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Abstract

The land price temporarily rises explosively while it is normally stationary. We

construct a dynamic general equilibrium macro-finance model with rational expec-

tations that generates such temporarily explosive land price dynamics. The model

generates explosive dynamics only when (i) a production function exhibits a strong

spillover of capital so that the production function is linear in capital but the spillover

is muted stochastically so that the production function exhibits a decreasing return of

capital, and (ii) the economy entails high leverage. We also discuss land price bubbles

and bubble detection.
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1 Introduction

Many countries have episodes of land price booms. Examples include, but are not limited
to, Japan in the 1980s and the United States in the late 2000s (see Kindleberger, Aliber,
and Solow (2005) for other episodes of asset price booms). During those episodes of land
price booms, the land price to dividend ratio (P-D ratio) behaves explosively, followed by
a sharp fall, while the P-D ratio is stationary before and after the bubbles.

In this paper, we construct a dynamic general equilibrium rational expectation macro-
finance model that generates such a temporarily explosive land price dynamics followed
by a large reduction, emerging from and returning to a stationary path. A key aspect of
our model is that agents expect that the land price will fall back to the stationary level in
the future. Hirano and Toda (2025a) have constructed a theoretical model to generate ex-
plosive dynamics of a land price. In their model, however, land price is always expected
to behave explosively. Our model differs from theirs in that agents in the economy cor-
rectly take into account the possibility that the explosiveness will end in the future.

Our model has two key features. First, capital has a spillover effect on labor produc-
tivity, and the degree of the spillover is stochastic. Suppose that the spillover is strong
(which we consider a rare event) so that a production function becomes linear in capital
as in the AK model. In each period, the economy faces the probability that spillover is
muted permanently so that the production function becomes a decreasing return in cap-
ital. This low-spillover state is an absorbing state, and agents correctly take into account
the probability of a decrease in the spillover. Second, our model has an incomplete market
setting. Entrepreneurs who have access to the land market face a borrowing constraint
governed by leverages as in the standard macro-finance models. This lets us study the in-
teraction of financial regulations and the existence of bubbles along with macroeconomic
dynamics.

We first analyze macroeconomic dynamics with our model. Our model generates a
temporary explosive path as a unique equilibrium only when the spillover is strong and
the leverages are sufficiently high. The land price falls sharply when the spillover is
muted (whose probability is correctly taken into account by agents). When the spillover
is not strong or the leverages are not high, the unique equilibrium of this economy is
stationary. The degree of the spillover and the leverages make a qualitative difference
in macroeconomic dynamics. Although some papers have worked on temporarily ex-
plosive dynamics of different objects, such as Ascari, Bonomolo, and Lopes (2019) and
Bianchi and Melosi (2019) for explosive inflation dynamics, ours is the first to describe
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the temporarily explosive dynamics of the P-D ratio.1

We emphasize that the condition for the explosive dynamics, that is, strong spillover
and high leverages, is likely satisfied only in an unusual economic environment. It is
natural to consider that, normally, the spillover effect of capital is not so strong or the
leverages are not so high. Therefore, explosive land price dynamics are present only as a
rare event, and macroeconomic dynamics is typically stationary.

Lastly, we discuss the conditions for the existence of land price bubbles. We show
that the condition for explosive land price followed by a sharp fall coincides with the
condition for the existence of land price bubbles. When the macroeconomic dynamics are
stationary, the land price does not contain bubbles.

We also argue that our theoretical framework is closely related to the empirical liter-
ature on bubble detection. Papers such as Phillips, Wu, and Yu (2011), Phillips, Shi, and
Yu (2015a), Phillips, Shi, and Yu (2015b), and Phillips and Shi (2019) detect the origin and
collapse of bubbles by finding the period of the explosive path of the P-D ratio. Their
procedure is consistent with our macro-finance framework, with the assumption that the
fundamental value is not explosive. This assumption implies that the reduction of the
land price is greater for bubbles that last longer.

Note that we can connect our theoretical framework to the empirical literature because
we consider bubbles on a dividend-yielding asset. In models of pure bubbles, we cannot
analyze the behavior of the P-D ratio because the dividend is zero and, accordingly, the
P-D ratio is undefined. We can connect the theoretical and empirical work on bubbles
because our paper considers bubbles on a dividend-yielding asset where the P-D ratio is
well-defined. For this reason, it is important to consider bubbles on a dividend-yielding
asset.

We contribute to the long-lasting literature on bubbles (see Hirano and Toda (2024)
for review). Hirano and Toda (2025a) constructed a deterministic model of bubbles on
a dividend-yielding asset, and Hirano, Jinnai, and Toda (2022) studied the link between
financial leverages and bubbles. In these works, however, the P-D ratio of the bubbly asset
(land) takes a diverging path (unless parameter values change as an event of measure
zero), which makes it harder to apply their model to applications because the P-D ratio
does not diverge in data. In contrast, our model features temporary bubbles with an
anticipation of collapse; the P-D ratio is explosive when an asset price bubble exists but it
becomes stationary once a bubble bursts. This feature makes our model more suitable for

1Ascari et al. (2019) relies on sunspot shocks to generate temporarily explosive behavior. In contrast, in
Bianchi and Melosi (2019), temporarily explosive dynamics is possible because of the possibility of return-
ing to stationary economy. Our modelling strategy is closer to Bianchi and Melosi (2019).

3



applications including various policy analyses.
The rest of the paper is organized as follows. We begin by providing motivating facts

in Section 2. We provide our model and analyze it in Section 3. In Section 4, we discuss
land price bubbles. We conclude our paper in Section 5.

2 Motivating Facts

To motivate our analysis, we provide data. Figure 1 plots the P-D ratio in the U.S. housing.
We use the S&P CoreLogic Case-Shiller index as the house price and use the CPI for rent
of the primary residence in the U.S. city average extracted from FRED as the data for
dividends from land.

The P-D ratio shows relatively stable behavior until 2000 and during the 2010s, but
an explosive increase during the 2000s followed by a sharp drop in the late 2000s. This
mostly stable but temporarily explosive pattern is difficult to explain in a standard model.
In such a model, the P-D ratio behaves in a stationary manner, and the explosive paths
are generated only by intensifying shocks. If parameters are set to generate an explosive
path endogenously in such a model, the stationary path in the long-run is not explained.
The existing model cannot jointly explain the long-run stationary path and temporary
explosive path.

