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Abstract

To explain the observed stability in real GDP growth, existing endogenous growth
theories propose models in which the quantity, quality or variety of the final out-
put increases exponentially in the long run. However, such exponential increases
typically require a knife-edge degree of externality, which is not supported by micro-
level observations. This paper presents a new theory of long-term growth in which
a constant number of new goods are introduced per unit of time and focuses on the
movement of prices and quantities after introduction. We show that if the quality-
adjusted prices and quantities of individual goods follow a typical pattern of the
product lifecycle, then the long-term rate of real GDP growth, as measured by SNA
statistics, becomes positive without exponential growth in the quantity, quality or
variety of final outputs. We develop a prototype model and its extensions, showing
that the conditions for positive real GDP growth are less restrictive than typical
knife-edge assumptions. We also demonstrate that the long-term real GDP growth
rate in the non-exponential model is closely related to the rate of increase in the
money-metric utility.
Keywords: endogenous growth theory, balanced growth, knife-edge condition,
product lifecycle, money-metric utility.
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(b) Per Capita Real GDP, Linear Scale

 -

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

1
8
3
0

1
8
4
0

1
8
5
0

1
8
6
0

1
8
7
0

1
8
8
0

1
8
9
0

1
9
0
0

1
9
1
0

1
9
2
0

1
9
3
0

1
9
4
0

1
9
5
0

1
9
6
0

1
9
7
0

1
9
8
0

1
9
9
0

2
0
0
0

2
0
1
0

2
0
2
0

Figure 1: Long-term Evolution of Real GDP per Capita in the United States Since 1830

(2011 International Dollar). Source: Madison Project, Bolt and van Zanden (2025).

1 Introduction

Since around the time the First Industrial Revolution was completed, the growth in real

GDP per capita in the United States has been remarkably stable. Figure 1(a) depicts

the time series of the real GDP on a log scale, where the slope of the series represents the

growth rate. Although there have been short- to midterm fluctuations, the figure clearly

shows that the log of the real GDP per capita closely follows a linear trend, implying that

the long-term rate of per capita GDP growth is almost constant. Figure 1(b) shows the

time path of the U.S. real GDP per capita on a linear scale without taking the logarithm.

Given that the GDP growth rate is stable, it is well known that the level of real GDP

per capita is increasing exponentially in the long run.

Given these findings, it is natural for existing studies on endogenous growth to explain

the phenomenon of long-term growth via models in which the per capita output con-

tinues to grow exponentially. Initially, this was an extremely challenging task because

reproducible inputs are subject to diminishing returns, which implies that the accumu-

lation of those factors alone cannot explain the exponential growth. Seminal studies

1



in endogenous growth theory thus overcame this challenge by assuming the presence of

strong intertemporal knowledge spillovers.

In variety-expansion models (e.g. Romer, 1990; Grossman and Helpman, 1991a), the

productivity of new R&D is assumed to increase as knowledge accumulates with the

past stock of R&D. To sustain economic growth, the elasticity of this spillover ϕ needs

to equal one. Similarly, in quality ladder models (e.g. Grossman and Helpman, 1991b;

Aghion and Howitt, 1992), the increment in quality due to successful new R&D depends

on the quality of the existing good, which is a result of the past stock of R&D. Sustained

growth requires the increments to be proportional to the existing quality, which means

that the elasticity of the externality should again be one. Finally, in AK-type growth

models (e.g. Romer, 1986; Rebelo, 1991), the elasticity of production with respect to all

reproducible factors and the elasticity of their externality effects must add up to one.1

In almost all endogenous growth models, long-term growth can be sustained only when

one such knife-edge condition is satisfied.2

Nevertheless, a puzzle remains. Indeed, the externality and nonrivalry of knowledge

play essential roles in improving productivity (e.g. Griliches, 1998). However, if we

look at the spillover process more precisely, no concrete evidence supports any of these

assumptions. Klenow and Rodriguez-Clare (2005, Section 3) reviewed various AK-type

models. They concluded that such models are empirically implausible because of the

1When there are multiple sectors, at least one sector that produces a reproducible factor (typically

physical capital or human capital) must satisfy this restriction. For example, Lucas (1988) initially

introduced a human capital accumulation function ḣt = hϕtG(1 − ut) and then made the assumption

ϕ = 1, following Uzawa (1965). After doing so, he wrote, “the feature that recommends his formulation

to us is that it exhibits sustained per capita income growth,” which gives a clear example of a case where

such a knife-edge assumption is justified not by microlevel observations but rather by the aggregate

outcome. Lucas noted that “human capital accumulation is a social activity,” which suggests that the

elasticity ϕ = 1 includes the effect of externalities.
2Growiec (2007, 2010) formally proved that, with any generalization in functional form, exponential

growth cannot be explained without imposing at least one knife-edge assumption in the model. An

exception is Peretto (2018), who showed that sustained growth can be obtained when ϕ ≥ 1 in the

Schumpeterian growth model if the excessive portion of ϕ (i.e., ϕ − 1) is diluted by the proliferation of

products.
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lack of a tight enough relationship between investment rates and growth rates in cross-

country data. For the elasticity of spillover ϕ in R&D-driven growth models, Jones (1995)

clearly stated, “ϕ = 1 represents a completely arbitrary degree of increasing returns

and... is inconsistent with a broad range of time series data on R&D and TFP growth.”

He convincingly stated that ϕ = 0 is the most natural case, and while ϕ can either be

negative by the “fishing out effect” or positive by the “better tools effect,” it is reasonable

to assume that ϕ < 1. Bloom et al. (2020) estimated the degree of diminishing returns

(1−ϕ) in research productivity in various industries and reported that ϕ is significantly

less than one (even negative) for almost all industries. They concluded that improving

the quality of goods at a constant exponential rate is becoming more difficult.

A possible answer to this puzzle is semi-endogenous growth theory with ϕ ∈ (0, 1),

where the long-term rate of growth is ultimately driven by population growth. However,

Jones (2022) predicted that economic growth will eventually come to an end, given that

there are upper limits on population, research intensity, and education attainment. This

paper presents an alternative possibility, i.e., that the measured economic growth can

continue indefinitely with a constant population under the natural assumption of ϕ = 0.

Overview of the mechanism

This paper presents a theory that explains the stability of the observed real GDP growth

rate by considering the vintages of products and their product lifecycle. In this setting,

we will show that the measured GDP growth rate becomes positive under more agreeable

conditions than a knife-edge level of externality, as assumed in existing endogenous

growth models.

Recall that we first presented the (log) level of GDP in Figure 1, and then discussed

real GDP growth. However, in the System of National Accounts (SNA) statistics (the

NIPA in the U.S.), the GDP data are constructed in reverse order. Statistical agencies

first calculate the real GDP growth rate by comparing the quantities of various product

groups in adjacent years, using the same set of prices for both years. Then, they construct
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the aggregate level of real GDP via the chain rule:

[
Real GDP at year T

]
=
[
Real GDP at reference year t0

]
×

T∏
t=t0+1

(1 + gt,t−1),

where gt,t−1 is the measured real GDP growth rate between year t and year t−1.3 There-

fore, the fact that the time series of measured per capita real GDP exhibits exponential

growth only means that the series of gt,t−1, from which the real GDP is calculated, is

positive and stationary. Because the composition of final goods differs across time, it

is not evident whether the stationarity in the gt,t−1 series implies exponential growth

in the quantity or quality of any particular final good. In Appendices A.1 and A.2, we

provide two simple examples in which consumer expenditure gradually shifts to newer

final goods. In both examples, the gt,t−1 series is sustained at a positive constant level

even though the quantity or quality of no particular good grows exponentially.

Given that there is no need to explain the exponential increase in any good, less

restrictive assumptions are sufficient to explain the fact that the measured real GDP

has been growing steadily. To replicate the environment where the real GDP growth

rate is calculated by statistical agencies, we consider a stylized model in which new final

goods are gradually introduced and explicitly focus on their prices and quantities over

their lifecycle. In this multiproduct setting, we show that the measured GDP growth

rate becomes a positive constant when the following is true: (i) new goods (or services)

are continually introduced to the market; (ii) the quality-adjusted prices of each good

decrease as they become older compared to newer goods; and (iii) the expenditure share

for very old goods is limited. Condition (i) does not require the number of goods to

increase exponentially. Conditions (ii) and (iii) state that the price and quantity for

each good should follow the well-observed pattern of the product lifecycle.4 This type

of economic movement does not require a knife-edge level of externality. This contrasts

3The real GDP in reference year t0 can be set arbitrarily because this is simply an index. An often-used

method is to set it to the nominal GDP at time t0.
4Appendix A.3 shows that the two examples in Appendices A.1 and A.2 satisfy the three conditions.

In addition, we explain how these two simple examples connect to the general equilibrium models in

Sections 3 and 4.
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with existing endogenous growth models, which require some variables to grow exponen-

tially. Nevertheless, knowledge externalities are crucial for growth, as they often work

behind the product lifecycle, which includes quality improvements and cost reductions.

Our prototype endogenous model incorporates these, but the decline in quality-adjusted

prices does not need to occur at an exponential speed. As a result, a weaker externality

is sufficient for sustaining measured real GDP growth.

Our results may still seem paradoxical. Although the output, in terms of quantity,

quality, or variety, does not increase exponentially, the measured real GDP is increasing

exponentially. Do the real GDP statistics overestimate the actual growth? Not neces-

sarily. Like in recent studies (Baqaee and Burstein, 2023; Jaravel and Lashkari, 2024),

the measured real GDP in our model is closely related to the money-metric utility, which

evaluates the change in the utility of consumers using the equivalent variation. In the

prototype general equilibrium model, we show that the money-metric utility can increase

exponentially or even faster depending on how consumers value the arrival of new goods.

In particular, if there is an upper bound on the utility obtainable from existing goods

(measured in the unit of the utility function), the benefits of being able to buy new

goods can surpass the benefits of having an exponentially larger budget.5 In fact, the

measured real GDP tends to underestimate the growth of money-metric utility because

it captures only a part of the utility gains related to the introduction of new goods.

Some recent studies view long-term growth differently than an exponential increase

in final output at the rate of measured GDP growth. León-Ledesma and Moro (2020)

considered a two-sector model and calculated the growth rate via the methodology em-

ployed by the NIPA. They showed that the shift in the expenditure share from goods to

services explains cross-country growth. In this paper, we propose that continual shifts in

expenditure shares from old goods and services to new goods and services are behind the

5For example, let us consider the change in money-metric utility from 200 years ago to the present.

At the beginning of the 19th century, most industrial goods were absent; thus, it was impossible to live

a life as convenient as that today, however rich one was. Effective medical services or drugs were almost

nonexistent, and as a result, mortality was high, even among wealthy people. Would you prefer to live

200 years ago if you were given an arbitrarily larger budget at that time? If the answer is no, the change

in the money-metric utility over 200 years is infinity. See Section 3.8 for a formal analysis.
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stability in measured GDP growth. Aghion et al. (2019) examined the possibility that

the measured GDP growth rate underestimates the welfare gains from creative destruc-

tion, which is consistent with our findings. A notable difference is that we do not require

an exponential increase in the quality of individual products because the expenditure

shifts to the newer variety of goods. Philippon (2022) suggested that a linear trend fits

the TFP data better than an exponential trend for periods ranging from several decades

to a few centuries. According to his theory, long-term GDP growth can be sustained

only when there are occasional changes in the linear trend (e.g., by the arrival of general-

purpose technologies), and the slope of the linear trend needs to increase exponentially.

In this paper, we explore a mechanism that does not require exponential increases or a

knife-edge degree of externalities, even in the very long term.

The rest of the paper is constructed as follows. Section 2 presents a stylized but fairly

general theory that provides the conditions under which measured real GDP growth can

be sustained in a setting without exponential expansion. On the basis of this theory,

Section 3 develops a prototype R&D-based endogenous growth model. Without requiring

knife-edge conditions, the model shows that innovation continues and that the measured

GDP growth remains positive. Section 4 introduces the obsolescence of goods, and

Section 5 considers multiple sectors. In these two sections, we generalize the theory and

the prototype model to demonstrate that we can obtain a positive constant real GDP

growth rate in wider (even less restrictive) situations. Section 6 concludes the paper.

2 Theory

In this section, we theoretically derive the condition under which the real GDP growth

rate, as measured by the SNA, can be sustained. In a setting where new goods are con-

tinually introduced but not at an exponential speed, we show that the sustainability of

measured GDP growth depends on the pattern of changes in prices and quantities in the

product lifecycle. The results suggest various possibilities for constructing general equi-

librium models in which measured GDP growth can be sustained under less restrictive

assumptions than those found in typical endogenous growth models. A simple prototype

model is presented in Section 3.
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2.1 Measuring GDP Growth with Vintages of Goods

Let us consider an economy with a constant population and many goods. While we

follow a convention in the variety expansion model by calling them goods, it is more

suitable to think of each good in theory as a group of products or services based on

the same technology. Each good is indexed by i ∈ [0, Nt], where i = 0 is the oldest,

and i = Nt is the most recently introduced good. The number of goods Nt increases

whenever new goods are introduced.6

Let p̃t(i) and x̃t(i) denote the price and quantity, respectively, of each good i at time

t. We normalize the price level and the quantity unit of each good so that the price and

quantity of the newest good are unchanged over time. As in SNA statistics, we define

p̃t(i) and x̃t(i) as quality-adjusted values. For example, if the quality of good i is doubled

(so that consumers receive the same utility from half the quantity), then our measure of

x̃t(i) is doubled, whereas that of p̃t(i) is halved.

In this stylized environment, we follow the method of the SNA statistics to calculate

the real GDP growth rate. This can be done by comparing the values of all final outputs

between two consecutive years, e.g., year t − 1 and year t. Their values are measured

via the common set of prices, which is usually the set of observed prices in a given base

year. Because the base year is frequently updated in official statistics and because we

are interested in long-term dynamics, we suppose that there is no gap between the base

year and the year in which the growth rate is computed.7 Then, the real GDP growth

rate between years t− 1 and t can be written as follows:

gt,t−1 =

∫ Nt
Nt−1

p̃t(i)x̃t(i)di+
∫ Nt−1

0 p̃t(i) (x̃t(i)− x̃t−1(i)) di∫ Nt−1

0 p̃t(i)x̃t−1(i)di
. (1)

This equation is composed of the integrals of two functions: p̃t(i)x̃t(i) and p̃t(i)x̃t−1(i).

Figure 2 depicts the curves of these two functions against the index of varieties i for two

6Nt includes the number of goods that are no longer produced.
7In the U.S., the NIPA computes the growth rate in two ways, i.e., by setting the base year to t and

by setting it to t − 1. Then, the agency calculates the geometric average of the two values. For ease of

exposition, here, we show only the growth rate in which the base year is t. In appendix B, we explain

the calculation of the real GDP growth rate when the base year is t− 1. The difference between the two

cases disappears at the limit where the period length approaches 0, as we consider in the next subsection.
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Case 1: When x̃t(i) is always increasing in t.

i
index of varietiesNt

value of production
for each good i
at time t and t-1,
measured with
price at time t 

Nt-1

(a)

(b)

(c)
pt(i)xt-1(i)

xt(i)pt(i)

0

growh rate
=(a+b)/c

Case 2: When x̃t(i) decreases with t sometime after introduction.

i
index of varietiesNtNt-1

(a)

(b)

(c)
pt(i)xt-1(i)

xt(i)pt(i)

0

(d)
growth rate
=(a+b-d)/(c+d)

value of production
for each good i
at time t and t-1,
measured with
price at time t 

Figure 2: Calculation of the Real GDP Growth Rate: Two Cases.

cases, i.e., when the quantity of existing goods always increases with time (Case 1) and

when the quantity of existing goods decreases in some part of their lifecycle (Case 2).

In Case 1, area (a) represents the sum of the values of new goods introduced between

time t − 1 and time t, evaluated by the prices at time t. Similarly, area (b) represents

the value of the increased production of goods that already existed at time t− 1. These

two areas measure how economic activity has increased from time t − 1 to time t and

correspond to the two terms in the numerator of Equation (1). Area (c) represents the

value of total production at time t−1, evaluated again by the prices at time t. This area

corresponds to the denominator of Equation (1). In this way, the real GDP growth rate

can be understood as the ratio of area (a)+(b) to area (c), which measures the rate at

which the economic activity at time t increases from time t− 1.

This procedure can be generalized to the case where the output quantity x̃t(i) is not

monotonic in t. Case 2 in Figure 2 illustrates an example where the production of a

certain range of goods declines between periods t−1 and t. A portion of curve p̃t(i)x̃t(i)
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then falls below curve p̃t(i)x̃t−1(i). In this case, the real GDP growth rate is given by

the ratio of area (a)+(b)−(d) to area (c)+(d).

2.2 Non-Exponential Steady State with a Product Lifecycle

The fact that the measured U.S. real GDP growth rate has been stable for almost two

centuries suggests that Nt, p̃t(i), and x̃t(i) in Equation (1) may have some steady-state

properties in the long run. This subsection presents a simple notion of a steady state in

the environment explained thus far. In particular, we focus on the steady-state dynamics

where neither variety, quantity, nor quality expands exponentially. For ease of analysis,

we describe the economy in continuous time throughout the rest of the paper.

Suppose that, in the long run, Nt increases by a positive constant n per unit of time

as follows:

Ṅt → n > 0 as t→ ∞. (2)

Recall that existing variety expansion models require a strong and exact degree of knowl-

edge spillover to maintain the exponential expansion of varieties, where Ṅt/Nt is con-

stant. In contrast, the linear increase in Nt in Equation (2) does not require such strong

knowledge spillovers within the R&D sector, as we will see in the general equilibrium

model in Section 3.

