Deficits and Inflation: Beyond the FTPL

George-Marios Angeletos¹ Chen Lian² Christian Wolf³

¹Northwestern and NBER

²UC Berkeley and NBER

³MIT and NBER

May 26, 2024

How do Deficits Affect Inflation?

- FTPL
 - Initial, flexible-price-FTPL: Basetto, Sims, Leeper, Woodford
 - Recent, RANK-FTPL: Cochrane, Bianchi-Ilut, Bianchi-Faccini-Melosi, Smets-Wouters
 - RA/PIH households

OLG-NK/HANK

- Breaking Ricardian Equiv. by finite lives/liq. constraints
- Deficits \Rightarrow AD \Rightarrow Keynesian boom \Rightarrow inflation

How do Deficits Affect Inflation?

- FTPL
 - Initial, flexible-price-FTPL: Basetto, Sims, Leeper, Woodford
 - Recent, RANK-FTPL: Cochrane, Bianchi-Ilut, Bianchi-Faccini-Melosi, Smets-Wouters
 - RA/PIH households

OLG-NK/HANK

- Breaking Ricardian Equiv. by finite lives/liq. constraints
- Deficits \Rightarrow AD \Rightarrow Keynesian boom \Rightarrow inflation

This paper: compare RANK-FTPL vs OLG-NK/HANK

- Mechanism differences: how deficits drive AD and inflation & how to break Ricardian Equiv.
- Prediction differences on inflation responses to deficits. OLG-NK/HANK has
 - More front-loaded inflation responses
 - 2 Lower cumulative inflation responses
 - 3 Predictions robust to perturbations about far future and assumptions on policy
- Covid Applications

Outline

- Environment
- 2 How do Deficits Drive Inflation?
- The Deficit-inflation Mapping
- Quantitative analysis
- Conclusion

Households [Based on Angeletos-Lian-Wolf, 2024]

Continuum of perpetual youth consumers with survival rate ω [$\omega = 1$: RANK; $\omega < 1$: proxy for HANK]

$$\mathbb{E}_t \left[\sum_{k=0}^{\infty} (\beta \omega)^k \left[u(C_{i,t+k}) - v(L_{i,t+k}) \right] \right]$$

Invests in nominal government bond (+ actuarially fair mortality insurance). Budget in real terms:

$$A_{i,t+1} = \underbrace{\frac{R_{t+1}^{\text{realized}}}{\omega}}_{\text{mortality insurance}} \left(\underbrace{\frac{A_{i,t}}{E_{i,t}} + \underbrace{W_t L_{i,t} + E_{i,t}}_{\text{income } Y_{i,t}} - C_{i,t} - T_{i,t} + \text{Transfer to Newborns}}_{\text{lincome } Y_{i,t}} \right)$$

- ullet Transfer to newborns (constant) \Longrightarrow in steady state, all cohorts have same $C\ \&\ R^{ss}=1/eta$
- Tax and transfer

$$T_{i,t} = \underbrace{\tau_y Y_{i,t}}_{ ext{distonary tax to labor and dividend income}} + \underbrace{\mathscr{T}_t}_{ ext{lump sum tax/transfer}}$$

Aggregate Demand and Supply

- Log-linearization: a lower case captures log-deviations from steady state [with the exception of wealth/fiscal variables, e.g., $a_t = \frac{A_t A^{ss}}{V^{ss}}$, to accommodate $A^{ss} = D^{ss} = 0$]
- AD: optimal consumption + aggregation (σ is EIS and $\frac{D^{ss}}{V^{ss}}$ is SS real wealth/debt to GDP ratio)

$$c_{t} = \underbrace{(1 - \beta \omega)}_{\text{MPC}} \times \left(\underbrace{a_{t}}_{\text{real wealth}} + \underbrace{\mathbb{E}_{t} \left[\sum_{k=0}^{\infty} (\beta \omega)^{k} (y_{t+k} - t_{t+k}) \right]}_{\text{post-tax income}} \right)$$

$$-\beta \left(\sigma \omega - (1 - \beta \omega) \frac{D^{ss}}{Y^{ss}} \right) \times \underbrace{\mathbb{E}_{t} \left[\sum_{k=0}^{\infty} (\beta \omega)^{k} r_{t+k} \right]}_{\text{expected real rates}},$$

$$(1)$$

- ω < 1 : (i) elevated MPC; (ii) discounting future y & t, breaking Ricardian Equiv.
- AS (standard log-linearized NKPC):