This type of explosiveness is empirically tested in Phillips et al. (2011), Phillips et al.
(2015b), and many others. They focus mainly on Nasdaq, and the explosiveness of the
P-D ratio is tested by unit root tests.2 They also argue that the explosiveness of the P-D
ratio indicates the existence of bubbles. We discuss this point in Section 4.

The data also shows a rapid increase in the P-D ratio after the Covid-19 pandemic
in 2020. In contrast to the explosive increase in the 2000s, however, the increase after
the pandemic is not followed by a sharp fall. As we will see in the following sections,
the magnitude of the falls after an explosive increase is important in determining the
existence of bubbles. We will also discuss this point in Section 4.

2If we apply the method of Phillips et al. (2015a) to the US data, we obtain that the P-D ratio from March
1999 to December 2007 is explosive
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Figure 1: P-D ratio in the United States

We also provide the P-D ratio in Japan in Figure 2. We use land value published by
the Ministry of Land, Infrastructure, Transport and Tourism for the land price and use the
imputed rent from the System of National Accounts published by the Cabinet Office for
the rent. Since we can only obtain the index of the imputed rent, we show the P-D ratio
normalized at 1975.

The P-D ratio in Japan shows an explosive movement in the 1980s, while it was nor-
mally stable.3 After the explosive movement until 1991, the P-D ratio fell sharply. This
year is the year after the Ministry of Finance regulated the lending to real estate in 1990,
which is believed to be one of the causes of the collapse of the bubble.
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Figure 2: P-D ratio in Japan

3If we apply the method of Phillips et al. (2015a) to the annual Japanese data, we obtain that the P-D
ratio from 1988 to 1992 is explosive, although it is difficult to get a very accurate identification due to the
small sample size.
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3 A Model

In this section, we present our model that can generate the temporarily explosive behavior
observed in data. The model is similar to the one in Section 6 of Hirano and Toda (2024).
The key difference from their model is that the spillover of the capital in the production
function changes stochastically, so that the return from capital is stochastic.

3.1 Environment and Equilibrium

The economy consists of infinitesimally small agents with measure one. There are two
types of agents: entrepreneurs and savers. They differ in their investment opportunities.
Entrepreneurs have an access to capital and land markets while savers do not. Each agent
becomes an entrepreneur with probability π and a saver with probability 1 − π.

An agent indexed by i has a logarithmic utility over consumption ci,t:

E

[
∞

∑
t=0

βt log ci,t

]
,

where β is a discount factor, i is the index of each agent, and t is the index of time.
Each agent receives a return from capital investment and land investment from the

pervious period. Let the capital investment and land investment be ki,t+1 and xi,t+1, re-
spectively. Also, each agent can borrow bi,t+1 with a net interest rate rt+1. Agent i’s budget
constraint is

ci,t + ki,t+1 + PX,txi,t+1 − bi,t+1 = RK
t ki,t + (PX,t + D) xi,t − (1 + rt) bi,t,

where PX,t is the price of land, D is the dividend from land4, and RK
t is the return from

capital. Recall that only entrepreneurs can invest in capital and land, so that saver’s
budget constraint becomes

ci,t − bi,t+1 = RK
t ki,t + (PX,t + D) xi,t − (1 + rt) bi,t.

Note that ki,t and xi,t are zeros for agents who were savers in the privous period, i.e. at
t − 1.

Each agent can borrow up to the borrowing limit θki,t+1 + θXPX,txi,t+1 due to financial

4Hirano and Toda (2025b) analyze a model of deterministic bubbles with a growing dividend. In their
model, results with a constant dividend are maintained with an exogenously growing dividend unless the
dividend grows as fast as output.
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friction. The borrowing constraint can be written as

bi,t+1 ≤ θki,t+1 + θXPX,txi,t+1. (1)

The parameters, θ > 0 and θX > 0, represent the degree of leverage. The larger these
parameters are, the more leverages the agents can take.

We can show by guess and verify that the solution of the utility maximization problem
is

ci,t = (1 − β)wi,t, (2)

where wi,t is a wealth of an agent i. The wealth is defined as

wi,t := RK
t ki,t + (PX,t + D) xi,t − (1 + rt) bi,t.

This linear consumption function makes aggregation straightforward, which is why we
focus on the logarithmic utility.

The goods market is perfectly competitive. There are infinitesimally small firms of
measure one. Each firm is indexed by j ∈ [0, 1]. A firm j produces output with the
following production function:

Yj,t = AKα
j,t (ϑt)

1−α , (3)

where Yj,t is the output of firm j, A is the total factor productivity, Kj,t is the capital of firm
j, α is the capital share, and ϑt is the productivity of labor input. Although we do not ex-
plicitly model labor market for brevity, this specification of the productivity function can
be justified by assuming that inelastic labor input is fixed at unity and that the suppliers
of labor spend their entire labor incomes every period as hand-to-mouth consumers.

The labor productivity, ϑt, is determined as

ϑt = Kϕt
t ,

where Kt :=
∫ 1

0 Kj,tdj is the aggregate capital and ϕt captures the spillover effect of capital.
The spillover effect of capital, ϕt, is a stochastic variable; ϕt = 1 when an economy is in
the H-state and takes ϕ ∈ [0, 1) when the economy is in the L-state. The transition from
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each state is assumed as follows:

ϕt+1 =


1 with probability λ

ϕ with probability 1 − λ
if ϕt = 1

ϕ if ϕt = ϕ

.

This assumption implies that the economy stays at the L-state forever once the economy
enters the L-state, i.e. the L-state is an absorbing state. Note that agents know that once
the economy switches to the L-state with probability 1 − λ, the economy never returns
back to the H-state.

When ϕt = 1, the production function becomes linear in capital as in the AK model,
which entails endogenous growth. when ϕt = ϕ, the production function is concave in
capital, and the economy cannot grow unless the parameter A grows exogenously.

The representative firm rents capital at a rate RK
t . The profit maximization problem

of the representative firm with the production function (3) leads to the capital rental rate
given by

RK
t = αAKα+ϕt(1−α)−1

t =

αA when ϕt = 1 (H-state)

αAK
(1−ϕ)(α−1)
t when ϕt = ϕ (L-state)

.

In this representation of the capital rental rate, we have used the equilibrium condition
that Kt :=

∫ 1
0 Kj,tdj and the assumption that all firms are homogeneous.

