negligible firms) is also increased
by 10% because of increased innovations. The number of new innovations in the new
steady state (with increased a) is 10% higher than that in the old steady state despite
this increased competition. Now, let us consider what happens immediately after the
increase in a. The R&D productivity is increased by 10%, but the number of existing
firms is not yet affected. Therefore, the new firms enjoy more favorable conditions in the
short run than in the long run. This is why there are more entries immediately after the

parameter change than in the long run.

is unaffected.

39In this numerical example, we assume that the economy is initially in a steady state with parameters
a=1,p=02,L=1,=0.04, ¢ =0.9, ¢ =0.8, and p = 0.01. At ¢ =0, the parameter a is increased

from 1 to 1.1, while the other parameters are unchanged.
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A similar mechanism operates for the evolution of g, which is depicted in the right
panel. The short-term response of g; is positive. This can be interpreted from the
definition of the instantaneous GDP growth rate in equation (5).4C Immediately after
the increase in a, the introduction of new goods (n; = N;) in the numerator increases,
whereas the denominator changes only gradually. Over time, g; reverts to the original
value, as discussed above. Although these results depend on the simplified specification
of the prototype model, they provide a possible interpretation of why the measured GDP
growth rates in the U.S. and some other developed countries have been relatively stable,
even though the underlying parameters seem to have significantly changed over long

periods.

3.7 Aggregate Variables and Balanced Growth

The ASSE in this model works very differently from the balanced growth path (BGP)
in existing growth models. Nonetheless, we show that when aggregate variables are
measured in a conventional way, this model exhibits balanced growth in those measured
aggregate variables.

Note that the total labor income for production is L©* since the wage rate is nor-
malized to one. All goods are sold at (1+ p) times the labor cost, as shown in Equation
(23). Therefore, the aggregate value of production, which equals the aggregate value of
consumption, is C* = (1 + p)L*. In our model, investments take the form of R&D,
and the total value of R&D outputs is I* = n*V(\*) = Lf*. The GDP in our model
can be calculated as the sum of the value of production and the value of investments:
Y* = C*+I* = (1 + p)L* + LT*. Similarly, we can derive the steady-state value of ag-
gregate capital, K*, which is defined as the value of all firms in the economy (knowledge

capital).!

“ONote that formula (8) in Proposition 1 applies only in the steady state.

41K* can be calculated as the sum of the present value of the future profits of all firms that exist
today. In v years from now, the present value of the profit from those firms will be e™** fvoo m(T)n*dr,
since the profits of firms less than v years old at that time will not be part of the value of today’s firms.
By aggregating all v and using the profit function (25), we have K* = un*D* fooo e P fvoo q(1)* " tdrdv,

which is constant under the price normalization in the model.
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Note that those aggregate variables are measured under the price normalization of
our model, in which the nominal wage is set to 1. We now calculate their real values
in the same spirit as the SNA.#? Let 7 be the reference year, and let Y{$ be the dollar
value of the GDP in year ¢, which we assume is known to the researcher. Since the real
GDP growth rate is constant at g* in the ASSE, the real GDP level in ¢ is as follows:
yreal = Yz$eg*(t_f). Since the ratios among Y*, C*, I* and K* are constant, their real

values increase in the same proportion. Specifically,

C* 1 + ILL * _ 7
Creal :7yreal _ _ YL$ g*(t t)7 38
b Tyt L tpt (LEJIPY 1€ (38)
I* 1 * ¥
Ireal :7yreal _ K$ g*(t—t) 39
t Y* t (1+M)(LP/LR)*+1 te ) ( )

where (LR/LP)* is given by the inverse of Equation (32).
The interest rate r* = p is also defined under our normalization of prices. Since
the nominal GDP growth rate in the steady state is zero, the steady-state inflation rate

*

is —g* in our price normalization. Then, the real interest rate in the steady state is

rreal — p* 4 g* = p 4 ¢g*. We can also derive other real aggregate variables in similar
ways, and their growth rates are constant. Therefore, if the statistical agency were to
measure the aggregate variables in our model economy, then those observed variables

would grow exponentially along the BGP, even though neither the quantity, quality, nor

variety of individual goods were growing exponentially.

3.8 Welfare Changes

In this subsection, we discuss the changes in the welfare (utility) of the representa-
tive consumer over time and its relationship with the measured GDP growth rate. As

shown by Equation (14), the lifetime utility of the consumer is fooo Uie=Ptdt, where U; =

42The NIPA publishes two series of real GDP. One is the quantity index, which is 100 in the reference
year (2012 as of the time of writing). The values for other years are obtained by chaining the real
GDP growth rate. The other is the chained (2012) dollar series, the values of which are calculated as
the product of the quantity index and the 2012 current dollar value of the corresponding series divided
by 100. See U.S. Bureau of Economic Analysis, "Table 1.1.6. Real Gross Domestic Product, Chained

Dollars.” We use the latter method in this paper.
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foNt u(cy(i))di is the instantaneous utility. Using Equations (15), (24) and ¢(7) = x(7)/L,

the instantaneous utility can be written as follows:
t
Uy = Nyii — (1 — u(c(0) / ny_-q(7)Ldr. (40)
0

In the ASSE, the first term increases n*u per unit time, and the second term converges
to a finite value as t — 00.%3 Therefore, asymptotically, the instantaneous utility linearly
increases with time, with a slope of n*u.

However, the growth of the instantaneous utility in (40) is measured in units of the
utility function in the model (thereafter, utils), which has no clear interpretation. An
appropriate way to measure the changes in welfare over time is to focus on the money-
metric utility. Following Baqaee and Burstein (2023) and Jaravel and Lashkari (2024),
we define the money-metric utility as follows.** The change in welfare between t and

t + A measured using the equivalent variation is (;(A), where (;(A) is defined by

V({Bera (@) 1™ Lea) = v({Br(0) )N, Lexp G(A)). (41)

Here, v(+) is the indirect utility function, {ﬁt(z)}fvzfo is the set of prices for available goods
at time ¢, and I; is the expenditure at time ¢. The definition (41) can be interpreted as
follows: (;(A) is the change in expenditure in logs under the initial prices {p; (i)}, that
the representative consumer would need to be indifferent between the budget set defined
by initial prices ({ﬁt(i)}lj-v:to, I exp (;(A)) and the new budget set defined by new prices
and expenditure ({ﬁHA(i)}ZJ-V:ta’ & I;1a). Note that the change in the budget set includes
the change in the range of goods available, from [0, V¢] to [0, Niya].

In Appendix E, we derive the change in welfare as defined by (41). In the ASSE, this

does not depend on the starting time ¢ and can be written as

G(A) = — ¢ 5 log (1 - 18_6Ag*A> , where A = 1-—ey > 1. (42)

1— C(0)1—1/5
Here, g* is the measured GDP growth rate in the ASSE, given by (37), and A > 1 is a

correction term, which we discuss below. As shown in the left panel of Figure 7, function

**When the ASSE exists (i.e., when ¢ € (¢,1)), [;° ni—-q(7)° " 'dr = n*/B(¢ —¢€).
44This metric is called micro welfare in Baqaee and Burstein (2023) and real consumption in Jaravel

and Lashkari (2024).
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Figure 7: Money-metric of Utility (Left) and the Correction Term (Right).

The value of A is given by u/u > 1 in the right panel.

C(A) increases more than linearly with A. Since ((A) in (41) is defined in logs, this fact
means that the money metric of utility (or real consumption as defined by Jaravel and
Lashkari, 2024) increases more than exponentially with time. Moreover, function ((A)
explodes in a finite duration at A = ¢/((1 — ¢)Ag*). The explosion can be interpreted
as follows. After /(1 — €)Ag* years, the economy has substantially more varieties than
it does today, and the utility from the increased varieties is so high that it cannot be
compensated by increasing the expenditure of the representative consumer today. This is
because there is an upper bound in the utility obtainable from each individual good (i.e.,
u); therefore, given the available range of goods today, there is an upper bound in the
overall utility (measured in utils) that can be achieved from increasing the expenditure.

Next, let us discuss the relationship between the change in the money-metric of utility
(real consumption) and the measured real GDP growth rate, g*. Note that ((A) is the
equivalent variation between two distant times, ¢t and ¢ + A, while ¢* represents the
instantaneous rate of change in real GDP. To align them, we consider the instantaneous

rate of change in the money-metric of utility,
¢'(0) = Ag™. (43)

Since the correction term A is greater than 1, as shown in (42), Equation (43) indicates

that the change in the money-metric of utility (real consumption) is greater than the
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measured real GDP growth rate. In other words, the real GDP statistics underestimate
the growth in the money-metric utility. The difference comes from the fact that the
marginal utility of goods is observed only after introduction. When a new good is
introduced, the consumer purchases ¢(0) units of it and obtains the utility of u(c(0))
(in utils). To accurately measure the benefit from new varieties, we need to incorporate
u(c(0)) in the measurement. However, there is no way to measure u(c(0)), and the
GDP statistics in effect replace it with ¢(0) - u/(¢(0)), where u/(¢(0)) can be indirectly
observed from p(0). In effect, the GDP statistics are calculated with the assumption
that consumers have a utility function that is linear from 0 to ¢(0) with a slope of ¢/(0),
as shown by the tangent line in the right panel of Figure 7. From this perspective, the
highest amount of utility that can be obtained from one variety of goods is viewed as
7 = u(00) — u(c(0)) 4 ¢(0) - w'(c(0)) = (1/(1 — €))e(0) =%, while the true value is .
Since u(+) is concave, ¢(0) - u'(¢(0)) is smaller than u(c(0)), which implies that @ < w;
therefore, the GDP statistics underestimate the benefit of new varieties. The correction

term A = %/u > 1 represents the ratio between the two.