Let s(i) denote the time when good i is developed. It is convenient to label each

good by its age, τ = t − s(i), i.e., the time passed from its introduction. Given that n

new goods are introduced per unit of time, an age τ good is the nτth newest good. This

means that the index of a good i and its age τ are related by the following:

i = Nt − nτ, or equivalently, τ ≡ t− s(i) =
Nt − i

n
. (3)

With this notation, let us say that the economy has reached a steady state if every

good’s price and quantity follow the same time evolution with respect to τ . Formally,

the economy can be said to be converging to a steady state if time-invariant functions

p(τ) and x(τ) exist such that

p̃t(i) → p(t− s(i)) ≡ p(τ), x̃t(i) → x(t− s(i)) ≡ x(τ) as t→ ∞. (4)
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Let T > 0 denote the age beyond which the product is never produced. In typical

variety-expansion endogenous growth models, goods never retire from the market. In

this case, T = ∞. However, in practice, many products disappear after some time. Our

theory can be applied to both cases, where T is finite or infinite. We assume that p(τ)

and x(τ) satisfy the following properties:

Assumption 1.

(i) Both p(τ) and x(τ) are nonnegative and continuous for all 0 ≤ τ ≤ T , where T is

such that x(τ) = 0 for all τ > T . Additionally, they are differentiable for all 0 < τ < T .

(ii) T can be infinite, but p(τ) and x(τ) do not increase exponentially: limτ→∞ p′(τ)/p(τ) ≤

0 and limτ→∞ x′(τ)/x(τ) ≤ 0 if T = ∞.8

(iii) The newest good’s price and quantity are both positive: p(0) > 0 and x(0) > 0.9

With Assumption 1(i), the present paper focuses on the continuous setting because

it is mathematically less demanding and does not sacrifice intuitions. Since x(τ) rep-

resents the quality-adjusted quantity, Assumption 1(ii), combined with Equation (2),

guarantees that neither quantity, quality, nor variety grows exponentially in this econ-

omy. Assumption 1(iii) is an obvious assumption. When a new good appears in the

market, it should imply that the expenditure for the good, p(0)x(0), is positive.

Definition 1. A non-exponential asymptotic steady state is a situation in which the num-

ber of goods follows Equation (2), while the paths of quality-adjusted prices and quantities

of goods, i.e., p̃t(i) and x̃t(i), respectively, satisfy Condition (4) and Assumption 1.

In the remainder of the paper, we use the term “steady state” unless doing so leads

to confusion. Figure 3 intuitively depicts the evolution of the quality-adjusted prices and

quantities in the above definition of the steady state. The graphs can be viewed in two

ways, i.e., drawn against the i-axis (index of goods) running from left to right or drawn

against the τ -axis (age of goods) running in the opposite direction. The two variables,

8 Note that the time derivative of the quantity in the steady state is ˙̃xt(i) =
d
dt
x(t−s(i)) = x′(t−s(i)) =

x′(τ). Therefore, x′(τ)/x(τ) = ˙̃xt(i)/x̃t(i) represents the growth rate of the quantity of age τ good, or

equivalently, that of index i = Nt − nτ good. Similarly, p′(τ)/p(τ) = ˙̃pt(i)/p̃t(i) in the steady state.
9In this paper, we use the term “positive” to mean greater than (not including) zero.
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Figure 3: Evolution of Prices and Quantities in a Non-Exponential Steady State.

i and τ , are related according to Equation (3); however, the relationship changes over

time as Nt increases. At time t, the origin of the τ -axis coincides with the point of i = Nt

on the i-axis because the newest good i = Nt is age τ = 0 at time t. Over time, the

origin of the τ -axis moves to the right with the speed of the introduction of new goods,

Ṅt = n, as does the position of the graph drawn against τ .

The upper panel of Figure 3 illustrates the schedule of quality-adjusted price p(τ),

assuming that it decreases with age τ because a product either becomes cheaper or

becomes higher quality over time after its introduction. Then, p̃t(i) is increasing in i at

any given time t since the newer goods have a larger index i. The figure also explains

the movement of the price of each good p̃t(i) over time. Even in the steady state where

function p(τ) is stationary, the price of individual good p̃t(i) shifts downward to the

dotted curve because the position of function p(τ) continues to move to the right as new

goods are developed.10

10Although this is a convenient way to explain the steady-state dynamics, note that the economic

environment, such as technology, preference, and market structure, first determines the evolution of the
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The lower panel of Figure 3 explains the evolution of quality-adjusted quantities of

goods over time. The panel is drawn under the assumption that x(τ) is increasing in τ ,

which naturally matches our example in which older goods have lower quality-adjusted

prices. In this case, the demand for each good x̃t(i) increases over time as the x(τ)

function shifts to the right. However, note that Assumption 1(ii) rules out exponential

growth in the quantity of any good. Even when T = ∞, the growth rate of x(τ) must

be either zero or negative, as τ → ∞.

Similar to Case 2 of Figure 2, we can also consider a steady state in which the

quantity may decrease with age, even though older goods are less expensive. Such a

pattern emerges when consumers do not like outdated goods or if newer goods replace

parts of functions that are provided by older goods, as we discuss later in Section 4.

2.3 Measured Real GDP Growth Rate in the Steady State

Now, we examine whether the non-exponential steady state explained in Section 2.2

implies a positive and constant real GDP growth rate. Note that the conventional

definition of real GDP growth in Equation (1) gives the average growth rate between

two discrete periods. To map this definition to a continuous-time growth model, it is

convenient to consider the instantaneous growth rate gt at time t. This can be obtained

by replacing t−1 in Equation (1) with t−∆ and taking the limit of ∆ → 0 in gt,t−∆/∆.11

gt = lim
∆→0

gt,t−∆

∆
=
Ṅt · p̃t(Nt)x̃t(Nt) +

∫
i∈Xt p̃t(i)

˙̃xt(i)di−
∫
i∈Ωt p̃t(i)x̃t(i)di∫

i∈Xt p̃t(i)x̃t(i)di
, (5)

where Xt and Ωt represent the set of goods that are in production and the set of goods

that reach the end of life, respectively, at time t. Suppose that the economy converges

to a steady state, as defined in Definition 1. The number of goods grows linearly, and

the evolution of prices and quantity in terms of age becomes stationary. The long-term

growth rate can be obtained by substituting Equations (2)-(4) into Equation (5). If T

price of individual goods p̃t(i) in equilibrium. Then, the long-term pattern of movement in p̃t(i) shapes

the stationary p(τ) function.
11See Appendix B for the derivation of (5) when the prices of t− 1 are used to evaluate gt,t−1.
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is finite,12

gt → g ≡
np(0)x(0) + n

∫ T
0 p(τ)x′(τ)dτ − np(T )x(T )

n
∫ T
0 p(τ)x(τ)dτ

as t→ ∞. (6)

When T is infinite,13

gt → g ≡ lim
T→∞

np(0)x(0) + n
∫ T
0 p(τ)x′(τ)dτ

n
∫ T
0 p(τ)x(τ)dτ

as t→ ∞. (7)

The interpretations of the growth rates in Equations (6) and (7) are essentially the

same as that in Equation (1), except that growth is now represented in terms of age and

in continuous time. In the numerator, np(0)x(0) represents the value of newly introduced

goods, whereas n
∫ T
0 p(τ)x′(τ)dτ represents the value of changes in quantities of existing

goods given price function p(τ). When T is finite, −np(T )x(T ) represents the loss of

the value of goods that retire from the market at the end of their life. All terms are

multiplied by n because there are n goods per unit of age. The sum of these terms

reflects the speed of increase in economic activity. The denominator of Equations (6)

and (7), n
∫ T
0 p(τ)x(τ)dτ , gives the total value of existing production, i.e., the nominal

GDP of the economy given prices p(τ). The ratio of the two yields the real GDP growth

rate.

The following proposition provides a simpler formula for the long-term GDP growth

rate in the steady state.

12Equation (6) can be obtained from Equation (5) as follows. First, we substitute p(τ) and x(τ) for

p̃t(i) and x̃t(i). Similarly, ˙̃xt(i) can be written as x′(τ) (see footnote 8). Next, we change the integration

variable from di in Equation (5) to dτ . By differentiating Equation (3) for a given t, we obtain di = −ndτ .

We also need to change the integration interval. If T is finite, then Xt = [Nt−nT,Nt]. From Equation (3),

i = Nt − nT and i = Nt correspond to τ = T and τ = 0, respectively, as illustrated in Figure 3. From

these, the denominator of Equation (5) is limt→∞
∫
i∈Xt

p̃t(i)x̃t(i)di = limt→∞
∫ 0

T
p(τ)x(τ)(−n)dτ →

n
∫ T
0
p(τ)x(τ)dτ . Similarly, the second term in the numerator becomes n

∫ T
0
p(τ)x′(τ)dτ . The first and

third terms become np(0)x(0) and −np(T )x(T ), respectively. Therefore, the limit of the numerator of

Equation (5) is np(0)x(0) + n
∫ T
0
p(τ)x′(τ)dτ − np(T )x(T ).

13When T is infinite, Xt = [0, Nt]. Note that i = 0 and i = Nt correspond to τ = t and τ = 0,

respectively. As t → ∞, τ = t approaches ∞; therefore, the denominator approaches n
∫∞
0
p(τ)x(τ)dτ .

Note that the third term in the numerator disappears because Ωt = ∅ when T = ∞. Note also that in

the RHS of (7), we first consider the integration from 0 to (a finite value) T and then take the limit of

T → ∞ because
∫∞
0
p(τ)x(τ)dτ can be infinite.
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Proposition 1. Suppose that the economy converges to a non-exponential asymptotic

steady state, as defined by Definition 1. Then, the real GDP growth rate gt asymptotes

to g in the long run, where g is given as follows:

(i) If
∫ T
0 p(τ)x(τ)dτ is finite (which is always true when T is finite), then14

g =
−
∫ T
0 x(τ)dp(τ)∫ T

0 p(τ)x(τ)dτ
. (8)

(ii) If
∫ T
0 p(τ)x(τ)dτ = ∞, then g = 0.

Proof. (i) First, we consider the case of finite T . In the numerator of (6), integration

by parts implies that
∫ T
0 p(τ)x′(τ)dτ = p(T )x(T ) − p(0)x(0) −

∫ T
0 p′(τ)x(τ)dτ . Since

p(0)x(0) and p(T )x(T ) cancel out, we obtain (8).

Next, we consider the case of T = ∞. Given that
∫ T
0 p(τ)x(τ)dτ is finite, we can

write the RHS of Equation (7) as follows: (p(0)x(0)+
∫∞
0 p(τ)x′(τ)dτ)/(

∫∞
0 p(τ)x(τ)dτ).

Additionally, the finiteness of
∫∞
0 p(τ)x(τ)dτ implies that limτ→∞ p(τ)x(τ) = 0 (i.e.,

p(∞)x(∞) = 0). Therefore, integration by parts implies that
∫∞
0 p(τ)x′(τ)dτ = −p(0)x(0)−∫∞

0 p′(τ)x(τ)dτ , from which we obtain (8).

(ii) In this case, T is necessarily ∞. If
∫∞
0 p(τ)x′(τ)dτ is finite, then the result

directly follows from Equation (7). Now, suppose that
∫∞
0 p(τ)x′(τ)dτ is either +∞ or

−∞. Since both the numerator and the denominator in Equation (7) are infinite, we

apply L’Hôpital’s rule to Equation (7) to obtain the following:

g = lim
T→∞

p (T )x′ (T )

p (T )x (T )
= lim

T→∞

x′ (T )

x (T )
≤ 0, (9)

where the last inequality follows from Assumption 1(ii). In the following, we show that

g < 0 does not occur by contradiction. For g to be strictly negative, x(τ) needs to

shrink exponentially, which also means that x′(τ) must shrink exponentially. However,

from limτ→∞ p′(τ)/p(τ) ≤ 0 in Assumption 1(ii),
∫ T
0 p(τ)x′(τ)dτ is finite since p(τ)x′(τ)

should shrink exponentially. Therefore, g < 0 contradicts the initial assumption that∫ T
0 p(τ)x′(τ)dτ is either +∞ or −∞.

Although Equation (8) has a simple form, it includes the contributions from the new

goods and disappearing goods since it is mathematically equivalent to Equations (6) and

14Note that
∫ T
0
x(τ)dp(τ) is equivalent to

∫ T
0
p′(τ)x(τ)dτ given that p′(τ) exists.
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(7) as long as
∫ T
0 p(τ)x(τ)dτ < ∞. Proposition 1 immediately implies the requirements

for positive long-term GDP growth.

Corollary 1. The long-term real GDP growth rate g is a positive and finite constant if

and only if the following two conditions are satisfied:15

−
∫ T

0
x(τ)dp(τ) is positive and finite, and (10)∫ T

0
p(τ)x(τ)dτ is finite. (11)

The expression
∫ T
0 p(τ)x(τ)dτ in Condition (11) is the denominator of Equation (8).

It is the cumulative expenditure that one product attracts over its lifecycle. Note that

the nominal GDP in the steady state is n
∫ T
0 p(τ)x(τ)dτ . Therefore, Condition (11) also

means that the nominal GDP is constant, given our price normalization. The expression

in Condition (10), −
∫ T
0 x(τ)dp(τ), is the numerator of Equation (8). It represents the

cumulative reduction in the quality-adjusted price of a good during its product lifecycle.

Given that the prices in the model are normalized so that nominal GDP in the steady

state is constant, the decline in the quality-adjusted price in the model means that the

growth of the quality-adjusted price of goods measured in currencies is slower than the

growth of nominal GDP.16 When this happens, consumers have more purchasing power,

which improves their utility. This income effect is more significant when the quantity of

the good is greater. Therefore, in Condition (10), the price reduction −dp(τ) is weighted

by quantity x(τ) and then integrated. The integrated sum gives the total income effect

that one product generates over its product lifecycle.

If both conditions are satisfied in a non-exponential steady state, as defined in Def-

inition 1, the real GDP growth rate is strictly positive in the long run, even though no

variable grows exponentially. In Appendix C, we discuss the implications of Conditions

(10) and (11) in more detail.

15Note that
∫ T
0
p(τ)x(τ)dτ is always positive from Assumption 1; therefore, we require only finiteness

in Condition (11).
16See Appendix C for a more detailed explanation.
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Another way to interpret the formula (8) is to rewrite it as follows:

g = −
∫ T

0
σ(τ)d ln p(τ), where σ(τ) = p(τ)x(τ)∫ T

0 p(τ ′)x(τ ′)dτ ′
(12)

is the expenditure share given to age τ goods, and d ln p(τ) = dp(τ)/p(τ) = (p′(τ)/p(τ))dτ

is the growth rate of the price of age τ goods. In this version of the formula, the inte-

gral
∫ T
0 σ(τ)d ln p(τ) represents the growth rate of the Divisia price index.17 Recall that

the prerequisite for the formula (8) implies that the nominal GDP (n
∫ T
0 p(τ)x(τ)dτ) is

constant under our price normalization. Given this, the formula (12) indicates that the

real GDP growth rate can be obtained by subtracting the growth of this Divisia price

index from the nominal GDP growth rate (i.e., zero).

2.4 Graphical Examples

Proposition 1 shows that the real GDP growth rate depends only on functions p(τ) and

x(τ). Therefore, we can represent the growth rate graphically via the shapes of these

two functions. Figure 4 provides three examples.

Example 1 shows the simplest case, where the quality-adjusted price (weakly) de-

creases with age throughout the product lifecycle. The left panel depicts the evolution

of {x(τ), p(τ)} in the x-p diagram. T is finite in this example. The good enters the

market at point {x(0), p(0)} and continues to be produced until its age reaches T = τ3.

Then, the numerator, −
∫ T
0 x(τ)dp(τ), can be expressed by the area that is encompassed

by the locus of {p(τ), x(τ)} and the vertical axis in the x-p diagram (shown in blue). This

graphical representation can be interpreted as follows. Whenever the quality-adjusted

price falls by dp(τ), either through cost reductions or through quality improvements,

consumers can save their purchasing power by the amount −x(τ)dp(τ). The blue area

shows the cumulative benefits of this good throughout its lifetime. The area is positive

and finite as long as p(0) > p(T ).18

17See Hulten (1973) for explanations of the Divisia index numbers. Jorgenson and Griliches (1971)

discusses the benefit of using Divisia index numbers in measuring productivity growth. Oulton (2025)

argues that Divisia indices represent the ideal to which real-world, discrete indices are an approximation.
18p(0) > p(T ) requires the price to fall strictly with age at some point in a good’s life.
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Example 1: When T is finite and p(τ) is weakly decreasing

Example 2: When T is finite and p(τ) is nonmonotonic

Example 3: When T = ∞ and p(τ) is decreasing

Figure 4: Graphical Representation of the Real GDP Growth Rate.
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The right panel shows the evolution of expenditure for a good against its age,

p(τ)x(τ). The area below the curve (shown in yellow) gives the denominator,
∫ T
0 p(τ)x(τ)dτ .

According to Assumption 1, the expenditure for the good is positive at the time of intro-

duction, and it evolves within the nonnegative region during its lifetime. Since expen-

diture p(τ)x(τ) falls to zero at finite T = τ3, this area is positive and finite. According

to Proposition 1, the ratio of the blue area to the yellow area represents the real GDP

growth rate. Therefore, we can conclude that the real GDP growth rate in this example

is positive and finite.

Next, Example 2 considers a case where p(τ) is not monotonic. As shown in the left

panel, the quality-adjusted price begins to increase after τ3 years. When the price of the

good (relative to the newest good) increases during a part of its lifecycle (from τ = τ3

to τ6), the area between this part of the x-p locus and the vertical axis (marked as (ii)

and (iii)) represents the loss of the purchasing power of consumers. This area needs to

be deducted from the benefits of the fall in quality-adjusted prices from τ = 0 to τ3.

Therefore, the numerator, −
∫ T
0 x(τ)dp(τ), is given by area (i) minus area (iii) because

area (ii) cancels out. It can be either positive or negative but is always finite since T = τ6

is finite. The yellow area in the right panel gives the denominator,
∫ T
0 p(τ)x(τ)dτ , which

is positive and finite. Therefore, the real GDP growth rate is finite and is given by the

ratio of the blue area minus the red area to the yellow area. Additionally, note that the

growth rate becomes zero only by coincidence, when the blue and red areas are the same

size.

