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A Model Details

A.1 Proofs

Proof of Proposition 1 Fix s at t = 0. Consider two arbitrary R&D strategy se-
quences {χhdt}∞h=0 and {χ′hdt}

∞
h=0, where χ0 = 1, χ′0 = 0, and χhdt = χ′hdt for h = 1, 2, ....

Let ω be a sample path for t ∈ {dt, 2dt, ...} having events of non-R&D, success in R&D,
or failure in R&D in each timing.

Define

A ≡ E

[
H∑
h=1

e−rhdt
shdt
sdt

1

σ

]
, A′ ≡ E

[
H′∑
h=1

e−rhdt
s′hdt
s′dt

1

σ

]
,

where the expectations are taken over sequences of s and the exit timings T ≡ Hdt and

T ′ ≡ H ′dt. Note that shdt
sdt

and
s′hdt
s′dt

are identical for any h if they share a common path

of R&D strategies and realizations of R&D success and failure except at h = 0.
χ0 = 1 is desirable for a given sequence of {χt}t≥dt if

0 ≤Asdt − A′s′dt − κrw0dt

=A ((1 + γσ − θdt)sλdt+ (1− θdt)s(1− λdt))− A′(1− θdt)s− κrw0dt

=Aλγσsdt+ (A− A′)(1− θdt)s− κrw0dt,

implying that

Aλγσs− κrw0 +
(A− A′) (1− θdt)s

dt
≥ 0.

The third term in the left-hand side of the above inequality depends on the marginal
increase in A with respect to dt, which is represented by

e−rT
′ s′T ′

sdt

1

σ
×marginal survival time,

for small dt. The marginal survival time comes from: (i) the initial gap, sdt − s′dt, which
provides additional survival time of sγσλdt/θ in expectation; and (ii) productivity jumps
during the additional survival time, which is negligible as dt→ 0. Hence,

lim
dt→0

(A− A′) (1− θdt)s
dt

= s lim
dt→0

d(A− A′)
d(dt)

= 0,
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implying that for an arbitrary {χt}t>0, χ0 = 1 is the best choice if Aλγσs ≥ κrw0, where
A depends on {χt}t>0. Thus, there exists a threshold of s, conditional on {χt}t>0, above
which R&D is done. The optimal future sequence of R&D strategy is a distribution over
feasible {χt}t>0. The optimal threshold ŝ is determined by the expected value of A with
the same distribution.

ŝ is determined as follows. Because R&D is an endogenous option, we have the
smooth-pasting condition in the value function, namely, vs is continuous at ŝ. Equations
(11) and (12) imply that R&D investment is done when a firm has s satisfying

vs (s, θit, wt) Et [ṡ|χ=1]− vs (s, θit, wt) Et [ṡ|χ=0] ≥ κrwt

⇔ vs (s, θit, wt) sλγσ ≥ κrwt.

And equality holds at s = ŝ.

Proof of Proposition 2 First, define the firm value, vN(s, θ, w), for the firms that
commit not to do R&D in the current and future periods. It satisfies vN(s, θ, w) = 0 for
s ≤ s̄ and

vN(s, θ, w) =

∫ 1
θ

log s
s̄i

0

e−rt
(
se−θt

σ
− κow

)
dt

=
s

σ (r + θ)
− κow

r
+

(
κow

r
− s̄

σ (r + θ)

)
s̄
r
θ s−

r
θ︸ ︷︷ ︸

value from the exit option (positive)

, for s ≥ s̄. (A.1)

The optimal s̄i should satisfy vNs (s, θ, w) = 0 from the smooth-pasting condition, which
suggests

s̄

σ
− κow = 0 ⇒ s̄ = σκow ∀i. (A.2)

For ŝ, we impose the smooth-pasting condition at ŝ. Using equations (11) and (A.1),
we should have

ŝvNs (ŝ, θ, w) =
ŝ

σ (r + θ)
− r

θ

(
κow

r
− s̄

σ (r + θ)

)
s̄
r
θ ŝ−

r
θ =

κrw

λγσ
. (A.3)

⇔ 1

r + θ

(
ŝ

s̄
−
(
ŝ

s̄

)− r
θ

)
=
κr/κo
λγσ

. (A.4)

The left-hand side of equation (A.4) is strictly increasing and strictly concave in ŝ/s̄
for any given θ <∞. Moreover, it takes zero at ŝ/s̄ = 1 and goes to infinity as ŝ/s̄→∞,
we have a unique ratio of ŝ/s̄. Combining with equation (A.2), we have unique ŝ above
which firms invest in R&D. In addition, the left-hand side of the equation is decreasing
in θ, implying that ŝ increases with θ.
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Proof of Proposition 3 In the social planner’s problem, the ratio of ŝ∗ to s̄∗ is

ŝ∗

s̄∗
=

ρκr/κo
λγ(σ − 1)

.

On the other hand, in the market equilibrium,

ŝ

s̄
=

κr/κo
λγσσvs(ŝ, θ, w)

=
κr/κo

λγσσvNs (ŝ, θ, w)
,

where the second equality is from smooth-pasting at ŝ. Hence the relative size of the
shadows of death is

ŝ∗/s̄∗

ŝ/s̄
= ρσvNs (ŝ, θ, w) =

ρ

r + θ

(
1−

(
ŝ

s̄

)− r
θ
−1
)
< 1,

where we use r = ρ+ θ
σ−1

to have ρ < r + θ.

Proof of Proposition 4 Suppose that a firm obtains additional flow of K per unit of
time. The value of firm that commits not to do R&D is

vN(s, θ, w) =

∫ 1
θ

log s
s̄

0

e−rt
(
se−θt

σ
+K − κow

)
dt

=

∫ 1
θ

log s
s̄

0

e−rt
(
se−θt

σ
− τκow

)
dt.