4 Obsolescence

In the prototype model of Section 3, we considered an environment where goods stay
in the market forever (7' = o0) and where consumers have symmetric preferences across
goods (14). Sustained growth in the measured GDP then required the price elasticity of
demand ¢ to be less than one as the quality-adjusted price falls to zero. The condition
e < 1 was necessary to induce consumers to spend less on older (and cheaper) goods. In
reality, however, consumers may spend more on new goods simply because they prefer
them to older ones, even without the assumption of ¢ < 1. Here, we show that this
assumption can be relaxed once we include obsolescence.

We now consider a generalized version of the lifetime utility function (14):

e N¢
/0 UO [6(t — s(i))u(e (i) + (1 — 6(t — s(i)))u]di| e™"dt, (44)

where ¢t —s(i) = 7 is the time after introduction.*> The function §(7) is weakly decreasing

45 Alternatively, we may specify obsolescence as a function of N, — 4, i.e., the number of goods newer
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in 7 with 6(0) = 1 and lim;_,76(¢) = 0, where 7" > 0 can be finite or infinite. If 7" is
finite, it defines the lifespan of individual goods. If T is infinite, d(¢) converges to zero
as t — o0o. The steepness of function &(7) represents the speed of obsolescence, or
equivalently, consumers’ taste for recently developed goods. Obsolescence may occur
for different reasons and has varied effects on the utility of individuals. The constant
u € [0,u], where @ = wu(oc0), controls for those differences. One example is the case
when newer products replace some of the functionalities of older goods. Suppose that
a portion 1 — &(7) of an age-T good’s functionality can be fulfilled by newer goods for
free.¥6 In this case, we can assume that consumers receive the utility of (1 — &(7))a for
free, with @ > 0, and the consumption of age-T good affects only part 6(7)u(c(7)) of
the period utility. Another example is when consumers value the newness of products.
The most extreme case is 4 = 0.4 This specification is suitable, for example, when
considering fashion cycles, where outdated and cheaper items are replaced by newer and
more expensive ones. As we will discuss in Section 5, the economy can be composed of
several sectors, and obsolescence can occur for different reasons across sectors. While
the reasons for obsolescence have different implications for welfare, the measured GDP
growth rate does not capture those differences, as we see below.

We keep all other settings in Section 3 except that we allow any € > 0 in the sub-
utility function (15). If £ > 1, we can simply assume that u(c) = ¢!~/¢/(1 — 1/¢) for

all ¢ > 0.8 If ¢ < 1, the sub-utility function is the same as (15), and we again assume

than 4. In the ASSE, where n* new goods are developed per unit time, 6(N; — ) becomes §(n*7), which
shows that obsolescence is faster when R&D is more active. An additional implication in this setting is
that policies that promote horizontal R&D may increase the measured GDP growth rate. A higher n*
will make function §(n*7) steeper as a function of 7. As we show below, faster obsolescence accelerates

measured growth.

46For example, suppose that the newest good is smartphones and that the age-r good is a calculator.
When we have smartphones, a large part of the functionality of calculators (which corresponds to 1—4§(7))

is fulfilled without additional cost.

47In this case, U; will remain constant in the ASSE even when g* > 0. See the discussion on utility in

the latter half of this section.

“8This means that the second line of (15) applies for all ¢ > 0 with £=¢ > 1 and u = 1.
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that ¢ is small enough that all existing goods satisfy ¢;(i) > ¢. In this setting, the ASSE
exists if and only if fOT §(7)%q(1)* dr is finite.*’ In the ASSE, the expenditure for an
age-T good is e(7) = p(T)z(7) = (1 + u)D*6(7)q(7)°~L. This equation illustrates that
even when € > 1, expenditures for older goods decrease with age if obsolescence is fast
enough. Proposition 1 continues to apply in an environment with obsolescence. Given
that fOT e(7)dr is finite, which is equivalent to the finiteness of fOT §(1)%q(T)*~tdr, the
formula for the GDP growth rate (12) gives

oy S ey gy (r)dr

Jy o(r)a(r)=tdr )

When goods retire from the market at a certain age (i.e., when 7' is finite), f(;f 5(1)eq(T)*Ydr
is obviously finite. Therefore, we always obtain a positive long-term GDP growth rate.
When T is infinite and the rate of obsolescence is constant at § > 0 per year, func-
tion §(7) can be expressed as exp(—d7). In this case, [~ 6(7)°¢(7)*"'dr becomes finite
because §(7)° decreases exponentially with 7 and ¢(7)°~! does not increase exponen-
tially. Therefore, a constant rate of obsolescence always sustains positive measured
GDP growth regardless of . Positive GDP growth can also be maintained with slower,
non-exponential obsolescence. Consider an example where 0(7) is a negative power

function of 7: §(7) = 6§(7 + ) ™® where w and & are positive constants.’® Then,

“9This result is obtained in a similar way as the derivation of Equations (27) and (31) in Section 3.4.
In both cases, € > 1 and € < 1, the consumption of good ¢ becomes ¢; (i) = A; *p(i) ~°6(t — s(¢))°. From
this, we can write the equilibrium output of age-7 good in the ASSE as z(7) = D*6(r)%q(7)*. Given
that the markup is p, the present discounted value of a new firm is V* = uD* [[* 6(7)°q(7)°~". By
substituting V* into the free entry condition V* = 1/a, we obtain D* = (au fOT 6(7’)6q(7)57167"7d7) 71,
which is always positive and finite because of the e™*” term. Using this value of D*, the labor market
equilibrium implies that the speed of innovation is n* = aL (1 +aD* fOT 6(7’)5q(7')571d7') 71. The value
of n* is positive if and only if fOT 5(1)%q(T)° ' dr is finite.

w

50We need a constant dp > 0 in (7 4+ 0) ™% because otherwise, 7~“ cannot be defined when 7 = 0 and

w > 0. The 4§ term normalizes the §(7) function so that §(0) = 1.
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Figure 8: Price Elasticity of Individual Goods and the Measured Long-term GDP Growth
Rate Under Different Speeds of Obsolescence.

Jo7 6(7)2q(7)=~tdr becomes finite if and only if°!

— Y fw< L (=6 ,

00 ifw> +—.

e<

In a particular case of §y = ko, where kg is defined in Equation (21), the long-term GDP

growth rate (45) becomes®?

. Y—e+ (1 —vYew

:1—8+(1—1/1)5wﬁ’ (47)

which is positive when Condition (46) holds. Figure 8 depicts the relationship between

e and g* for various values of w. As we have seen in Section 3, sustained GDP growth

'Using Equation (21), [;°6(7)%q(7)* "dr = 6§k [;7 (7 + 60) (T + k0)?C~Ydr. The integral
becomes finite if and only if the sum of the powers of the integrand, —we + 6(e — 1), is less than minus
one. From 6 = 1/(1 — ¢), this condition is equivalent to Condition (46).

%2When 4 is larger, g,(7) is higher given age 7. Nevertheless, Equation (47) shows that ¢g* is decreasing
in ¢ if e > 1. When € > 1, a larger ¢ will induce consumers to spend more on cheaper, older goods.
As a result, the expenditure is skewed more toward older goods, where gq(7) is small, reducing the

expenditure-weighted average of gq(7):
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requires € < 9 when obsolescence is not present.”®> When obsolescence is faster (w is
higher), Condition (46) becomes easier to satisfy. In particular, when w > 1, the first
line of Condition (46) is greater than one, which means that ¢ < 1 is not necessary for
g* > 0. When w is greater than 1/(1 — 1)), the long-term GDP growth rate g* is positive
regardless of .74

Figure 8 also shows that when w is increased, the entire curve for g* moves upward.
Faster obsolescence not only makes sustained GDP growth more likely but also acceler-
ates the measured rate of economic growth. Intuitively, obsolescence skews expenditures
toward newer goods. Since newer goods have greater margins for productivity increases
than older goods do, the overall growth rate increases with obsolescence. These results
have important policy implications. When the government attempts to protect obsolete
companies (or industries), it reduces the GDP growth rate not only because of efficiency
loss but also because of how expenditure is allocated across firms and industries. Con-
versely, advertisements and marketing practices that attract consumers to newer goods
increase GDP growth, even when the attractiveness of the newer goods is illusory.

Below, we discuss the relationship between the measured GDP growth rate and the
change in the welfare of consumers. In appendix G, we show that the instantaneous
utility (measured in utils) increases linearly with time, with a slope of n*u in the ASSE.
Therefore, if the obsolescence is caused entirely by the change in consumer tastes (i.e.,
u = 0), the instantaneous utility is stationary, even if the measured GDP growth is
positive. To bridge this gap, we consider money-metric utility as in Section 3.8, but this
time, we account for the change in taste, again following Bagaee and Burstein (2023)
and Jaravel and Lashkari (2024). The change in welfare between ¢ and ¢ + A measured

using the equivalent variation is (;(A), where (;(A) solves
o{Pera (@))% Trvast+ A) = o({Be ()} Vg, Lexp G(A) t+A). (48)

The only difference between (41) and the above equation is that there is a third argument

®When w = 0, Condition (46) and Equation (47) reduce to Equation (37).