We make a timing assumption that ϕt+1 is realized at the beginning of period t. This
assumption lets us avoid the lending contract problem under uncertainty. Because of this
assumption, when an agent makes a decision on capital and land investment at period t,
the value of RK

t+1 is revealed to the agent without uncertainty.
We make this timing assumption for various reasons. First, the assumption allows us

to avoid a contract problem under uncertainty. If the return from capital is uncertain, the
contract for lending from the saver to the entrepreneur must entail a complicated con-
tract problem with uncertainty. Second, the assumption allows us to avoid the portfolio
choice problem. As we will see later, the assumption lets us derive a simple non-arbitrage
condition. Lastly, and relatedly to the previous two points, this assumption lets us solve
the model with aggregate uncertainty as if the model does not have uncertainty. As a
result, we can analytically analyze explosive macroeconomic dynamics that are not easy
to analyze numerically.
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We focus on an equilibrium where the borrowing constraint (1) binds for all t.5 As in
standard macroeconomic models, the equilibrium in this economy is defined as follows.
In a general equilibrium, (1) agents make their consumption-saving decision and portfolio
choice optimally, (2) firms make their decision on capital demand optimally, and (3) all
markets clear: ∫ 1

0
ki,tdi = Kt :=

∫ 1

0
Kj,tdj,

∫ 1

0
bi,tdi = 0,

∫ 1

0
xi,tdi = X,

where X is the aggregate supply of land, which is constant.
In our model, three equations characterize the equilibrium of this economy. The first

one is the resource constraint:

Kt+1 + PX,tX = β
[

RK
t Kt + (PX,t + D) X

]
, (4)

where Kt is aggregate capital at the beginning of period t. The second one is the optimal
capital investment by entrepreneurs:

Kt+1 =
1

1 − θ

[
βπ
(

RK
t Kt + (PX,t + D) X

)
−
(

1 − θX
)

PX,tX
]

. (5)

The third one is the non-arbitrage condition:

PX,t+1+D
PX,t

− (1 + rt+1) θX

1 − θX =
RK

t+1 − (1 + rt+1) θ

1 − θ
. (6)

The left and right sides of the equation (6) are leveraged return on land and capital, re-
spectively. For example, when an agent invests in one unit of land, 1 − θX unit must
be self-financed. This investment on land using the borrowings yields the return from
land PX,t+1+D

PX,t
and requires (1 − rt+1)θ

X unit of repayment in the next period. Thus, the
left-hand side represents the return taking the leverages into account. The same intuition
holds for capital investment, and the right-hand side represents the return from capital
taking leverage into account.

At the decision making in period t, the economy has no uncertainty between t to t + 1.
At the decision making in the next period, t + 1, the economy has no uncertainty between

5In the propositions below, we numerically check that there exist parameters that yield the described
equilibrium. We analytically investigate this point in Appendix A.4 using a special case of our model.
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t + 1 to t + 2. Therefore, the non-arbitrage equation without the expectation operator (6)
holds for all t.

The solution of the model is written as

Kt+1 =
θX − (1 − π)

1
β (θ

X − θ)− (1 − π − θ)

[
RK

t Kt + DX
]

and
PX,t =

1 − π − θ
1
β (θ

X − θ)− (1 − π − θ)

1
X

[
RK

t Kt + DX
]

.

Combining them, the dynamics of the capital and the land price can be expressed recur-
sively as

Kt+1 = CKRK
t Kt + CKDX, (7)

PX,0 = CP
1
X

[
RK

0 K0 + DX
]

,

and
PX,t+1 = CKRK

t+1PX,t + CPD for t > 0, (8)

where CP := 1−π−θ
1
β (θ

X−θ)−(1−π−θ)
and CK := θX−(1−π)

1
β (θ

X−θ)−(1−π−θ)
. We focus on a parameter set of

θ < 1 − π < θX and 0 < 1
β

(
θX − θ

)
− (1 − π − θ), so that CP and CK are both positive.

By taking derivatives, we can easily see how two coefficients change with θX and θ as
follows.

Lemma 1. CP is decreasing in θX and θ. CK is increasing in θX and θ.

Proof.
dCP

dθX =
− (1 − π − θ) 1

β(
1
β (θ

X − θ)− (1 − π − θ)
)2 < 0.

dCP

dθ
=

−
(

1
β

(
θX − θ

)
− (1 − π − θ)

)
− (1 − π − θ)

(
1
β − 1

)
(

1
β (θ

X − θ)− (1 − π − θ)
)2 < 0.

dCK

dθX =

1
β

(
θX − θ

)
− (1 − π − θ)−

(
θX − (1 − π)

) 1
β(

1
β (θ

X − θ)− (1 − π − θ)
)2 =

(
1
β − 1

)
(1 − π − θ)(

1
β (θ

X − θ)− (1 − π − θ)
)2 > 0.

dCK

dθX =
−
(
θX − (1 − π)

) (
− 1

β + 1
)

(
1
β (θ

X − θ)− (1 − π − θ)
)2 > 0.
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Throughout the paper, we focus on an equilibrium in which the borrowing constraint
(1) binds and the consumption function is given by (2). Then, the equilibrium dynamics
governed by (4), (5), and (6) are uniquely determined.

3.2 Economic Dynamics

We begin our analysis on the dynamics of the economy. We briefly discuss the dynamics
of capital first and then move on to the P-D ratio.

We first focus on the dynamics of capital in the H-state. As can be seen from (7), the
capital diverges to infinity when CKαA > 1, approaching a gross growth rate CKαA. When
CKαA < 1, the capital converges to a steady state CKDX

1−CKαA .
Next, we analyze capital in the L-state. Let KL,SS be the steady state capital at the

L-state in the long-run. This KSS is implicitly determined by

KL,SS = CK

[
αAK

α+ϕ(1−α)

L,SS + DX
]

. (9)

The results of comparative statics of KL,SS with respect to θX, θ, and A are stated in the
following lemma.

Lemma 2. KL,SS increases with θX, θ, and A.

Proof. The implicit function theorem leads to

dKL,SS

dθX = −

dCK
dθX

[
αAK

α+ϕ(1−α)

L,SS + DX
]

−1 + CKαA
(

α + ϕ (1 − α)
)

K
(α−1)(1−ϕ)
L,SS

.