Finally, Example 3 shows a case in which the good remains in the market forever

(T = ∞). The price p(τ) (relative to the newest good) falls throughout the lifecycle,

and the quantity x(τ) remains positive as τ → ∞. For the yellow area to be finite,

the expenditure on very old goods has to decrease. More concretely, Condition (11) is

satisfied if the expenditure on old goods is bounded by a polynomial function of age with
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a power of less than −1:19

p(τ)x(τ) ≤ [constant] · τ−ξ for all τ ≥ τ , (13)

for some ξ > 1 and τ > 0. The dotted curve in the right panel gives an example of such

an upper bound. While we need a concrete model to determine whether Condition (13)

is satisfied, let us note that the condition does not require an exponential decrease in

expenditure. The RHS of Equation (13) decreases with age at the rate of ξ/τ for τ > τ .

The rate of decline in the quality-adjusted price, ξ/τ , can be arbitrarily close to zero

when we choose a large τ . Therefore, there is no minimum rate at which the expenditure

needs to decrease.

The blue area is positive, given that the quality-adjusted price falls throughout the

product lifecycle. Combined with Condition (13), the GDP growth rate is also positive.

The growth rate is finite if p(τ) is bounded away from 0 as τ → ∞.20 If p(τ) falls to

0 as τ → ∞, then the finiteness depends on the relationship between p(τ) and x(τ).

Specifically, if the quantity depends only on price, then the area becomes finite if the

price elasticity of the demand is less than one as the price approaches 0 from above.21

3 A Prototype Non-Exponential Growth Model

This section presents a general equilibrium model that yields non-exponential steady-

state dynamics. While the theory in the previous section suggests many ways to construct

a model that achieves non-exponential growth while capturing various aspects of reality,

19Suppose that Condition (13) is satisfied. Then, the denominator of Equation (8) is
∫∞
0
p(τ)x(τ)dτ ≤∫ τ

0
p(τ)x(τ)dτ +

∫∞
τ

[constant] · τ ξdτ . The first term is finite, and the second term becomes [constant] ·

τ1−ξ/(ξ − 1), which is also finite.
20In this case, x(τ) must be finite as τ → ∞ since otherwise, p(τ)x(τ) becomes infinite, contradicting

Condition (13). Given this, the blue area is finite.
21Suppose that we can define a static inverse demand function P (x). Focusing on the case of x → ∞

and P (x) → 0, the blue area can be written as p(0)x(0) +
∫∞
x(0)

P (x)dx. If the price elasticity of the

demand as p→ 0 is less than one, then the elasticity of P (x) with respect to x as x→ ∞ is greater than

one. This means that P (x) is bounded by [constant] · x−ξ′x for some ξ′ > 1 for large x. Therefore, the

integral is finite.
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this section presents the simplest prototype model to convey the substance of the non-

exponential growth theory as clearly as possible. We generalize the prototype model in

Sections 4 and 5.

3.1 Consumers

Consider an economy with infinitely lived representative consumers of constant popula-

tion L. At each point in time, each consumer supplies one unit of labor. The wage level

is normalized to one.22 The lifetime utility function of the representative consumer is

given by ∫ ∞

0

[∫ Nt

0
u(c̃t(i))di

]
e−ρtdt, (14)

which is separable across both time and goods. Note that the sub-utility function is

symmetric across goods; thus, we do not consider the obsolescence of older goods in this

simplest prototype model.

We assume that the sub-utility function u(c) is an increasing, continuous, differ-

entiable, and concave function of c with u(0) = 0.23 In addition, we aim to model

consumers so that their demand behavior is reasonable when the price approaches zero

and infinity. In particular, we assume that the price elasticity of demand for individual

goods is less than one when the price is close to zero or, equivalently, when the quantity

is large.24 Otherwise, the expenditure for a single good becomes infinite such that p→ 0,

which is unrealistic. At the same time, it is reasonable to assume that the price elasticity

is greater than one when the price is very high or, equivalently, when the quantity is

small. Otherwise, the expenditure for a single good increases without bound as p→ ∞,

which is also unrealistic.25 To satisfy these properties in the simplest way, we consider

22We later confirm that the price of the newest good is unchanged over time (p(0) = (1 + µ)/q(0) =

1 + µ). Therefore, this price normalization is consistent with the theory in the previous section.
23In a variety-expansion model, where the range of the integration (0 to Nt) changes endogenously,

the utility from a nonexistent good should be zero; i.e., u(0) = 0.
24As explained in Example 3 of Section 2.4, this condition also implies that the blue area is finite given

that the demand depends only on price. Therefore, this condition is crucial for obtaining g > 0 given

that goods are symmetric. We relax this assumption when obsolescence is introduced in Section 4.
25If the elasticity of u(c) were less than one for all c ≥ 0 (i.e., when ĉ = 0 in Equation 15), then the
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Elasticity < 1
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> 1 

continuous and smooth
at c=

bounded above 
by 

u(0)=0

Figure 5: Utility from Each Good (Left) and Expenditure for Each Good (Right)

a sub-utility function in which the elasticity changes at a threshold level ĉ > 0:

u(c̃t(i)) =


c̃t(i)1−1/ε

1−1/ε + u for c̃t(i) ≥ ĉ (0 < ε < 1),

u c̃t(i)
1−1/ε̂

1−1/ε̂ for 0 ≤ c̃t(i) < ĉ (ε̂ > 1),

(15)

where we specify constants by u = ĉ1/ε̂−1/ε > 0 and u = (1/(1−1/ε̂)+1/(1/ε−1))ĉ1−1/ε >

0 so that both u(c) and u′(c) are continuous at c = ĉ. The shape of u(c) is shown in the

left panel of Figure 5.

The dynamic budget constraint of the representative consumer is given by

k̇t = rtkt + 1−
∫ Nt

0
p̃t(i)c̃t(i)di. (16)

In equilibrium, the aggregate asset holding, Lkt, should equal the value of all the firms

in the economy. Consumers maximize their lifetime utility (14) subject to the budget

constraint (16), given interest rate rt, prices of goods p̃t(i) for i ∈ [0, Nt], initial asset

holding k0, and the standard non-Ponzi game condition.

From the above, we obtain a piecewise isoelastic demand function for individual

goods by the representative consumer:

c̃t(i) =


λ−εt p̃t(i)

−ε if p̃(i) ≤ ĉ−1/ε/λt,

(λt/u)
−ε̂ p̃t(i)

−ε̂ if p̃(i) > ĉ−1/ε/λt.

(17)

first line of (15) would imply that u(0) = −∞, which is inconsistent with our assumption of u(0) = 0.
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As shown in the right panel of Figure 5, the expenditure for each good, p̃t(i)c̃t(i), has

a tent-shaped curve against its price, p̃t(i), which means that the expenditure for an

individual good never explodes when the price approaches either zero or infinity. The

shadow price of the budget constraint λt evolves according to the Euler equation λ̇t =

(ρ − rt)λt. Its initial value is determined so that the transversality condition limt→∞

e−ρtλtkt = 0 is satisfied given the evolution of kt in Equation (16).

3.2 R&D and Production Technologies

Each consumer works either as a production worker or as a researcher. A researcher

succeeds in developing a new good with a Poisson probability of a per unit of time.

Let LRt denote the number of researchers in the economy, which is to be determined in

equilibrium. Over time, the number of goods increases according to

Ṅt = aLRt . (18)

Equation (18) is similar to standard variety expansion models, except that there is no

spillover term from the stock of past R&D.

Once developed, each individual good is produced with a linear production technology

that requires only labor. The output of good i is given by

x̃t(i) = q̃t(i)l̃t(i), (19)

where l̃t(i) is the labor input and q̃t(i) is the marginal product of labor in producing

good i. Alternatively, we can interpret x̃t(i) as the quality-adjusted output and q̃t(i) as

the quality of good i. In this case, one unit of labor produces one unit of good i with

quality q̃t(i). In either interpretation, we call q̃t(i) the productivity for good i.

When any good is first developed, the productivity is normalized to 1. Then, as the
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production of this good proceeds, the productivity increases according to26

˙̃qt(i) = I(x̃t(i)) · βq̃t(i)ψ, 0 < ψ < 1, (20)

where I(x̃t(i)) is an indicator function that takes a value of 1 when x̃t(i) > 0 and 0 oth-

erwise. This means that productivity increases as long as production takes place. The

specification in Equation (20) is similar to those in the quality ladder models. There

are knowledge spillovers from the past productivity of technology to the current produc-

tivity increments. Parameter ψ ∈ (0, 1) specifies the degree of such spillovers. While

quality ladder models need to assume that ψ = 1 to achieve an exponential increase in

productivity (or quality), we do not make this knife-edge assumption. For the moment,

we consider the case of ψ ∈ (0, 1) and later compare the result to the case of ψ = 1.

The parameter β > 0 represents other possible factors that affect the speed at which

productivity increases.

As long as x̃t(i) > 0, then Equation (20) is an autonomous differential equation in

q̃t(i). Similar to Section 2, let τ ≡ t−s(i) denote the age of the good. Then, the solution

to the differential Equation (20) can be written as follows:

q(τ) = κ1 (τ + κ0)
θ , (21)

where θ ≡ 1/(1−ψ) > 1, κ0 ≡ θ/β > 0, and κ1 ≡ (β/θ)θ > 0. Given that ψ ∈ (0, 1), the

productivity improvement is less than exponential. The rate of increase in productivity

is given by

gq(τ) =
q′(τ)

q(τ)
=

θ

τ + κ0
=

β

(1− ψ)βτ + 1
. (22)

In this specification, gq(τ) takes the highest value at the time of introduction (gq(0) = β)

and then then falls to 0 as a good becomes older (gq(∞) = 0). This rules out the trivial

possibility that the exponential increase in the productivity of individual goods explains

the sustained GDP growth.

26For simplicity, we assume that only experience in terms of time matters for productivity improvement.

Alternatively, we can consider experience in terms of the cumulative production amount. Horii (2012)

analyzed a model in the latter setting and derived a GDP growth rate defined in the same way as in

Equation (1); however, it is a semi-endogenous growth model that requires an exponentially growing

population (c.f. Jones, 1995):
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3.3 Behavior of Firms

Let us now turn to the behavior of production firms. While any product is protected

by a patent forever, the patent breadth is limited (e.g. O’Donoghue, Scotchmer, and

Thisse, 1998). This means that while other producers are prohibited from using the

same technology as the original inventor, they are allowed to produce similar products

if they use a technology that is sufficiently different from the original. Alternatively,

we may suppose that a part of the technology is kept secret by the inventor and that

outsiders need to rely on less efficient technologies. In either case, outsiders face lower

productivity than the original firm does.

To formalize this idea, let us assume that there are potentially many outside firms.

These firms have partial access to the technology of the original inventor q̃t(i) to produce

the same good i. However, their productivity is 1/(1 + µ) times lower, where parameter

µ represents the patent breadth or the strength of the trade secret. For simplicity, we

assume that 0 < µ < 1/(ε̂− 1). In this case, the profit-maximizing strategy is to set the

limit price, which is (1+µ) times higher than the marginal cost.27 Given the production

function (19) and the fact that the wage is normalized to one, the pricing by a firm that

has τ years of experience is

p(τ) =
1 + µ

q(τ)
. (23)

3.4 Steady-State Equilibrium

Now, we derive the long-term property of the equilibrium dynamics in this prototype

model. The following defines a notion of long-term equilibrium suitable for our model.

Definition 2. An equilibrium path that satisfies the following properties as t → ∞ is

called the asymptotic steady-state equilibrium (ASSE).

1. The speed of the introduction of new goods converges to a positive and finite con-

stant: Ṅt → n∗ > 0.

27If the patent breadth were infinite, then the firms would choose monopoly pricing. In that case, the

profit-maximizing markup would be 1/(ε̂ − 1) if the demand elasticity were ε̂ > 1 and infinity if the

elasticity were ε < 1. Since µ is lower than both, the firms set the limit price.
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2. The Lagrange multiplier of the budget constraint, λt, converges to a positive and

finite constant: λt → λ∗ > 0.

In the steady state, the equilibrium output of a good of age τ is determined by

Equations (17) and (23) with λt = λ∗ and does not depend on t:

x(τ) =


D(λ∗)q(τ)ε if q(τ) ≥ (1 + µ)λ∗ĉ1/ε,

D̂(λ∗)q(τ)ε̂ if q(τ) < (1 + µ)λ∗ĉ1/ε,

(24)

where demand shifters D(λ) = L((1+µ)λ)−ε and D̂(λ) = L((1+µ)λ/u)−ε̂ are decreasing

functions of λ. The following lemma gives the condition under which the production of all

existing goods is determined by the first line of Equation (24), where the price elasticity

of demand is ε < 1.

Lemma 1. Suppose that ĉ is smaller than
(
aµL

∫∞
0 q(τ)ε−1e−ρτdτ

)−1. Then, in the

ASSE, q(τ) ≥ (1 + µ)λ∗ĉ1/ε for all τ ≥ 0.

Proof: In Appendix D.1.

In the main text, we focus on the simple case where ĉ is sufficiently small so that

the assumption in Lemma 1 is satisfied. We leave the analysis of the general case for

Appendix D.2. Then, from (23), (24), and the fact that the markup rate is µ, the profit

of an age-τ firm is

π(τ) = µD(λ∗)q(τ)ε−1. (25)

The equilibrium values of n∗ and λ∗ are determined by the free entry condition for

R&D and the labor market clearing condition. Let us first focus on the R&D condition.

Recall that the Euler equation is λ̇t/λt = ρ− rt. Since λt is stationary in the ASSE, the

interest rate necessarily converges to rt → ρ. Using interest rate rt = ρ and the profit

function (25), we can calculate the present value of a new firm just after it has succeeded

in developing a new good:

V (λ∗) = µD(λ∗)

∫ ∞

0
q(τ)ε−1e−ρτdτ. (26)

From the R&D function (18), the expected cost of developing a new good is 1/a.

Therefore, given that there is a positive flow of R&D, n > 0, and given that the financial
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market is complete, the value of the new firm (26) should be equalized to the expected

cost of development: V (λ∗) = 1/a. This condition gives the equilibrium value of D(λ∗)

in the ASSE:

D(λ∗) =
1

aµ

(∫ ∞

0
q(τ)ε−1e−ρτdτ

)−1

≡ D∗. (27)

By substituting Equation (21) into Equation (27), we can calculate the value of D∗,

which is always positive and finite.28 We also obtain λ∗ = 1
1+µ (L/D

∗)1/ε from the

definition of D(λ) = L((1 + µ)λ)−ε.

Next, let us turn to the labor market. First, Equation (18) implies that the number

of research workers in the ASSE is LR∗ = n∗/a. Second, according to functions (19) and

(24), the aggregate demand for production workers in the ASSE is29

LP∗ = lim
t→∞

∫ Nt

0
l̃t(i)di→ n∗

∫ ∞

0

x(τ)

q(τ)
dτ = n∗D∗

∫ ∞

0
q(τ)ε−1dτ. (29)

The labor supply is given by population L. Therefore, the labor market clearing condition

is

L = LR∗ + LP∗ =
n∗

a
+ n∗D∗

∫ ∞

0
q(τ)ε−1dτ. (30)

From Equation (21), the integral in the RHS,
∫∞
0 q(τ)ε−1dτ , becomes finite if and only

if θ(1− ε) > 1. Using the definition θ ≡ 1/(1−ψ), the condition is reduced to ψ ∈ (ε, 1),

where ψ is the degree of knowledge spillover from past productivity to its increments. If

ψ < ε, then the integral is infinite; therefore, Equation (30) implies that n∗ = 0. Since

we are interested in the ASSE with n∗ > 0, the remaining analysis focuses on the case

of ψ ∈ (ε, 1).

Then, from Equation (30), we obtain the equilibrium research intensity in the ASSE:

n∗ =
aL

1 + aD∗
∫∞
0 q(τ)ε−1dτ

. (31)

28Let Γ(·, ·) denote the upper incomplete Gamma function, defined as Γ(s, z) ≡
∫∞
z
ts−1e−tdt. The

values of Γ(s, z) are available in most programming platforms. The function Γ(s, z) is positive and finite

for all s ∈ (−∞,∞) and z ∈ (0,∞). By changing the variable of integration from τ to τ̃ = (τ + κ0)/ρ

and utilizing Equation (21), Equation (27) implies the following:

D∗ =
κ1−ε
1 ρ1+θ(1−ε)

aµeρκ0Γ(1− θ(1− ε), ρκ0)
> 0, (28)

29In Equation (29), the variable of integration is changed from i to τ via Equation (3).
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From (31), LR∗ = n∗/a and LP∗ = L − LR∗ are also obtained. We can calculate

the explicit value of n∗ as follows. Using Equation (27) and then Equation (21), the

equilibrium ratio of the two types of labor is(
LP

LR

)∗

=

∫∞
0 q(τ)ε−1dτ

µ
∫∞
0 q(τ)ε−1e−ρτdτ

, (32)

the value of which can be expressed via the Gamma function.30 Using
(
LP /LR

)∗, the

ASSE research intensity can be written as

n∗ = aLR∗ =
aL

1 + (LP /LR)∗
, (34)

which becomes a positive and finite constant given that ψ ∈ (ε, 1).

The pair of D∗ = D(λ∗) in Equation (27) and n∗ in Equation (34) characterizes the

long-term equilibrium of this economy. These equations also explain how parameters

affect long-term dynamics. For example, a larger µ means that the breadth of patents is

wider (or that trade secrets are better maintained). A higher value of a means that R&D

requires less labor. In these cases, innovation intensity n∗ increases because of greater

profitability, whereas the output of each good, proportional to D∗, decreases because

there are more production firms to which the aggregate labor needs to be distributed.31

The opposite occurs when the time preference ρ is greater because it increases the interest

rate, reducing the present value of profits.