S4Interestingly, the measured GDP growth rate increases with & when w > 1/(1—1). A higher € means
that consumers are more willing to move from old and obsolete goods to newer goods, thus enhancing

the positive effect of obsolescence on growth.
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in the indirect utility function v(-), which represents the time at which the preference
of consumers is used for evaluation. Following the literature, we use the preference of
consumers at t + A to evaluate both sides of (48).5

The instantaneous rate of growth in money-metric utility is given by ¢’(0). In ap-

pendix G, we obtain its value in the ASSE as

{0 - g+ (2 + i) (Jo o2y 1)_1 ife>1,

L (49
g*—{—(%_a(A—l)—f— 0)i- 1/E> (fo )~ 1) if e € (0,1),

where ¢g* is the measured GDP growth rate in (45) and A > 1 is a correction term defined
n (42). Equation (49) shows that the measured GDP growth rate, ¢g*, is a part of the
growth in money-metric utility, ¢/(0). This part of ¢’(0) comes from the changes in the
prices of existing goods. In fact, ¢/(0) is greater than g* because 8%1 when ¢ > 1 and
(A —1) when ¢ € (0,1) are both positive. These terms represent the benefits of new
goods that are not measured by ¢*.°® If 4 > 0, there are also external effects of new
goods, 1/c(0)1=1/¢ > 0, which are again not measured in ¢g* but are included in ¢’(0).
When @ = 0, the money-metric utility (real consumption) is growing even though
the instantaneous utility (measured in utils) is asymptotically constant, as we have seen
above. To see this point, suppose that the availability and price of goods do not change
from t to t + A but that only the preference changes. Then, at time ¢ + A, the in-
stantaneous utility (measured in utils) will be lower because the consumers more deeply
discount the utility from existing goods that are now older. To regain the same level of
instantaneous utility (in utils), which is constant in the ASSE, either (i) the availability
and prices of goods need to change to those of time ¢ + A, or (ii) the consumers need to
be given more budget. Equation (48) makes this comparison and determines how much
more expenditure is needed in the latter case, which is the growth in the money-metric
utility between t and ¢t + A. In other words, if the availability of goods and their prices

are fixed, the welfare of consumers will decline given that their preferences change over

time. Relative to this situation, the introduction of new goods and a decrease in quality-

55This means that we are calculating the equivalent variations rather than compensating variations.

56See the discussion in Section 3.8.
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adjusted prices improve the welfare of consumers (as a result, the instantaneous utility
measured in utils becomes constant). The growth in the money-metric utility measures

these benefits, and the measured GDP growth rate captures a part of it.

5 Multiple sectors

In the non-exponential growth theory, we define the steady state as the situation in
which the paths of quality-adjusted prices and quantities, p(7) and x(7), follow the same
pattern in terms of their age (see Definition 1 in Section 2.2). This definition allows the
prices and quantities of individual goods at a given time to differ depending on their
age. In this sense, our definition of the steady state is more flexible than that in most
endogenous growth models, where goods are symmetric in the steady state. Nevertheless,
once we look at the data, it is immediately apparent that goods in different categories
follow distinct lifecycle patterns. For example, while the product lifecycle is relatively
fast in electronics, some basic goods (e.g., grains) show little sign of lifecycle movements.

In this section, we further extend the notion of the steady state by allowing p(7)
and z(7) to follow different patterns. We categorize goods into groups (which we call
sectors) so that goods in a sector have the same pattern of movements in terms of quality-
adjusted price and quantity with respect to their age, at least in the long run. More
specifically, suppose that there are J > 0 sectors (or categories) of goods and label each
by j € {1,...,J}. Nj; denotes the index of the newest good in sector j € {1,...,J}.
The number of new goods introduced per unit time, Nj,t > 0, can differ across sectors.
The quality-adjusted price of the ith good in sector j and its quality-adjusted quantity
are denoted by pj¢(i) and Z;(¢). In this setting, we define the asymptotic steady state

as follows.

Definition 3. A non-exponential asymptotic steady state with multiple sectors is the
situation where Njq, D;(i) and T;4(i), for all j € {1,...,J}, satisfy the following
conditions:

(a) N;; converges to a constant; i.e., Nj; — n; > 0.

(b) pj+(i) and Z;+(i) converge to time-invariant functions of T =t — s(1); i.e., pj+(i) —
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pi (1) and (i) = x;(7).
(¢) Assumption 1 holds, where p(7), (1) and T are replaced by p;(T), z;(7) and Tj,
respectively.
(d) The expenditure share of the sector,

Jiex,, Pia(0)E(i)di

7 —  a~ RN
Zj’:l i€X0, Py 4 (1) 20 (1) di

Oéj,t = (50)

where X, is the set of goods in production in sector j, converges to a constant value,

i.e., ajy — aj > 0.

Definition 3 says that the economy is in a steady state if the composition of sectors in
terms of expenditure share is stationary, and each sector satisfies the requirement for the
steady state in Definition 1. In addition, Definition 3 does not require n; to be positive,
and therefore includes the possibility where the introduction of goods eventually stops
in some sectors. Additionally, it allows a; to be zero for some j, which means that some
sectors may disappear in the long run.

Like Equation (5), the instantaneous GDP growth rate in this multisector economy

at any given time t can be defined as follows:

7 < ~ N ~ i~ g
=1 (Nj,tpj,t(Nj,t)ﬂfj,t(Nj,t) + Jiex,, Pit(DT5(Ddi — [icq. | Pj,t(l)ﬂfj,t(l)dl>

7 — N o 7
2 j=1 liex,, Pit()Z5(i)di

gt =
(51)

Here, the denominator gives the expenditure for all the goods, the first term in the
numerator is the value of all the new goods introduced at time ¢, the second term is the
value of the changes in the production of existing goods, and the third term is the value
of the disappearing goods (€2, is the set of goods in sector j that disappear at time
t). Using the sectoral expenditure share defined by Equation (50), Equation (51) can be

expressed as the share-weighted average of the sectoral GDP growth rate.

J
g = g «;+9;t, wWhere,
j=1

Njabt (Ni)Tja(Njo) + fiex, , Pia(OTja(i)di = ficq, , Dja(D)T;(i)di
Jiex, , Pie(0)Z4(i)di '

gjt = (52)
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Since Equation (52) takes the same form as Equation (5), we can utilize Proposition

1 to obtain the long-term GDP growth rate in a steady state.

Proposition 2. Suppose that the multisector economy converges to an asymptotic steady

state, as defined by Definition 8. Then, the real GDP growth rate g asymptotes to
J
g= Z a;jgjs (53)
j=1

where g; is given by Proposition 1, in which p(7), x(7) and g are replaced by p;(7), x;(7)

and g;, respectively.

Proposition 2, combined with Proposition 1, implies that if there is a category of
goods (a sector) with a positive GDP share where Conditions (10) and (11) hold in
the long run, the economy-wide long-term GDP growth rate can be positive and finite.
Similar to Figure 4 in Section 2.4, we can draw the evolution of {z;(7),p;(7)} in the
quantity-price space and the evolution of p;(7)z;(7) against 7. The numerator and
denominator of g; are then graphically represented as the blue and yellow areas, re-
spectively. If a; > 0 and both areas are positive and finite, then sector j contributes
positively to the long-term GDP growth rate. As in Example 2 of Figure 4, g; can be
negative if the prices of older and disappearing goods in that sector are higher than those
of new goods in the same sector. Nonetheless, aggregate GDP growth becomes zero only
by coincidence; therefore, nonzero long-term growth rates are the norm rather than the
exception. This result contrasts with existing endogenous growth models, where the
growth rate can be nonzero only under strict knife-edge conditions.

As a final note, observe that g;s in Proposition 2 are the sectoral output growth rates
measured according to their own sectoral price indices. They do not coincide with the
sectoral output growth calculated using the general price levels (e.g., the GDP deflator).
In the long run, the expenditures to all the surviving sectors (those with positive «;
values) increase at the same rate. Even the sectors with g; = 0 record real income

growth of g.
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6 Concluding Remarks

Non-exponential growth theory provides a novel interpretation of observed stability in the
measured GDP growth rate by focusing on the movement of the quantities and prices of
individual goods and calculating the GDP growth rate on the basis of SNA statistics (e.g.,
the NIPA). It shows that the observed sustained GDP growth is consistent with a less-
than-exponential increase in the variety and quality-adjusted output of each good. This
finding enables researchers to construct endogenous growth models under less restrictive
assumptions than the knife-edge conditions that are required in existing full endogenous
growth models. As a result, this paper suggests that an endogenous growth theory can
be applied to data with significantly weaker restrictions than previously required.?”
The readers may still wonder whether we should describe economic growth, as ex-
plained in this paper, as exponential or not. The answer depends on how we evaluate
economic growth. More specifically, this paper demonstrates that economic growth can
be viewed from four distinct perspectives when we explicitly consider multiple final goods
that are not necessarily symmetric. First, we can view growth in terms of how the vector
of production changes over time, where each entry in the vector represents the output
of an individual product. In our model, the dimension of the vector increases linearly
over time, and each entry of the vector increases less than exponentially (the rate of
growth decreases to zero). In this sense, output growth is not exponential. Nevertheless,
the economy can continue the growth process because the expenditure for older goods
decreases as goods age, and newly introduced goods receive a constant proportion of
the total expenditure. Therefore, the incentive to innovate can be maintained without

strong externalities.?®

STNevertheless, we make simplifying assumptions for the sake of expositional simplicity and ease of
understanding. Notably, while existing variety-expansion endogenous growth models assume that the
elasticity of spillover from R&D activity is exactly ¢ = 1, we assume that there is none, i.e., ¢ = 0.
Additionally, we assume that the population is constant. In a working paper, we demonstrate that the
intuitions from non-exponential growth theory remain applicable when population growth and decline

are incorporated, as well as when R&D externality is present but weaker than ¢ = 1.