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t \left[\pi_{t+1} \right]$$

Asset Market and Government Budget details

- Riskless nominal government bond with maturity δ [pays \$1 at t, \$ δ at t+1, \$ δ 2 at t+2]
- Let d_t denote real value of government debt. Its evolution [in logs]:

$$d_{t+1} = \underbrace{\frac{1}{\beta} \left(d_t - t_t \right) + \frac{D^{ss}}{Y^{ss}} r_t}_{\text{expected debt burden tomorrow}} - \underbrace{\frac{D^{ss}}{Y^{ss}} \left(\pi_{t+1}^{\delta} - \mathbb{E}_t \left[\pi_{t+1}^{\delta} \right] \right)}_{\text{debt erosion due to inflation surprise}} - \underbrace{\frac{D^{ss}}{Y^{ss}} \left(r_{t+1}^{\delta} - \mathbb{E}_t \left[r_{t+1}^{\delta} \right] \right)}_{\text{debt erosion due to real rate surprises}}$$

where

$$\pi_t^\delta \equiv \mathbb{E}_t \left[\sum_{k=0}^\infty (eta \, \delta)^k \, \pi_{t+k}
ight] \quad ext{and} \quad r_t^\delta \equiv \mathbb{E}_t \left[\sum_{k=0}^\infty (eta \, \delta)^k \, r_{t+k}
ight]$$

Monetary Policy

Today: constant expected real rates

$$r_t = 0 \iff i_t = \mathbb{E}_t \left[\pi_{t+1} \right]$$

- Tractable benchmark, e.g. Barro & Bianchi; Woodford; Auclert-Rognlie-Straub
- Extension (Taylor-like): $\psi < 0$ ("accommodative MP") and $\psi > 0$ ("hawkish MP")

$$r_t = \psi \pi_t \Longleftrightarrow i_t = \mathbb{E}_t \left[\pi_{t+1} \right] + \psi \pi_t \tag{3}$$

Fiscal Policy

• Fiscal Policy: extension of Leeper (1991), common in literature

$$t_{t} = \underbrace{\tau_{d}(d_{t} + \varepsilon_{t})}_{\text{fiscal adjustment}} + \underbrace{\tau_{y}y_{t}}_{\text{tax base adjustment}} - \underbrace{\varepsilon_{t}}_{\text{deficit shock}}$$
(4)

- $\tau_d \in [0,1]$: fiscal adjustment (lump sum)
- $\tau_y > 0$: adjustment in tax base (from distortionary income tax, natural in OLG-NK/HANK)
- no G for simplicity
- Compare inflation responses
 - RANK-FTPL: $\omega = 1$, $\tau_v = 0$, $\tau_d \in [0, 1 \beta)$ (exogenous tax or active FP à la Leeper),
 - OLG-NK/HANK: $\omega < 1, \ \tau_y > 0, \ \tau_d \in [0,1]$
- Now: mechanism differences (RANK-FTPL vs OLG-NK/HANK)
 - How deficits drive AD and inflation & how to break Ricardian Equiv.