=
s

σ (r + θ)
− τκow

r
+

(
τκow

r
− s̄

σ (r + θ)

)(s
s̄

)− r
θ

(A.5)

Smooth pasting at both thresholds implies that s̄τ = τσκow and

1

r + θ

(
ŝ

s̄
−
(
ŝ

s̄

)− r
θ

)
=

1

τ

κr/κo
λγσ

. (A.6)

Because the left hand side of equation (A.6) is strictly increasing in ŝ/s̄ , an increase
in τ reduces ŝ/s̄ at intersection. Further, the total differentiation of equation (A.6)
implies that

dŝ

dτ
=
σκow

(
ŝ
s̄
− r+θ

τ
κr/κo
λγσ

)
1− r

r+θ

r+θ
τ

κr/κo
λγσ

ŝ/s̄

> 0.

The inequality is because, again from equation (A.6), we have

ŝ

s̄
>
r + θ

τ

κr/κo
λγσ

.

Therefore, an increase in τ leads to increases in s̄τ and ŝτ , and a decrease in ŝτ/s̄τ .
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Outside Option

Proposition A.1. The outside option value of ξ/r that a firm receives just after exit
has the same structure of Proposition 4 by setting τ = 1 + ξ

κow
.

Proof. When a firm receives ξ
r

at exit, the value of non-R&D firm (s ∈ [s̄, ŝ]) is

vN(s, θ, w) =

∫ 1
θ

log s
s̄

0

e−rt
(
se−θt

σ
− κow

)
dt+ e−

r
θ

ln s
s̄
ξ

r

=
1

r + θ

s

σ

(
1−

(s
s̄

)− r+θ
θ

)
− κow

r

(
1−

(s
s̄

)− r
θ

)
+
(s
s̄

)− r
θ ξ

r

=
s

σ (r + θ)
− κow

r
+

(
τκow

r
− s̄

σ (r + θ)

)(s
s̄

)− r
θ
.

Only the difference from the value of non-R&D firm under uniform subsidy, equation
(A.5), is the second term, which is independent of s. Hence, this difference does not
matter in the smooth-pasting conditions and the thresholds.

A.2 Size-dependent Subsidy

We formalize a size-dependent subsidy such that a firm receives subsidy flow of K if
s ≤ s̃. It is equivalent to the uniform subsidy when s̃ → ∞. Roughly speaking, such
a size-dependent subsidy has the same effect on (s̄, ŝ) if s̃ is sufficiently large. On the
other hand, it has no impact if s̃ is too small. We focus on the middle range of s̃ in the
main manuscript. The next proposition summarizes the impact of the size-dependent
policy on individual firm’s s̄, ŝ, and ŝ/s̄ when this subsidy policy is offered to it, taking
the aggregate situation as given.

Proposition A.2. Let (s̄0, ŝ0) be the stationary state values of the thresholds without
distortions. Let (s̄1, ŝ1) be the individual firm’s thresholds when it receives uniform sub-
sidy of τ < 1, with keeping the aggregate variables as in the distortion-free stationary
state. Suppose that a firm receives the size-dependent subsidy of (τ, s̃). If s̃ ≥ ŝ1, then
the distorted firm chooses (s̄, ŝ) equivalent to the pair under uniform subsidy for any
τ ∈ (0, 1). If s̃ ∈ (s, ŝ1), where

s ≡ max

{
τ,

(
θ

r + θ

1− τ rθ+1

1− τ

) θ
r

}
× σκow, (A.7)

the firm chooses s̄ = τσκow and

d(ŝ/s̄)

dτ
< 0,

dŝ

dτ
< 0.

If s̃ ≤ s, then the firm chooses (s̄0, ŝ0).

Proof. First, suppose that s̃ ≥ ŝ1, where ŝ1 > ŝ0 from Proposition 4. In this case,
the decisions about exit and R&D are equivalent to the case under uniform subsidy
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because the values of firm that commits not to do R&D are identical between uniform
and size-dependent subsidies.

Second, suppose that s̃ ≤ s̄1(< s̄0). In this case, the decisions about exit and R&D
follows the case without subsidy because a firm exits at s̄1 even though it receives subsidy
K = (1− τ)κow.

Third, we consider s̃ ∈ (s̄1, s̄0]. A firm exits before s reaches s̃ if the firm value
conditional on exiting before reaching s̃ is greater than that conditional on waiting for
s̃, or equivalently,∫ 1

θ
log s

s̄0

0

e−rt
(
se−θt

σ
− κow

)
dt >

∫ 1
θ

log s
s̃

0

e−rt
(
se−θt

σ
− κow

)
dt

+

∫ 1
θ

log s
s̄1

1
θ

log s
s̃

e−rt
(
se−θt

σ
− τκow

)
dt

⇔ s̃ <

[
θ

r + θ

1− τ rθ+1

1− τ

] θ
r

σκow.

Therefore, if s̃ ≤ s, defined in equation (A.7), the distorted firm exits before s reaches s̃
and, thus, the thresholds (s̄, ŝ) = (s̄0, ŝ0).

Finally, we consider s̃ ∈ (s, ŝ1). If ŝ ≤ s̃, the firm value at s close but smaller than ŝ
must satisfy

v(s, θ, w) =

∫ 1
θ

log s
s̄

0

e−rt
(
se−θt

σ
− τκow

)
dt.

Then, s̃ ≥ ŝ = ŝ1 > s̃, which is a contradiction. Hence, ŝ > s̃. Given this relation, the
firm value is

v(s, θ, w) =


∫ 1
θ

log s
s̄

0
e−rt

(
se−θt

σ
− τκow

)
dt− (1− τ)κow

∫ 1
θ

log s
s̃

0
e−rtdt for s ∈ [s̃, ŝ] ,∫ 1

θ
log s

s̄

0
e−rt

(
se−θt

σ
− τκow

)
dt for s ∈ [s̄, s̃),

which gives s̄ = τσκow and the condition for ŝ such that

ŝvs(ŝ, θ, w) =
s̄

σ(r + θ)

[
ŝ

s̄
−
(
ŝ

s̄

)− r
θ

− r + θ

θ

1− τ
τ

(
s̃

s̄

)− r
θ

]
=
κrw

λγσ

⇔ ŝ

s̄
−h(τ)

(
ŝ

s̄

)− r
θ

=
r + θ

τ

κrw

λγσ
,

where

h(τ) ≡ 1 +
r + θ

θ

1− τ
τ

(
s̃

s̄

)− r
θ

.