The denominator is negative because (9) implies

CKαA
(

α + ϕ (1 − α)
)

K
(α−1)(1−ϕ)
L,SS =

(
1 − CKDXK−1

L,SS

) (
α + ϕ (1 − α)

)
,

and 1 − CKDXK−1
L,SS < 1 and α + ϕ (1 − α) < 1 hold. Therefore, combined with Lemma 1,

dKL,SS
dθX > 0.
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Similarly, we can derive

dKL,SS

dθ
= −

dCK
dθ

[
αAK

α+ϕ(1−α)

L,SS + DX
]

−1 + CKαA
(

α + ϕ (1 − α)
)

K
(α−1)(1−ϕ)
L,SS

> 0

and
dKL,SS

dA
= −

CKαK
α+ϕ(1−α)

L,SS

−1 + CKαA
(

α + ϕ (1 − α)
)

K
(α−1)(1−ϕ)
L,SS

> 0

by the same argument.

Next, we analyze the P-D ratio defined as PX,t
D . When the economy is in the H-state,

we can see from (8) that PX,t and the P-D ratio diverge to infinitely explosively when
CKαA > 1. When CKαA < 1, PX,t converges to a steady state CKDX

1−CKαA and the P-D ratio

converges to CKX
1−CKαA .6

When the economy is in the L-state, PX,t converges to a steady state. The steady state

is given by CP
1
X

[
αAK

(α−1)(1−ϕ)
L,SS + DX

]
. The dynamics of PX,t is stationary, so is the P-D

ratio.
We summarize the arguments in the following proposition.

Proposition 1. The land price and the P-D ratio shows explosive dynamics in the H-state if
CKαA > 1. If CKαA < 1, they are stationary in the H-state. In the L-state, they are stationary
irrespective of the parameter values.

3.3 Numerical Examples

We provide numerical examples of our model to show the macroeconomic dynamics dif-
fer qualitatively. Throughout this section, we use A = 4, ϕ = 0, θ = 0.1, θX = 0.7,
π = 0.4, β = 0.96, X = 1, D = 0.1, and α = 1

3 unless otherwise noted. With these parame-
ters, CK = 0.8 and CKαA = 1.067, implying that the land price shows explosive dynamics
in the H-state.

In Figure 3 I show a result of a simulation where the economy is in the L-state steady
state until t = −1, the economy enters the Hstate (i.e. ϕt switches to 1) at t = 0, and the
economy goes back to the L-state (i.e. ϕt switches back to 0) from t = 10.

6When CKαA = 1, the P-D ratio diverges to infinity but its growth is additive. Since this is a knife edge
case, we focus on the case of CKαA ̸= 1.
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The dynamics of the land price shows explosive behavior when the economy is in
the H-state. Along with the land price, capital also accumulates. This leads to a large
reduction in the land price at t = 10.
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Figure 3: Simulated path of the land price and capital with a sharp drop at t = 10 due to
a change in ϕt

The macroeconomic dynamics of land price due to a change in leverage is qualitatively
different from the one due to the change in ϕt. Figure 4 plots the simulated path when θX

temporarily rises in the H-state. Until t = −1, the economy is in the H-state steady state
with θX = 0.65. From t = 0 to t = 9, θX rises to 0.66. From t = 10, θX goes back to 0.65.
For all t, the economy stays in the H-state, and ϕt = 1. With θX = 0.65 and θX = 0.66,
CKαA = 0.914 and CKαA = 0.96, respectively, implying that the land price is stationary
for both cases.

The stark contrast of the dynamics relative to the change in ϕt lies in the dynamics of
the land price. The land price initially falls as θX rises, starting to rise until t = 9. Then,
θX goes back to 0.65 from t = 10, making the economy stationary. This change leads to
a rise in the land price, which is counterfactual. While changes in θX can create a rise or
fall in the land price, the dynamics of the land price generated by changes in ϕt is more
consistent with data.
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Figure 4: Simulated path of the land price and capital with a sharp drop at t = 10 due to
a change in θX
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The two example paths we have shown display temporarily explosive land price dy-
namics. In Figure 5, we simulate an economy with a temporary leverage hike within
L-state. The economy has θX = 0.7 until t = −1, θX rises to 0.75 from t = 1 to t = 9, and
θX goes back to 0.7 from t = 10. Throughout the simulation, the economy is in the L-state.

The dynamics of the land price and capital in Figure 5 are very different from the ones
in Figure 3 and 4. In Figure 5, the land price and capital are both stationary. There is no
explosive behavior in land price, which we observe in data shown in Figure 1 and 2.
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Figure 5: Simulated path of the land price and capital with a sharp drop at t = 10 due to
a change in θX

4 Dicussion

In the empirical literature on bubble detections, explosive land price dynamics are closely
related to bubbles (see Phillips et al. (2011) and Phillips et al. (2015a) for example). We
discuss the existence of bubbles in this section.

4.1 Existence of Bubbles

In this section, we establish the existence of bubbles in the stochastic economy. Before
going into the details, we introduce a new notation of variables to keep track of paths
under the potential realization of parameters in the future. For any variable Xt in the
model, let X(H),t denote the variable under the shock realization where the economy is in
H-state, i.e. ϕ0 = · · · = ϕt = 1. Similarly, with k ≤ t, let X(L,k),t be the variable under the
shock realization where the economy switches from H-state to L-state between period k
and k + 1, i.e. ϕ0 = · · · = ϕk = 1 and ϕk+1 = · · · = ϕt = ϕ.

With this notation, we derive the expression to decompose the land price at t = 0
in the H-state into its fundamental and non-fundamental parts. Since the non-arbitrage
condition (6) holds for each t ≥ 0, P(H),X,t+1, RK

(H),t+1, r(H),t+1, P(L,t),X,t+1, RK
(L,t),t+1, and
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r(L,t),t+1 must satisfy

P(H),X,t+1+D
P(H),X,t

−
(

1 + r(H),t+1

)
θX

1 − θX =
RK
(H),t+1 −

(
1 + r(H),t+1

)
θ

1 − θ
(10)

and
P(L,t),X,t+1+D

P(H),X,t
−
(

1 + r(L,t),t+1

)
θX

1 − θX =
RK
(L,t),t+1 −

(
1 + r(L,t),t+1

)
θ

1 − θ
. (11)