Outline

- Environment
- 2 How do Deficits Drive Inflation?
- 3 The Deficit-inflation Mapping
- Quantitative analysis
- Conclusion

How do Deficits Drive Inflation

• Inflation uniquely pinned down by AD/output via NKPC

$$\pi_t = \kappa \sum_{k=0}^{\infty} eta^k \mathbb{E}_t \left[y_{t+k}
ight]$$

How deficits drive inflation depends on how deficits drive AD

How do Deficits Drive Inflation? OLG-NK/HANK $(\omega < 1)$

Lemma

In OLG-NK with $\omega < 1$, $\tau_v > 0$, $\tau_d \in [0,1]$. There exists unique bounded eq'm. [Extends ALW 24].

- Deficit shock ε_t increases AD due to failure of Ricardian Equiv. from finite lives/liq. constraints
- IKC: market clearing $(c_t = y_t \& a_t = d_t) \&$ intertemporal gov budget & fixed real rates in AD (1)

$$y_{t}^{\uparrow} = \underbrace{(1 - \beta \omega) \sum_{k=0}^{\infty} \beta^{k} (1 - \omega^{k}) \mathbb{E}_{t} [t_{t+k}]}_{\text{direct effect of fiscal policy } (\omega < 1) \uparrow \text{ after deficit shock} } + \underbrace{(1 - \beta \omega) \sum_{k=0}^{\infty} (\beta \omega)^{k} \mathbb{E}_{t} [y_{t+k}]}_{\text{GE feedback}}$$
(5)

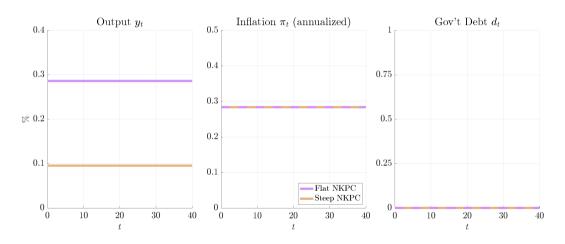
• Deficit-driven increase in AD leads to inflation $\pi_t \uparrow$ via NKPC

- To illustrate, one-period nominal bond $\delta=0$ + unexpected deficit $\varepsilon_0\uparrow$ at 0 + exogenous revenue
- A unique eg'm where debt erosion from inflation surprises fully finances deficit shock

$$\underbrace{B^{ss}}_{\text{nominal outstanding debt}} / (P_0 \uparrow) = \underbrace{-(\mathscr{E}_0 \uparrow)}_{\text{deficit shock}} + \underbrace{\sum_{k=0}^{+\infty} (R^{ss})^{-k} T^{ss}}_{\text{exogenous tax revenue}} \Longrightarrow \pi_0 \uparrow = \frac{Y^{ss}}{D^{ss}} \varepsilon_0$$

• In NK, inflation comes from output boom, which is persistent from Euler

$$y_0 = \mathbb{E}_0[y_t] = \cdots = \frac{(1-\beta)}{\kappa \frac{D^{ss}}{V^{ss}}} \varepsilon_0$$


• From NKPC and because $y_0 = \mathbb{E}_0[y_t]$ for all t, inflation is persistent too

$$\pi_0 = \mathbb{E}_0\left[\pi_t
ight] = \cdots = rac{Y^{ss}}{D^{ss}} arepsilon_0$$

Different from flexible-price FTPL: initial price jump, no booms

How do Deficits Drive Inflation? RANK-FTPL ($\omega=1$)

• RANK-FTPL: persistent responses independent of price stickiness

RANK-FTPL ($\omega = 1$): How do Deficits Affect AD?

- How do deficits drive AD and inflation in RANK-FTPL?
 - RA/PIH households, Ricardian Equiv. should hold à la Barro 74?
- Find the RANK-IKC ((5) when $\omega = 1$):

$$y_t = \underbrace{0}_{\text{direct effect of fiscal policy}} + \underbrace{(1-\beta)\sum_{k=0}^{\infty}\beta^k\mathbb{E}_t[y_{t+k}]}_{\text{GE feedback}} \qquad (\Leftrightarrow y_t = \mathbb{E}_t[y_{t+1}])$$
 (6)

- Fiscal policy/debt/deficits do not directly enter AD à la Barro 74
- But deficits lead to boom, sustained by self-fulfilling GE feedback $(y_0 = \mathbb{E}_0 [y_t] = \cdots = y)$ [related to multiplicity in NK when monetary policy is passive & fiscal policy is passive (no FTPL)]

Robustness: OLG-NK/HANK vs RANK-FTPL

How do deficits affect AD and inflation?