From the total differentiation,

d(ŝ/s̄)

dτ
= − 1

τ 2

r+θ
θ

(
1 + (1−τ)(r+θ)

θ

) (
s̃
s̄

) r
θ
(
ŝ
s̄

)− r
θ + (r+θ)κrw

λγσ

1 + r
θ
h(τ)

(
ŝ
s̄

)− r
θ
−1

< 0.
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Further,

dŝ

dτ
=

1

τ

ŝ
s̄

+
[
τh′(τ) + r

θ
h(τ)

] (
ŝ
s̄

)− r
θ − 1

τ
(r+θ)κrw

λγσ

1 + r
θ
h(τ)

(
ŝ
s̄

)− r
θ
−1

.

Since the denominator is strictly positive, dŝ/dτ < 0 if and only if

ŝ

s̄
+
[
τh′(τ) +

r

θ
h(τ)

]( ŝ
s̄

)− r
θ

<
1

τ

(r + θ)κrw

λγσ
=
ŝ

s̄
− h(τ)

(
ŝ

s̄

)− r
θ

⇔ τh′(τ) +
r

θ
h(τ) < −h(τ)

⇔ s̃ > s̄,

which is true under the current supposition:s̃ ∈ (s, ŝ1). Therefore,

dŝ

dτ
< 0 for s̃ ∈ (s, ŝ1).

A.3 Socially Optimal Stationary State

A.3.1 Social Planner’s Problem

Here we derive the socially optimal stationary state. For notational simplicity, we redefine
the productivity indices as

ζjt ≡ zσ−1
jt , Zt ≡ Zσ−1

t ,

where we drop industry subscript to consider the symmetric industry case. With the
above definition, we have

ζjt ≡ sjtZt and θt ≡
Żt
Zt
.

The first step of the social planner’s problem is the choice of exit threshold, ζ̄t (≡ s̄tZt).
For given nt and LXt, the social planner shuts down a firm’s operation if its ζjt is not
commensurate with its fixed costs. Denoting ωt as the value of labor in terms of utility,
the exit threshold should satisfy

1

σ − 1

ζ̄t
Zt

= ωtκo ⇒ ζ̄t = (σ − 1)κoωtZt. (A.8)

Next, suppose that V (Zt, nt) is the social value of Zt and nt. We consider the
following dynamic programming problem:

ρV (Zt, nt) = max
LXt,µt,ζ̂t

ε lnnt +
1

σ − 1
lnZt + lnLXt

+ ωt

[
L− LXt − nt

[
κo + κr

(
1− Fζt

(
ζ̂t

))
+ κeµt

]]
+ ωZt Żt + ωnt ṅt,
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subject to

Żt = nt

[
λγσ

∫ ∞
ζ̂t

ζ

Zt
ft

(
ζ

Zt

)
dζ + µt

∫ ∞
ζ̄t

ζ

Zt
fe

(
ζ

Zt

)
dζ − ˙̄ζt

ζ̄t
Zt
ft

(
ζ̄t
Zt

)
− δ̄

∫ ∞
ζ̄t

ζ

Zt
f

(
ζ

Zt

)
dζ

]
(A.9)

ṅt = nt

[
µt

(
1− Fe

(
ζ̄t
Zt

))
− ˙̄ζt

1

Zt
ft

(
ζ̄t
Zt

)
− δ̄
]

(A.10)

˙̄ζt = (σ − 1)κo

[
ω̇tZt + ωtŻt

]
,

where ζ̂t (≡ ŝtZt) is the R&D threshold,

ωZt ≡
∂V

∂Zt
, ωnt ≡

∂V

∂nt
,

and δ̄ is the exogenous exit rate.
The first-order conditions about control variables are

1

LXt
= ωt, (A.11)

ωtκe = ωZt

∫ ∞
ζ̄t

ζ

Zt
fe

(
ζ

Zt

)
dζ + ωnt

(
1− Fe

(
ζ̄t
Zt

))
, (A.12)

(
ωZt Zt

) ζ̂t
Zt

=
κrωt
λγσ

. (A.13)

The marginal values of the state variables, ωZt and ωnt , satisfy:

ρωZt − ω̇Zt =
1

σ − 1

1

Zt
+ ωtntκr

∂

∂Zt
Fζt

(
ζ̂t

)
+ ωZt

∂
(
Żt
)

∂Zt
+ ωnt

∂ (ṅt)

∂Zt
, (A.14)

ρωnt − ω̇nt =
ε

nt
− ωt (L− LXt)

nt
+ ωZt

∂
(
Żt
)

∂nt
+ ωnt

∂ (ṅt)

∂nt
. (A.15)

A.3.2 Optimal Stationary State

In a stationary state (balanced growth path) with a stationary distribution of s, we have

θ =
Żt
Z
,

ζ̄t = s̄Zt and ζ̂t = ŝZt,
˙̄ζt = s̄θZt,

µ (1− Fe(s̄)) = δ = θs̄f(s̄) + δ̄,

ωt = ω̇nt = 0,

ω̇Zt
ωZt

= −θ.
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Then, equations (A.11)-(A.13) in a stationary state become

1

LX
= ω (A.16)

ωκe = ωZt Zt
∫ ∞
s̄

sfe (s) ds+ ωn (1− Fe (s̄)) (A.17)(
ωZt Zt

)
ŝ =

κrω

λγσ
(A.18)

The optimal thresholds, s̄ and ŝ Equations (A.8) and (A.16) implies that

s̄ =
ζ̄t
Zt

=
(σ − 1)κo

LX
. (A.19)

Equation (A.13) in a stationary state implies that the optimal ŝ depends on ωZt Zt, which
is pinned down by equation (A.14) in the stationary state such that

ρωZt − ω̇Zt =
1

σ − 1

1

Zt
+ ωnκr

∂

∂Zt
Fζt

(
ζ̂t

)
︸ ︷︷ ︸

→0

+ωZt

∂
(
Żt
)

∂Zt︸ ︷︷ ︸
→θ

+ωn
∂ (ṅt)

∂Zt︸ ︷︷ ︸
→0

⇒ ωZt Zt =
1

σ − 1

1

ρ
. (A.20)

Hence,

ŝ =
ρ(σ − 1)κr
λγσLX

. (A.21)