8In standard variety expansion models, all goods are symmetric and receive the same expenditure

share. Therefore, as the number of goods increases, the share of the expenditure given to a single new
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The other three perspectives attempt to map the change in the output vector into
a scalar measure. Of these three, two evaluate economic growth in terms of the change
in consumer utility. A crude approach is to examine the change in instantaneous utility
in the model. In our baseline prototype model, the instantaneous utility (measured in
units of the utility function) increases only linearly over time. In an extended model with
obsolescence, the change in utility can be zero in an extreme case. However, interpreting
these results is difficult because the unit of utility in the model lacks a clear economic
meaning.

An alternative approach is to look at the change in the money-metric utility, which
represents the equivalent variation between two time points. We have shown that the
money-metric utility can increase more than exponentially, especially when consumers
highly value the benefits of newer goods in comparison with the benefits of consuming
larger quantities of existing goods. In this sense, we could say that growth measured in
terms of the utility of consumers is more than exponential.

The fourth way of measuring growth is to focus on real GDP as measured by the
SNA. The real GDP growth rate measures the value of change in economic activity,
including the appearance and disappearance of goods, as well as changes in the quantity
of production of existing goods, divided by the value of existing economic activity. In our
model, the real GDP growth rate asymptotically becomes a finite and positive constant.
This result stems from the fact that there is a constant (but not exponential) flow of
new goods, the value of new goods is higher than that of older, disappearing goods, and
the value of existing economic activity is bounded because the expenditure for individual
goods decreases as the goods age. The level of real GDP is obtained by chaining the
real GDP growth rate and therefore increases exponentially. The real GDP growth rate
is meaningful in the sense that it captures an important portion of the instantaneous

change in the money-metric utility, although it misses some of the benefits from new

good dilutes. This means that profits obtained from a single successful R&D also decrease. Therefore, to
provide firms with sufficient incentives to engage in R&D in equilibrium, these models require a strong
degree of externality in the R&D process so that the cost of inventing new goods declines exponentially.
Moreover, GDP growth can be maintained only when the number of goods increases exponentially

because the contribution of each new good to the economic growth rate decreases toward 0.
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goods, as well as possible benefits from external effects.
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Appendix A Simplest Examples of Non-Exponential Growth

A.1 When Goods Become Free in Two Periods

Consider an economy in discrete time with overlapping generations of products. One
new good is introduced every period. When the good is introduced, the price is 2; it
falls to 1 in the next period and to 0 thereafter. The output quantity is 1 when it is
introduced, 2 in the next period, and 3 thereafter. For example, we can consider each
good as a medication for a particular disease. In this example, after two periods, generic
drugs with the same effect become available (almost) for free. The pattern of movements

of quantities and prices is summarized below.

index |i=N;—3 i=Ny—2 1=N—1 i=N; 1=N+1
Fi_1() 3 2 1 N/A N/A
R0 3 3 2 1 N/A
Fei1(d) 3 3 3 2 1
(i) 0 0 1 2 N/A
Pr+1(4) 0 0 0 1 2

In the table, 7 is the index of goods, and NV; is the index of the newest good in period
t. The second row shows the amount of production of each good at time ¢, 7;(:). The
price of each good at time ¢, p;(i), is shown in the fourth row. Note that the newest good
in period t + 1 is ¢ = Ngy1 = Ny + 1. Therefore, the values in the Zy4q(4) and pyiq(2)
rows are shifted to the right by one column. The opposite holds for the z;_1(7) row.

In SNA statistics, the real GDP growth rate from period ¢t — 1 to ¢ is defined as the
growth in the value of output when the value is evaluated by the prices in the base year.
In practice, the base year is frequently updated; thus, we assume that the base year

is updated every period to the year of evaluation (i.e., period t). Then, the real GDP



growth rate (per period) between period ¢ — 1 and period ¢ is
Dot Pu(D)T(i) = 3% pu(i)Fea (i)
ity B(§) -1 (i)

Using the numbers in the table, the value of the output in ¢ using the prices in t is

Jtt—1 = (A.1)

Zf\io pe(1)x(i) = 1 x 2+ 2 x 1 = 4. Similarly, the value of the output in ¢ — 1 using the
prices in t is vaztalﬁt(i)"ft_l(i) = 1x1 = 1. Therefore, the GDP growth rate is g:s—1 =
(4—1)/1 =3 =300%. Similarly, we can calculate the GDP growth rate between periods
tand t+ 1 as gui1 = (Cng " Pt ()Fer1 (i) — oo Pt (0)F(i)) ) oty Besr ()T (i) =
(4 —-1)/1 = 300%. We always obtain the same growth rate as long as this pattern of
quantities and prices continues. Therefore, the measured GDP growth in this steady
state is constant and positive, even though the output of any good does not grow at an

exponential rate.

A.2 When Goods Become Obsolete in Two Periods

Similar to the previous example, one new good is introduced every period. When the new
good is introduced, its price is 2, and it falls to 1 thereafter. The good is produced only
for the period when it is introduced and for one period afterward. The output quantity
is 1 for both periods and then 0 thereafter. One can think of each good as a medication
for a particular infectious disease. Owing to medication, the disease is eradicated in two

periods, and the good is no longer in demand. The pattern is summarized below.

index | i=N,—3 i=N,—2 i=N,—1 i=N; i=DN,+1
Feo1(4) 0 1 1 N/A  NJ/A
(i) 0 0 1 | N/A
Frir () 0 0 0 1 1
A0 1 1 1 2 N/A
Pr+1(7) 1 1 1 1 2

We can again calculate the GDP growth rate via Equation (A.1). The value of the
output in ¢ using the prices in ¢ is Y., pr(i)@1(i) = 1x1+2x1 = 3. Similarly, the value of
the output in t—1 using the prices in ¢ is Zf\ﬁo_l pt(1)T—1(1) = 1x1+41x1 = 2. Therefore,
the GDP growth rate between periods t — 1 and ¢ is g:+—1 = (3 — 2)/2 = 1/2 = 50%.
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We can also calculate g;;41, which is again 50%. The measured growth rate remains
constant as long as the same pattern persists.

When we compare the output quantities in periods ¢ and ¢ — 1, the difference is that
we have one unit of the newest good (whose value is 2), and we lose one unit of the
2-period-old good (whose value is 1). Since the price of the new good is higher than that
of the old, disappearing good, the numerator is positive. On the basis of the observed
prices, the GDP growth rate attributes a greater value to newly appearing goods than

to old, disappearing goods.

A.3 Interpretation and Connection to Later Sections

Both examples satisfy the required conditions for positive GDP growth explained in the
Introduction: (i) new goods are introduced over time, (ii) the price of goods decreases
with age, and (iii) the expenditure for old goods is limited. The two examples differ in
terms of how condition (iii) is accomplished. In the first example, the price of a good
becomes zero, while in the second example, the quantity becomes zero. In Sections 3
and 4, we provide two general equilibrium models that are essentially similar to these
examples. Section 3 considers an economy where new goods are introduced by R&D and
the quality-adjusted productivity of a good increases less than exponentially through
the learning-by-doing process. There is no externality in the R&D process, and the
population is constant. Therefore, the flow of new goods introduced to the market is
constant. Then, given that the utility function of consumers is such that the expenditure
on a good decreases as its quality-adjusted price approaches zero (which means that the
price elasticity of demand is less than one as p — 0), the measured GDP growth rate
becomes positive in the long run, similar to the first example. In Section 4, which
essentially corresponds to the second example, we introduce obsolescence to the utility
function of consumers so that the marginal utility from a good declines as the good ages.
We then show that positive GDP growth is obtained under weaker conditions for the
price elasticity of demand.