- OLG-NK/HANK: Breaking Ric. Equiv. by finite lives/liq. constraints
- RANK-FTPL: PIH households, break Ric. Equiv. through self-fulfilling GE feedback

Robustness: OLG-NK/HANK vs RANK-FTPL

How do deficits affect AD and inflation?

- OLG-NK/HANK: Breaking Ric. Equiv. by finite lives/liq. constraints
- RANK-FTPL: PIH households, break Ric. Equiv. through self-fulfilling GE feedback

OLG-NK/HANK robust to perturbations about the far future that stops the feedback

Proposition

Consider the case that y_t reverts to steady state $y_t = 0$ for $t \ge H$.

 $[t \ge H: fiscal\ policy\ switches\ to\ t_t = d_t\ (lump\ sum\ tax\ returns\ d_t\ to\ SS)\ \&\ monetary\ policy\ switches\ to\ Taylor\ principle]$ $[t < H: fiscal\ policy\ \&\ monetary\ policy\ follow\ the\ same\ rules\ as\ above]$

- 1. When $\omega = 1$ (RANK): for any $t \ge 0$, $y_t = \pi_t = 0$.
- 2. When $\omega < 1$ (OLG-NK/HANK): for any $t \ge 0$, as $H \to \infty$, y_t, π_t converges to their value in the eq'm above.
 - RANK-FTPL not continuous with perturbation about the far future that stops the feedback
 - Directly from the Euler Equation $y_t = \cdots = \mathbb{E}_t[y_H] = 0$

Taking Stock: Mechanism Differences

Next: compare differences in **predictions** on inflation responses to the deficit shock $arepsilon_0$

In OLG-NK/HANK,

- Inflation responses are more front-loaded
- Cumulative inflation responses are dampened
- Robustness w.r.t. policy: continuity w.r.t. monetary and fiscal policy parameters

Outline

- Environment
- 2 How do Deficits Drive Inflation?
- The Deficit-inflation Mapping
- Quantitative analysis
- Conclusion

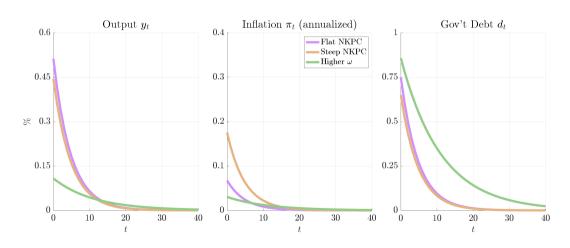
OLG-NK (ω < 1): Front-loaded Inflation Responses

Proposition

Let $\omega < 1$, $\tau_{\nu} > 0$, and $\psi = 0$. Define the **front-loadedness** of the inflation response as:

$$\pi^{\dagger} \equiv rac{\pi_{arepsilon,0}}{\sum_{k=0}^{\infty} eta^k \pi_{arepsilon,k}},$$
 (7)

where $\pi_{\varepsilon,k} \equiv \frac{d\pi_k}{d\varepsilon_0}$ $(k \ge 0)$ captures the response of π_k to the deficit shock.


- Inflation response is more front-loaded (higher π^{\dagger}), the larger the departure from RA (smaller ω).
- π^{\dagger} is **bounded below** by its FTPL analogue,

$$\pi^{\dagger} > \pi^{\mathsf{FTPL},\dagger} = 1 - eta$$

with $\lim_{\omega \to 1} \pi^{\dagger} = \pi^{FTPL,\dagger}$.