The social value of a unit of firm, ωn, in the stationary state is derived from equation
(A.15) with the stationarity conditions,

ρωn =
ε

n
− L− LX

nLX
+ ωZt

∂
(
Żt
)

∂nt︸ ︷︷ ︸
→ θZt

n

+ωn
∂ (ṅt)

∂nt︸ ︷︷ ︸
→0

,

leading to

ωn =
1

ρn

[
θ

ρ (σ − 1)
− L− LX

LX
+ ε

]
. (A.22)

Proof of Proposition 4: Market Equilibrium and Socially Optimal Lengths
of Shadow of Death From equations (A.19) and (A.21), the optimal length of the
shadow of death is

ŝ∗

s̄∗
=
ρκr/κo
λγσ

, (A.23)

where we put asterisks to stand for the optimal thresholds. Meanwhile, equations (12)
and (20) in the main text yield the length of shadow of death in the market equilibrium
as

ŝ

s̄
=

κr/κo
σvs(ŝ, θ, w)λγσ

. (A.24)
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Hence, the diversion of market equilibrium from the social optimum in terms of the
length of shadow of death depends on the gap between σvs(ŝ, θ, w) and 1/ρ, where the
former is the marginal private value from R&D and the latter is the marginal social value
of R&D. Combining equation (A.24) with equation (21) in the main text,

σvs(ŝ, θ, w) =
1

r + θ

(
1−

(
ŝ

s̄

)− r
θ
−1
)
≤ 1

r
≤ 1

ρ
,

where equalities hold when θ = 0. Therefore, the equilibrium shadow of death is ineffi-
ciently longer than the optimal shadow of death,

ŝ

s̄
≥ ŝ∗

s̄∗
,

where equality holds when θ = 0.

Socially Optimal Solution Productivity growth, θ, in the stationary state can be
described as a function of LX and n, where LX affects through s̄ and ŝ such that[

1

n
+ s̄2f (s̄)

] (
θ + δ̄

)
= λγσ

∫ ∞
ŝ

sf (s) ds+
θs̄f(s̄)

1− Fe(s̄)

∫ ∞
s̄

sfe (s) ds

⇒ θ(n, LX) =

[
1

n
− s̄f(s̄)

{∫ ∞
s̄

sfe (s)

1− Fe(s̄)
ds− s̄

}]−1

λγσ

∫ ∞
ŝ

sf (s) ds− δ̄

(A.25)

Given this θ(n, LX), the resource constraint:

L = LX + n

[
κo + κr (1− F (ŝ)) + κe

θ(n, LX)s̄f(s̄) + δ̄

1− Fe(s̄)

]
, (A.26)

and the optimal entry condition:

κe
LX

=
1

ρ

1

σ − 1

∫ ∞
s̄

sfe (s) ds+ (1− Fe (s̄))ωn, (A.27)

give us the optimal combination of working labor, LX , and the measure of firms, n, in
the optimal stationary state.

The red dashed line of Figure B.3 shows the socially optimal state based on simula-
tions. The horizontal axis is the degree of size-dependent subsidy 1− τ , which changes
from −0.2 to 0.2. The figure indicates that R&D threshold ŝ decreases, shortening the
length of the shadow of death. Real growth g increases by one percentage point. Fur-
ther, the entry rate increases. Consequently, welfare improves by around 0.06 in units of
consumption.
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A.3.3 R&D and Entry Subsidies

We consider R&D subsidy, αr ∈ (0, 1], to reduce the R&D cost to αrκrw. The required
subsidy is financed by lump-sum tax on the households. To make ŝ/s̄ = ŝ∗/s̄∗, the R&D
subsidy should be set to satisfy

1

αr︸︷︷︸
subsidy effect

× σvs(ŝ, θ, w)︸ ︷︷ ︸
private marginal value

=
1

ρ︸︷︷︸
social marginal value

,

which implies

α∗r =
ρ

r(θ∗) + θ∗

1−
(
ŝ∗

s̄∗

)− r(θ∗)
θ∗ −1

 , (A.28)

where θ∗ is the R&D intensity in the socially optimal allocation , and r(θ) = ρ+θ/(σ−1)
on a balanced growth path.

The entry subsidy can be defined as αe ∈ (0, 1] that reduces entry cost in the market
equilibrium. From equation (15) in the main text and w = σ−1

σLX
in equilibrium, we can

write the free-entry condition with the entry subsidy such as

αeκe
LX

=
σ

σ − 1

∫ ∞
s̄

v(s, θ, w)dFe.

The socially optimal condition for entry is given by equation (A.27) with the social
value of an additional firm, equation (A.22). To meet the private value of entry with the
social value of entry, αe should be set to satisfy

1

αe

σ

σ − 1

∫ ∞
s̄∗

v

(
s, θ∗,

σ − 1

σL∗X

)
dFe =

1

ρ

1

σ − 1

∫ ∞
s̄∗

sdFe + (1− Fe (s̄∗))ωn∗.
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B TSR Data and Further Estimation Results

B.1 Descriptive Statistics

Table B.1 summarizes the dataset we use for the estimation of firms’ pre-exit dynamics.
Here, we show two summary statistics accounting for the unbalanced and balanced (to
be precise, firms surviving for at least 10 years) data. Table B.2 summarizes the dataset
we use for the estimation of firms’ pre- and post-R&D termination dynamics. Here,
we show two summary statistics in the case of h′ + 1 = 1 and h′ + 1 = 2. Each
consists of 11 statistics for h = −5,−4, · · · , 4, 5. Table B.3 summarizes the dataset we
use for the estimation of the relationship between distortions and firm exit. For this
estimation, we use the unbalanced panel data. Table B.4 summarizes the dataset we use
for the estimation of the relationship between distortions and the termination of R&D
investment. For this estimation, we use the unbalanced panel data.

B.2 R&D Investment

In Table B.5, we calculate descriptive statistics from the TSR data to examine whether
R&D investment is associated with a lower likelihood of firm exit and a higher level of
sales growth. The number of firms we observe is 4,236,113 firms, among which we can
observe the level of R&D investment (including the case of zero expenditure) for 701,763
firms.