When population L is larger, the research intensity n∗ is multiplied proportionally to

L. However, the production of each good (proportional to D∗) does not change because

both the number of products introduced each year and the number of total production

workers are multiplied by the same factor. This outcome resembles the mechanism of the

30Using Equation (28), the value of (32) can be calculated as follows:(
LP

LR

)∗

=
κ
1−θ(1−ε)
0 ρ1+θ(1−ε)

µ(θ(1− ε)− 1)eρκ0Γ(1− θ(1− ε), ρκ0)
if ψ > ε,

(
LP

LR

)∗

= ∞ otherwise. (33)

31The derivative of the upper incomplete Gamma function with respect to the second argument,

∂Γ(s, z)/∂z = −zs−1e−z, is always negative. Using this property, the properties in the text can be

confirmed from Equations (28), (33) and (34).
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second-generation endogenous growth models, where the horizontal number of sectors is

adjusted proportionally to the total population.32

Before closing this subsection, let us briefly compare those results against the case

of ψ = 1. When ψ = 1, the solution to the differential equation (20) is exponential:

q(τ) = eβτ . Then, we can calculate n∗ and D∗ in the ASSE as follows:

n∗ =
µ(1− ε)βaL

(1 + µ)(1− ε)β + ρ
, D∗ =

(1− ε)β + ρ

aµ
. (35)

The comparative static properties with respect to µ, ρ, L and a are the same as those

in the case of ψ ∈ (ε, 1). Therefore, the exponential growth in productivity (ψ = 1) can

be viewed as a particular case of our model, although we do not focus on it because it is

a knife-edge case.

3.5 Measured Real GDP Growth Rate

Now, we are ready to examine the long-term GDP growth rate, as measured according to

the SNA, in this prototype model.33 In this subsection, we assume that ψ ∈ (ε, 1) so that

the economy has an ASSE with finite n∗ > 0 and λ∗ > 0. In addition, using Equations

(21), (23) and (24), we can confirm that p(τ) and x(τ) satisfy Condition (11) given that

ψ ∈ (ε, 1).34 Therefore, we can apply Formula (8) in Proposition 1, or equivalently (12),

to calculate the measured real GDP growth rate in the ASSE.

Given that the markup ratio µ is constant, the growth formula (12) becomes

g∗ =

∫ ∞

0
gq(τ)σ(τ)dτ. (36)

32However, note that the long-term growth in these models is typically maintained by the exponential

increase in productivity (or quality) in each sector, whereas this paper focuses on the case where such

exponential improvements cannot be sustained (ψ < 1 in Equation 20).
33We continue to focus on the case where ĉ is sufficiently small so that Lemma 1 holds. We examine

the general case in Appendix D.3 and show that the measured GDP growth rate becomes positive under

the same conditions as in the main text.
34Using the definitions of q(τ) in Equation (21) and θ ≡ 1/(1− ψ) > 1, we find that the denominator

of the formula is
∫∞
0
p(τ)x(τ)dτ = D∗(1+µ)(1−ψ)κ1−(ψ−ε)/(1−ψ)

0 /(ψ−ε). It is positive and finite given

that ψ ∈ (ε, 1).
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The growth formula in this form clarifies that real GDP growth is the weighted average of

the rate of productivity increase among goods of various ages, gq(τ), where the weights

are the expenditure shares, σ(τ). This result is known as Hulten’s theorem (Hulten,

1978; Baqaee and Farhi, 2019). Using the formula, we obtain the GDP growth rate in

the ASSE as35

g∗ =
ψ − ε

1− ε
β for ε < ψ ≤ 1. (37)

Recall that, in our specification of the technology, the newest goods have the fastest rate

of productivity improvement, β, whereas the rate of improvement is lower for older goods

because g′q(τ) < 0 (see Equation 22). In particular, the rate of productivity improvement

gq(τ) is almost zero for very old goods with large τ . Therefore, it is natural that the

aggregate GDP growth rate in Equation (37) is between zero and β.

The growth rate g∗ in Equation (37) is decreasing in the price elasticity of demand,

ε. Recall that ε also represents the elasticity of substitution across goods. With a higher

ε, consumers spend more on old and low-priced goods and less on new and expensive

goods. Since the rate of productivity increase in Equation (22) is lower for older goods

(with high age τ), the weighted average is also low.

Equation (37) shows that the measured growth rate takes a positive and finite value

when the degree of knowledge spillover in production, ψ, is greater than ε. The re-

quirement ψ > ε can be understood in terms of Condition (11) in Corollary 1. Given

that ψ < 1, the expenditure for an age-τ good in the ASSE can be written as follows:

p(τ)x(τ) = [constant] · (τ + κ0)
−(1−ε)θ. For

∫∞
0 p(τ)x(τ)dτ to be finite, the power of

(τ + κ0)
−(1−ε)θ must be less than −1. This is a particular case of Condition (13) in

Section 2. Intuitively, for the expenditure on existing goods to be finite, the expenditure

for a single good must decline reasonably fast with age. In this prototype model envi-

ronment, the condition is met if the degree of spillover in the productivity increase, ψ,

is greater than ε. Otherwise,
∫∞
0 p(τ)x(τ)dτ becomes infinite, and Proposition 1 implies

35Using p′(τ) = −(1 + µ)gq(τ)/q(τ) and Equation (22), we find −
∫∞
0
p′(τ)x(τ)dτ =

D∗(1 + µ)κ
−(ψ−ε)/(1−ψ)
0 /(1 − ε). Combined with calculations from footnote 34, we obtain

−
∫∞
0
p′(τ)x(τ)dτ/

∫∞
0
p(τ)x(τ)dτ = (ψ − ε)/(1 − ε)(1 − ψ)κ0. Using definitions κ0 ≡ θ/β and

θ ≡ 1/(1− ψ) gives Equation (37).
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that the long-term GDP growth rate is zero.

Given that ψ > ε, growth rate g∗ increases with ψ. As ψ increases, the schedule of

the gq(τ) function in Equation (22) increases, as does the real GDP growth rate because

it is a weighted average of gq(τ). When ψ reaches 1, the long-term growth rate increases

to β. This is an anticipated result; when ψ = 1, the productivity of all goods, both the

new and the old, increases with a common constant exponential rate of β. Therefore,

the case of ψ = 1 corresponds to conventional growth theory, where labor productivity

increases exponentially and uniformly. However, the main finding is that even when

the productivity of each product does not increase exponentially (i.e., with ψ < 1), the

economy as a whole can exhibit a constant measured growth rate, although it is lower

than β.

3.6 Comparative Dynamics and Transition

In the simple prototype setting, the long-term rate of growth in Equation (37) does not

depend on the equilibrium values of n∗ and D∗, as long as they are positive.36 When the

research intensity n∗ is high, more economic activity is added per unit of time. However,

in the long run, there is also proportionally more “stock” of existing activities. The real

GDP growth rate expresses the ratio between the two, which is unchanged.37 Similarly,

when D∗ is larger, each good will have more demand. This means that the production

of new goods, as well as the increase in the production of other goods over time, will be

greater. In the long run, however, the total value of existing products will also be higher,

exactly canceling out the effects on g∗.38 As a result, even when changes in population

36This property depends on the simplistic settings in this prototype model. For example, when the

aggregate R&D intensity n∗ has some positive spillovers on the rate of productivity increases in individual

goods gq(τ), then n∗ will affect g∗. Additionally, when the amount of production has some effect on

gq(τ), g∗ will depend on D∗.
37Nonetheless, it is essential that there is a positive flow of new innovations n∗ > 0, since otherwise,

g∗ becomes 0.
38This can also be seen in Example 3 of Figure 4. When D∗ is increased, the left panel is stretched

horizontally (along the x(τ) axis), whereas the right panel is stretched vertically (along the p(τ)x(τ)

axis) by the same magnification ratio. As a result, the growth rate, given by the ratio of the two areas,
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Figure 6: Response of innovation per unit time (nt: Left panel) and the GDP growth

rate (gt: Right panel) after a permanent increase in R&D productivity a.

L, R&D productivity a, or patent policy µ affect n∗ and D∗, they do not affect the

long-term real GDP growth rate.

However, those parameter changes affect the GDP growth rate in the short run. In

Appendix F, we explain the transitional dynamics of this economy. Figure 6 depicts the

response of the economy when R&D productivity a is increased permanently by 10%.39

Equations (32) and (33) imply that innovation per unit time nt will increase by the same

10% in the long run, which can be confirmed from the left panel. However, in the short

run, there is an overshoot in nt. This can be interpreted as follows. In the long run,

the number of competitors (except for very old and negligible firms) is also increased

by 10% because of increased innovations. The number of new innovations in the new

steady state (with increased a) is 10% higher than that in the old steady state despite

this increased competition. Now, let us consider what happens immediately after the

increase in a. The R&D productivity is increased by 10%, but the number of existing

firms is not yet affected. Therefore, the new firms enjoy more favorable conditions in the

short run than in the long run. This is why there are more entries immediately after the

parameter change than in the long run.

is unaffected.
39In this numerical example, we assume that the economy is initially in a steady state with parameters

a = 1, µ = 0.2, L = 1, β = 0.04, ψ = 0.9, ε = 0.8, and ρ = 0.01. At t = 0, the parameter a is increased

from 1 to 1.1, while the other parameters are unchanged.
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A similar mechanism operates for the evolution of gt, which is depicted in the right

panel. The short-term response of gt is positive. This can be interpreted from the

definition of the instantaneous GDP growth rate in equation (5).40 Immediately after

the increase in a, the introduction of new goods (nt ≡ Ṅt) in the numerator increases,

whereas the denominator changes only gradually. Over time, gt reverts to the original

value, as discussed above. Although these results depend on the simplified specification

of the prototype model, they provide a possible interpretation of why the measured GDP

growth rates in the U.S. and some other developed countries have been relatively stable,

even though the underlying parameters seem to have significantly changed over long

periods.

3.7 Aggregate Variables and Balanced Growth

The ASSE in this model works very differently from the balanced growth path (BGP)

in existing growth models. Nonetheless, we show that when aggregate variables are

measured in a conventional way, this model exhibits balanced growth in those measured

aggregate variables.

Note that the total labor income for production is LP∗ since the wage rate is nor-

malized to one. All goods are sold at (1+µ) times the labor cost, as shown in Equation

(23). Therefore, the aggregate value of production, which equals the aggregate value of

consumption, is C∗ = (1 + µ)LP∗. In our model, investments take the form of R&D,

and the total value of R&D outputs is I∗ = n∗V (λ∗) = LR∗. The GDP in our model

can be calculated as the sum of the value of production and the value of investments:

Y ∗ = C∗+ I∗ = (1+µ)LP∗+LR∗. Similarly, we can derive the steady-state value of ag-

gregate capital, K∗, which is defined as the value of all firms in the economy (knowledge

capital).41

40Note that formula (8) in Proposition 1 applies only in the steady state.
41K∗ can be calculated as the sum of the present value of the future profits of all firms that exist

today. In v years from now, the present value of the profit from those firms will be e−ρv
∫∞
v
π(τ)n∗dτ ,

since the profits of firms less than v years old at that time will not be part of the value of today’s firms.

By aggregating all v and using the profit function (25), we have K∗ = µn∗D∗ ∫∞
0
e−ρv

∫∞
v
q(τ)ε−1dτdv,

which is constant under the price normalization in the model.
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Note that those aggregate variables are measured under the price normalization of

our model, in which the nominal wage is set to 1. We now calculate their real values

in the same spirit as the SNA.42 Let t be the reference year, and let Y $
t

be the dollar

value of the GDP in year t, which we assume is known to the researcher. Since the real

GDP growth rate is constant at g∗ in the ASSE, the real GDP level in t is as follows:

Y real
t = Y $

t
eg

∗(t−t). Since the ratios among Y ∗, C∗, I∗ and K∗ are constant, their real

values increase in the same proportion. Specifically,

Creal
t =

C∗

Y ∗Y
real
t =

1 + µ

1 + µ+ (LR/LP )∗
Y $
t
eg

∗(t−t), (38)

Ireal
t =

I∗

Y ∗Y
real
t =

1

(1 + µ) (LP /LR)∗ + 1
Y $
t
eg

∗(t−t), (39)

where
(
LR/LP

)∗ is given by the inverse of Equation (32).

The interest rate r∗ = ρ is also defined under our normalization of prices. Since

the nominal GDP growth rate in the steady state is zero, the steady-state inflation rate

is −g∗ in our price normalization. Then, the real interest rate in the steady state is

rreal = r∗ + g∗ = ρ + g∗. We can also derive other real aggregate variables in similar

ways, and their growth rates are constant. Therefore, if the statistical agency were to

measure the aggregate variables in our model economy, then those observed variables

would grow exponentially along the BGP, even though neither the quantity, quality, nor

variety of individual goods were growing exponentially.

3.8 Welfare Changes

In this subsection, we discuss the changes in the welfare (utility) of the representa-

tive consumer over time and its relationship with the measured GDP growth rate. As

shown by Equation (14), the lifetime utility of the consumer is
∫∞
0 Ute

−ρtdt, where Ut =

42The NIPA publishes two series of real GDP. One is the quantity index, which is 100 in the reference

year (2012 as of the time of writing). The values for other years are obtained by chaining the real

GDP growth rate. The other is the chained (2012) dollar series, the values of which are calculated as

the product of the quantity index and the 2012 current dollar value of the corresponding series divided

by 100. See U.S. Bureau of Economic Analysis, ”Table 1.1.6. Real Gross Domestic Product, Chained

Dollars.” We use the latter method in this paper.
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∫ Nt
0 u(c̃t(i))di is the instantaneous utility. Using Equations (15), (24) and c(τ) = x(τ)/L,

the instantaneous utility can be written as follows:

Ut = Ntu− (u− u(c(0))

∫ t

0
nt−τq(τ)

ε−1dτ. (40)

In the ASSE, the first term increases n∗u per unit time, and the second term converges

to a finite value as t→ ∞.43 Therefore, asymptotically, the instantaneous utility linearly

increases with time, with a slope of n∗u.

However, the growth of the instantaneous utility in (40) is measured in units of the

utility function in the model (thereafter, utils), which has no clear interpretation. An

appropriate way to measure the changes in welfare over time is to focus on the money-

metric utility. Following Baqaee and Burstein (2023) and Jaravel and Lashkari (2024),

we define the money-metric utility as follows.44 The change in welfare between t and

t+∆ measured using the equivalent variation is ζt(∆), where ζt(∆) is defined by

v({p̃t+∆(i)}
Nt+∆

i=0 , It+∆) = v({p̃t(i)}Nti=0, It exp ζt(∆)). (41)

Here, v(·) is the indirect utility function, {p̃t(i)}Nti=0 is the set of prices for available goods

at time t, and It is the expenditure at time t. The definition (41) can be interpreted as

follows: ζt(∆) is the change in expenditure in logs under the initial prices {p̃t(i)}Nti=0 that

the representative consumer would need to be indifferent between the budget set defined

by initial prices ({p̃t(i)}Nti=0, It exp ζt(∆)) and the new budget set defined by new prices

and expenditure ({p̃t+∆(i)}
Nt+∆

i=0 , It+∆). Note that the change in the budget set includes

the change in the range of goods available, from [0, Nt] to [0, Nt+∆].

In Appendix E, we derive the change in welfare as defined by (41). In the ASSE, this

does not depend on the starting time t and can be written as

ζt(∆) = − ε

1− ε
log

(
1− 1− ε

ε
Λg∗∆

)
, where Λ =

(1− ε)u

c(0)1−1/ε
> 1. (42)

Here, g∗ is the measured GDP growth rate in the ASSE, given by (37), and Λ > 1 is a

correction term, which we discuss below. As shown in the left panel of Figure 7, function

43When the ASSE exists (i.e., when ψ ∈ (ε, 1)),
∫∞
0
nt−τq(τ)

ε−1dτ = n∗/β(ψ − ε).
44This metric is called micro welfare in Baqaee and Burstein (2023) and real consumption in Jaravel

and Lashkari (2024).
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Figure 7: Money-metric of Utility (Left) and the Correction Term (Right).

The value of Λ is given by ũ/u > 1 in the right panel.

ζ(∆) increases more than linearly with ∆. Since ζ(∆) in (41) is defined in logs, this fact

means that the money metric of utility (or real consumption as defined by Jaravel and

Lashkari, 2024) increases more than exponentially with time. Moreover, function ζ(∆)

explodes in a finite duration at ∆ = ε/((1 − ε)Λg∗). The explosion can be interpreted

as follows. After ε/(1− ε)Λg∗ years, the economy has substantially more varieties than

it does today, and the utility from the increased varieties is so high that it cannot be

compensated by increasing the expenditure of the representative consumer today. This is

because there is an upper bound in the utility obtainable from each individual good (i.e.,

u); therefore, given the available range of goods today, there is an upper bound in the

overall utility (measured in utils) that can be achieved from increasing the expenditure.

Next, let us discuss the relationship between the change in the money-metric of utility

(real consumption) and the measured real GDP growth rate, g∗. Note that ζ(∆) is the

equivalent variation between two distant times, t and t + ∆, while g∗ represents the

instantaneous rate of change in real GDP. To align them, we consider the instantaneous

rate of change in the money-metric of utility,

ζ ′(0) = Λg∗. (43)

Since the correction term Λ is greater than 1, as shown in (42), Equation (43) indicates

that the change in the money-metric of utility (real consumption) is greater than the
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measured real GDP growth rate. In other words, the real GDP statistics underestimate

the growth in the money-metric utility. The difference comes from the fact that the

marginal utility of goods is observed only after introduction. When a new good is

introduced, the consumer purchases c(0) units of it and obtains the utility of u(c(0))

(in utils). To accurately measure the benefit from new varieties, we need to incorporate

u(c(0)) in the measurement. However, there is no way to measure u(c(0)), and the

GDP statistics in effect replace it with c(0) · u′(c(0)), where u′(c(0)) can be indirectly

observed from p(0). In effect, the GDP statistics are calculated with the assumption

that consumers have a utility function that is linear from 0 to c(0) with a slope of c′(0),

as shown by the tangent line in the right panel of Figure 7. From this perspective, the

highest amount of utility that can be obtained from one variety of goods is viewed as

ũ = u(∞) − u(c(0)) + c(0) · u′(c(0)) = (1/(1 − ε))c(0)1−1/ε, while the true value is u.

Since u(·) is concave, c(0) · u′(c(0)) is smaller than u(c(0)), which implies that ũ < u;

therefore, the GDP statistics underestimate the benefit of new varieties. The correction

term Λ = u/ũ > 1 represents the ratio between the two.