In Sections 3 and 4, we also analyze the relationship between the measured GDP

growth rate and the utility of consumers. In both examples, there is no component of
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consumption that grows exponentially, while the measured real GDP is growing at a
positive (exponential) rate. In Section 3.8, we fill this gap by considering the money-
metric utility. In the first example, over time, consumers become better off because
more diseases can be cured with newly developed medications. The money-metric utility
evaluates this benefit in terms of the amount of the budget (expenditure) that is given
to a consumer at a given time. If an individual is given more budget in the first example
at time ty, she will be able to buy more medications that are already developed but
have not yet become free (at each time, there are two kinds of such goods). However,
after two periods, these medications become free, and it becomes possible to cure more
diseases, which could not be cured at time ¢y regardless of the individual’s budget.
Therefore, in this simplest example, the individual’s utility at time tg cannot surpass
that of tg + 2, however rich she is. This means that the money-metric utility increases
quite rapidly (indeed, more than exponentially) between the two periods. In Section 3.8
and Appendix E, we show that the measured real GDP growth rate captures a main
part of the instantaneous rate of change in money-metric utility (in the above example,
it corresponds to the increase in the money-metric utility between ¢y and ¢ty + 1). The
relationship between real GDP growth and utility in the second example is more complex
because the benefit of individual goods changes over time. Section 4 and Appendix
G explain the money-metric utility under taste changes, demonstrating that the GDP

growth rate captures a portion of it.

Appendix B Real GDP Growth with Previous Year’s Prices

In subsection 2.1, we explained the calculation of the real GDP growth rate between
t — 1 and ¢ using the prices at t. However, in many countries, the real GDP growth
rate is calculated using the prices at ¢ — 1 rather than ¢. Here, we explain how this can
be achieved and demonstrate that the result does not change significantly if the period
length is short.

A practical problem of using prices at period ¢ — 1, denoted by p;—1(4), is that the
prices for the new goods that appear after t — 1 are not defined. Therefore, the real GDP

growth rate, g;¢—1, must be defined without using p;_;(¢) for i € (Ny—1, N¢]. We cannot
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simply use py—1(7) in the formula similar to (1).

In practice, the change in real output (volume) is often calculated by dividing the
change in nominal output (value) by the change in the price level. The change in the
nominal output is easier to measure than the real output, and the change in the price
level can be estimated by available data. More precisely, the change in the price level
between periods ¢t — 1 and ¢ is usually estimated by using only the prices of goods and
services that are available for both t — 1 and ¢. In our context, this means that the
price of the newest goods, which appear between ¢t — 1 and ¢, is not used to estimate the
change in the price level between ¢t — 1 and ¢t. Similarly, if some goods disappear from
the market between ¢ — 1 and ¢, these goods are not used.

Let X; be the set of goods in production at time ¢. Then, X; N X;_; indicates the set
of goods that are produced both in periods ¢ and ¢ —1. Let €;;_; denote the set of goods
that disappear between ¢t — 1 and ¢. Then, Xy — Q1 = Xi N Xy = Xy — (Ni—1, V]
holds. Using these notations, the growth factor of the nominal output measured between

times t — 1 and ¢ is o
1+ gnominal _ th pt(l)l‘t(i)dz
M T T P (DFe () di

The growth factor of the price level between time t — 1 and ¢, using the goods that are

available at both time ¢t — 1 and ¢, is

meXt_1 pe(i)we(i)di
Ixnx,, Pr—1(0)Ze(i)di

1+ Ttt—1 =

Note that this is a Paasche price index in the sense that quantities at time ¢, i.e., Z4(7),

are used as weights. Then, the real GDP growth rate (factor) is obtained by dividing



the growth factor of nominal output by the growth factor of the price level.

1 +gnom1nal
1+qgp 1= —2—=
gtt—1 = T+ 7
_ th pe(i)ze(i)d meXt_l Pi—1(i)x¢(7)di
meXt 1 @(i)it (4)di thf1 Di—1(1)Te—1(2)di
Jx, Pr(D)24(i)di Jxinx, o, BT i [y, |, De-1(D)F-1(i)di
fo (Ne— 1,Nf ( )l’t( di thth71 5t71(i)-%t—1(i)di th,1 ﬁt*l(i):ftfl(i)di
1 X1,
= 1_711%(1 + ) (L= opyty)
tt—1
=1 g ol — o,

where gemtl is the growth rate of the production of goods that exists at both times ¢ and
t —1, 0y{"; is the expenditure share at time ¢ given to new goods that appear between
t—1 and t, and agltlﬁl is the expenditure share at time ¢ — 1 given to old goods that
disappear between t — 1 and ¢. This version of the formula divides real GDP growth g; 1
into its intensive margin ge’“bt and extensive margin o}'y"; — att 1- Note also that in
the evaluation of the intensive margin g&%*, the formula uses the prices of period ¢ — 1,
Pi—1(i).

Now, we consider the continuous-time limit of this real GDP growth. By letting the

period length be A and taking the limit of A — 0, we obtain
. gtt-A . dgii-A
lim lim

A0 A - A0 dA
o (GO dols dgpits
A—0 dA dA dA

x, @)z 1 (8)di + Ny (Ny) T (Ny)di — Jo, Pr()T4(i)di
B thpt i)z (7)di ’

where the first equality comes from L’Hopital’s rule, and €2; in the last line is the set of

goods that disappear from the market exactly at time t. The above result is the same

as the RHS of (5).

Appendix C Two Conditions for Sustained GDP Growth

Corollary 1 shows that the measured GDP growth rate becomes positive when the two

conditions (10) and (11) are satisfied. Here, we discuss these conditions in more detail.
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Condition (10): the quality-adjusted price falls during the product lifecycle

For this condition to be satisfied, p(7) must decrease with 7 at least for a portion of
the product lifecycle. Recall that we normalize the price level so that the price of the
newest goods when they appear does not change over time in the steady state. Therefore,
Condition (10) only requires the quality-adjusted prices of older goods to decrease relative
to those of newer goods, and it is not essential for the prices of individual goods measured
in a currency to decrease.

In terms of actual currencies, we can determine that p(7) is decreasing if the quality-
adjusted currency prices of individual goods lag behind the growth of the nominal per
capita GDP. To see this point, suppose that the per capita nominal GDP growth rate
in dollars is ¢®. Note that, given that f(;[ p(7)z(7)dr is finite, nominal expenditure in
our theory’s price normalization is constant, which means that there is a ¢% difference
in the inflation rate between the prices in theory and in dollars. Then, in dollars, the
rate of price change for age-r good is p/(7)/p(7) + ¢°. Therefore, we can determine that
p/(7) is negative if the quality-adjusted dollar prices of individual goods are increasing
less rapidly than ¢%.

With this definition, the quality-adjusted price of a good may decrease with the
age of the good for several reasons. For example, the cost of production falls through
learning-by-doing and knowledge spillovers. In this case, time and production experi-
ence contribute to price reduction. In addition to cost reduction, changes in the form
of competition may lower prices because older goods are typically less protected from
competition by patents and trade secrets than newer goods are.

Price reductions also occur in the form of quality improvements. For example, the
effective price of computers has been declining for decades, not only because computers
have become cheaper but also because the average performance of computers has dras-
tically improved. SNA statistics record such changes as a decline in the quality-adjusted
price.

Notably, our theory does not require an exponential decrease in the quality-adjusted
price. If the quality improvements are exponential, then economic growth can easily

be maintained, e.g., as in usual quality-ladder models. According to “Moore’s law,”
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the quality of computers has been improving at a constant rate; however, this trend
of exponential improvement is expected to slow. In fact, computers are a remarkable
exception in terms of continued improvements in performance. Most other products
experience a tapering in the rate of productivity improvement as they mature. Our
theory shows that slowdowns in productivity increases in individual goods are consistent
with a sustained rate of measured GDP growth, as long as a constant number of new
products are introduced per unit time.

Finally, let us discuss the case in which the quality-adjusted price of the good increases
for some part of its lifecycle, as we present in Example 2 of Figure 4. Although we need
a concrete model to analyze how this happens and whether Condition (10) is satisfied,
we discuss two possibilities here. One possibility is when products have antique or scarce
value as they become very old. In this scenario, p(7) increases only when z(7) becomes
considerably smaller than it is when the good is newer. Another possibility is that
producing a good in small lots costs more. This happens, for example, when a particular
good continues to be produced to meet a niche demand, typically near the end of the
product lifecycle.

The numerator of the equation, — fOT x(7)dp(T), is the weighted sum of the price
changes, dp(7), where the weights are the quantities, z(7). Therefore, if the quantity
x(7) tends to be small when p(7) increases, then the negative effect of such movements
on the GDP growth rate is likely to be limited. Therefore, even when the price at the
end of the lifecycle p(7T') is higher than the initial price p(0), the lifetime contribution of
this good to the real GDP growth rate may well be positive, as in the case of Example

2.

Condition (11): The cumulative expenditure for a single good is finite

This condition requires the expenditure on older goods, p(7)z(7), to decrease as the
goods age so that they are effectively retired from the market in terms of expenditure
share. The condition is always satisfied if the representative good ceases to be produced
at a finite age T'. Even when the good stays in the market forever (T' = o), the condition

is satisfied if the expenditure decreases reasonably quickly as the good ages (condition
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13). Notably, the speed of the decline in expenditure does not need to be exponential.

The expenditure for the good can decrease as the good ages for several reasons. One
possibility is that the price decreases when the price elasticity of demand is less than
one, at least for older goods. To illustrate this possibility, suppose that the demand for
a good is determined solely by its price p(7), and the price falls toward zero. Even when
the good becomes almost free, it is unrealistic to expect consumers to demand an infinite
amount of any particular product. This consideration suggests that the price demand
elasticity of a product tends to be less than one when the price becomes sufficiently low,
and the expenditure for the good eventually vanishes as p(7) — 0. Section 3 presents a
full endogenous growth model on the basis of this idea.

