Smooth Diagnostic Expectations

Francesco Bianchi JHU, CEPR & NBER Cosmin Ilut Duke & NBER Hikaru Saijo UC Santa Cruz

Introduction: representativeness and time-series

Kahneman & Tversky (1972) representativeness heuristic

- Memory overweights events/types associated with ("representative" of) new info

This paper: extend the cognitive insight into time-series/macroeconomic environment

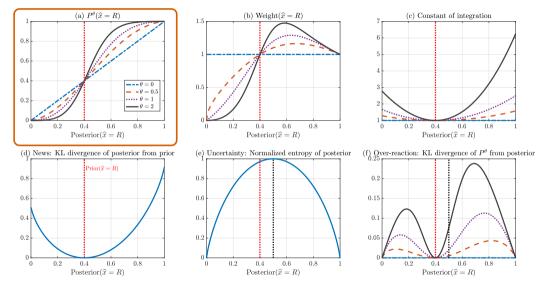
- Distinct role of news and uncertainty in shaping representativeness
- "Smooth" version of Diagnostic Expectations (DE) by Bordalo, Gennaioli, Shleifer
- Tight connection between uncertainty, over-reaction, over-confidence

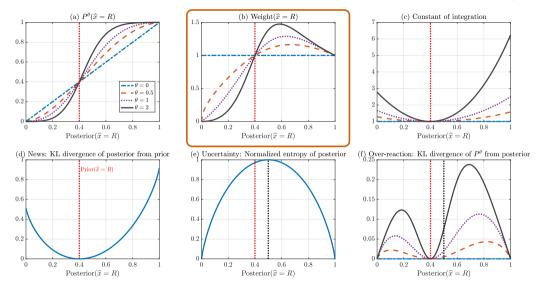
Introduction: macroeconomic implications

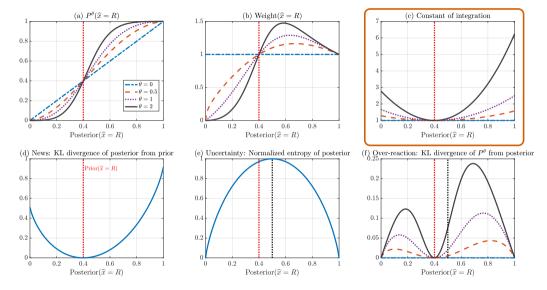
Parsimonious account for stylized properties of surveys

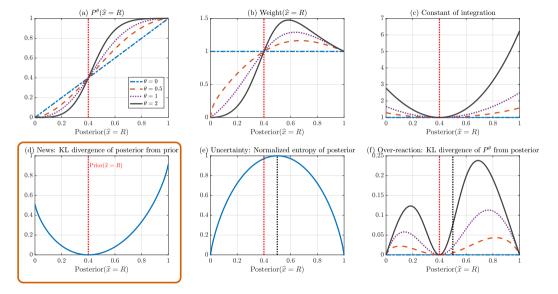
- Stronger over-reaction for longer forecast horizons (Bordalo et al. 2019, D'Arienzo, 2019, Augenblick et al. 2021)
- Joint explanation for over-reaction and over-confidence (Altig et al. 2020, Barrero, 2022, Born et al. 2022)

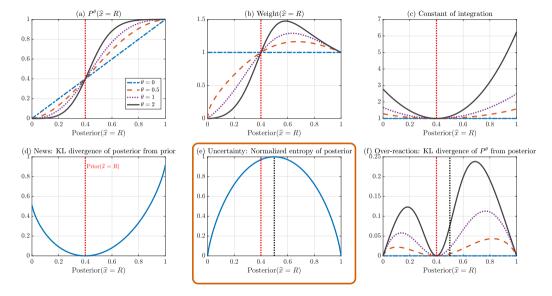
Real Business Cycle model with Smooth DE

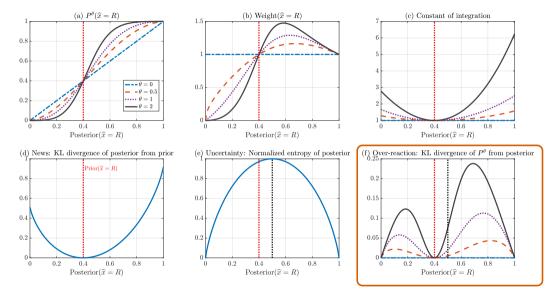

- Representativeness: propagation & amplification mechanism for uncertainty shocks
 - Asymmetry, countercyclical micro volatility, countercyclical macro volatility from state-dependent over-reaction w/o other frictions
 - (Perceived uncertainty increase) >> (actual uncertainty increase) by more than $\times 3$
- Policy that reduces uncertainty has first-moment effects
- Tractable & portable solution method