To measure R&D investment, we use three kinds of definitions: (i) R&D investment,
(ii) selling, general, and administrative (SGA) expenses, and (iii) sales promotion, ad-
vertising, entertainment, and other selling expenses. The first definition is the most
straightforward and narrowest one, which makes 41,856 firms (only 6%) spend strictly
positive R&D investment at least once. The second definition could be the most broadest
one, which may contain expenditures other than R&D investment. In the third definition,
expenses related to advertising are interpreted as R&D investment. By construction, the
fraction of firms that conduct strictly positive R&D investment increases in the second
and third definitions, which amounts to 85% and 73%, respectively.

Irrespective of the definition of R&D investment, Table B.5 shows that the firms that
make R&D investment more frequently are less likely to exit the market. To see this,
we divide firms into five groups as follows. First, we calculate the probability of positive
R&D investment for each firm (i.e., the length of periods over which a firm shows positive
R&D divided by the total length of periods in which the firm is recorded). Second, based
on this probability of positive R&D investment, we split 701,763 firms into two groups:
firms with no R&D investment and those with positive R&D probability. Third, we
further split the firms in the latter group to four groups: 0 to 25 percentile, 25 to 50, 50
to 75, and 75 to 100 percentile by the probability of positive R&D investment. Next, we
calculate the voluntary exit rate (the number of voluntary exit firms divided by the total
number of firms) for each group. The table shows that the voluntary exit rate tends to
decrease as the probability of positive R&D investment increases. For example, for the
first R&D definition, the voluntary exit rate is 3.2% for the firms with no R&D invest-
ment, which decreases to 1.4% for the firms that make R&D investment most frequently.
The result is similar when we use the second and third R&D definitions: the voluntary
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exit rate is 4.5% and 4.4%, respectively, for the firms with no R&D investment, which
decreases to 1.4% and 1.4% for the firms that make R&D investment most frequently.

Table B.5 further shows that the firms that make R&D investment more frequently are
more likely to grow their sales. We use the same grouping based on the the probability
of positive R&D investment and calculate the fraction of firms with positive average
sales growth for each group. The table shows that firms are more likely to grow as
the probability of positive R&D investment increases. For example, for the first R&D
definition, the fraction of firms with positive sales growth is 46.9% for the firms with
no R&D investment, which increases to 61.4% for the firms that make R&D investment
most frequently. These relationships are consistent with the implications of our model.

B.3 Further Estimation Results

Table B.6 summarizes the estimated coefficients accounting for the relative sales of an
exiting firm as of |h| years prior to the exit conditional on that the age of owner is between
15 to 65. Table B.7 summarizes the estimated coefficients accounting for the relative sales
of the firm that terminates R&D as of |h| years before or after the termination. Table
B.8 summarizes the estimated coefficients of the probit estimation for firm exit and R&D
termination.

Figure B.1 depicts the probability of firm exit (right axis) and R&D termination (left
axis) conditional on the level of firm sales, which is plotted on the horizontal axis. Figure
B.2 shows a dispersion in the sales of R&D termination (data-based ŝ) relative to fixed
costs by industries.
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C Numerical Simulations of the Model Incorporat-

ing Heterogenous Subsidy

For data fitting, we add the firm exit rate due to exogenous shocks, δ̄.

C.1 Equilibrium

We consider how equilibrium is determined. Endogenous variables are s̄K , ŝK , n, θ,
w, δ, µ, r, g, C, and U, with value function vK(s) and distribution F (K, s), under the
distortion of τK .

The non-R&D firm value ṽN(s) when s ∈ [s̄K , ŝK ] is given by

ṽN(s) =

∫ 1
θ

ln(s/s̄K)

0

e−(r+δ̄)t
(st
σ
− κow +K

)
dt.

The firm changes its behavior as if the fixed cost κo changes to (1−τK)κo. Since ṽN(s) = 0
when s = s̄K , we have

s̄K = (1− τK)σκow. (A.29)

From the smooth-pasting condition at ŝK , we have

ŝK ṽ
′
N(ŝK) =

κrw

λγσ
.

⇔ 1

r + δ̄ + θ

(
ŝK
s̄K
−
(
ŝK
s̄K

)− r+δ̄
θ

)
=
κr/{(1− τK)κo}

λγσ
. (A.30)

The other endogenous variables are obtained by the following conditions. The real
interest rate is given by

r = ρ+ g. (A.31)

The real growth rate is given by

g =
Ẏt
Yt

=
Żt
Zt

=
θ

σ − 1
, (A.32)

where

θ = n

[
λγσ

∫
K

∫ ∞
ŝK

sdF (K, s) + µ

∫ ∫ ∞
s̄K

sdF0(s)dG(K)− (δ − δ̄)
∫
K

s̄K

∫ ∞
s̄K

dF (K, s)

]
−δ̄.

(A.33)
The free entry condition:∫ ∫ ∞

s̄K

v(sK)dF0(s)dG(K) = κew. (A.34)

The exit and entry rates equate in each industry as

δdt = δ̄dt+

∫
K

dF (K, s̄K)

= µdt

∫
K

[1− F0 (s̄K)] dG(K), (A.35)
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by choosing dt according to the grid size setting used in simulation as explained in Section
C.2 below.

The labor market:

L = n

[
σ − 1

σw

(∫
K

∫ ∞
s̄K

sdF (K, s)

)
+ κo + κr

∫
K

∫ ∞
ŝK

dF (K, s) + κeµ

]
. (A.36)

The representative households’ welfare1

U =
lnC0

ρ
+

g

ρ2
, (A.37)

where C0 = Y0 − n
∫
KdF (K, s), so that

ln

{
C0 + n

∫
K

∫ ∞
s̄K

τKκowdF (K, s)

}
= ln

σ − 1

σw
+ lnZ0 + ε lnn

= ln
σ − 1

σw
. (A.38)

Note that ε lnn+ lnZ0 equals zero when ε = −1/(σ − 1), z = 1, and s = 1/n.
The value function in discrete time is given by

vK(s) = max {0, {π(s)− (1− τK)κow} dt

+ max
{
e−(r+δ̄)dtvK((1− θ)s),

−κrwdt+ e−(r+δ̄)dt(1− e−λdt)vK((1− θ + γs)s) + e−(r+δ̄+λ)dtvK((1− θ)s)
}
.