OLG-NK (ω < 1): Front-loaded Inflation Responses

• OLG-NK/HANK: front-loaded responses from front-loaded iMPCs

OLG-NK (ω < 1): Lower Cumulative Inflation Responses

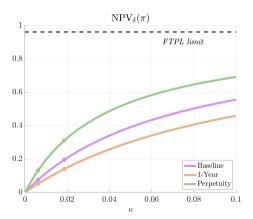
Proposition

Let $\omega < 1, \ \tau_y > 0, \ \text{and} \ \psi = 0.$ The debt-erosion relevant, maturity-discounted, cumulative inflation response to deficits $NPV_\pi^\delta \equiv \frac{d\pi_0^\delta}{d\epsilon_0}$ satisfies: $[\pi_0^\delta \equiv \sum_{k=0}^\infty (\beta \, \delta)^k \, \pi_t]$

• NPV_{π}^{δ} , is bounded above by its FTPL analogue:

$$NPV_{\pi}^{\delta} < NPV_{\pi}^{\delta,FTPL} = \frac{Y^{ss}}{D^{ss}},$$

where the distance between the two vanishes only when $\kappa \to \infty$ or $(\tau_d, \tau_y) \to 0$

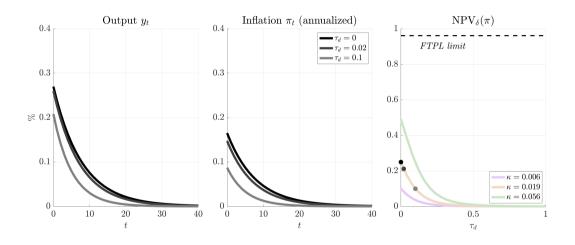

- NPV_{π}^{δ} decreases in price rigidity (increase in NKPC slope κ)
- NPV_{π}^{δ} decreases in the strength of alternatives to finance deficits (decreases in τ_d, τ_y)

Results reflect split between three sources of financing in OLG-NK/HANK

ullet Debt erosion through inflation surprises; fiscal adjustment au_d ; tax base adjustment au_y

OLG-NK (ω < 1): Lower Cumulative Inflation Responses

- In practice, cumulative inflation responses in OLG-NK/HANK are dampened because
 - Flat NKPC (flat NKPC $\kappa \leq 0.1$)
 - Existence of alternative sources of financing $(\tau_y \approx 0.3)$



OLG-NK/HANK: Continuity w.r.t. Monetary & Fiscal Policy Parameters

OLG-NK/HANK less sensitive to hard-to-test assumptions about FP & MP

- OLG-NK/HANK continuous around $\tau_d = 1 \beta$ (active vs passive FP à la Leeper)
- RANK-FTPL requires $au_d < 1 eta$ (active FP)
- ullet Similarly, OLG-NK/HANK continuous around $\psi=1$ (active vs passive MP à la Leeper)
- RANK-FTPL requires $\psi \le 1$ (passive MP)

OLG-NK/HANK: Continuous around $au_d = 1 - eta$ (Active vs Passive FP)

OLG-NK/HANK: Continuity w.r.t. Monetary & Fiscal Policy Parameters

OLG-NK/HANK less sensitive to hard-to-test assumptions about FP & MP

- OLG-NK/HANK continuous around $\tau_d = 1 \beta$ (active vs passive FP à la Leeper)
- RANK-FTPL requires $\tau_d < 1 \beta$ (active FP)
- Similarly, OLG-NK/HANK continuous around $\psi = 0$ (active vs passive MP à la Leeper)
- RANK-FTPL requires $\psi \le 0$ (passive MP)

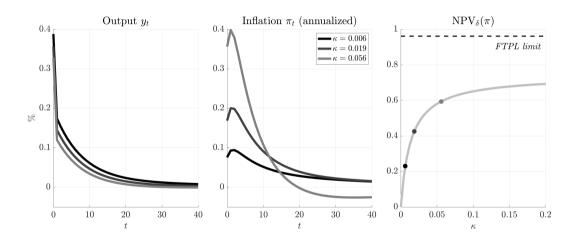
Results on dampening, front-loading, and robustness remain true with