The expenditure for older goods can also decrease for other reasons. Sometimes,
consumers are attracted by the novelty of new goods, but they become less interested
over time. Advertisements for newer goods increase the speed of the obsolescence of
older goods. Changes in the underlying economic environment may also make older
goods useless. When these effects are present, Condition (11) may be satisfied regardless

of the elasticity of demand. We extend the model to include obsolescence in Section 4.

Appendix D General Case in the Baseline Prototype Model

D.1 Proof of Lemma 1

The proof goes by a “guess and verify” method. Suppose that A* < ((1 + p)é'/)~1,
which means that (1 + g)A\*¢Y/¢ < 1. Then, ¢(1) > (1 + u)A*¢"/¢ holds for all 7 > 0,
since ¢(0) =1 and ¢/(0) > 0 for all 7 > 0.

Below, we verify that the initial guess is correct under the assumption in the lemma.
Since ¢(7) > (14p)A*E"/% holds for all 7 > 0, we can calculate the steady-state value of \*
as in Equation (27). Using the assumption of the lemma, ¢ < (a,uL fooo q(T)Efle*pTdT) 71,
Equation (27) implies

1 > Ve 1
A* = 1o <auL/O q(T)a_le_pTdT> < HFI/E, (D.1)

which confirms that the initial guess is correct.

ix



In Appendix D.2, we show that the steady-state value of A* is unique. Therefore,
we are assured that the unique value of \* satisfies \* < ((1 + p)é/¢)~"; thus, ¢(7) >
(1 + p)\*EYe for all 7> 0.

D.2 Steady-state Equilibrium when ¢ is not Small

In Section 3.4, we assume that ¢ is sufficiently small that ¢(7) > (1 + p)A*¢'/¢ holds
for all 7. Here, we analyze the steady-state equilibrium without this assumption. The

threshold age of goods is defined as follows:

F(A%) = max [0, y <(<1 Fuaar) - 1)] | (D2)

Then, from Equation (21), ¢(7) > (1 + g)A\*¢!/¢ if and only if 7 > F(\*).
Using Equation (24), the profit of an age-7 firm in the steady state can be written

as follows:

g(T)et for T > TN
() = pD(A")q(7) for 7 > 7(A%), 0.3)

uD(N\)q(r)F1 for T < F(N).

Using Equations (D.2) and (D.3), the value of a new firm in the steady state can be
written as a function of \*:

V') = uDOV) /O T e dr - aD () /A :*)q(r)_(l_e)e_mdr. (D.4)
The equilibrium value of A* is determined by the free entry condition, V(A\*) = 1/a.
From D(A) = L((1+ p)A)~¢ and D(A) = L((1+ p)A/u) ¢, we can confirm that function
V(A) is continuous and strictly decreasing in A.%? Additionally, limy_,o V' (\) = oo and
limy o0 V/(A) = 0. Therefore, there is a unique value of positive and finite A* that solves
the free entry condition. This is the steady-state value of A\*.

Next, let us turn to the labor market. From functions (19) and (24), the total number

of production workers in the ASSE can be written as L¥* = n*((\*), where

T(A*) N 00
L") = D(XY) /0 q(7)*""dr + D(\") [ (A*)q(f)—@—ff)df. (D.5)

59T calculate V’()\), we need to use Leibniz’s rule because the range of the integration depends on .
However, at 7 = 7()), we can confirm that D(A\)q(F(A))*~" = D(A\)q(7(A))°~'. Therefore, a marginal
change in 7(\) does not affect V'(\).



Note that the first integral in Equation (D.5) is finite because 7(A*) is finite. The
second integral is finite if the power of ¢(7)~(17%) o (7 + ko) ~?1=9) is less than 1,
which means that (1 —e) > 1, or equivalently ¢ > . In the following, we assume
that ¢ > ¢ holds. The function ¢(\*) is a decreasing and continuous function of \*,
with limy_,0 £(A) = oo and limy_,o, £(\) = 0. Since A* is positive and finite, £(\*) is
also positive and finite. Using Equation (D.5), the equilibrium condition for the labor

market is written as n*¢(A\*) 4+ (n*/a) = L. From this, we obtain

B al
14 ab(\)’

*

n (D.6)

Since £(\*) is positive and finite, n* is also positive and finite.

D.3 Measured Real GDP Growth Rate when ¢ is not Small

As shown in Appendix D.2, the economy has an ASSE with a positive and finite pair of
n* and A\* whenever ¢ € (g,1). In this ASSE, we now calculate the real GDP growth
rate, as measured by the SNA. From Equations (23) and (24), the expenditure for an
age 7 good can be written as follows:

1+ 1) DA)g(1)~1=9)  for 7 > F(A*),
p(P)a(r) = (L4 p)D(A)q(T) (A") o7

(1+ ) DA )g(r)'"5  for 7 < 7(X%).

Using Equation (D.7), we can calculate the expenditure shares for the goods of each age:

D(\)q(T)~ =) /e(\*)  for 7 > T(\*),
o(r) = (A)q(T) JE(AY) > 7(A) D3)

D(\)q(r) 8 /e(x) for 7 < 7(\*).

The measured real GDP growth rate is obtained via the growth formula (36):

o0

~ T(AY) ~
v = (D(A*) | anF amar+ oo [

q(T)(la)gq(T)m') . (D.9)
7(A*)

Using Equations (21) and (22), the growth rate can be written as follows:

~ . (A1) .
0 . (D.10)
+D()\*)K1—(1—6)/ (T+I€o)_0(1_6)_1d7‘>.
7(A*)
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The two integrals in Equation (D.10) are both finite, and their sum is positive. Addition-
ally, as discussed in Section D.2, ¢(\*) is positive and finite. Therefore, given ¢ € (g,1),

the measured real GDP growth rate is positive and finite.

Appendix E Money-Metric Utility

In this Appendix, we derive the money-metric utility (;(A) that satisfies equation (41),

which is shown again below:

V{Brea () 1g Teea) = v({Be(0) 1Y, I exp G (A)). (41)

We focus on the ASSE and continue to assume that the condition for Lemma 1 is satisfied.

Then, ¢(i) > ¢ holds for all i € [0, N¢] in the ASSE, and therefore,
c(i) = A °pe(i) ¢ for ¢ € [0, V). (E.1)
From this demand function, the expenditure at time ¢ is given by
Nt Nt
I = / P (1) (1) di = A;a/ P (i) e di. (E.2)
0 0

Now, let us represent the consumption of each good as a function of the expenditure
(budget) at time ¢, i.e., Iy, rather than as a function of the Lagrange multiplier, A;. By

eliminating A; in (E.1) using (E.2), we obtain
G (@) = pi()) =P U790, for i € [0, Ny, (E.3)

where P, is a price index defined by

P, = ( /O " 5(i)1_5di> 1/(176). (E.4)

Using the first line of (15) and (E.3), we can express the instantaneous utility (in utils)
as a function of I; as follows:

Ne oo c p (1—e)/e
U = /0 u(ce(i))di = Nyu — T <IZ> .
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Note that this property also holds when the expenditure (budget) I; is multiplied by

exp (¢(A) > 1.5 Therefore, Equation (41) can be written as follows:

B c Pt+A (1—¢)/e B c P, (1-e)/e
N, — = Niu — . E.
AT <It+A ) R I exp (;(A) (E-5)

Note that, in the ASSE, P, and I; in (E.2) and (E.4) converge to constant values.
oo
I — ()\*)_sn*/ p(r)"dr = I, (E.6)
0

0o 1/(1—¢)
P, — (n*/ p(T)l_EdT> = P~ (E.7)
0

Additionally, Nyy1a — Ny = n*A holds. Using these, Equation (E.5) can be solved for
Ct(A) as follows.

e l—¢ 1\ (-9)/e
A)=— 1 1-— ul — Al E.
G(8) 1_€og< () (©3)
By differentiating (E.8) by A and taking the limit of A — 0, we obtain
) 7\ (1-e)/e
= | — E.
w=wu(5) (©.9)

which is the instantaneous rate of increase in the money-metric utility in the ASSE.
Below, we examine the relationship between ¢;(0) and the measured real GDP growth

rate in the ASSE, ¢*, given by (37). From (E.6) and (E.7),

(g)(1_5>/a - ((A*)l_an* /O °°p<7>1-8d7)_1. (E.10)

Using (E.1) and (E.10), Equation (E.9) becomes

u

C;(O) = fooo C(T)—(lfs)/sdT’

(E.11)

Note that (E.1), (23), and (21) imply

59When the expenditure (budget) is increased, the consumption of every good increases. Thus, &(i) > €

still applies.
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Therefore, the integral in (E.11) becomes

00 00 —(1—e)/(1-9)
/ C(T)—(l—s)/edT _ C(O)—(l—s)/s/ <7’—|—/€0> € .
0

0 Ko

C(O)_(I—E)/sﬂﬂo (E12)
b1
Y—ep’

where the second equality holds under the assumption of € < ¢, and the last equality is

_ C(Q)f(lfs)/s

from the definition of kg = 1/(1 — ¢)S. By substituting (E.12) into (E.11), we obtain

Equation (43) in the main text:

1—28)u —
G(0) = C(g)(f)j Ut = g (E.13)

where g* is the measured real GDP growth rate in (37) and A > 1 is the correction term
defined in (42). (See Figure 7 for a graphical explanation for A). Additionally, note that
(E.9) and (E.13) imply that (E.8) is identical to (42) in the main text.