(A.39)

Given K, stationary density distribution with respect to s, f(s), should satisfy the
following condition. For example, if s ≥ (1 + γσ)ŝK , stationary density distribution is
given by

f(s)ds = f(sl)ds(1− e−λdt)e−δ̄dt + f(sh)dse
−λdte−δ̄dt

+ (1− e−µ̄dt)f̄0(s)ds− (1− e−δ̄dt)f(s)ds, (A.40)

sl(dt) = s ·
Zσ−1
t+dt/Z

σ−1
t

(1 + γ)σ−1 = s · 1 + θdt

1 + γσ

sh(dt) = s ·
Zσ−1
t+dt

Zσ−1
t

= s (1 + θdt) ,

where ds and dt represents grid intervals for s and t, respectively.
Finally, we normalize s and w by the measure of firms:

A ≡ n

∫
K

∫ ∞
s̄K

sdF (K, s). (A.41)

For example, s̄, ŝ, and w are normalized as s̄/A, ŝ/A, and w/A, respectively.

1In simulations, we evaluate welfare changes by how much the level of consumption C0 should change
when the growth rate g is fixed. When U and g changes to U

′
and g

′
, respectively, this corresponds to

lnC
′′

0 − lnC0 = ρ(U
′ − U).
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C.2 Numerical Solutions for the Equilibrium

Given the infinitesimal grid size of dlogs, we set dt at dlogs/θ, so that a firm’s market
share decreases by dlogs or one grid if the firm makes no R&D investment or fails
in improving quality. The firm’s market share increases by dlogs+ or the grid size of
floor{(1− eθdt−γσ)/dlogs} if the firm succeeds in improving quality by R&D.

We denote density distribution by fi(s) that is calculated at the i-th number of
iteration. Stationary density distribution is given by

fi+1(logs) =



0 for logs < logs̄,

fi(logs+ dlogs)e−δ̄dt

+(1− e−µdt)f0(logs) for logs̄ ≤ logs < logŝ,

fi(logs+ dlogs)e−λdte−δ̄dt

+(1− e−µdt)f0(logs) for logŝ ≤ logs < logŝ+ dlogs+,

fi(logs+ dlogs)e−λdte−δ̄dt

+fi(logs− dlogs+)(1− e−λdt)e−δ̄dt

+(1− e−µdt)f0(logs) for logŝ+ dlogs+ ≤ logs < logsmax

fi(logs)e−λdte−δ̄dt

+Σ
dlogs+
dlogsj=1fi(logs− dlogsj)(1− e−λdt)e−δ̄dt

+(1− e−µdt)f0(logs) for logs = logsmax.

(A.42)

C.3 Model-based Variables

Sum of sales share: n
∫
K

∫∞
s̄K
sdF (K, s)

Mean of sales share:
∫
K

∫∞
s̄K
sdF (K, s)

Sum (mean) of entrants’ sales share:
∫
K

∫∞
s̄K
sdF e(K, s),

where dF e(K, s) ≡ (dF0(s)dG(K)) /
(∫ ∫∞

s̄K
dF0(s)dG(K)

)
for s ≥ s̄K .

Entry rate: µ̄ = µ
∫ ∫∞

s̄K
dF0(s)dG(K)

R&D cost share over sales for R&D firms:
(∫

K

∫∞
ŝK
wκrdF (K, s)

)
/
(∫

K

∫∞
ŝK
sdF (K, s)

)
Fixed cost share over sales:

(∫
K

∫∞
s̄K
wκodF (K, s)

)
/
(∫

K

∫∞
s̄K
sdF (K, s)

)
The probability that R&D firms increase their sales share minus the probability that

non-R&D firms increase their sales share: λ
Exit rate for R&D firms: δ̄
Speed of sales share change for non-R&D firms: −θ
The ratio of R&D threshold to exit threshold:

(∫
K

∫∞
s̄K
ŝKdF (K, s)

)
/
(∫

K

∫∞
s̄K
s̄KdF (K, s)

)
Fraction of R&D firms:

(∫
K

∫∞
ŝK
dF (K, s)

)
Sales share of R&D firms:

(∫
K

∫∞
ŝK
sdF (K, s)

)
/
(∫

K

∫∞
s̄K
sdF (K, s)

)
Profit:

∫∞
s̄K
sdF (K, s)/σ, which is equal to 1/(σn)

Markup rate: (p− w/z)/(w/z) = 1/(σ − 1)
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Labor share: wl/(wl + π) = (σ − 1)/σ
HHI:

∫∞
s̄K

(s/n)2dF (K, s)

C.4 Data-based Variables

For calibration, we calculate the following variables based on the TSR data. We identify
non-R&D firms when the firms record zero or missing R&D investment in the last three
years. Entrants are identified when the firms are recorded for the first time in the TSR
data and firm ages are three (five) years or less.

The probability of positive sales growth for R&D firms relative to non-R&D firms:
We calculate the probability that the sales share increases for R&D and non-R&D firms
as 51.03% and 47.33%, respectively. Their difference is 0.037. This is equivalent to λ in
the model.

The exit rate of R&D firms: For R&D firms, the exit rate, including not just voluntary
exit but also bankruptcy, equals 0.0028. This is equivalent to δ̄ in the model.

The entry rate: We calculate the number of entrants in one year divided by the
number of existing firms in the previous year and take the mean over time. It is 0.006
(0.015) when entrant ages are three (five) years or less. Moreover, we calculate the
average annual entry rate of establishments from 1980 to 2018 by using the Annual
Report on Employment Insurance by the Ministry of Health, Labour and Welfare. The
value is 0.051.

The share of fixed costs in sales: Fixed costs are the sum of selling, general, and
administrative (SGA) expenses that consist of directors’ remuneration, salaries and al-
lowances, provision for bonuses, retirement benefits, welfare expenses, depreciation and
amortization, advertising expenses, utilities expenses, taxes and dues, rent, and insur-
ance premiums. For the firms that record SGA expenses, we calculate the sum of the
fixed costs as well as the sum of sales. The share of fixed costs in sales is 0.050. This
value is related to κo.