These two imply7 that

E

 PX,t+1+D
P(H),X,t

− (1 + rt+1) θX

1 − θX |ϕt = 1

 = E

[
RK

t+1 − (1 + rt+1) θ

1 − θ
|ϕt = 1

]
(12)

for all t ≥ 0. Define R(H),t,t+1 := E

[(
1 − θX) RK

t+1−(1+rt+1)θ
1−θ + (1 + rt+1) θX|ϕt = 1

]
.8

Then, (12) for all t ≥ 0 can be written as

P(H),X,t =
E [PX,t+1 + D|ϕt = 1]

R(H),t,t+1
=

λP(H),X,t+1 + (1 − λ) P(L,t),X,t+1 + D
R(H),t,t+1

. (13)

By iterating (13) forward, P(H),X,0 can be expressed as

P(H),X,0 =
(1 − λ) P(L,0),X,1 + D

R(H),0,1
+ λ

(1 − λ) P(L,1),X,2 + D
R(H),1,2R(H),0,1

+ λ2 (1 − λ) P(L,2),X,3 + D
R(H),2,3R(H),1,2R(H),0,1

+ · · ·+ λT−1 (1 − λ) P(L,T−1),X,T + D

∏T
t=1 R(H),t−1,t

+
λTP(H),X,T

∏T
t=1 R(H),t−1,t

for some T.

Notice that we do not condition on ϕ1 when evaluating P(H),X,0 because the land price at
t = 0 is determined before the state for t = 1 is revealed.

7(10) and (11) also imply E

 PX,t+1+D
P(H),X,t

(1−θX)
RK

t+1−(1+rt+1)θ

1−θ +(1+rt+1)θX
|ϕt = 1

 = 1. While the discounting based on

this alternative equation is also possible, we focus on the discounting based on the equation (12) because
our procedure can incorporate the case of pure bubble, D = 0, as a special case while the alternative
discounting procedure cannot consider the case of D = 0.

8Note that our procedure of discounting by R(H),t,t+1 is consistent with the agent’s non-arbitrage con-
ditions in the portfolio choice problem for each period. We discuss this point in Appendix C.
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In the limit of T → ∞,

P(H),X,0 =
∞

∑
T=1

λT−1 (1 − λ) P(L,T−1),X,T + D

∏T
t=1 R(H),t−1,t︸ ︷︷ ︸

Fundamental term

+ lim
T→∞

λTP(H),X,T

∏T
t=1 R(H),t−1,t︸ ︷︷ ︸

Bubble term

. (14)

We define the sum of the first two terms as the fundamental term. This fundamental term
represents the fundamental value of the land, i.e. the present discounted value of the
future stream of the dividend. We define the last term as the bubble term. We call that
the land price contains a bubble or that a land price bubble exists when the bubble term
is positive:

lim
T→∞

λTP(H),X,T

∏T
t=1 R(H),t−1,t

> 0. (15)

This corresponds to the case when the land price is higher than the fundamental value of
the land. If the bubble term is zero, the transversality condition for the land price holds,
and the land price does not contain a bubble.

The next proposition establishes the existence of a bubble under a certain parameter
set.

Proposition 2. (Existence of Bubbles) Suppose ϕ0 = ϕ1 = 1. When 1 < CKαA, the unique
equilibrium contains a bubble. When CKαA < 1, the unique equilibrium does not contain a
bubble.

Proof. We first prove the first part of the proposition. Using (13), the limit in (15) can be
expressed as

lim
T→∞

λTP(H),X,T

∏T
t=1 R(H),t−1,t

= P(H),X,0 lim
T→∞

T

∏
t=1

 λP(H),X,t
P(H),X,t−1

λP(H),X,t+(1−λ)P(L,t−1),X,t+D
P(H),X,t−1


= P(H),X,0 lim

T→∞

T

∏
t=1

(
λP(H),X,t

λP(H),X,t + (1 − λ) P(L,t−1),X,t + D

)

= P(H),X,0 lim
T→∞

T

∏
t=1

(
1 −

(1 − λ) P(L,t−1),X,t + D
λP(H),X,t + (1 − λ) P(L,t−1),X,t + D

)

= P(H),X,0 lim
T→∞

T

∏
t=1

1 −
(1 − λ)

P(L,t−1),X,t
P(H),X,t

+ D
P(H),X,t

λ + (1 − λ)
P(L,t−1),X,t

P(H),X,t
+ D

P(H),X,t

 .
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This limit is non-zero if and only if

T

∑
t=1

log

1 −
(1 − λ)

P(L,t−1),X,t
P(H),X,t

+ D
P(H),X,t

λ + (1 − λ)
P(L,t−1),X,t

P(H),X,t
+ D

P(H),X,t

 (16)

converges with T → ∞.

Let Zt :=
(1−λ)

P(L,t−1),X,t
P(H),X,t

+ D
P(H),X,t

λ+(1−λ)
P(L,t−1),X,t

P(H),X,t
+ D

P(H),X,t

. Then, by Taylor expansion around Zt = 0,

log (1 − Zt) = −
(

Zt +
Z2

t
2

+
Z3

t
3

+ . . .
)

.

Notice that

P(L,t−1),X,t

P(H),X,t
=

CK

(
α + ϕ (1 − α)

)
A
(

K(L,t−1),t

)(1−ϕ)(α−1)
P(H),X,t−1 + CPD

CK AP(H),X,t−1 + CPD

=
CK

(
α + ϕ (1 − α)

)
A
(

K(L,t−1),t

)(1−ϕ)(α−1)
+ CP

D
P(H),X,t−1

CK A + CP
D

P(H),X,t−1

.

Since the law of motion for capital is expressed recursively as (7), K(L,t−1),t can be ex-
pressed as

K(L,t−1),t = CKRK
t−1K(H),t−1 + CKDX

= CKαAK(H),t−1 + CKDX

= CKαA
(
CKαAK(H),t−2 + CKDX

)
+ CKDX

= . . .

= (CKαA)t K(H),0 +
t

∑
s=1

(CKαA)s−1 CKDX

= (CKαA)t K(H),0 +
t

∑
s=1

(CKαA)s−1 CKDX

= (CKαA)t K(H),0 + CKDX
(CKαA)t − 1
CKαA − 1

. (17)

From (17) and 1 < CKαA, we can see that limt→∞ K(L,t−1),t = ∞, K(L,t−1),t > 0 for all t,
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and
K(L,t−1),t = O

(
(CKαA)t

)
as t → ∞.