4 Obsolescence

In the prototype model of Section 3, we considered an environment where goods stay

in the market forever (T = ∞) and where consumers have symmetric preferences across

goods (14). Sustained growth in the measured GDP then required the price elasticity of

demand ε to be less than one as the quality-adjusted price falls to zero. The condition

ε < 1 was necessary to induce consumers to spend less on older (and cheaper) goods. In

reality, however, consumers may spend more on new goods simply because they prefer

them to older ones, even without the assumption of ε < 1. Here, we show that this

assumption can be relaxed once we include obsolescence.

We now consider a generalized version of the lifetime utility function (14):∫ ∞

0

[∫ Nt

0

[
δ(t− s(i))u(c̃t(i)) + (1− δ(t− s(i)))û

]
di

]
e−ρtdt, (44)

where t−s(i) = τ is the time after introduction.45 The function δ(τ) is weakly decreasing

45Alternatively, we may specify obsolescence as a function of Nt − i, i.e., the number of goods newer
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in τ with δ(0) = 1 and limt→T δ(t) = 0, where T > 0 can be finite or infinite. If T is

finite, it defines the lifespan of individual goods. If T is infinite, δ(t) converges to zero

as t → ∞. The steepness of function δ(τ) represents the speed of obsolescence, or

equivalently, consumers’ taste for recently developed goods. Obsolescence may occur

for different reasons and has varied effects on the utility of individuals. The constant

û ∈ [0, u], where u = u(∞), controls for those differences. One example is the case

when newer products replace some of the functionalities of older goods. Suppose that

a portion 1 − δ(τ) of an age-τ good’s functionality can be fulfilled by newer goods for

free.46 In this case, we can assume that consumers receive the utility of (1− δ(τ))û for

free, with û > 0, and the consumption of age-τ good affects only part δ(τ)u(c(τ)) of

the period utility. Another example is when consumers value the newness of products.

The most extreme case is û = 0.47 This specification is suitable, for example, when

considering fashion cycles, where outdated and cheaper items are replaced by newer and

more expensive ones. As we will discuss in Section 5, the economy can be composed of

several sectors, and obsolescence can occur for different reasons across sectors. While

the reasons for obsolescence have different implications for welfare, the measured GDP

growth rate does not capture those differences, as we see below.

We keep all other settings in Section 3 except that we allow any ε > 0 in the sub-

utility function (15). If ε > 1, we can simply assume that u(c) = c1−1/ε/(1 − 1/ε) for

all c > 0.48 If ε ≤ 1, the sub-utility function is the same as (15), and we again assume

than i. In the ASSE, where n∗ new goods are developed per unit time, δ(Nt− i) becomes δ(n∗τ), which

shows that obsolescence is faster when R&D is more active. An additional implication in this setting is

that policies that promote horizontal R&D may increase the measured GDP growth rate. A higher n∗

will make function δ(n∗τ) steeper as a function of τ . As we show below, faster obsolescence accelerates

measured growth.
46For example, suppose that the newest good is smartphones and that the age-τ good is a calculator.

When we have smartphones, a large part of the functionality of calculators (which corresponds to 1−δ(τ))

is fulfilled without additional cost.
47In this case, Ut will remain constant in the ASSE even when g∗ > 0. See the discussion on utility in

the latter half of this section.
48This means that the second line of (15) applies for all c > 0 with ε̂ = ε > 1 and u = 1.

37



that ĉ is small enough that all existing goods satisfy c̃t(i) ≥ ĉ. In this setting, the ASSE

exists if and only if
∫ T
0 δ(τ)εq(τ)ε−1dτ is finite.49 In the ASSE, the expenditure for an

age-τ good is e(τ) = p(τ)x(τ) = (1 + µ)D∗δ(τ)εq(τ)ε−1. This equation illustrates that

even when ε > 1, expenditures for older goods decrease with age if obsolescence is fast

enough. Proposition 1 continues to apply in an environment with obsolescence. Given

that
∫ T
0 e(τ)dτ is finite, which is equivalent to the finiteness of

∫ T
0 δ(τ)εq(τ)ε−1dτ , the

formula for the GDP growth rate (12) gives

g∗ =

∫ T
0 δ(τ)εq(τ)ε−1gq(τ)dτ∫ T

0 δ(τ)εq(τ)ε−1dτ
. (45)

When goods retire from the market at a certain age (i.e., when T is finite),
∫ T
0 δ(τ)εq(τ)ε−1dτ

is obviously finite. Therefore, we always obtain a positive long-term GDP growth rate.

When T is infinite and the rate of obsolescence is constant at δ > 0 per year, func-

tion δ(τ) can be expressed as exp(−δτ). In this case,
∫∞
0 δ(τ)εq(τ)ε−1dτ becomes finite

because δ(τ)ε decreases exponentially with τ and q(τ)ε−1 does not increase exponen-

tially. Therefore, a constant rate of obsolescence always sustains positive measured

GDP growth regardless of ε. Positive GDP growth can also be maintained with slower,

non-exponential obsolescence. Consider an example where δ(τ) is a negative power

function of τ : δ(τ) = δω0 (τ + δ0)
−ω where ω and δ0 are positive constants.50 Then,

49This result is obtained in a similar way as the derivation of Equations (27) and (31) in Section 3.4.

In both cases, ε > 1 and ε < 1, the consumption of good i becomes c̃t(i) = λ−ε
t p̃(i)−εδ(t− s(i))ε. From

this, we can write the equilibrium output of age-τ good in the ASSE as x(τ) = D∗δ(τ)εq(τ)ε. Given

that the markup is µ, the present discounted value of a new firm is V ∗ = µD∗ ∫∞
0
δ(τ)εq(τ)ε−1. By

substituting V ∗ into the free entry condition V ∗ = 1/a, we obtain D∗ =
(
aµ

∫ T
0
δ(τ)εq(τ)ε−1e−ρτdτ

)−1

,

which is always positive and finite because of the e−ρτ term. Using this value of D∗, the labor market

equilibrium implies that the speed of innovation is n∗ = aL
(
1 + aD∗ ∫ T

0
δ(τ)εq(τ)ε−1dτ

)−1

. The value

of n∗ is positive if and only if
∫ T
0
δ(τ)εq(τ)ε−1dτ is finite.

50We need a constant δ0 > 0 in (τ + δ0)
−ω because otherwise, τ−ω cannot be defined when τ = 0 and

ω > 0. The δω0 term normalizes the δ(τ) function so that δ(0) = 1.

38



10

(no obsolescence)

Figure 8: Price Elasticity of Individual Goods and the Measured Long-term GDP Growth

Rate Under Different Speeds of Obsolescence.

∫∞
0 δ(τ)εq(τ)ε−1dτ becomes finite if and only if51

ε <


ψ

1−ω(1−ψ) if ω < 1
1−ψ (≡ θ) ,

∞ if ω ≥ 1
1−ψ .

(46)

In a particular case of δ0 = κ0, where κ0 is defined in Equation (21), the long-term GDP

growth rate (45) becomes52

g∗ =
ψ − ε+ (1− ψ)εω

1− ε+ (1− ψ)εω
β, (47)

which is positive when Condition (46) holds. Figure 8 depicts the relationship between

ε and g∗ for various values of ω. As we have seen in Section 3, sustained GDP growth

51Using Equation (21),
∫∞
0
δ(τ)εq(τ)ε−1dτ = δεω0 κε−1

1

∫∞
0

(τ + δ0)
−ωε(τ + κ0)

θ(ε−1)dτ . The integral

becomes finite if and only if the sum of the powers of the integrand, −ωε+ θ(ε− 1), is less than minus

one. From θ = 1/(1− ψ), this condition is equivalent to Condition (46).
52When ψ is larger, gq(τ) is higher given age τ . Nevertheless, Equation (47) shows that g∗ is decreasing

in ψ if ε > 1. When ε > 1, a larger ψ will induce consumers to spend more on cheaper, older goods.

As a result, the expenditure is skewed more toward older goods, where gq(τ) is small, reducing the

expenditure-weighted average of gq(τ):
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requires ε < ψ when obsolescence is not present.53 When obsolescence is faster (ω is

higher), Condition (46) becomes easier to satisfy. In particular, when ω > 1, the first

line of Condition (46) is greater than one, which means that ε < 1 is not necessary for

g∗ > 0. When ω is greater than 1/(1−ψ), the long-term GDP growth rate g∗ is positive

regardless of ε.54

Figure 8 also shows that when ω is increased, the entire curve for g∗ moves upward.

Faster obsolescence not only makes sustained GDP growth more likely but also acceler-

ates the measured rate of economic growth. Intuitively, obsolescence skews expenditures

toward newer goods. Since newer goods have greater margins for productivity increases

than older goods do, the overall growth rate increases with obsolescence. These results

have important policy implications. When the government attempts to protect obsolete

companies (or industries), it reduces the GDP growth rate not only because of efficiency

loss but also because of how expenditure is allocated across firms and industries. Con-

versely, advertisements and marketing practices that attract consumers to newer goods

increase GDP growth, even when the attractiveness of the newer goods is illusory.

Below, we discuss the relationship between the measured GDP growth rate and the

change in the welfare of consumers. In appendix G, we show that the instantaneous

utility (measured in utils) increases linearly with time, with a slope of n∗û in the ASSE.

Therefore, if the obsolescence is caused entirely by the change in consumer tastes (i.e.,

û = 0), the instantaneous utility is stationary, even if the measured GDP growth is

positive. To bridge this gap, we consider money-metric utility as in Section 3.8, but this

time, we account for the change in taste, again following Baqaee and Burstein (2023)

and Jaravel and Lashkari (2024). The change in welfare between t and t+∆ measured

using the equivalent variation is ζt(∆), where ζt(∆) solves

v({p̃t+∆(i)}
Nt+∆

i=0 , It+∆, t+∆) = v({p̃t(i)}Nti=0, It exp ζt(∆), t+∆). (48)

The only difference between (41) and the above equation is that there is a third argument

53When ω = 0, Condition (46) and Equation (47) reduce to Equation (37).
54Interestingly, the measured GDP growth rate increases with ε when ω > 1/(1−ψ). A higher ε means

that consumers are more willing to move from old and obsolete goods to newer goods, thus enhancing

the positive effect of obsolescence on growth.
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in the indirect utility function v(·), which represents the time at which the preference

of consumers is used for evaluation. Following the literature, we use the preference of

consumers at t+∆ to evaluate both sides of (48).55

The instantaneous rate of growth in money-metric utility is given by ζ ′(0). In ap-

pendix G, we obtain its value in the ASSE as

ζ ′(0) =


g∗ +

(
1
ε−1 + û

c(0)1−1/ε

)(∫ T
0 δ(τ)εq(τ)ε−1

)−1
if ε > 1,

g∗ +
(

1
1−ε(Λ− 1) + û

c(0)1−1/ε

)(∫ T
0 δ(τ)εq(τ)ε−1

)−1
if ε ∈ (0, 1),

(49)

where g∗ is the measured GDP growth rate in (45) and Λ > 1 is a correction term defined

in (42). Equation (49) shows that the measured GDP growth rate, g∗, is a part of the

growth in money-metric utility, ζ ′(0). This part of ζ ′(0) comes from the changes in the

prices of existing goods. In fact, ζ ′(0) is greater than g∗ because 1
ε−1 when ε > 1 and

1
1−ε(Λ− 1) when ε ∈ (0, 1) are both positive. These terms represent the benefits of new

goods that are not measured by g∗.56 If û > 0, there are also external effects of new

goods, û/c(0)1−1/ε > 0, which are again not measured in g∗ but are included in ζ ′(0).

When û = 0, the money-metric utility (real consumption) is growing even though

the instantaneous utility (measured in utils) is asymptotically constant, as we have seen

above. To see this point, suppose that the availability and price of goods do not change

from t to t + ∆ but that only the preference changes. Then, at time t + ∆, the in-

stantaneous utility (measured in utils) will be lower because the consumers more deeply

discount the utility from existing goods that are now older. To regain the same level of

instantaneous utility (in utils), which is constant in the ASSE, either (i) the availability

and prices of goods need to change to those of time t+∆, or (ii) the consumers need to

be given more budget. Equation (48) makes this comparison and determines how much

more expenditure is needed in the latter case, which is the growth in the money-metric

utility between t and t+∆. In other words, if the availability of goods and their prices

are fixed, the welfare of consumers will decline given that their preferences change over

time. Relative to this situation, the introduction of new goods and a decrease in quality-

55This means that we are calculating the equivalent variations rather than compensating variations.
56See the discussion in Section 3.8.
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adjusted prices improve the welfare of consumers (as a result, the instantaneous utility

measured in utils becomes constant). The growth in the money-metric utility measures

these benefits, and the measured GDP growth rate captures a part of it.

5 Multiple sectors

In the non-exponential growth theory, we define the steady state as the situation in

which the paths of quality-adjusted prices and quantities, p(τ) and x(τ), follow the same

pattern in terms of their age (see Definition 1 in Section 2.2). This definition allows the

prices and quantities of individual goods at a given time to differ depending on their

age. In this sense, our definition of the steady state is more flexible than that in most

endogenous growth models, where goods are symmetric in the steady state. Nevertheless,

once we look at the data, it is immediately apparent that goods in different categories

follow distinct lifecycle patterns. For example, while the product lifecycle is relatively

fast in electronics, some basic goods (e.g., grains) show little sign of lifecycle movements.

In this section, we further extend the notion of the steady state by allowing p(τ)

and x(τ) to follow different patterns. We categorize goods into groups (which we call

sectors) so that goods in a sector have the same pattern of movements in terms of quality-

adjusted price and quantity with respect to their age, at least in the long run. More

specifically, suppose that there are J > 0 sectors (or categories) of goods and label each

by j ∈ {1, . . . , J}. Nj,t denotes the index of the newest good in sector j ∈ {1, . . . , J}.

The number of new goods introduced per unit time, Ṅj,t ≥ 0, can differ across sectors.

The quality-adjusted price of the ith good in sector j and its quality-adjusted quantity

are denoted by p̃j,t(i) and x̃j,t(i). In this setting, we define the asymptotic steady state

as follows.

Definition 3. A non-exponential asymptotic steady state with multiple sectors is the

situation where Ṅj,t, p̃j,t(i) and x̃j,t(i), for all j ∈ {1, . . . , J}, satisfy the following

conditions:

(a) Ṅj,t converges to a constant; i.e., Ṅj,t → nj ≥ 0.

(b) p̃j,t(i) and x̃j,t(i) converge to time-invariant functions of τ = t− s(i); i.e., p̃j,t(i) →
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pj(τ) and x̃j,t(i) → xj(τ).

(c) Assumption 1 holds, where p(τ), x(τ) and T are replaced by pj(τ), xj(τ) and Tj,

respectively.

(d) The expenditure share of the sector,

αj,t =

∫
i∈Xj,t p̃j,t(i)x̃j,t(i)di∑J

j′=1

∫
i∈Xj′,t

p̃j′,t(i)x̃j′,t(i)di
, (50)

where Xj,t is the set of goods in production in sector j, converges to a constant value,

i.e., αj,t → αj ≥ 0.

Definition 3 says that the economy is in a steady state if the composition of sectors in

terms of expenditure share is stationary, and each sector satisfies the requirement for the

steady state in Definition 1. In addition, Definition 3 does not require nj to be positive,

and therefore includes the possibility where the introduction of goods eventually stops

in some sectors. Additionally, it allows αj to be zero for some j, which means that some

sectors may disappear in the long run.

Like Equation (5), the instantaneous GDP growth rate in this multisector economy

at any given time t can be defined as follows:

gt =

∑J
j=1

(
Ṅj,tp̃j,t(Nj,t)x̃j,t(Nj,t) +

∫
i∈Xj,t p̃j,t(i)

˙̃xj,t(i)di−
∫
i∈Ωj,t p̃j,t(i)x̃j,t(i)di

)
∑J

j=1

∫
i∈Xj,t p̃j,t(i)x̃j,t(i)di

.

(51)

Here, the denominator gives the expenditure for all the goods, the first term in the

numerator is the value of all the new goods introduced at time t, the second term is the

value of the changes in the production of existing goods, and the third term is the value

of the disappearing goods (Ωj,t is the set of goods in sector j that disappear at time

t). Using the sectoral expenditure share defined by Equation (50), Equation (51) can be

expressed as the share-weighted average of the sectoral GDP growth rate.

gt =
J∑
j=1

αj,tgj,t, where,

gj,t =
Ṅj,tp̃j,t(Nj,t)x̃j,t(Nj,t) +

∫
i∈Xj,t p̃j,t(i)

˙̃xj,t(i)di−
∫
i∈Ωj,t p̃j,t(i)x̃j,t(i)di∫

i∈Xj,t p̃j,t(i)x̃j,t(i)di
. (52)

43



Since Equation (52) takes the same form as Equation (5), we can utilize Proposition

1 to obtain the long-term GDP growth rate in a steady state.

Proposition 2. Suppose that the multisector economy converges to an asymptotic steady

state, as defined by Definition 3. Then, the real GDP growth rate gt asymptotes to

g =

J∑
j=1

αjgj , (53)

where gj is given by Proposition 1, in which p(τ), x(τ) and g are replaced by pj(τ), xj(τ)

and gj, respectively.

Proposition 2, combined with Proposition 1, implies that if there is a category of

goods (a sector) with a positive GDP share where Conditions (10) and (11) hold in

the long run, the economy-wide long-term GDP growth rate can be positive and finite.

Similar to Figure 4 in Section 2.4, we can draw the evolution of {xj(τ), pj(τ)} in the

quantity–price space and the evolution of pj(τ)xj(τ) against τ . The numerator and

denominator of gj are then graphically represented as the blue and yellow areas, re-

spectively. If αj > 0 and both areas are positive and finite, then sector j contributes

positively to the long-term GDP growth rate. As in Example 2 of Figure 4, gj can be

negative if the prices of older and disappearing goods in that sector are higher than those

of new goods in the same sector. Nonetheless, aggregate GDP growth becomes zero only

by coincidence; therefore, nonzero long-term growth rates are the norm rather than the

exception. This result contrasts with existing endogenous growth models, where the

growth rate can be nonzero only under strict knife-edge conditions.