Appendix F Transitional Dynamics

In the first subsection of this appendix, we derive the dynamics of the prototype model
of Section 3 without assuming that the economy is in the steady state (ASSE). In the

second subsection, we explain how to calculate the rate of GDP growth in the transition.

F.1 Dynamics of the Economy outside the Steady State

Following the main text, we continue to assume that ¢ is sufficiently small so that ¢, (i) > ¢

holds for all ¢ € [0, N¢] and ¢. Then, similar to (24), the demand for an age-7 good is
2(7) = D(M)q(7)" = Deq(7), (F.1)

where Dy = D(N\) = L((1 + p)A\)~¢ is the demand shifter and A\; is the Lagrange
multiplier of the consumer’s problem. Since the markup rate is p, the profit of an age-7

firm at time ¢ is 7 (7) = uDq(7) L. From this, the value of a new firm at time ¢ is

o] t+7
Vi, = / T4+ (T) €Xp {—/ n,dv] dr
t

0
o0 t+71
= / Dyyrq(1)° " exp {— / mdv] dr,
0 t

Xiv

(F.2)



where the last line shows that V; is a function of the paths of Dy, and ryi; in the
future. Since A; follows the Euler equation A /A = p — 1, the two variables r, and

Dy = L((1 + p)A\) "¢ are related by
— =¢(re — p). (F.3)
Since the cost of creating a new firm is 1/a, the free entry condition is

00 t+7 1
u/ Dyyrq(t)" texp {—/ rvdv] dr < — with equality if ny > 0. (F.4)
0 t a

We first consider the case where the free entry condition (F.4) holds with equality.

In this case, using (F.2), this condition can be written as follows:

S t+1 1
N/ Dt+7q(7')5*1 exp [—/ rvdvi| dr = . (F.5)
0 t

The paths of D; and \; are determined so that the differential equation (F.3) and the
integral equation (F.5) simultaneously hold for all ¢ in the future. We solve this system
of equations by the guess-and-verify method. Suppose that Dy, = D* and ryyr = p
hold for all 7 > 0, where D* is the value of D; in the ASSE, defined by (27). Because
D* is constant, this guess naturally satisfies the differential equation (F.3). Additionally,
the integral equation (F.5) is satisfied because, with Dy, = D* and ry, = p, Equation
(F.5) becomes identical to (27). Therefore, the pair of Dy, = D* and iy, = p for all
7 > 0 is a solution to (F.3) and (F.5).

We also need to consider the equilibrium of the labor market. From (F.1), the amount
of labor hired by an age-7 firm is z(7)/q(7) = Dyq(7)~(179). Since there are n;_, firms

of age 7 at time t, the total employment for production is
t
LP = Dt/ q(r)" =, dr. (F.6)
0

The employment for R&D at that time is n;/a, and the labor supply is L. Therefore,
the equilibrium of the labor market requires Lf + n¢/a = L, which can be solved for n;

as follows:

¢
ne=a (L — Dt/ q(T)_(l_E)TLt_TdT> . (F.7)
0
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When the free entry condition (F.4) holds with equality at time ¢, the equilibrium path

of this economy after t is given by Dy = D* and ry4, = p for all 7 > 0 and

t
ng=a (L - D*/ q(T)(IE)nt_TdT> . (F.8)
0

Note that the only unknown in the integral equation (F.8) is n;. Given the history of
ny before t (i.e., ny—, for 7 € (0,t]), it is easy to numerically calculate the value of
ny that satisfies (F.8). We can confirm that the free entry condition (F.4) holds with
equality if n; in (F.7) is positive (if it is negative, we need to consider the case of ny = 0
as explained below). Additionally, by comparing (F.8) and (31), we see that n; = n*
satisfies the labor market equilibrium condition as ¢ — co. As shown in the left panel of
Figure 6, we numerically confirm that the economy converges to the steady state where
n; = n*.

Next, we consider the case where the free entry condition (F.4) holds with strict
inequality. In this case, there is no R&D at time ¢, which means that n; = 0. From
the labor market equilibrium condition (F.7), we obtain the equilibrium value of D, as

follows:
L

~ Joatr) Oy

Since ny_, is predetermined, it is possible to solve for the path of D; numerically. Note

Dy

(F.9)

that while n; = 0 holds, the denominator of (F.9) gradually decreases because g(7)~ (1=,
where ¢ < 1, is decreasing in 7. Therefore, D; eventually reaches D*. After this point,
the free entry condition holds with equality, and n; is determined by (F.8). As explained
above, the economy then converges to the ASSE. Finally, we explain the dynamics of
ry when n; = 0. Given the path of D;, Equation (F.3) implies that the interest rate
becomes '
1Dy
Tt=p+ =D,
Since Dt > 0 before Dy reaches D*, r; should be greater than p when the free-entry

condition is satisfied with strict inequality.
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F.2 Measured GDP Growth in the Transition

In the transition, the real GDP growth rate is given by Equation (5). In the model
of Section 3, T' = oo means that €2; is an empty set. Therefore, the third term in the
numerator of (5) is eliminated. Note that p;(i) = p(7) = (14+wu)/q(7), where 7 = t — s(3).
Additionally, (i) can be written as x;(7) = Dyq(7)®. Then,

(1) = i (7) + 2(r) = Dig(r) + Dreq(r)* /(7).

Using (F.3) and (22), the above equation becomes

(i) = e(re — p+ 94(7))24(7)-

Since s(i) =t — 7 is the date at which good i was the newest good, i = = Nyi) = Ni—r
holds. By fixing ¢, the total differentiation of ¢ = N;_, yields di = —n;_.d7. Finally, the
set of goods in production is X; = [0, /V¢], which transforms to [t, 0] when represented in

terms of age. Using these, Equation (5) can be written as

o= nep(0)z(0) + Efot (re — P+gq(7')) (T)xt(T)”t—TdT’ (F.10)

f() nt TdT
When n; > 0, the analysis in Section F.1 shows that Dy = D* and r = p hold. In this

case, z4(7) can be written as z(7) = D*q(7)¢. Using this, (F.10) becomes

ng+e fot gq(T)‘J(T)Eil"f*TdT ifng >0
M

Cq(r)e-
g = f() Ing_ Td; (Fll)
gfo gq('r)q(T) Yng_rdr + E(Tt _ P) if n; = 0.

fo Ve lng_ dr

Once we obtain the paths of n; and r; as explained in Section F.1, Equation (F.11) allows
us to calculate the path of g; numerically.
Appendix G Money-Metric Utility with Obsolescence

In both cases, € > 1 and € < 1, the consumption of good i at time ¢ is

(i) = Ay "pe()720(t — 5(4))%, (G.1)

where ); is a Lagrange multiplier. Then, the total expenditure at time ¢ is
t
L= / Bu(i) 28t — (i) di. (G.2)
0
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Using (G.2), we can represent the consumption of individual goods ¢(i) in terms of I

rather than \;. By eliminating \; in (G.1) using (G.2), we obtain
Et(l) = ﬁt(l)isé(t - S(i))spta_lft, (Gg)

where P, is a price index when obsolescence is present,

N 1/(1—e)
P, = ( / pr(i) 0 (t — s(z’))adi) . (G.4)
0
Note that in the ASSE, I; and P; converge to finite constants.

T
I, — ()\*)En*/o p(T)17e8(T)edr = I, (G.5)

P — (n /0 ! p(r)lfa(f)%) e = p*. (G.6)

We can follow the same procedure to obtain the consumption at ¢t + A in the ASSE:
Gra (i) = Praa(i) 20(t + A = (1)) P A Liea, (G.7)

where Ij1a — I" and P.yaA — P* as t — oo. Using these results, we later calculate the
instantaneous utility consumers in the ASSE at time ¢ + A, which is represented by the
LHS of Equation (48); i.c., v({Prra(i)} g, Iya, t + A).

Next, let us consider the situation of a consumer at time ¢t whose preference is that
of time ¢ + A, while the prices and availability of goods are still those of time ¢ (this
situation corresponds to the RHS of Equation 48, v({p; (i)}, Iy exp G (A), t+A)). This
means that the consumer discounts the utility from individual goods by §(t + A — (7)),

while the prices are py(i). Then, the consumption of good i is
Gis ) = AT Bli) 55t + A — s(0)), (G3)

where the term (¢ + A — s(4))° signifies that the preference is that of ahead of time by

A. Then, the total expenditure at time ¢ is
L= ° /0 RIS+ A — s(i))edi. (G.9)
By eliminating \; in (G.8) using (G.9), we obtain
Galis A) = Po(i) 0(t + A — (i) P(A) I, (G.10)
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where ﬁt(A) is a price index at time ¢ given that the preference is that of ¢t + A,

B(A) = < /O )AL A s(i))adi> e

On the ASSE, this price index converges to
N T /(=)
P(A) — <n*/ p(T — A)155(7)5d7'> = P*(A). (G.11)
A
Now, we are ready to compare both sides of (48). Since the utility function changes
its form depending on whether ¢ > 1 or € < 1, in the following, we consider the two

cases separately.