Similarly, from (8) and 1 < CKαA, we can see that limt→∞ P(H),X,t = ∞, P(H),X,t > 0 for all
t, and

P(H),X,t = O
(
(CK A)t

)
as t → ∞.

Therefore, we can see that limt→∞ Zt = 0, Zt > 0 for all t, and

Zt = O
(
(CK A)−t

)
as t → ∞.

Since an infinite sum of a geometric series with the terms converging to zero is conver-
gent, ∑∞

t=0 Zt is convergent, so are ∑∞
t=0 Z2

t , ∑∞
t=0 Z3

t , . . . . Thus, ∑∞
t=0 log (1 − Zt) and (16)

are convergent. Hence, the bubble term is non-zero and the bubble exists.
For the second part of the proposition, the arguments until (17) in the proof hold.

From (17) and CK A < 1, we can see that limt→∞ K(L,t−1),t = CKDX 1
1−CK A > 0. Also,

from the discussion in Section 3.2, limt→∞ P(H),X,t−1 < ∞. Thus, limt→∞ Zt > 0. Hence,

∑∞
t=0 log (1 − Zt) and (16) are not convergent, the bubble term is zero, and the bubble does

not exist.

It can be seen from the proof that the convergence of Zt to zero as t → ∞ is a necessary
condition for a bubble to arise. For Zt to converge to zero, it is required that

P(L,t−1),X,t
P(H),X,t

converges to zero as can be seen from equation (16). This requirement means that the
gap between the land price of a survived bubble and the one of a collapsed bubble at the
time of collapse must be larger as the burst is later. In other words, long-lasting bubbles
is necessarily accompanied by a large reduction in land price.

We would like to point out that the property of the bubble highlighted above, that is,
a bubble that lasts longer must be accompanied by a larger reduction of the land price
at the collapse, holds in a more general setting of the model. In our model, when the
economy switches to the L-state, the return from capital becomes decreasing in capital.
Since the long-lasting bubble leads to large capital accumulation, the return from capital
becomes low, and the non-arbitrage implies that the land price growth rate is low.

Notice that there are alternative changes that make the bubble arise. For example, if
θX in the L-state approaches to 1 − π sufficiently fast as t → ∞ while keeping θX in the
H-state constant, this also makes the bubble arise even when ϕt = 1 in both states.

The next proposition makes a comparative statics of leverages.

Proposition 3. (Comparative Statics of Leverages) The higher θ or θX is, the more likely the
bubble may arise when the economy is in the H-state.
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Proof. Take a derivative of CK with respect to θ and θX to get

∂CK

∂θ
=

(
θX − (1 − π)

) ( 1
β − 1

)
(

1
β (θ

X − θ)− (1 − π − θ)
)2 > 0,

and

∂CK

∂θX =
(1 − π − θ)

(
1
β − 1

)
(

1
β (θ

X − θ)− (1 − π − θ)
)2 > 0.

A rise in θ or θX raises CK, and 1 < CK A is more likely to be satisfied.

Let us point out that Proposition 2 and Proposition 3 imply that bubbles exist only
in a certain economic environment. First, the economy must be in H-state in which the
spillover effect of capital makes the production function linear in capital as in the AK en-
dogenous growth model. We did not model how the economy enters the H-state because
we consider it as an uncommon event, and the switch from L-state to H-state does not
occur frequently. For the bubble to exist, this uncommon event must occur.

Second, when the economy enters H-state, the leverages, θX and θ, must be high. If the
economy enters H-state with low leverage, CK A is lower than one, and the economy does
not contain a bubble, and the economy behaves stationarily. A bubble does not always
exist, but rather, it exists only when the leverages, typically determined by policies, are
high.

This leads to a policy implication that setting sufficiently high leverages lead to bub-
bles when the economy enters the H-state. If one wants to avoid bubbles, leverages can-
not be too high. Differently from Hirano et al. (2022), though closely related, high lever-
ages during the strong spillover followed by weak spillover is required for the bubble to
exist.

4.2 Connection to the Literature on Bubble Detection

Let us discuss the connection of our analysis to the literature on bubble detection. To
obtain the intuition, we revisit the condition for the existence of the bubble (15). The
bubble condition states that the bubble term defined in (14) must be positive. From (13),
we can rewrite the denominator of the bubble term, R(H),t,t+1, as

R(H),t,t+1 =
λP(H),X,t+1

P(H),X,t
+

(1 − λ)P(L),X,t+1

P(H),X,t
+

D
P(H),X,t

.
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The first term is λ times the gross growth rate of the land price when the bubble con-
tinues. The numerator of the bubble term grows at this rate. The bubble term is positive
when this first term equals to R(H),t,t+1 in the limit of t → ∞. If any of the second and
the third term are positive, the denominator of the bubble term is larger than the nu-
merator, and the bubble term is zero. Given the structure of our model (specifically, the
land price can be written recursively as (8)), the existence of a bubble is equivalent to the
convergence of the second and the third term to zero as t → ∞.

The second term is the size of the reduction in the land price at the time of the burst.
The convergence of this second term to zero means that the size of the reduction in the
land price becomes larger when the bubble lasts longer. When the second term does not
converge to zero, the fundamental price of the land grows explosively along with the
land price at the H-state, and a change in the state from H to L does not lead to a larger
reduction in land price even when a bubble lasts longer.

The third term is the inverse of the P-D ratio. Papers on the bubble detections, such
as Phillips et al. (2011) and Phillips et al. (2015a), check the explosiveness of the P-D ratio.
Their detection procedures consider the case where the fundamental term is not explosive
and check the explosiveness of the inverse of the third term. In other words, they focus
on the case where the second term converges to zero and check the convergence of the
third term to zero.

We summarize the connection to the literature on bubble detections.

Proposition 4. (Signal of Bubbles) When the P-D ratio behaves explosively, we may be warned
that the land price contains a bubble. This explosiveness of the P-D ratio does not necessarily mean
the existence of the bubbles because the fundamental term may be explosive and the change in the
state may not lead to a large reduction in land price. If we can assume that the fundamental term
is not explosive, the explosiveness of the P-D ratio implies the bubble.

The proposition provides a key insight on bubble detection. If an exponential growth
of the P-D ratio is observed, we should be warned that the economy may contain bub-
bles because the explosive dynamics is necessary for the existence of bubbles. Ideally,
we should check the explosiveness of the fundamental term as the explosiveness is one of
the important necessary conditions for the bubble existence which corresponds to a larger
reduction of the land price for bubbles that last longer. In practice, however, the funda-
mental term is not observable, and it is difficult to make an inference on the dynamics
of the fundamental term. If we assume that the fundamental term is not explosive, the
explosiveness of the bubble correctly identifies the bubble as in the literature.