- Representativeness of a trait \hat{x} for a group G, given the reference group -G (Gennaioli and Shleifer, 2010):


$$\frac{P(\widehat{x}|G)}{P(\widehat{x}|-G)}$$


- Distorted probability of a person's hair color being red ($\hat{x} = R$):


$$\begin{split} P^{\theta}(\widehat{x} = R) &= \mathsf{Posterior}(\widehat{x} = R) \mathsf{Weight}\,(\widehat{x} = R), \\ \mathsf{Weight}\,(\widehat{x} = R) &= \left(\frac{\mathsf{Posterior}(\widehat{x} = R)}{\mathsf{Prior}(\widehat{x} = R)}\right)^{\theta} \frac{1}{Z} \\ &= \left(\frac{P(\widehat{x} = R|\mathit{Irish})}{P(\widehat{x} = R|\mathit{Unknown})}\right)^{\theta} \frac{1}{Z} \end{split}$$



Representativeness in time series

- Diagnostic Expectations (DE): Bordalo, Gennaioli & Shleifer, 2018 (BGS)

$$f^{\theta}\left(\widehat{x}_{t+1}|\mathcal{I}_{t}\right) = f\left(\widehat{x}_{t+1}|\mathcal{I}_{t}\right) \left[\frac{f\left(\widehat{x}_{t+1}|\mathcal{I}_{t}\right)}{f\left(\widehat{x}_{t+1}|\mathcal{I}_{t}^{ref}\right)}\right]^{\theta} \frac{1}{Z}$$

- Representativeness induces distorted conditional density $f^{\theta}\left(\widehat{x}_{t+1}|\mathcal{I}_{t}\right)$ if $\theta>0$
 - $f(\widehat{x}_{t+1}|\mathcal{I})$: true density over future event \widehat{x}_{t+1} , given info set \mathcal{I}
 - Current group: current info set \mathcal{I}_t
 - Reference group: reference info set $\mathcal{I}_t^{ref} \subseteq \mathcal{I}_t$ to define current representativeness
- Our approach: reference = whole information set available $J \ge 1$ periods ago

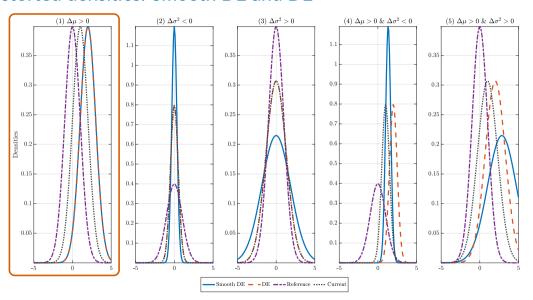
$$\mathcal{I}_t^{ref} = \mathcal{I}_{t-J}$$

Prior information as the reference density

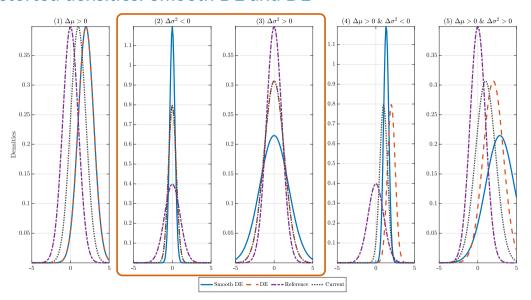
- Let true (RE) densities be (normals help with tractability)

Posterior:
$$f(\widehat{x}_{t+1}|\mathcal{I}_t) = \mathcal{N}(\widehat{x}_{t+1}; \mu_t, \sigma_t^2)$$

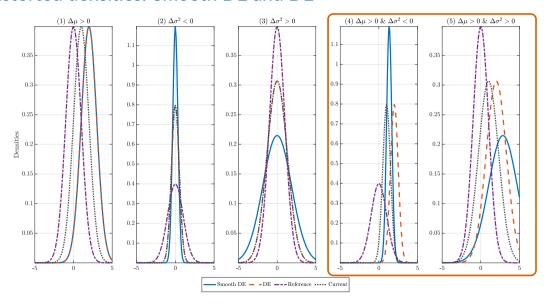
Prior:
$$f(\widehat{x}_{t+1}|\mathcal{I}_{t-J}) = \mathcal{N}(\widehat{x}_{t+1}; \mu_{t-J}, \sigma_{t-J}^2)$$

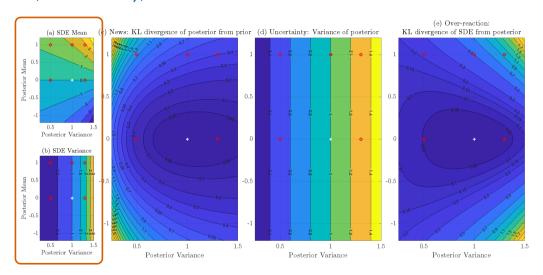

- Forming reference density $f\left(\widehat{x}_{t+1}|\mathcal{I}_{t}^{ref}\right)$:
 - 1. Smooth DE: we let $\mathcal{I}_{t}^{ref} = \mathcal{I}_{t-J}$ then