- Active monetary policy
- Hybrid NKPC
- Supply side effects of tax distortions
- Heterogeneity in MPCs, wealth, incidence of debt erosion

Outline

- Environment
- 2 How do Deficits Drive Inflation?
- 3 The Deficit-inflation Mapping
- Quantitative analysis
- Conclusion

Model & Calibration Strategy Parameter


- Consumers: three types of households with heterogenous survival probabilities
 - Match evidence on iMPCs [Auclert-Rognlie-Straub; Fagereng-Holm-Natvik]
 - Wealth shares matching the skewness of the U.S. wealth distribution, capturing heterogeneous incidence of debt erosion
 - Transfer receipts more concentrated at the bottom
 - Full-blown HANK soon
- Nominal rigidities: Hybrid NKPC
 - slope $\kappa = \{0.006, 0.019, 0.056\}$ & backward-lookingness $\xi = 0.29$

$$\pi_t = \kappa y_t + \xi \beta \pi_{t-1} + (1 - \xi) \beta \mathbb{E}_t [\pi_{t+1}]$$
(8)

[Hazell et al. (22); Cerrato and Gitti (22); Barnichon and Mesters (20)]

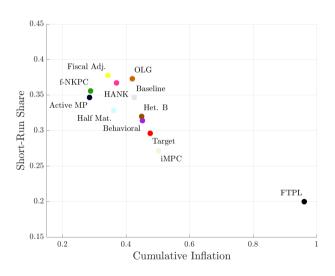
- Policy:
 - Fiscal: $\tau_y = 0.33$ (avg labor tax); $\tau_d = 0$ (legislation of Covid stimulus)
 - Monetary: fixed real rates

Benchmark: Front-loading and Dampening

Model Comparison

Consumers:

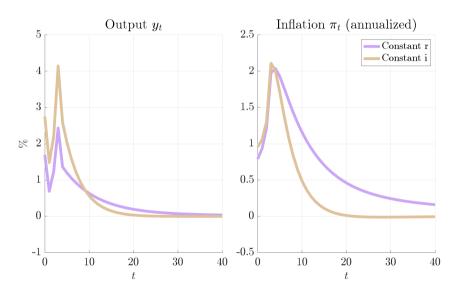
- No heterogeneity in bond holdings and dividend receipts ("iMPC")
- Heterogeneity only in bond holdings ("Het. B")
- Heterogeneity only in transfer receipts ("Target")
- Sticky information ("Behavioral")
- Full-blown one-asset HANK ("HANK")


Nominal rigidities:

• Simple textbook forward-looking one ("f-NKPC").

Policy:

- Active monetary policy ("Active MP")
- With gradual fiscal adjustment ("Fiscal Adjustment").
- Government debt maturity is halved ("Half Mat.").


Model Comparison

Post-covid Inflation Dynamics

- Consider deficit shocks proximate three rounds of stimulus checks
- Constant r (to isolate causal effect of deficits) or constant i (useful alternative)
- ullet Cumulative contribution to inflation: FTPL = 11% vs OLG-NK/HANK = 4%
 - but OLG-NK/HANK generates significant front-loaded π responses

Post-covid Inflation Dynamics (Unanticipated Stimuli) foresight

Outline

- Environment
- 2 How do Deficits Drive Inflation?
- The Deficit-inflation Mapping
- Quantitative analysis
- Conclusion

Conclusion

- OLG-NK/HANK: an alternative to RANK-FTPL to understand deficits ⇒ inflation
- The mechanisms of deficits \Longrightarrow inflation are different
- The mapping from deficits ⇒ inflation are different. OLG-NK/HANK
 - More front-loaded inflation responses
 - Lower cumulative inflation responses
 - Predictions robust to perturbations about far future and assumptions on policy
- Post-covid application: significant front-loaded π responses, but $\approx 1/3$ of FTPL in NPV $_{\pi}^{\delta}$