Not only detecting the timing of bubbles, we can speak to the causes of the bubbles
thanks to our theoretical model. In Section 3, with our theoretical model, we have found
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that a large spillover and high leverages are required for bubbles to exist. We can check
the changes and their timings in data counterpart of θX and θ to infer if the cause of a bub-
ble is a policy to raise these leverage parameters given high spillover or a technological
change that raises the spillover given high leverages.

5 Conclusion

We provided a macro-finance model that can generate temporary explosive dynamics.
We have also shown that the land price contains a bubble. We draw an implication of
bubble detection and find that not only the dynamics during the explosive period but
also the dynamics after the explosive period are critical in determining the existence of
bubbles.
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Appendix

A Discussion

A.1 Land Price to GDP Ratio

Here, we analyze the land price to GDP ratio. The land price to GDP ratio in our economy
is given by

PX,tX
Yt + DX

=
CP
[
RK

t Kt + DX
]

AKα+ϕt(1−α)
t + DX

= CP

1 +
α − 1

1 + D
AKα+ϕt(1−α)

t

X

 . (18)

When the economy is in the H-state, i.e. ϕt = 1, the land price to GDP ratio decreases
in A. Also, since CP is decreasing in θX and θ, the land price to GDP ratio decreases in θX

or θ when the economy is in the H-state.
When the economy is in the L-state, i.e, ϕt = ϕ < 1, we can see from (18) that PX,tX

Yt+DX
<

CP. In other words, the land price to GDP ratio is higher in the H-state.
Note that the land price to GDP ratio is decreasing in Kt in the L-state too. Since Kt

converges to KL,SS in the long-run, combined with Lemma 1 and Lemma 2, we can see
that a rise in θX or θ decreases the long-run land price to GDP ratio at the L-state.

The arguments in this section on the land price to GDP ratio are summarized in the
following proposition.

Proposition 5. Given parameters, the land price to GDP ratio in the H-state is higher than the
one in the L-state. Given a state and capital, a rise in A, θX, or θ decreases the land price to GDP
ratio.
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A.2 Credit to GDP Ratio

Lastly, we analyze the credit to GDP ratio. The credit to GDP ratio in our economy is
given by

Bt+1

Yt+1 + DX
=

θCK + θXCP

A (CK)
α+ϕt+1(1−α) (RK

t Kt + DX
)(α−1)(1−ϕt+1) + DX

(
RK

t Kt + DX
)−1

.

In the H-state, the ratio is simplified to

Bt+1

Yt+1 + D
=

θCK + θXCP

ACK + D
(
αAKt + DX

)−1 .

This credit to GDP ratio in the H-state is increasing in Kt. When αACK > 1 and the
economy stays at the H-state, Kt → ∞ and, therefore, the credit to output ratio converges

to 1
A
(θX−θ)(1−π)

θX−(1−π)
, which is decreasing in A, θX, and θ.

In the L-state where ϕt+1 = ϕ < 1, the credit to GDP ratio is increasing in Kt. In the
long-run, Kt converges to KL,SS implicitly determined by (9) and, therefore, we can derive
that the ratio converges to

BL,SS

YL,SS + DX
=

(
θX − θ

)
(1 − π)

θX − (1 − π)

[
A (KL,SS)

(α−1)(1−ϕ) + DX (KL,SS)
−1
]−1

.

This ratio at the limit in the L-state is smaller than the ratio in the limit in the H-state if
and only if

(KL,SS)
(α−1)(1−ϕ) +

D
AKL,SS

X − 1 > 0. (19)

Because of Lemma 2, the inequality is likely to be satisfied when A, θX, and θ are small.
We summarize the findings of this section in the following proposition.

Proposition 6. Given parameters, the credit to GDP ratio in the H-state is higher than the one
in the L-state if and only if (19) is satisfied. Given that the economy stays in the H-state, a rise in
A, θX, or θ decreases the credit to GDP ratio in the limit.
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A.3 Interest Rate

When the economy stays in the H-state, the gross growth rate of capital converges to
CKRK

t+1 = CKαA. Note that

CK =
θX − (1 − π)

1
β (θ

X − θ)− (1 − π − θ)
= 1 +

(
1 − 1

β

) (
θX − θ

)
1
β (θ

X − θ)− (1 − π − θ)
< 1. (20)

Therefore, the gross growth rate of capital and output is lower than αA in the limit.
When the economy stays in the H-state, we can also analyze the interest rate analyti-

cally. From the non-arbitrage condition (6),

1 + rt+1 =
PX,t+1 + D

PX,t

1 − θ

θX − θ
− RK

t+1
1 − θX

θX − θ
.

Since PX,t+1+D
PX,t

→ CKαA,

1 + rt+1 → CKαA

1 +

(
1 − 1

β

) (
1 − θX)

θX − (1 − π)

 .

Since 1 − 1
β < 0, 1 − θX > 0, and θX − (1 − π) > 0, the right hand side is less than CKαA.

Hence, the following relation holds in the H-state in the limit:

1 + r < 1 + gK = 1 + gY = CKαA < αA = RK, (21)

where gK and gY are the net growth rate of capital and output, respectively, and r is the
net interest rate in the limit. In other words, the growth rate of the economy is higher
than the interest rate. This phenomenon is consistent with the historical pattern of the
U.S. (Blanchard, 2019)

A.4 Binding Borrowing Constraint

We discuss when the borrowing constraint (1) binds, paying particular attention to a spe-
cial case of D → 0.

For the constraint to bind, the gross interest rate 1+ rt+1 must be lower than the return
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from capital RK
t+1 and the return from land PX,t+1+D

PX,t
. From (6), we can obtain

RK
t+1 − (1 + rt+1) =

1 − θ

1 − θX

[
PX,t+1 + D

PX,t
− (1 + rt+1)

]
.

Thus, with θ < 1 and θX < 1, if the return from capital is greater than the gross interest
rate, so is the return from land, and vice versa. Also from (6), we can obtain

RK
t+1 − (1 + rt+1) =

1 − θ

θX − θ

(
RK

t+1 −
PX,t+1 + D

PX,t

)
.