As a final note, observe that gjs in Proposition 2 are the sectoral output growth rates

measured according to their own sectoral price indices. They do not coincide with the

sectoral output growth calculated using the general price levels (e.g., the GDP deflator).

In the long run, the expenditures to all the surviving sectors (those with positive αj
values) increase at the same rate. Even the sectors with gj = 0 record real income

growth of g.
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6 Concluding Remarks

Non-exponential growth theory provides a novel interpretation of observed stability in the

measured GDP growth rate by focusing on the movement of the quantities and prices of

individual goods and calculating the GDP growth rate on the basis of SNA statistics (e.g.,

the NIPA). It shows that the observed sustained GDP growth is consistent with a less-

than-exponential increase in the variety and quality-adjusted output of each good. This

finding enables researchers to construct endogenous growth models under less restrictive

assumptions than the knife-edge conditions that are required in existing full endogenous

growth models. As a result, this paper suggests that an endogenous growth theory can

be applied to data with significantly weaker restrictions than previously required.57

The readers may still wonder whether we should describe economic growth, as ex-

plained in this paper, as exponential or not. The answer depends on how we evaluate

economic growth. More specifically, this paper demonstrates that economic growth can

be viewed from four distinct perspectives when we explicitly consider multiple final goods

that are not necessarily symmetric. First, we can view growth in terms of how the vector

of production changes over time, where each entry in the vector represents the output

of an individual product. In our model, the dimension of the vector increases linearly

over time, and each entry of the vector increases less than exponentially (the rate of

growth decreases to zero). In this sense, output growth is not exponential. Nevertheless,

the economy can continue the growth process because the expenditure for older goods

decreases as goods age, and newly introduced goods receive a constant proportion of

the total expenditure. Therefore, the incentive to innovate can be maintained without

strong externalities.58

57Nevertheless, we make simplifying assumptions for the sake of expositional simplicity and ease of

understanding. Notably, while existing variety-expansion endogenous growth models assume that the

elasticity of spillover from R&D activity is exactly ϕ = 1, we assume that there is none, i.e., ϕ = 0.

Additionally, we assume that the population is constant. In a working paper, we demonstrate that the

intuitions from non-exponential growth theory remain applicable when population growth and decline

are incorporated, as well as when R&D externality is present but weaker than ϕ = 1.
58In standard variety expansion models, all goods are symmetric and receive the same expenditure

share. Therefore, as the number of goods increases, the share of the expenditure given to a single new
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The other three perspectives attempt to map the change in the output vector into

a scalar measure. Of these three, two evaluate economic growth in terms of the change

in consumer utility. A crude approach is to examine the change in instantaneous utility

in the model. In our baseline prototype model, the instantaneous utility (measured in

units of the utility function) increases only linearly over time. In an extended model with

obsolescence, the change in utility can be zero in an extreme case. However, interpreting

these results is difficult because the unit of utility in the model lacks a clear economic

meaning.

An alternative approach is to look at the change in the money-metric utility, which

represents the equivalent variation between two time points. We have shown that the

money-metric utility can increase more than exponentially, especially when consumers

highly value the benefits of newer goods in comparison with the benefits of consuming

larger quantities of existing goods. In this sense, we could say that growth measured in

terms of the utility of consumers is more than exponential.

The fourth way of measuring growth is to focus on real GDP as measured by the

SNA. The real GDP growth rate measures the value of change in economic activity,

including the appearance and disappearance of goods, as well as changes in the quantity

of production of existing goods, divided by the value of existing economic activity. In our

model, the real GDP growth rate asymptotically becomes a finite and positive constant.

This result stems from the fact that there is a constant (but not exponential) flow of

new goods, the value of new goods is higher than that of older, disappearing goods, and

the value of existing economic activity is bounded because the expenditure for individual

goods decreases as the goods age. The level of real GDP is obtained by chaining the

real GDP growth rate and therefore increases exponentially. The real GDP growth rate

is meaningful in the sense that it captures an important portion of the instantaneous

change in the money-metric utility, although it misses some of the benefits from new

good dilutes. This means that profits obtained from a single successful R&D also decrease. Therefore, to

provide firms with sufficient incentives to engage in R&D in equilibrium, these models require a strong

degree of externality in the R&D process so that the cost of inventing new goods declines exponentially.

Moreover, GDP growth can be maintained only when the number of goods increases exponentially

because the contribution of each new good to the economic growth rate decreases toward 0.
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goods, as well as possible benefits from external effects.
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Appendix A Simplest Examples of Non-Exponential Growth

A.1 When Goods Become Free in Two Periods

Consider an economy in discrete time with overlapping generations of products. One

new good is introduced every period. When the good is introduced, the price is 2; it

falls to 1 in the next period and to 0 thereafter. The output quantity is 1 when it is

introduced, 2 in the next period, and 3 thereafter. For example, we can consider each

good as a medication for a particular disease. In this example, after two periods, generic

drugs with the same effect become available (almost) for free. The pattern of movements

of quantities and prices is summarized below.

index i = Nt − 3 i = Nt − 2 i = Nt − 1 i = Nt i = Nt + 1

x̃t−1(i) 3 2 1 N/A N/A

x̃t(i) 3 3 2 1 N/A

x̃t+1(i) 3 3 3 2 1

p̃t(i) 0 0 1 2 N/A

p̃t+1(i) 0 0 0 1 2

In the table, i is the index of goods, and Nt is the index of the newest good in period

t. The second row shows the amount of production of each good at time t, x̃t(i). The

price of each good at time t, p̃t(i), is shown in the fourth row. Note that the newest good

in period t + 1 is i = Nt+1 = Nt + 1. Therefore, the values in the x̃t+1(i) and p̃t+1(i)

rows are shifted to the right by one column. The opposite holds for the x̃t−1(i) row.

In SNA statistics, the real GDP growth rate from period t− 1 to t is defined as the

growth in the value of output when the value is evaluated by the prices in the base year.

In practice, the base year is frequently updated; thus, we assume that the base year

is updated every period to the year of evaluation (i.e., period t). Then, the real GDP
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growth rate (per period) between period t− 1 and period t is

gt,t−1 =

∑Nt
i=0 p̃t(i)x̃t(i)−

∑Nt−1
i=0 p̃t(i)x̃t−1(i)∑Nt−1

i=0 p̃t(i)x̃t−1(i)
. (A.1)

Using the numbers in the table, the value of the output in t using the prices in t is∑Nt
i=0 p̃t(i)x̃t(i) = 1× 2 + 2× 1 = 4. Similarly, the value of the output in t− 1 using the

prices in t is
∑Nt−1

i=0 p̃t(i)x̃t−1(i) = 1×1 = 1. Therefore, the GDP growth rate is gt,t−1 =

(4−1)/1 = 3 = 300%. Similarly, we can calculate the GDP growth rate between periods

t and t + 1 as gt,t+1 =
(∑Nt+1

i=0 p̃t+1(i)x̃t+1(i) −
∑Nt

i=0 p̃t+1(i)x̃t(i)
)
/
∑Nt

i=0 p̃t+1(i)x̃t(i) =

(4 − 1)/1 = 300%. We always obtain the same growth rate as long as this pattern of

quantities and prices continues. Therefore, the measured GDP growth in this steady

state is constant and positive, even though the output of any good does not grow at an

exponential rate.

A.2 When Goods Become Obsolete in Two Periods

Similar to the previous example, one new good is introduced every period. When the new

good is introduced, its price is 2, and it falls to 1 thereafter. The good is produced only

for the period when it is introduced and for one period afterward. The output quantity

is 1 for both periods and then 0 thereafter. One can think of each good as a medication

for a particular infectious disease. Owing to medication, the disease is eradicated in two

periods, and the good is no longer in demand. The pattern is summarized below.

index i = Nt − 3 i = Nt − 2 i = Nt − 1 i = Nt i = Nt + 1

x̃t−1(i) 0 1 1 N/A N/A

x̃t(i) 0 0 1 1 N/A

x̃t+1(i) 0 0 0 1 1

p̃t(i) 1 1 1 2 N/A

p̃t+1(i) 1 1 1 1 2

We can again calculate the GDP growth rate via Equation (A.1). The value of the

output in t using the prices in t is
∑Nt

i=0 p̃t(i)x̃t(i) = 1×1+2×1 = 3. Similarly, the value of

the output in t−1 using the prices in t is
∑Nt−1

i=0 p̃t(i)x̃t−1(i) = 1×1+1×1 = 2. Therefore,

the GDP growth rate between periods t − 1 and t is gt,t−1 = (3 − 2)/2 = 1/2 = 50%.
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We can also calculate gt,t+1, which is again 50%. The measured growth rate remains

constant as long as the same pattern persists.

When we compare the output quantities in periods t and t− 1, the difference is that

we have one unit of the newest good (whose value is 2), and we lose one unit of the

2-period-old good (whose value is 1). Since the price of the new good is higher than that

of the old, disappearing good, the numerator is positive. On the basis of the observed

prices, the GDP growth rate attributes a greater value to newly appearing goods than

to old, disappearing goods.

A.3 Interpretation and Connection to Later Sections

Both examples satisfy the required conditions for positive GDP growth explained in the

Introduction: (i) new goods are introduced over time, (ii) the price of goods decreases

with age, and (iii) the expenditure for old goods is limited. The two examples differ in

terms of how condition (iii) is accomplished. In the first example, the price of a good

becomes zero, while in the second example, the quantity becomes zero. In Sections 3

and 4, we provide two general equilibrium models that are essentially similar to these

examples. Section 3 considers an economy where new goods are introduced by R&D and

the quality-adjusted productivity of a good increases less than exponentially through

the learning-by-doing process. There is no externality in the R&D process, and the

population is constant. Therefore, the flow of new goods introduced to the market is

constant. Then, given that the utility function of consumers is such that the expenditure

on a good decreases as its quality-adjusted price approaches zero (which means that the

price elasticity of demand is less than one as p → 0), the measured GDP growth rate

becomes positive in the long run, similar to the first example. In Section 4, which

essentially corresponds to the second example, we introduce obsolescence to the utility

function of consumers so that the marginal utility from a good declines as the good ages.

We then show that positive GDP growth is obtained under weaker conditions for the

price elasticity of demand.

In Sections 3 and 4, we also analyze the relationship between the measured GDP

growth rate and the utility of consumers. In both examples, there is no component of
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consumption that grows exponentially, while the measured real GDP is growing at a

positive (exponential) rate. In Section 3.8, we fill this gap by considering the money-

metric utility. In the first example, over time, consumers become better off because

more diseases can be cured with newly developed medications. The money-metric utility

evaluates this benefit in terms of the amount of the budget (expenditure) that is given

to a consumer at a given time. If an individual is given more budget in the first example

at time t0, she will be able to buy more medications that are already developed but

have not yet become free (at each time, there are two kinds of such goods). However,

after two periods, these medications become free, and it becomes possible to cure more

diseases, which could not be cured at time t0 regardless of the individual’s budget.

Therefore, in this simplest example, the individual’s utility at time t0 cannot surpass

that of t0 + 2, however rich she is. This means that the money-metric utility increases

quite rapidly (indeed, more than exponentially) between the two periods. In Section 3.8

and Appendix E, we show that the measured real GDP growth rate captures a main

part of the instantaneous rate of change in money-metric utility (in the above example,

it corresponds to the increase in the money-metric utility between t0 and t0 + 1). The

relationship between real GDP growth and utility in the second example is more complex

because the benefit of individual goods changes over time. Section 4 and Appendix

G explain the money-metric utility under taste changes, demonstrating that the GDP

growth rate captures a portion of it.

Appendix B Real GDP Growth with Previous Year’s Prices

In subsection 2.1, we explained the calculation of the real GDP growth rate between

t − 1 and t using the prices at t. However, in many countries, the real GDP growth

rate is calculated using the prices at t− 1 rather than t. Here, we explain how this can

be achieved and demonstrate that the result does not change significantly if the period

length is short.

A practical problem of using prices at period t − 1, denoted by p̃t−1(i), is that the

prices for the new goods that appear after t−1 are not defined. Therefore, the real GDP

growth rate, gt,t−1, must be defined without using p̃t−1(i) for i ∈ (Nt−1, Nt]. We cannot
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simply use p̃t−1(i) in the formula similar to (1).

In practice, the change in real output (volume) is often calculated by dividing the

change in nominal output (value) by the change in the price level. The change in the

nominal output is easier to measure than the real output, and the change in the price

level can be estimated by available data. More precisely, the change in the price level

between periods t − 1 and t is usually estimated by using only the prices of goods and

services that are available for both t − 1 and t. In our context, this means that the

price of the newest goods, which appear between t− 1 and t, is not used to estimate the

change in the price level between t − 1 and t. Similarly, if some goods disappear from

the market between t− 1 and t, these goods are not used.

Let Xt be the set of goods in production at time t. Then, Xt∩Xt−1 indicates the set

of goods that are produced both in periods t and t−1. Let Ωt,t−1 denote the set of goods

that disappear between t− 1 and t. Then, Xt−1 −Ωt,t−1 = Xt ∩Xt−1 = Xt − (Nt−1, Nt]

holds. Using these notations, the growth factor of the nominal output measured between

times t− 1 and t is

1 + gnominal
t,t−1 =

∫
Xt
p̃t(i)x̃t(i)di∫

Xt−1
p̃t−1(i)x̃t−1(i)di

.

The growth factor of the price level between time t− 1 and t, using the goods that are

available at both time t− 1 and t, is

1 + πt,t−1 =

∫
Xt∩Xt−1

p̃t(i)x̃t(i)di∫
Xt∩Xt−1

p̃t−1(i)x̃t(i)di
.

Note that this is a Paasche price index in the sense that quantities at time t, i.e., x̃t(i),

are used as weights. Then, the real GDP growth rate (factor) is obtained by dividing
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the growth factor of nominal output by the growth factor of the price level.

1 + gt,t−1 =
1 + gnominal

t,t−1

1 + πt,t−1

=

∫
Xt
p̃t(i)x̃t(i)di∫

Xt∩Xt−1
p̃t(i)x̃t(i)di

·

∫
Xt∩Xt−1

p̃t−1(i)x̃t(i)di∫
Xt−1

p̃t−1(i)x̃t−1(i)di

=

∫
Xt
p̃t(i)x̃t(i)di∫

Xt−(Nt−1,Nt]
p̃t(i)x̃t(i)di

·

∫
Xt∩Xt−1

p̃t−1(i)x̃t(i)di∫
Xt∩Xt−1

p̃t−1(i)x̃t−1(i)di
·

∫
Xt−1−Ωt,t−1

p̃t−1(i)x̃t−1(i)di∫
Xt−1

p̃t−1(i)x̃t−1(i)di

=
1

1− σnew
t,t−1

(1 + gexist
t,t−1)(1− σout

t,t−1)

≃ 1 + gexist
t,t−1 + σnew

t,t−1 − σout
t,t−1,

where gexist
t,t−1 is the growth rate of the production of goods that exists at both times t and

t− 1, σnew
t,t−1 is the expenditure share at time t given to new goods that appear between

t − 1 and t, and σout
t,t−1 is the expenditure share at time t − 1 given to old goods that

disappear between t−1 and t. This version of the formula divides real GDP growth gt−1

into its intensive margin gexist
t−1 and extensive margin σnew

t,t−1 − σout
t,t−1. Note also that in

the evaluation of the intensive margin gexist
t−1 , the formula uses the prices of period t− 1,

p̃t−1(i).

Now, we consider the continuous-time limit of this real GDP growth. By letting the

period length be ∆ and taking the limit of ∆ → 0, we obtain

lim
∆→0

gt,t−∆

∆
= lim

∆→0

dgt,t−∆

d∆

= lim
∆→0

(
dgexist
t,t−∆

d∆
+
dσnew

t,t−∆

d∆
−
dgout
t,t−∆

d∆

)

=

∫
Xt
p̃t(i) ˙̃xt(i)di+ Ṅtp̃t(Nt)x̃t(Nt)di−

∫
Ωt
p̃t(i)x̃t(i)di∫

Xt
p̃t(i)x̃t(i)di

,

where the first equality comes from L’Hopital’s rule, and Ωt in the last line is the set of

goods that disappear from the market exactly at time t. The above result is the same

as the RHS of (5).

Appendix C Two Conditions for Sustained GDP Growth

Corollary 1 shows that the measured GDP growth rate becomes positive when the two

conditions (10) and (11) are satisfied. Here, we discuss these conditions in more detail.
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Condition (10): the quality-adjusted price falls during the product lifecycle

For this condition to be satisfied, p(τ) must decrease with τ at least for a portion of

the product lifecycle. Recall that we normalize the price level so that the price of the

newest goods when they appear does not change over time in the steady state. Therefore,

Condition (10) only requires the quality-adjusted prices of older goods to decrease relative

to those of newer goods, and it is not essential for the prices of individual goods measured

in a currency to decrease.

In terms of actual currencies, we can determine that p(τ) is decreasing if the quality-

adjusted currency prices of individual goods lag behind the growth of the nominal per

capita GDP. To see this point, suppose that the per capita nominal GDP growth rate

in dollars is g$. Note that, given that
∫ T
0 p(τ)x(τ)dτ is finite, nominal expenditure in

our theory’s price normalization is constant, which means that there is a g$ difference

in the inflation rate between the prices in theory and in dollars. Then, in dollars, the

rate of price change for age-τ good is p′(τ)/p(τ) + g$. Therefore, we can determine that

p′(τ) is negative if the quality-adjusted dollar prices of individual goods are increasing

less rapidly than g$.

With this definition, the quality-adjusted price of a good may decrease with the

age of the good for several reasons. For example, the cost of production falls through

learning-by-doing and knowledge spillovers. In this case, time and production experi-

ence contribute to price reduction. In addition to cost reduction, changes in the form

of competition may lower prices because older goods are typically less protected from

competition by patents and trade secrets than newer goods are.

Price reductions also occur in the form of quality improvements. For example, the

effective price of computers has been declining for decades, not only because computers

have become cheaper but also because the average performance of computers has dras-

tically improved. SNA statistics record such changes as a decline in the quality-adjusted

price.