The share of R&D costs in sales for R&D firms: For the firms that record positive
R&D costs, which are one item in SGA expenses, we calculate the sum of R&D costs as
well as the sum of sales. The share of R&D costs in sales for R&D firms is 0.028. This
value is related to κr.

The ratio of the median of log sales for R&D threshold to that for exit threshold: This
value is equivalent to ŝ/s̄. To calculate s̄, we take the firms that record a non-missing
value for R&D costs and calculate the median sales one year before their voluntary exit,
which is 34,854 thousand yen. To calculate ŝ, we take the firms that experience voluntary
exit and calculate the median sales of the firms when they record positive R&D costs
in the current year but zero in the following year, which is 142,304 thousand yen. The
ratio ŝ/s̄ is 4.08.

The ratio of the mean of sales for all firms to that for entrants: It is 0.978 (1.431)
when entrant ages are three (five) years or less.

The ratio of the standard deviation of sales for all firms to that for entrants: It is
0.534 (0.703) when entrant ages are three (five) years or less.
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The speed of sales change for non R&D firms: We estimate the following equation:

log (salesi,t) = α +
H∑
h=1

βh1 (exiti,t+h) + ηt + εi,t,

for firm i and year t. The explanatory variable 1 (exiti,t+h) takes one if firm i exits in
year t + h and zero otherwise. We calculate the yearly change in sales as (β1 − β6)/5.
This value is equivalent to −θ in the model.
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Table B.1: Summary Statistics of the Dataset for Pre-exit Firm Dynamics Estimation

Variables Unbalanced
Firms surviving for

at least 10 years

No. of obs. Mean S.D. No. of obs. Mean S.D.

log (salesi,t) 16,491,841 11.700 1.758 2,620,854 11.948 1.939

1 (exiti,t+1) 16,491,841 0.006 0.079 2,620,854 0.009 0.094

1 (exiti,t+2) 16,491,841 0.007 0.082 2,620,854 0.009 0.093

1 (exiti,t+3) 16,491,841 0.007 0.083 2,620,854 0.008 0.088

1 (exiti,t+4) 16,491,841 0.007 0.083 2,620,854 0.007 0.082

1 (exiti,t+5) 16,491,841 0.007 0.082 2,620,854 0.006 0.074

1 (exiti,t+6) 16,491,841 0.007 0.081 2,620,854 0.004 0.066

1 (exiti,t+7) 16,491,841 0.007 0.080 2,620,854 0.003 0.056

1 (exiti,t+8) 16,491,841 0.006 0.079 2,620,854 0.002 0.044

1 (exiti,t+9) 16,491,841 0.006 0.077 2,620,854 0.001 0.027

1 (exiti,t+10) 16,491,841 0.005 0.071

1 (exiti,t+11) 16,491,841 0.004 0.066

1 (exiti,t+12) 16,491,841 0.004 0.062

1 (exiti,t+13) 16,491,841 0.003 0.057

1 (exiti,t+14) 16,491,841 0.003 0.052

1 (exiti,t+15) 16,491,841 0.002 0.046

1 (exiti,t+16) 16,491,841 0.002 0.041

Notes: The table shows the summary statistics of the dataset we use for the estimation of firms’ pre-exit
dynamics.
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Table B.2: Summary Statistics of the Dataset for Pre- and Post-R&D Termination Firm
Dynamics Estimation

Variables h′ + 1 = 1 h′ + 1 = 2

No. of obs. Mean S.D. No. of obs. Mean S.D.

h = −5

log (salesi,t) 79,698 14.498 2.300 75,287 14.626 2.267

1
(
R&Di,t−h,t−h+h′ = 0

)
79,698 0.290 0.454 75,287 0.319 0.466

h = −4

log (salesi,t) 84,112 14.526 2.323 79,610 14.656 2.290

1
(
R&Di,t−h,t−h+h′ = 0

)
84,112 0.286 0.452 79,610 0.315 0.465

h = −3

log (salesi,t) 88,793 14.548 2.345 83,912 14.682 2.312

1
(
R&Di,t−h,t−h+h′ = 0

)
88,793 0.285 0.451 83,912 0.313 0.464

h = −2

log (salesi,t) 93,617 14.563 2.369 90,348 14.674 2.325

1
(
R&Di,t−h,t−h+h′ = 0

)
93,617 0.282 0.450 90,348 0.312 0.463

h = −1

log (salesi,t) 101,852 14.527 2.379 90,348 14.681 2.325

1
(
R&Di,t−h,t−h+h′ = 0

)
101,852 0.284 0.451 90,348 0.312 0.463

h = 0

log (salesi,t) 101,852 14.532 2.384 90,348 14.686 2.327

1
(
R&Di,t−h,t−h+h′ = 0

)
101,852 0.284 0.451 90,348 0.312 0.463

h = 1

log (salesi,t) 88,293 14.658 2.412 90,348 14.691 2.333

1
(
R&Di,t−h,t−h+h′ = 0

)
88,293 0.275 0.447 90,348 0.312 0.463

h = 2

log (salesi,t) 78,151 14.760 2.430 78,366 14.813 2.356

1
(
R&Di,t−h,t−h+h′ = 0

)
78,151 0.270 0.444 78,366 0.306 0.461

h = 3

log (salesi,t) 69,144 14.861 2.451 69,017 14.919 2.373

1
(
R&Di,t−h,t−h+h′ = 0

)
69,144 0.267 0.442 69,017 0.301 0.459

h = 4

log (salesi,t) 61,088 14.970 2.468 60,259 15.034 2.387

1
(
R&Di,t−h,t−h+h′ = 0

)
61,088 0.260 0.438 60,259 0.293 0.455

h = 5

log (salesi,t) 53,557 15.096 2.477 52,257 15.152 2.392

1
(
R&Di,t−h,t−h+h′ = 0

)
53,557 0.250 0.433 52,257 0.282 0.450

Notes: The table shows the summary statistics of the dataset we use for the estimation of firms’ pre-
and post-R&D termination dynamics.
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Table B.3: Summary Statistics of the Dataset for the Estimation of Distortions and Exit

Variables h = 1 h = 3

No. of obs. Mean S.D. No. of obs. Mean S.D.