Asset Market and Government Budget ••••

- Nominal government bond with maturity δ [pays \$1 at t, \$ δ at t+1, \$ δ ² at t+2]
- Let $D_t = \frac{B_t}{P_t}$ denote its real value, Q_t denote its nominal unit price, J_{ss} denote # of bond outstanding

$$D_0 = \frac{Q_0}{P_0} J_{ss}$$

Log-linearize

$$d_0 = \underbrace{-\frac{D^{ss}}{Y^{ss}}\pi_0} + \underbrace{\beta\delta\frac{D^{ss}}{Y^{ss}}q_0} \tag{9}$$

debt erosion due to inflation surprise debt erosion due to bond price surprise

where

$$q_0 = -\sum_{k=0}^{\infty} (\beta \delta)^k \pi_{k+1}. \tag{10}$$

RANK-FTPL ($\omega=1$): Fix Nominal Rates $^{ exttt{main}}$

ullet Consider the case with fixed nominal rates $i_t=0$ & static PC $\pi_t=\kappa y_t$ & one-period bond $\delta=0$

$$r_{t+1} = -\pi_{t+1} = -\kappa y_{t+1}$$

• From Euler Equation:

$$y_t = -\sigma r_{t+1} + y_{t+1} \Longleftrightarrow y_k = \left(\frac{1}{\sigma \kappa + 1}\right)^k y_0$$

• Unique FTPL eq'm, initial inflation surprise fully finances the deficit $\frac{D^{ss}}{V^{ss}}\pi_0=\varepsilon_0$

$$y_k = rac{1}{\kappa} \left(rac{1}{\sigma \kappa + 1}
ight)^k rac{Y^{ss}}{D^{ss}} arepsilon_0 \quad ext{and} \quad \pi_k = \left(rac{1}{\sigma \kappa + 1}
ight)^k rac{Y^{ss}}{D^{ss}} arepsilon_0.$$

RANK-FTPL ($\omega=1$): Maturity $\delta>0$ main

A unique eq'm where debt erosion from inflation surprises fully finances deficit shock

$$\pi_0^\delta = rac{Y^{ss}}{D^{ss}}arepsilon_0$$

• In NK, inflation comes from **output boom**, which is **persistent** from Euler

$$y_0 = \mathbb{E}_0[y_t] = \cdots = \frac{(1-\beta)(1-\beta\delta)}{\kappa^{\frac{D^{ss}}{V^{SS}}}} \varepsilon_t$$

• From NKPC and because $y_0 = \mathbb{E}_0[y_t]$ for all t, inflation is persistent too

$$\pi_0 = \mathbb{E}_0\left[\pi_t
ight] = \cdots = \left(1 - eta \delta
ight) rac{Y^{ss}}{D^{ss}} arepsilon_t$$

IKC Derivation main

• Impose $r_t = 0$ and market clearing $(c_t = y_t \& a_t = d_t)$

$$y_t = \underbrace{(1 - \beta \omega)}_{\text{MPC}} \times \left(\underbrace{d_t}_{\text{real wealth}} + \underbrace{\sum_{k=0}^{\infty} (\beta \omega)^k (y_{t+k} - t_{t+k})}_{\text{post-tax income}}\right)$$