Notably, our theory does not require an exponential decrease in the quality-adjusted

price. If the quality improvements are exponential, then economic growth can easily

be maintained, e.g., as in usual quality-ladder models. According to “Moore’s law,”
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the quality of computers has been improving at a constant rate; however, this trend

of exponential improvement is expected to slow. In fact, computers are a remarkable

exception in terms of continued improvements in performance. Most other products

experience a tapering in the rate of productivity improvement as they mature. Our

theory shows that slowdowns in productivity increases in individual goods are consistent

with a sustained rate of measured GDP growth, as long as a constant number of new

products are introduced per unit time.

Finally, let us discuss the case in which the quality-adjusted price of the good increases

for some part of its lifecycle, as we present in Example 2 of Figure 4. Although we need

a concrete model to analyze how this happens and whether Condition (10) is satisfied,

we discuss two possibilities here. One possibility is when products have antique or scarce

value as they become very old. In this scenario, p(τ) increases only when x(τ) becomes

considerably smaller than it is when the good is newer. Another possibility is that

producing a good in small lots costs more. This happens, for example, when a particular

good continues to be produced to meet a niche demand, typically near the end of the

product lifecycle.

The numerator of the equation, −
∫ T
0 x(τ)dp(τ), is the weighted sum of the price

changes, dp(τ), where the weights are the quantities, x(τ). Therefore, if the quantity

x(τ) tends to be small when p(τ) increases, then the negative effect of such movements

on the GDP growth rate is likely to be limited. Therefore, even when the price at the

end of the lifecycle p(T ) is higher than the initial price p(0), the lifetime contribution of

this good to the real GDP growth rate may well be positive, as in the case of Example

2.

Condition (11): The cumulative expenditure for a single good is finite

This condition requires the expenditure on older goods, p(τ)x(τ), to decrease as the

goods age so that they are effectively retired from the market in terms of expenditure

share. The condition is always satisfied if the representative good ceases to be produced

at a finite age T . Even when the good stays in the market forever (T = ∞), the condition

is satisfied if the expenditure decreases reasonably quickly as the good ages (condition
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13). Notably, the speed of the decline in expenditure does not need to be exponential.

The expenditure for the good can decrease as the good ages for several reasons. One

possibility is that the price decreases when the price elasticity of demand is less than

one, at least for older goods. To illustrate this possibility, suppose that the demand for

a good is determined solely by its price p(τ), and the price falls toward zero. Even when

the good becomes almost free, it is unrealistic to expect consumers to demand an infinite

amount of any particular product. This consideration suggests that the price demand

elasticity of a product tends to be less than one when the price becomes sufficiently low,

and the expenditure for the good eventually vanishes as p(τ) → 0. Section 3 presents a

full endogenous growth model on the basis of this idea.

The expenditure for older goods can also decrease for other reasons. Sometimes,

consumers are attracted by the novelty of new goods, but they become less interested

over time. Advertisements for newer goods increase the speed of the obsolescence of

older goods. Changes in the underlying economic environment may also make older

goods useless. When these effects are present, Condition (11) may be satisfied regardless

of the elasticity of demand. We extend the model to include obsolescence in Section 4.

Appendix D General Case in the Baseline Prototype Model

D.1 Proof of Lemma 1

The proof goes by a “guess and verify” method. Suppose that λ∗ < ((1 + µ)ĉ1/ε)−1,

which means that (1 + µ)λ∗ĉ1/ε < 1. Then, q(τ) > (1 + µ)λ∗ĉ1/ε holds for all τ ≥ 0,

since q(0) = 1 and q′(0) > 0 for all τ > 0.

Below, we verify that the initial guess is correct under the assumption in the lemma.

Since q(τ) > (1+µ)λ∗ĉ1/ε holds for all τ ≥ 0, we can calculate the steady-state value of λ∗

as in Equation (27). Using the assumption of the lemma, ĉ <
(
aµL

∫∞
0 q(τ)ε−1e−ρτdτ

)−1,

Equation (27) implies

λ∗ =
1

1 + µ

(
aµL

∫ ∞

0
q(τ)ε−1e−ρτdτ

)1/ε

≤ 1

1 + µ
ĉ−1/ε, (D.1)

which confirms that the initial guess is correct.
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In Appendix D.2, we show that the steady-state value of λ∗ is unique. Therefore,

we are assured that the unique value of λ∗ satisfies λ∗ < ((1 + µ)ĉ1/ε)−1; thus, q(τ) >

(1 + µ)λ∗ĉ1/ε for all τ ≥ 0.

D.2 Steady-state Equilibrium when ĉ is not Small

In Section 3.4, we assume that ĉ is sufficiently small that q(τ) ≥ (1 + µ)λ∗ĉ1/ε holds

for all τ . Here, we analyze the steady-state equilibrium without this assumption. The

threshold age of goods is defined as follows:

τ̂(λ∗) = max

[
0,
θ

β

((
(1 + µ)λ∗ĉ1/ε

)1/θ
− 1

)]
. (D.2)

Then, from Equation (21), q(τ) ≥ (1 + µ)λ∗ĉ1/ε if and only if τ ≥ τ̂(λ∗).

Using Equation (24), the profit of an age-τ firm in the steady state can be written

as follows:

π(τ) =


µD(λ∗)q(τ)ε−1 for τ ≥ τ̂(λ∗),

µD̂(λ∗)q(τ)ε̂−1 for τ ≤ τ̂(λ∗).

(D.3)

Using Equations (D.2) and (D.3), the value of a new firm in the steady state can be

written as a function of λ∗:

V (λ∗) = µD̂(λ∗)

∫ τ̂(λ∗)

0
q(τ)ε̂−1e−ρτdτ + µD(λ∗)

∫ ∞

τ̂(λ∗)
q(τ)−(1−ε)e−ρτdτ. (D.4)

The equilibrium value of λ∗ is determined by the free entry condition, V (λ∗) = 1/a.

From D(λ) = L((1+µ)λ)−ε and D̂(λ) = L((1+µ)λ/u)−ε̂, we can confirm that function

V (λ) is continuous and strictly decreasing in λ.59 Additionally, limλ→0 V (λ) = ∞ and

limλ→∞ V (λ) = 0. Therefore, there is a unique value of positive and finite λ∗ that solves

the free entry condition. This is the steady-state value of λ∗.

Next, let us turn to the labor market. From functions (19) and (24), the total number

of production workers in the ASSE can be written as LP∗ = n∗ℓ(λ∗), where

ℓ(λ∗) ≡ D(λ∗)

∫ τ̂(λ∗)

0
q(τ)ε̂−1dτ +D(λ∗)

∫ ∞

τ̂(λ∗)
q(τ)−(1−ε)dτ. (D.5)

59To calculate V ′(λ), we need to use Leibniz’s rule because the range of the integration depends on λ.

However, at τ = τ̂(λ), we can confirm that D̂(λ)q(τ̂(λ))ε̂−1 = D(λ)q(τ̂(λ))ε−1. Therefore, a marginal

change in τ̂(λ) does not affect V ′(λ).
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Note that the first integral in Equation (D.5) is finite because τ̂(λ∗) is finite. The

second integral is finite if the power of q(τ)−(1−ε) ∝ (τ + κ0)
−θ(1−ε) is less than 1,

which means that θ(1 − ε) > 1, or equivalently ψ > ε. In the following, we assume

that ψ > ε holds. The function ℓ(λ∗) is a decreasing and continuous function of λ∗,

with limλ→0 ℓ(λ) = ∞ and limλ→∞ ℓ(λ) = 0. Since λ∗ is positive and finite, ℓ(λ∗) is

also positive and finite. Using Equation (D.5), the equilibrium condition for the labor

market is written as n∗ℓ(λ∗) + (n∗/a) = L. From this, we obtain

n∗ =
aL

1 + aℓ(λ∗)
. (D.6)

Since ℓ(λ∗) is positive and finite, n∗ is also positive and finite.

D.3 Measured Real GDP Growth Rate when ĉ is not Small

As shown in Appendix D.2, the economy has an ASSE with a positive and finite pair of

n∗ and λ∗ whenever ψ ∈ (ε, 1). In this ASSE, we now calculate the real GDP growth

rate, as measured by the SNA. From Equations (23) and (24), the expenditure for an

age τ good can be written as follows:

p(τ)x(τ) =


(1 + µ)D(λ∗)q(τ)−(1−ε) for τ ≥ τ̂(λ∗),

(1 + µ)D̂(λ∗)q(τ)1−ε̂ for τ < τ̂(λ∗).

(D.7)

Using Equation (D.7), we can calculate the expenditure shares for the goods of each age:

σ(τ) =


D(λ∗)q(τ)−(1−ε)/ℓ(λ∗) for τ ≥ τ̂(λ∗),

D̂(λ∗)q(τ)1−ε̂/ℓ(λ∗) for τ < τ̂(λ∗).

(D.8)

The measured real GDP growth rate is obtained via the growth formula (36):

g∗ =
1

ℓ(λ∗)

(
D̂(λ∗)

∫ τ̂(λ∗)

0
q(τ)ε̂−1gq(τ)dτ +D(λ∗)

∫ ∞

τ̂(λ∗)
q(τ)−(1−ε)gq(τ)dτ

)
. (D.9)

Using Equations (21) and (22), the growth rate can be written as follows:

g∗ =
θ

ℓ(λ∗)

(
D̂(λ∗)κε̂−1

1

∫ τ̂(λ∗)

0
(τ + κ0)

θ(ε̂−1)−1dτ

+D(λ∗)κ
−(1−ε)
1

∫ ∞

τ̂(λ∗)
(τ + κ0)

−θ(1−ε)−1dτ

)
.

(D.10)
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The two integrals in Equation (D.10) are both finite, and their sum is positive. Addition-

ally, as discussed in Section D.2, ℓ(λ∗) is positive and finite. Therefore, given ψ ∈ (ε, 1),

the measured real GDP growth rate is positive and finite.

Appendix E Money-Metric Utility

In this Appendix, we derive the money-metric utility ζt(∆) that satisfies equation (41),

which is shown again below:

v({p̃t+∆(i)}
Nt+∆

i=0 , It+∆) = v({p̃t(i)}Nti=0, It exp ζt(∆)). (41)

We focus on the ASSE and continue to assume that the condition for Lemma 1 is satisfied.

Then, c̃(i) ≥ ĉ holds for all i ∈ [0, Nt] in the ASSE, and therefore,

c̃(i) = λ−εt p̃t(i)
−ε for i ∈ [0, Nt]. (E.1)

From this demand function, the expenditure at time t is given by

It =

∫ Nt

0
p̃t(i)c̃t(i)di = λ−εt

∫ Nt

0
p̃t(i)

1−εdi. (E.2)

Now, let us represent the consumption of each good as a function of the expenditure

(budget) at time t, i.e., It, rather than as a function of the Lagrange multiplier, λt. By

eliminating λt in (E.1) using (E.2), we obtain

c̃t(i) = p̃t(i)
−εP

−(1−ε)
t It for i ∈ [0, Nt], (E.3)

where Pt is a price index defined by

Pt =

(∫ Nt

0
p̃(i)1−εdi

)1/(1−ε)

. (E.4)

Using the first line of (15) and (E.3), we can express the instantaneous utility (in utils)

as a function of It as follows:

Ut =

∫ Nt

0
u(c̃t(i))di = Ntu− ε

1− ε

(
Pt
It

)(1−ε)/ε
.
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Note that this property also holds when the expenditure (budget) It is multiplied by

exp ζt(∆) ≥ 1.60 Therefore, Equation (41) can be written as follows:

Nt+∆u− ε

1− ε

(
Pt+∆

It+∆

)(1−ε)/ε
= Ntu− ε

1− ε

(
Pt

It exp ζt(∆)

)(1−ε)/ε
. (E.5)

Note that, in the ASSE, Pt and It in (E.2) and (E.4) converge to constant values.

It → (λ∗)−εn∗
∫ ∞

0
p(τ)1−εdτ ≡ I∗, (E.6)

Pt →
(
n∗
∫ ∞

0
p(τ)1−εdτ

)1/(1−ε)
≡ P ∗. (E.7)

Additionally, Nt+∆ − Nt = n∗∆ holds. Using these, Equation (E.5) can be solved for

ζt(∆) as follows.

ζt(∆) = − ε

1− ε
log

(
1− 1− ε

ε
n∗u

(
I∗

P ∗

)(1−ε)/ε
∆

)
. (E.8)

By differentiating (E.8) by ∆ and taking the limit of ∆ → 0, we obtain

ζ ′t(0) = n∗u

(
I∗

P ∗

)(1−ε)/ε
, (E.9)

which is the instantaneous rate of increase in the money-metric utility in the ASSE.

Below, we examine the relationship between ζ ′t(0) and the measured real GDP growth

rate in the ASSE, g∗, given by (37). From (E.6) and (E.7),(
I∗

P ∗

)(1−ε)/ε
=

(
(λ∗)1−εn∗

∫ ∞

0
p(τ)1−εdτ

)−1

. (E.10)

Using (E.1) and (E.10), Equation (E.9) becomes

ζ ′t(0) =
u∫∞

0 c(τ)−(1−ε)/εdτ
. (E.11)

Note that (E.1), (23), and (21) imply

c(τ)

c(0)
=

(
p(0)

p(τ)

)ε
=

(
q(τ)

q(0)

)ε
=

(
τ + κ0
κ0

)ε/(1−ψ)
.

60When the expenditure (budget) is increased, the consumption of every good increases. Thus, c̃(i) ≥ ĉ

still applies.
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Therefore, the integral in (E.11) becomes∫ ∞

0
c(τ)−(1−ε)/εdτ = c(0)−(1−ε)/ε

∫ ∞

0

(
τ + κ0
κ0

)−(1−ε)/(1−ψ)
dτ

= c(0)−(1−ε)/ε 1− ψ

ψ − ε
κ0

= c(0)−(1−ε)/ε 1

ψ − ε

1

β
,

(E.12)

where the second equality holds under the assumption of ε < ψ, and the last equality is

from the definition of κ0 ≡ 1/(1 − ψ)β. By substituting (E.12) into (E.11), we obtain

Equation (43) in the main text:

ζ ′t(0) =
(1− ε)u

c(0)−(1−ε)/ε
ψ − ε

1− ε
β = Λg∗, (E.13)

where g∗ is the measured real GDP growth rate in (37) and Λ > 1 is the correction term

defined in (42). (See Figure 7 for a graphical explanation for Λ). Additionally, note that

(E.9) and (E.13) imply that (E.8) is identical to (42) in the main text.

Appendix F Transitional Dynamics

In the first subsection of this appendix, we derive the dynamics of the prototype model

of Section 3 without assuming that the economy is in the steady state (ASSE). In the

second subsection, we explain how to calculate the rate of GDP growth in the transition.

F.1 Dynamics of the Economy outside the Steady State

Following the main text, we continue to assume that ĉ is sufficiently small so that ĉt(i) ≥ ĉ

holds for all i ∈ [0, Nt] and t. Then, similar to (24), the demand for an age-τ good is

xt(τ) = D(λt)q(τ)
ε = Dtq(τ)

ε, (F.1)

where Dt = D(λt) = L((1 + µ)λt)
−ε is the demand shifter and λt is the Lagrange

multiplier of the consumer’s problem. Since the markup rate is µ, the profit of an age-τ

firm at time t is πt(τ) = µDtq(τ)
ε−1. From this, the value of a new firm at time t is

Vt =

∫ ∞

0
πt+τ (τ) exp

[
−
∫ t+τ

t
rvdv

]
dτ

= µ

∫ ∞

0
Dt+τq(τ)

ε−1 exp

[
−
∫ t+τ

t
rvdv

]
dτ,

(F.2)
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where the last line shows that Vt is a function of the paths of Dt+τ and rt+τ in the

future. Since λt follows the Euler equation λ̇t/λt = ρ − rt, the two variables rt and

Dt = L((1 + µ)λt)
−ε are related by

Ḋt

Dt
= ε(rt − ρ). (F.3)

Since the cost of creating a new firm is 1/a, the free entry condition is

µ

∫ ∞

0
Dt+τq(τ)

ε−1 exp

[
−
∫ t+τ

t
rvdv

]
dτ ≤ 1

a
with equality if nt > 0. (F.4)

We first consider the case where the free entry condition (F.4) holds with equality.

In this case, using (F.2), this condition can be written as follows:

µ

∫ ∞

0
Dt+τq(τ)

ε−1 exp

[
−
∫ t+τ

t
rvdv

]
dτ =

1

a
. (F.5)

The paths of Dt and λt are determined so that the differential equation (F.3) and the

integral equation (F.5) simultaneously hold for all t in the future. We solve this system

of equations by the guess-and-verify method. Suppose that Dt+τ = D∗ and rt+τ = ρ

hold for all τ ≥ 0, where D∗ is the value of Dt in the ASSE, defined by (27). Because

D∗ is constant, this guess naturally satisfies the differential equation (F.3). Additionally,

the integral equation (F.5) is satisfied because, with Dt+τ = D∗ and rt+τ = ρ, Equation

(F.5) becomes identical to (27). Therefore, the pair of Dt+τ = D∗ and rt+τ = ρ for all

τ ≥ 0 is a solution to (F.3) and (F.5).

We also need to consider the equilibrium of the labor market. From (F.1), the amount

of labor hired by an age-τ firm is x(τ)/q(τ) = Dtq(τ)
−(1−ε). Since there are nt−τ firms

of age τ at time t, the total employment for production is

LPt = Dt

∫ t

0
q(τ)−(1−ε)nt−τdτ. (F.6)

The employment for R&D at that time is nt/a, and the labor supply is L. Therefore,

the equilibrium of the labor market requires LPt + nt/a = L, which can be solved for nt
as follows:

nt = a

(
L−Dt

∫ t

0
q(τ)−(1−ε)nt−τdτ

)
. (F.7)
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When the free entry condition (F.4) holds with equality at time t, the equilibrium path

of this economy after t is given by Dt+τ = D∗ and rt+τ = ρ for all τ ≥ 0 and

nt = a

(
L−D∗

∫ t

0
q(τ)−(1−ε)nt−τdτ

)
. (F.8)

Note that the only unknown in the integral equation (F.8) is nt. Given the history of

nt before t (i.e., nt−τ for τ ∈ (0, t]), it is easy to numerically calculate the value of

nt that satisfies (F.8). We can confirm that the free entry condition (F.4) holds with

equality if nt in (F.7) is positive (if it is negative, we need to consider the case of nt = 0

as explained below). Additionally, by comparing (F.8) and (31), we see that nt = n∗

satisfies the labor market equilibrium condition as t→ ∞. As shown in the left panel of

Figure 6, we numerically confirm that the economy converges to the steady state where

nt = n∗.