Distortion: Net subsidy/Value-added

log (salesi,t) 9,064,930 11.609 1.725 6,983,006 11.706 1.698

1 (exiti,t+1) 9,064,930 0.006 0.079 6,983,006 0.007 0.081

Distortion 9,064,930 -0.073 0.088 6,983,006 -0.069 0.072

Distortion: Capital investment on used assets/Total capital investment

log (salesi,t) 4,756,232 11.776 1.736 3,577,931 11.885 1.726

1 (exiti,t+1) 4,756,232 0.006 0.076 3,577,931 0.006 0.080

Distortion 4,756,232 0.180 0.132 3,577,931 0.194 0.133

Notes: The table shows the summary statistics of the dataset we use for the estimation of the relationship
between distortions and firm exit.

Table B.4: Summary Statistics of the Dataset for the Estimation of Distortions and R&D
Investment (h′ + 1 = 1)

Variables h = 1 h = 3

No. of obs. Mean S.D. No. of obs. Mean S.D.

Distortion: Net subsidy/Value-added

log (salesi,t) 80,344 14.560 2.482 70,021 14.702 2.511

1
(
R&Di,t−h,t−h+h′ = 0

)
80,344 0.277 0.447 70,021 0.267 0.443

Distortion 80,344 -0.075 0.109 70,021 -0.077 0.114

Distortion: Capital investment on used assets/Total capital investment

log (salesi,t) 49,401 14.904 2.483 43,321 15.040 2.506

1
(
R&Di,t−h,t−h+h′ = 0

)
49,401 0.255 0.436 43,321 0.247 0.431

Distortion 49,401 0.150 0.134 43,321 0.149 0.136

Notes: The table shows the summary statistics of the dataset we use for the estimation of the relationship
between distortions and the termination of R&D investment in the case of h′ + 1 = 1.
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Table B.5: Relations between the R&D Frequency and the Exit Probability and Sales
Growth

Definition of R&D

R&D Selling, general, Sales promotion,

and administrative advertising,

(SGA) expenses entertainment, and

Number of firms other selling expenses

All 4,236,113 4,236,113 4,236,113

R&D expenditure is not NA (A) 701,763 701,763 701,763

Zero R&D expenditure throughout 659,815 105,027 190,182

R&D expenditure is positive at least once (B) 41,948 596,736 511,581

(fraction, B/A) (0.060) (0.850) (0.729)

Voluntary exit rate (the number of voluntary exit firms divided by the total number of firms)

Probability of positive R&D

Zero 0.032 0.045 0.044

Positive and 0 to 25% 0.012 0.045 0.041

25% to 50% 0.021 0.034 0.030

50% to 75% 0.017 0.022 0.020

75% - 0.014 0.014 0.014

Fraction of firms with positive average sales growth

Probability of positive R&D

Zero 0.469 0.460 0.440

Positive and 0 to 25% 0.516 0.419 0.429

25% to 50% 0.544 0.450 0.462

50% to 75% 0.584 0.485 0.488

75% - 0.614 0.554 0.573

Notes: NA represents not available. The probability of positive R&D is defined as the ratio of the periods
in which R&D investment is positive to the periods in which sales are recorded. By the probability of
positive R&D, we divide firms into five groups, that is, zero, under 25% (among firms with a positive
probability of positive R&D), 25-50%, 50-75%, and over 75%.
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Table B.6: Pre-exit Firm Dynamics: Dependence on Owner Ages

Pre-exit dynamics

Unbalanced
Firms surviving for

at least 10 years

Coef. s.e. Coef. s.e.

β1 -1.344 0.009 *** -1.623 0.022 ***

β2 -1.212 0.008 *** -1.54 0.021 ***

β3 -1.151 0.007 *** -1.491 0.021 ***

β4 -1.101 0.007 *** -1.469 0.022 ***

β5 -1.052 0.007 *** -1.436 0.023 ***

β6 -1.005 0.007 *** -1.404 0.025 ***

β7 -0.968 0.006 *** -1.381 0.029 ***

β8 -0.936 0.006 *** -1.373 0.036 ***

β9 -0.913 0.006 *** -1.424 0.058 ***

β10 -0.899 0.007 ***

β11 -0.879 0.007 ***

β12 -0.869 0.008 ***

β13 -0.851 0.008 ***

β14 -0.828 0.009 ***

β15 -0.806 0.01 ***

β16 -0.769 0.011 ***

Fixed-effect

Year×Industry yes yes

Number of observations 9,397,770 1,349,493

Adj R-squared 0.1763 0.1771

Notes: Coefficient βh captures the relative sales of a firm terminating R&D as of |h| years prior to exit.
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Table B.8: Probit Estimations for Exit and R&D termination

Exit and R&D termination dynamics

Exit R&D termination

Coef. s.e. Coef. s.e.

log (salesi,t) -0.186 0.001 *** -0.194 0.001 ***

sales growthi,t -0.162 0.005 *** 0.076 0.005 ***

profit/salesi,t .00007 .00003 ** 0.00002 0.00001

Fixed-effect

Year yes yes

Industry yes yes

Number of observations 6,793,163 4,015,461

Pseudo R-squared 0.0812 0.1323

Notes: The probit estimation for R&D termination is done for the data that include R&D records.
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Figure B.1: Probabilities for exit and R&D termination conditional on firm sales

Note: The horizontal axis indicates the probability of firm exit (right axis) and R&D termination (left
axis) conditional on the level of firm sales plotted on the horizontal axis.
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Figure B.2: Distribution of ŝ over Fixed Costs

Note: The horizontal axis indicates ŝ over fixed costs, where ŝ is calculated as exp(δ−1 + γ) for the
regression of equation on R&D termination. The vertical axis is the number of industries.
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Figure B.3: socially optimal State and the Effects of a Size-Dependent Subsidy

Note: The horizontal axis represents subsidy 1− τ ; s̄ and ŝ are expressed in logarithm as the line with
crosses and the line with circles, respectively; and the HHI is indicated as the red line with crosses on
the right axis. The red dashed line represents the socially optimal state.
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