This implies that when θ < θX < 1, the borrowing constraint binds if and only if RK
t+1 >

PX,t+1+D
PX,t

When the economy in H-state at periot t + 1, RK
t+1 = A. Since the dynamics of PX,t is

characterized by 8, the return from land is

PX,t+1 + D
PX,t

=
CKRK

t+1PX,t + CPD + D
PX,t

= CK A +
(1 + CP) D

PX,t
.

The borrowing constraint binds if and only if

(1 − CK) A − (1 + CP) D

CP

(
AKt

1
X
+ D

) > 0.

Note that Kt increases over time when CK A > 1. In this case, the borrowing constraint
binds for all t if the inequality holds at t = 0.

In the long run, the economy converges to a steady state under L-state. In L-state,

RK
t+1 = αAK

(1−ϕ)(α−1)
t+1 , and

Kt+1 = CKαAK
(1−ϕ)(α−1)
t Kt + CKDX.

In the limit of D → 0, the steady state capital, KSS, is given by

KSS = (CKαA)
1

(1−ϕ)(1−α) .

The return from capital in the steady state with the limit of D → 0 is

RK
SS = C

(1−ϕ)(α−1)

(1−ϕ)(1−α)

K (αA)
(1−ϕ)(α−1)

(1−ϕ)(1−α)
+1

=
1
CK

.
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Since the return from land in the steady state with D → 0 is one, the borrowing constraint
binds in the steady state if and only if CK < 1. This always holds because of (20). Hence,
the borrowing constraint always binds in the steady state at the limit of D → 0.

B An Alternative Model

We provide the existence of a bubble in an alternative model where savers also have
access to land investment. We consider an equilibrium where entrepreneurs borrow from
savers and invest only in capital, and savers invest in land and lend to entrepreneurs. The
equations characterizing the equilibrium are

Kt+1 + PX,tX = β
[

RK
t Kt + (PX,t + D) X

]
,

Kt+1 =
1

1 − θ
βπ
[

RK
t Kt + (PX,t + D) X

]
,

and
PX,t+1 + D

PX,t
= 1 + rt+1.

The first equation is the resource constant. This resource constraint is unchanged from
the model in Section 3. The second equation represents the optimal saving decision by
entrepreneurs. In the equilibrium we consider with this alternative model, entrepreneurs
invest only in capital because the return from capital investment is strictly greater than
the return from land. The third equation is the non-arbitrage condition of savers. The
return from land investment equals to the retun from lending, so that the savers engage in
both lending and land investment. With this third equation and the return from capital is
greater than the interest rate, it is optimal for entrepreneurs to borrow up to the borrowing
limit without investing in land, leading to the second equation.

We can write the solution of the alternative model in a very similar way as we did in
Section 3. The solution for PX,t and Kt is

PX,t = ĈP

[
RK

t Kt + DX
] 1

X

and
Kt+1 =

βπ

(1 − β) (1 − θ) + βπ

[
RK

t Kt + DX
]

,

where ĈK := βπ
(1−β)(1−θ)+βπ

and ĈP := β(1−θ−π)
(1−β)(1−θ)+βπ

. In a recursive form, the solution for
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PX,t is
PX,t+1 = ĈKRK

t+1PX,t + ĈPD.

Thus, this alternative model has a very similar structure to the model in Section 3. The
only difference is that CK becomes ĈK and CP becomes ĈP. This observation leads to the
following proposition.

Proposition 7. When 1 < ĈK A, the unique equilibrium in the alternative model contains a
bubble. When ĈK A < 1, the unique equilibrium in the alternative model does not contain a
bubble.

In this alternative model, entrepreneurs, who borrow from savers, do not invest in
land. As a result, leverage for land, θX, has no effect. In reality, θX seems crucial in deter-
mining the dynamics. For θX to have an effect, we need to consider the model presented
in Section 3.

If this economy permanently stays at H-state, the following relation holds in the limit:

1 + r = 1 + gY = ĈK A < A = RK.

In other words, the interest rate is equal to the growth rate of the economy. This is dif-
ferent from the relation (21) in Section 3 and inconsistent with the U.S. data where the
interest rate is lower than the economic growth rate. The model presented in Section 3
gives a better prediction than the alternative model in this aspect.

C Discounting

Since (10) and (11) hold for all t > 0, the following equation holds:

P (ϕ1 = 1, . . . , ϕt+1 = 1)
RK
(H),t+1 −

(
1 + r(H),t+1

)
θ

1 − θ
E

[
1

c(H),i,t+1

]

+ P
(

ϕ1 = 1, . . . , ϕt = 1, ϕt+1 = ϕ
) RK

(L,t),t+1 −
(

1 + r(L,t),t+1

)
θ

1 − θ
E

[
1

c(L,t),i,t+1

]

+ · · ·+ P
(

ϕ1 = 1, ϕ2 = ϕ
) RK

(L,1),t+1 −
(

1 + r(L,1),t+1

)
θ

1 − θ
E

[
1

c(L,1),i,t+1

]

= P (ϕ1 = 1, . . . , ϕt+1 = 1)

P(H),X,t+1+D
P(H),X,t

−
(

1 + r(H),t+1

)
θX

1 − θX E

[
1

c(H),i,t+1

]
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+ P
(

ϕ1 = 1, . . . , ϕt = 1, ϕt+1 = ϕ
) P(L,t),X,t+1+D

P(H),X,t
−
(

1 + r(L,t),t+1

)
θX

1 − θX E

[
1

c(L,t),i,t+1

]

+ · · ·+ P
(

ϕ1 = 1, ϕ2 = ϕ
) P(L,1),X,t+1+D

P(H),X,t
−
(

1 + r(L,1),t+1

)
θX

1 − θX E

[
1

c(L,1),i,t+1

]
,

where P is a probability operator and the expectation is over idiosyncratic type shock.
This equality is equivalent to

E

[
RK

t+1 − (1 + rt+1) θ

1 − θ

1
ci,t+1

|ϕ0 = 1, ϕ1 = 1

]
= E

 PX,t+1+D
PX,t

− (1 + rt+1) θX

1 − θX
1

ci,t+1
|ϕ0 = 1, ϕ1 = 1

 ,

where the expectation is over idiosyncratic type shock and aggregate spillover shock.
This equality is the non-arbitrage condition for the portfolio choice at period t solved at
period 0.
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