Next, we consider the case where the free entry condition (F.4) holds with strict

inequality. In this case, there is no R&D at time t, which means that nt = 0. From

the labor market equilibrium condition (F.7), we obtain the equilibrium value of Dt as

follows:

Dt =
L∫ t

0 q(τ)
−(1−ε)nt−τdτ

. (F.9)

Since nt−τ is predetermined, it is possible to solve for the path of Dt numerically. Note

that while nt = 0 holds, the denominator of (F.9) gradually decreases because q(τ)−(1−ε),

where ε < 1, is decreasing in τ . Therefore, Dt eventually reaches D∗. After this point,

the free entry condition holds with equality, and nt is determined by (F.8). As explained

above, the economy then converges to the ASSE. Finally, we explain the dynamics of

rt when nt = 0. Given the path of Dt, Equation (F.3) implies that the interest rate

becomes

rt = ρ+
1

ε

Ḋt

Dt
.

Since Ḋt > 0 before Dt reaches D∗, rt should be greater than ρ when the free-entry

condition is satisfied with strict inequality.
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F.2 Measured GDP Growth in the Transition

In the transition, the real GDP growth rate is given by Equation (5). In the model

of Section 3, T = ∞ means that Ωt is an empty set. Therefore, the third term in the

numerator of (5) is eliminated. Note that p̃t(i) = p(τ) = (1+µ)/q(τ), where τ = t−s(i).

Additionally, x̃t(i) can be written as xt(τ) ≡ Dtq(τ)
ε. Then,

˙̃xt(i) = ẋt(τ) + x′t(τ) = Ḋtq(τ)
ε +Dtεq(τ)

ε−1q′(τ).

Using (F.3) and (22), the above equation becomes

˙̃xt(i) = ε(rt − ρ+ gq(τ))xt(τ).

Since s(i) ≡ t − τ is the date at which good i was the newest good, i = Ns(i) = Nt−τ

holds. By fixing t, the total differentiation of i = Nt−τ yields di = −nt−τdτ . Finally, the

set of goods in production is Xt = [0, Nt], which transforms to [t, 0] when represented in

terms of age. Using these, Equation (5) can be written as

gt =
ntp(0)xt(0) + ε

∫ t
0 (rt − ρ+ gq(τ))p(τ)xt(τ)nt−τdτ∫ t
0 p(τ)xt(τ)nt−τdτ

, (F.10)

When nt > 0, the analysis in Section F.1 shows that Dt = D∗ and r = ρ hold. In this

case, xt(τ) can be written as x(τ) ≡ D∗q(τ)ε. Using this, (F.10) becomes

gt =


nt+ε

∫ t
0 gq(τ)q(τ)

ε−1nt−τdτ∫ t
0 q(τ)

ε−1nt−τdτ
if nt > 0,

ε
∫ t
0 gq(τ)q(τ)

ε−1nt−τdτ∫ t
0 q(τ)

ε−1nt−τdτ
+ ε(rt − ρ) if nt = 0.

(F.11)

Once we obtain the paths of nt and rt as explained in Section F.1, Equation (F.11) allows

us to calculate the path of gt numerically.

Appendix G Money-Metric Utility with Obsolescence

In both cases, ε > 1 and ε < 1, the consumption of good i at time t is

c̃t(i) = λ−εt p̃t(i)
−εδ(t− s(i))ε, (G.1)

where λt is a Lagrange multiplier. Then, the total expenditure at time t is

It = λ−εt

∫ t

0
p̃t(i)

1−εδ(t− s(i))εdi. (G.2)
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Using (G.2), we can represent the consumption of individual goods c̃(i) in terms of It
rather than λt. By eliminating λt in (G.1) using (G.2), we obtain

c̃t(i) = p̃t(i)
−εδ(t− s(i))εP ε−1

t It, (G.3)

where Pt is a price index when obsolescence is present,

Pt =

(∫ Nt

0
p̃t(i)

1−εδ(t− s(i))εdi

)1/(1−ε)

. (G.4)

Note that in the ASSE, It and Pt converge to finite constants.

It → (λ∗)−εn∗
∫ T

0
p(τ)1−εδ(τ)εdτ ≡ I∗, (G.5)

Pt →
(
n∗
∫ T

0
p(τ)1−εδ(τ)εdτ

)1/(1−ε)

≡ P ∗. (G.6)

We can follow the same procedure to obtain the consumption at t+∆ in the ASSE:

c̃t+∆(i) = p̃t+∆(i)
−εδ(t+∆− s(i))εP ε−1

t+∆It+∆, (G.7)

where It+∆ → I∗ and Pt+∆ → P ∗ as t → ∞. Using these results, we later calculate the

instantaneous utility consumers in the ASSE at time t+∆, which is represented by the

LHS of Equation (48); i.e., v({p̃t+∆(i)}
Nt+∆

i=0 , It+∆, t+∆).

Next, let us consider the situation of a consumer at time t whose preference is that

of time t + ∆, while the prices and availability of goods are still those of time t (this

situation corresponds to the RHS of Equation 48, v({p̃t(i)}Nti=0, It exp ζt(∆), t+∆)). This

means that the consumer discounts the utility from individual goods by δ(t+∆− s(i)),

while the prices are p̃t(i). Then, the consumption of good i is

c̃t(i;∆) = λ−εt p̃t(i)
−εδ(t+∆− s(i))ε, (G.8)

where the term δ(t+∆− s(i))ε signifies that the preference is that of ahead of time by

∆. Then, the total expenditure at time t is

It = λ−εt

∫ t

0
p̃t(i)

1−εδ(t+∆− s(i))εdi. (G.9)

By eliminating λt in (G.8) using (G.9), we obtain

c̃t(i;∆) = p̃t(i)
−εδ(t+∆− s(i))εP̂t(∆)ε−1It, (G.10)
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where P̂t(∆) is a price index at time t given that the preference is that of t+∆,

P̂t(∆) =

(∫ Nt

0
p̃t(i)

1−εδ(t+∆− s(i))εdi

)1/(1−ε)

.

On the ASSE, this price index converges to

P̂t(∆) →
(
n∗
∫ T

∆
p(τ −∆)1−εδ(τ)εdτ

)1/(1−ε)

≡ P̂ ∗(∆). (G.11)

Now, we are ready to compare both sides of (48). Since the utility function changes

its form depending on whether ε > 1 or ε < 1, in the following, we consider the two

cases separately.

G.1 Case of ε > 1

In this case, the sub-utility function is given by u(c) = c1−1/ε/(1−1/ε) for all c > 0. We

first derive the change in instantaneous utility (in utils) in the ASSE. From (G.3) and

u(c) = c1−1/ε/(1− 1/ε), the instantaneous utility at t in (44) is

Ut =

∫ Nt

0

[
δ(t− s(i))u(c̃t(i)) + (1− δ(t− s(i)))û

]
di

=
ε

ε− 1

(
It
Pt

)(ε−1)/ε

+ ûNt − û

∫ Nt

0
δ(t− s(i))di.

From (G.5), (G.6), and Ṅt → n∗, the above expression asymptotically becomes

U∗
t =

ε

ε− 1

(
I∗

P ∗

)(ε−1)/ε

+ ûNt − ûn∗
∫ t

0
δ(τ)di. (G.12)

Similarly, we can calculate the instantaneous utility at t+∆ in the ASSE.

U∗
t+∆ =

ε

ε− 1

(
I∗

P ∗

)(ε−1)/ε

+ ûNt+∆ − ûn∗
∫ t+∆

0
δ(τ)di. (G.13)

By comparing (G.12) and (G.13) and using Ṅt = n∗ and δ(t) → 0 as t → ∞, we obtain

the speed at which the instantaneous utility increases in the ASSE.

U̇∗
t = lim

∆→0

U∗
t+∆ − U∗

t

∆
=
dU∗

t+∆

d∆

∣∣∣∣
∆=0

= ûn∗(1− δ(t)) → ûn∗ as t→ ∞.

Therefore, the instantaneous utility (in utils) linearly increases with time, with a slope

of ûn∗.
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In the following, we consider the money-metric utility, ζt(∆), as defined by (48).

The LHS of (48), v({p̃t+∆(i)}
Nt+∆

i=0 , It+∆, t+∆) is U∗
t+∆ in (G.13). In RHS of (48), i.e.,

v({p̃t(i)}Nti=0, It exp ζt(∆), t + ∆), It represents the expenditure at time t in the ASSE.

Since the expenditure in the ASSE is asymptotically constant, as shown in (G.5), this

It can be equated to I∗. Therefore, this expression represents the instantaneous utility

of the representative consumer when (i) the prices and availability of goods are those of

time t, (ii) the instantaneous expenditure is I∗ exp ζt(∆), and (iii) the preference is that

of t+∆. In this situation, Equation (G.10) implies that the consumption of individual

goods is

c̃t(i;∆) = p̃t(i)
−εδ(t+∆− s(i))εP̂t(∆)ε−1I∗ exp ζt(∆). (G.14)

Additionally, the instantaneous utility in this situation is

Ût(∆) =

∫ Nt

0

[
δ(t+∆− s(i))u(c̃t(i;∆)) + (1− δ(t− s(i)))û

]
di.

In the above equation, the range of the integral is from 0 to Nt because the availability

of goods is that of time t. Additionally, the externality term (1− δ(t− s(i)))û is that of

time t. However, sub-utility u(c̃t(i;∆)) is multiplied by δ(t+∆− s(i)), which indicates

that consumers have a preference of time t+∆.

By substituting u(c) = c1−1/ε/(1−1/ε) and (G.14) into the above equation and then

using (G.11), the instantaneous utility asymptotically becomes

Û∗(∆) =
ε

ε− 1

(
I∗

P̂ ∗(∆)

)(ε−1)/ε

exp

[
ε− 1

ε
ζt(∆)

]
+ ûNt − ûn∗

∫ t

0
δ(τ)dτ. (G.15)

The money-metric utility (in logs), ζt(∆), is defined so that (G.13) coincides with (G.15).

We can solve this definition for exp ζt(∆) as follows:

exp ζt(∆) =
P̂ ∗(∆)

P ∗

{
1 +

ε− 1

ε

(
P ∗

I∗

) ε−1
ε

ûn∗
(
∆−

∫ t+∆

t
δ(τ)dτ

)} ε
ε−1

. (G.16)

Note that (G.16) implies ζt(0) = 0 because P̂ ∗(0) = P ∗. Equation (G.16) can be

interpreted as follows. When consumers have the preference of time t + ∆ (i.e., when

consumers discount the utility of goods more heavily than at time t) while the prices

and availability of goods are still those of time t, they in effect face higher prices in
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that they can only achieve lower instantaneous utility with a given budget. This effect

is represented by P̂ ∗(∆)/P ∗ > 1. To compensate for this, ζt(∆) must be increased.

In addition, if û is positive (i.e., when there are positive externalities from old goods),

consumers at time t + ∆ enjoy more externalities than at time t because n∗∆ more

goods are available at time t + ∆. The difference (in utils) is ûn∗
∫ t+∆
t (1 − δ(τ))dτ =

ûn∗
(
∆−

∫ t+∆
t δ(τ)dτ

)
. The second term in the braces of (G.16) represents this effect.

In the following, we derive ζ ′t(0), the slope of the money-metric utility with respect

to ∆ at ∆ = 0. Note that differentiating the LHS of (G.16) and then substituting ∆ = 0

yields ζ ′t(0) exp ζt(0) = ζ ′t(0). Applying the same operation to the RHS of (G.16) and

utilizing P̂ ∗(0) = P ∗ yields

ζ ′t(0) =
1

P ∗
dP̂ ∗(∆)

d∆

∣∣∣∣∣
∆=0

+

(
P ∗

I∗

) ε−1
ε

ûn∗(1− δ(t)). (G.17)

Differentiating (G.11) with respect to ∆ and then substituting ∆ = 0 yields

dP̂ ∗(∆)

d∆

∣∣∣∣∣
∆=0

= n∗(P ∗)ε
{∫ T

0
p(τ)−(ε−1)δ(τ)

(
−p

′(τ)

p(τ)

)
dτ + (ε− 1)p(0)−(ε−1)

}
Then, using (22), (23) and (G.6), the first term of (G.17) becomes

1

P ∗
dP̂ ∗(∆)

d∆

∣∣∣∣∣
∆=0

=

∫ T
0 q(τ)ε−1δ(τ)εgq(τ)dτ∫ T

0 q(τ)ε−1δ(τ)εdτ
+

1

ε− 1

1∫ T
0 q(τ)ε−1δ(τ)εdτ

(G.18)

Note that the first term of (G.18) is the weighted average of the rate of price reduction

of existing goods, and it coincides with the measured GDP growth rate g∗ in (45). For

the consumer with time t+∆ preference facing time t prices and availability, this amount

of expenditure needs to be compensated (in ζ ′(0)) so that she has the same utility as the

consumer at time t + ∆ in the ASSE. The second term of (G.18) comes from the fact

that the consumer with time t+∆ preference facing time t prices and availability does

not have access to i ∈ [Nt, Nt+∆] goods. This consumer also needs to be compensated

for this fact.

Let us turn to the second term of (G.17). Recall that we assumed that δ(t) is

asymptotically zero as t → ∞.61 Note also that, in the ASSE, Equations (G.3), (G.5)

61If T is finite, δ(t) becomes zero when t ≥ T . If T is infinite, δ(t) converges to zero as t→ 0.
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and (G.6) imply that the consumption for age-0 good is c(0) = p(0)−ε(P ∗)ε−1I∗, which

means that I∗ = p(0)ε(P ∗)−(ε−1)c(0). By using I∗ and δ(t) → 0, the second term of

(G.17) becomes n∗(P ∗/p(0))ε−1û/c(0)(ε−1)/ε. Then, from (23) and (G.6), it becomes

û

c(0)1−1/ε

1∫ T
0 q(τ)ε−1δ(τ)εdτ

. (G.19)

This term derives from the fact that the sum of positive externalities increases with time

as newer goods are developed. Combining (G.18) and (G.19) yields the first line of (49).

G.2 Case of ε ∈ (0, 1)

In this case, the sub-utility function is given by u(c) = c1−1/ε/(1−1/ε)+u for c > ĉ. As

mentioned in the main text, we assume that ĉ is sufficiently small that c̃t(i) > ĉ holds

for all t and i. Similar to the previous subsection, the instantaneous utility at times t

and t+∆ in the ASSE asymptotically becomes

U∗
t = − ε

1− ε

(
P ∗

I∗

)(1−ε)/ε
+ ûNt + (u− û)n∗

∫ t

0
δ(τ)di, and (G.20)

U∗
t+∆ = − ε

1− ε

(
P ∗

I∗

)(1−ε)/ε
+ ûNt+∆ − (u− û)n∗

∫ t+∆

0
δ(τ)di. (G.21)

By comparing (G.20) and (G.21) and using Ṅt = n∗ and δ(t) → 0 as t → ∞, we obtain

the speed at which the instantaneous utility increases in the ASSE.

U̇∗
t = lim

∆→0

U∗
t+∆ − U∗

t

∆
=
dU∗

t+∆

d∆

∣∣∣∣
∆=0

= ûn∗ + (u− û)n∗δ(t) → ûn∗ as t→ ∞.

Therefore, similar to the case of ε > 1, the instantaneous utility (in utils) linearly

increases over time, with a slope of ûn∗.

Note that U∗
t+∆ in (G.21) corresponds to the LHS of (48) for the case of ε ∈ (0, 1).

By a similar procedure that leads to (G.15) in the previous subsection, we obtain the

utility of consumers that corresponds to the RHS of (48) for the case of ε ∈ (0, 1).

Û∗(∆) =

∫ Nt

0

[
δ(t+∆− s(i))u(c̃t(i;∆)) + (1− δ(t− s(i)))û

]
di

=− ε

1− ε

(
P̂ ∗(∆)

I∗

)(1−ε)/ε

exp

[
−1− ε

ε
ζt(∆)

]
+ ûNt

+ un∗
∫ t+∆

∆
δ(τ)dτ − ûn∗

∫ t

0
δ(τ)dτ.

(G.22)
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The money-metric utility (in logs), ζt(∆), is defined so that (G.21) coincides with (G.22).

We can solve this definition for exp ζt(∆) as follows:

exp ζt(∆) =
P̂ ∗(∆)

P ∗

{
1− 1− ε

ε

(
I∗

P ∗

) 1−ε
ε

n∗

(
û∆− û

∫ t+∆

t
δ(τ)dτ + u

∫ ∆

0
δ(τ)dτ

)}− ε
1−ε

.

(G.23)

Differentiating both sides of (G.23) by ∆ and then substituting ∆ = 0 yields

ζ ′t(0) =
1

P ∗
dP̂ ∗(∆)

d∆

∣∣∣∣∣
∆=0

+

(
I∗

P ∗

) 1−ε
ε

n∗ (û− ûδ(t) + uδ(0)) . (G.24)

The first term of (G.24) is given by (G.18), which does not depend on the value of ε.

Additionally, I∗ = p(0)ε(P ∗)−(ε−1)c(0) holds as in the case of ε > 1. Then, using δ(0) = 1

and δ(t) → 0 as t→ ∞, Equation (G.24) becomes

ζ ′t(0) = g∗ +

{
1

1− ε

(
(1− ε)u

c(0)1−1/ε
− 1

)
+

û

c(0)1−1/ε

}(∫ T

0
q(τ)ε−1δ(τ)εdτ

)−1

.

Note that (1− ε)u/c(0)1−1/ε is the same as Λ in (42), and Λ > 1 holds given that

ε ∈ (0, 1). Therefore, we obtain the second line of (49).
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