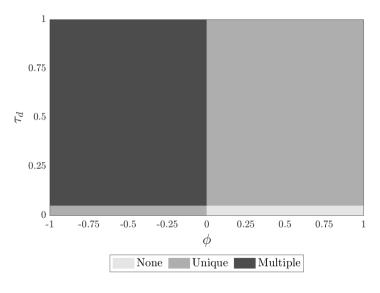
• Together with intertemporal gov budget $(r_t = 0)$

$$d_t = \sum_{k=0}^{\infty} \beta^k t_{t+k}.$$

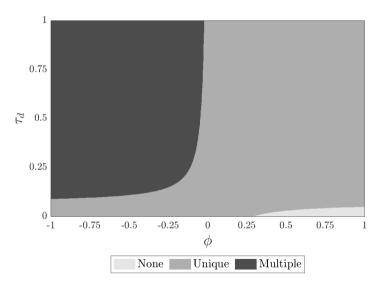
• We arrive at IKC (5)

$$y_t = \underbrace{(1 - \beta \omega) \sum_{k=0}^{\infty} \beta^k (1 - \omega^k) t_{t+k}}_{ ext{PE effect of fiscal policy}} + \underbrace{(1 - \beta \omega) \sum_{k=0}^{\infty} (\beta \omega)^k y_{t+k}}_{ ext{GE feedback}}$$

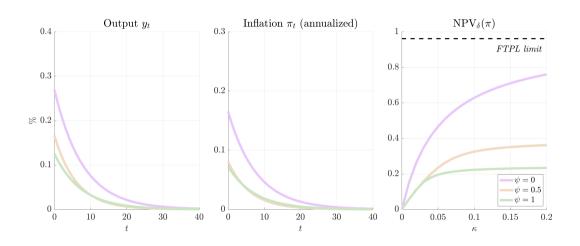
(11)


RANK: Equilibrium Characterization

Proposition

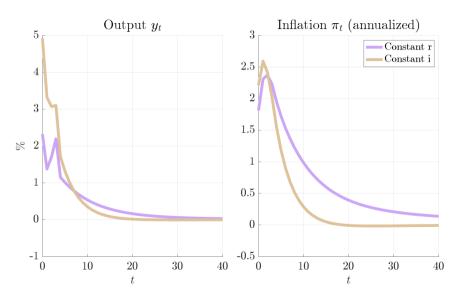

- Suppose $\omega = 1$ (RANK), $\psi = 0$ (fixed rates), and $\tau_v = 0$.
- \bullet $\tau_d > 1 \beta$ (passive FP à la Leeper) \Rightarrow continuum of eg'm= set of solutions to IKC (6)
- \bullet $\tau_d < 1 \beta$ (FTPL/active FP a la Leeper) \Rightarrow unique eg'm = only solution to IKC (6) where inflation from the boom exactly offsets the deficit shock.

$$rac{D^{ss}}{V^{ss}}\pi_0^\delta=arepsilon_0,$$


Leeper Regions $r_{t+1} = \phi y_t$

Leeper Regions $r_{t+1} = \phi y_t$ main

Active Monetary Policy $r_{t+1} = \psi y_t$



Calibration Parameters ••••

Parameter	Description	Value	Target
Demand Block			
χi	Population shares	$\{0.218, 0.629, 0.153\}$	Fagereng et al.
ω_i	Survival rates	{0.972, 0.833, 0}	Fagereng et al.
D_i^{SS}	Wealth shares	$\{0.6, 0.4, 0\} \times D^{SS}$	See text
$oldsymbol{arepsilon_i}$	Transfer receipt	$\{0.122, 0.706, 0.172\} \times \varepsilon$	See text
σ	EIS	1	Standard
eta	Discount factor	0.998	Annual real rate
Supply Block			
κ	Slope of Hybrid NKPC	$\{0.006, 0.019, 0.056\}$	Hazell et al.; Cerrato and Gitti
ξ	Backward-lookingness	0.288	Barnichon and Mesters
Policy			
$ au_{\mathcal{Y}}$	Tax rate	0.33	Average Labor Tax
D^{ss}/Y^{ss}	Gov't debt level	1.04	Liq. wealth holdings
δ	Gov't debt maturity	0.95	Av'g debt maturity
$_{-}$	Tax feedback	0	Anderson and Leeper

Table: Our materation and all calthoration

Post-covid Inflation Dynamics (Perfect Foresight) main