G.1 Caseofe>1

In this case, the sub-utility function is given by u(c) = ¢!=1/¢/(1—1/¢) for all ¢ > 0. We
first derive the change in instantaneous utility (in utils) in the ASSE. From (G.3) and

u(c) = ¢~/ /(1 — 1/¢), the instantaneous utility at ¢ in (44) is
Nt
U= [ 18t = s()u(@) + (1 = 6 = (i)l d

9 It (e=1)/e —~ ~ Nt . .
= — - - .
p— <Pt> +uNy —u ; o(t —s(i))di

From (G.5), (G.6), and N; — n*, the above expression asymptotically becomes

e 7\ (/e t
U = < > + ulNy — ﬂn*/o o()di. (G.12)

e—1\ P

Similarly, we can calculate the instantaneous utility at ¢ + A in the ASSE.

e T* (e-1)/e N N t+A .
Ufsa = o <P*> + UNppn — un*/o d(7)di. (G.13)
By comparing (G.12) and (G.13) and using Ny = n* and 6(t) — 0 as t — co, we obtain

the speed at which the instantaneous utility increases in the ASSE.

. U —U*  dU*
Up = Jim —X dA

=un*(1 —94(t)) — un™ as t — oo.
A=0

Therefore, the instantaneous utility (in utils) linearly increases with time, with a slope

of un*.
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In the following, we consider the money-metric utility, (;(A), as defined by (48).
The LHS of (48), v({ﬁt+A(i)}£\23A,It+A,t +A)is U o in (G.13). In RHS of (48), i.e.,
v({ﬁt(i)}f\io,lt exp (;(A),t + A), I; represents the expenditure at time ¢t in the ASSE.
Since the expenditure in the ASSE is asymptotically constant, as shown in (G.5), this
I; can be equated to I*. Therefore, this expression represents the instantaneous utility
of the representative consumer when (i) the prices and availability of goods are those of
time ¢, (ii) the instantaneous expenditure is I* exp (;(A), and (iii) the preference is that
of t + A. In this situation, Equation (G.10) implies that the consumption of individual
goods is

G(isA) = Pr(i)"S8(t + A — s())FB(A)F L exp G(A). (G.14)

Additionally, the instantaneous utility in this situation is
Ny
Ui(A) = / [6(75 + A —s(i))u(c(i;A) + (1 —o(t — s(z)))ﬂ] di.
0

In the above equation, the range of the integral is from 0 to Ny because the availability
of goods is that of time ¢. Additionally, the externality term (1 — 6(¢ — s(4)))u is that of
time ¢t. However, sub-utility u(c;(i; A)) is multiplied by (¢ + A — s(i)), which indicates
that consumers have a preference of time ¢ + A.

By substituting u(c) = ¢!~1/¢/(1 —1/¢) and (G.14) into the above equation and then

using (G.11), the instantaneous utility asymptotically becomes

3

N (e—1)/e o ‘
0*(A) = (13*1( A)) exp[ 1Q(A)} + AN, — an’ /O S(rydr. (G.15)

e—1 €

The money-metric utility (in logs), (:(A), is defined so that (G.13) coincides with (G.15).

We can solve this definition for exp (;(A) as follows:

exp G(A) = ﬁzﬁ {1 + 6 - ! (i) N an (A _ /tt+A 5(T)d7‘> }1 . (G.16)

Note that (G.16) implies (;(0) = 0 because ]3*(0) = P*. Equation (G.16) can be

interpreted as follows. When consumers have the preference of time ¢t + A (i.e., when
consumers discount the utility of goods more heavily than at time ¢) while the prices

and availability of goods are still those of time ¢, they in effect face higher prices in



that they can only achieve lower instantaneous utility with a given budget. This effect
is represented by P*(A)/P* > 1. To compensate for this, ¢;(A) must be increased.
In addition, if @ is positive (i.e., when there are positive externalities from old goods),
consumers at time ¢t + A enjoy more externalities than at time ¢ because n*A more
goods are available at time ¢t + A. The difference (in utils) is un* tt+A(1 —(7))dr =

( -/ ) ) The second term in the braces of (G.16) represents this effect.

In the following, we derive (;(0), the slope of the money-metric utility with respect
to A at A = 0. Note that differentiating the LHS of (G.16) and then substituting A = 0
yields ¢;(0) exp (;(0) = ¢/(0). Applying the same operation to the RHS of (G.16) and
utilizing P*(0) = P* yields

c(0) = — dP*(A)' + (P*) T ant(1— o). (G.17)
A=0

P*  dA I*

Differentiating (G.11) with respect to A and then substituting A = 0 yields

iy {/DTP(T)_(E—U(;(T) <_];:((TT))> dr + (e — l)p(O)_(e—l)}

Then, using (22), (23) and (G.6), the first term of (G.17) becomes

dP*(A)
dA

A=0

1 dP*(A)
P*  dA

fo ¥16(7)%g ¢ (T)dT 1 1
f g(r)=18(r)dr €= 1 [T q(r)=18(r)edr

(G.18)

A=0

Note that the first term of (G.18) is the weighted average of the rate of price reduction
of existing goods, and it coincides with the measured GDP growth rate ¢* in (45). For
the consumer with time ¢+ A preference facing time ¢ prices and availability, this amount
of expenditure needs to be compensated (in ¢/(0)) so that she has the same utility as the
consumer at time ¢ + A in the ASSE. The second term of (G.18) comes from the fact
that the consumer with time t + A preference facing time ¢ prices and availability does
not have access to i € [Ny, Npya] goods. This consumer also needs to be compensated
for this fact.

Let us turn to the second term of (G.17). Recall that we assumed that J(¢) is

asymptotically zero as t — 00.5! Note also that, in the ASSE, Equations (G.3), (G.5)

S'f T is finite, §(t) becomes zero when ¢ > T. If T is infinite, §(¢) converges to zero as t — 0.
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and (G.6) imply that the consumption for age-0 good is ¢(0) = p(0)~¢(P*)*~1I*, which
means that I* = p(0)5(P*)~~Y¢(0). By using I* and §(t) — 0, the second term of
(G.17) becomes n*(P*/p(0))°14/c(0)~1/2. Then, from (23) and (G.6), it becomes

u 1

(O [T g(m)e15(r)edr (G.19)

This term derives from the fact that the sum of positive externalities increases with time

as newer goods are developed. Combining (G.18) and (G.19) yields the first line of (49).

G.2 Caseof € (0,1)

In this case, the sub-utility function is given by u(c) = ¢'~%/¢/(1—1/e) 4+ for ¢ > €. As
mentioned in the main text, we assume that ¢ is sufficiently small that ¢;(7) > ¢ holds
for all ¢ and ¢. Similar to the previous subsection, the instantaneous utility at times ¢

and t + A in the ASSE asymptotically becomes

. e P* (1-¢)/ R o t ‘
U =— T (I*) + uNy + (u—u)n /0 d(7)di, and (G.20)
c pr\ (1-e)/e R R t+A
Ufin = — T (I*) + UNga — (T — u)n*/o o(7)di. (G.21)

By comparing (G.20) and (G.21) and using Ny = n* and §(t) — 0 as t — oo, we obtain

the speed at which the instantaneous utility increases in the ASSE.

. Ut A —Uf *
U = lim 442 L t+A =uan*+ (w—u)n*i(t) — un* as t — oo.
¢ = lm A B |y un® + (u —u)n*o(t) — un 00

Therefore, similar to the case of ¢ > 1, the instantaneous utility (in utils) linearly
increases over time, with a slope of un*.

Note that U, o in (G.21) corresponds to the LHS of (48) for the case of € € (0, 1).
By a similar procedure that leads to (G.15) in the previous subsection, we obtain the

utility of consumers that corresponds to the RHS of (48) for the case of € € (0,1).

N¢
0 (A) :/O (6t + A — s(i))u(@(i; A)) + (1 — 6(t — s(i)))a]di

o~ (1-e)/e
_ e (P (A)> o [—“%(A)] LN c2)
1—e¢ I* €
t+A t
+un*/ d(r)dr — ﬁn*/ d(7)dr.
A 0
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The money-metric utility (in logs), (:(A), is defined so that (G.21) coincides with (G.22).

We can solve this definition for exp (;(A) as follows:

expo () = L&) {1 _lze (I) =

P* € P*
. (G.23)
t+A A =
(ﬂA—ﬁ/ (5(7’)dT—i—u/ (5(7)d7’>} .
t 0
Differentiating both sides of (G.23) by A and then substituting A = 0 yields
~ 1—¢
o L dP(A) NE L
¢(0) = P A ) + P n* (u —uo(t) +ud(0)) . (G.24)

The first term of (G.24) is given by (G.18), which does not depend on the value of e.
Additionally, I* = p(0)%(P*)~~D¢(0) holds as in the case of ¢ > 1. Then, using 6(0) = 1

and §(t) — 0 as t — oo, Equation (G.24) becomes

) = g + {1i€ ((:((10)_1_8278 - 1) + c(O)la—l/&} (/OT q(r)€16(7)6d7>

Note that (1 —e)@/c(0)'~1/¢ is the same as A in (42), and A > 1 holds given that

-1

€ € (0,1). Therefore, we obtain the second line of (49).
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