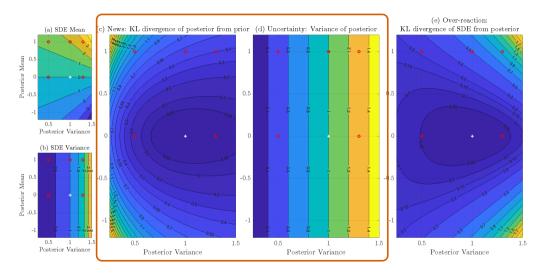
$$f\left(\widehat{\mathbf{x}}_{t+1}|\mathcal{I}_{t}^{ref}\right) = \mathcal{N}\left(\widehat{\mathbf{x}}_{t+1}; \mu_{t-J}, \sigma_{t-J}^{2}\right)$$

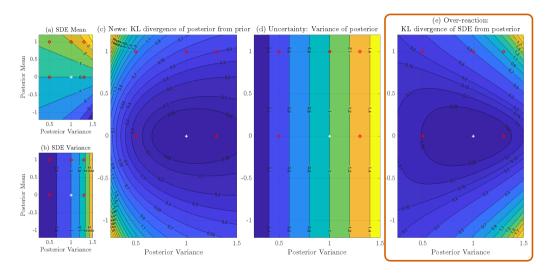

2. DE (BGS, Bianchi, Ilut and Saijo, 2024)

$$f\left(\widehat{x}_{t+1}|\mathcal{I}_{t}^{ref}\right) = \mathcal{N}\left(\widehat{x}_{t+1}; \mu_{t-J}, \sigma_{t}^{2}\right)$$


Distorted densities: Smooth DE and DE


Distorted densities: Smooth DE and DE


Distorted densities: Smooth DE and DE


News, uncertainty, and over-reaction: Normal distribution

News, uncertainty, and over-reaction: Normal distribution

News, uncertainty, and over-reaction: Normal distribution

Smooth Diagnostic Expectations

Proposition

Denote the ratio of variances for the current and reference groups as

$$R_t \equiv \sigma_t^2/\sigma_{t-J}^2$$

The Smooth DE density $f^{\theta}(\widehat{x}_{t+1})$ is Normal with conditional mean

$$\mathbb{E}_{t}^{\theta}\left(x_{t+1}\right) = \mu_{t} + \underbrace{\theta \frac{R_{t}}{1 + \theta\left(1 - R_{t}\right)}}_{\equiv \widetilde{\theta}_{t}}\left(\mu_{t} - \mu_{t-J}\right)$$

and conditional variance

$$\mathbb{V}_{t}^{\theta}\left(x_{t+1}\right) = \frac{\sigma_{t}^{2}}{1 + \theta\left(1 - R_{t}\right)}$$

Novel properties

Corollary

Compared to the RE forecast ($\theta = 0$), the Smooth DE forecast exhibits

- 1. Over-reaction of the conditional mean to new information, since $\tilde{\theta}_t > 0$
- 2. **Novel**: An effective over-reaction $\tilde{\theta}_t$ of the conditional mean that is increasing in the ratio R_t between current and past uncertainty
- 3. **Novel**: Over-confidence when $R_t < 1$, since

$$\mathbb{V}_{t}^{\theta}\left(x_{t+1}\right)<\sigma_{t}^{2}$$

or under-confidence when $R_t > 1$, since

$$\mathbb{V}_{t}^{\theta}\left(x_{t+1}\right) > \sigma_{t}^{2}$$

Parsimonious account for stylized properties of surveys

- 1. Stronger over-reaction for longer horizons $\mathbb{E}_t^{\theta}[x_{t+h}]$
 - Documented in
 - surveys: equity, interest rates (Bordalo et al. 2019, D'Arienzo, 2019)
 - field data: sports betting, equity index options (Augenblick et al. 2021)
 - Smooth DE: New info less informative for longer horizons h
- 2. Over-confidence in subjective uncertainty (over-precision)

$$\mathbb{V}_t^{\theta} < \sigma_t^{\mathbf{2}}$$

- Typical stationary process: new info reduces uncertainty $\sigma_t^2 < \sigma_{t-1}^2$
 - can be reverted under uncertainty shocks (e.g., volatility changes)
- Survey evidence: Altig et al. 2020, Barrero, 2022, Born et al. 2022

Here representativeness \rightarrow jointly over-reaction & (typically) over-confidence

RBC model with Smooth DE

- Continuum of islands $i \in [0, 1]$:

$$U(c_{i,t}, h_{i,t}) = \frac{c_{i,t}^{1-\gamma}}{1-\gamma} - \beta \frac{h_{i,t}^{1+\eta}}{1+\eta}$$

Production/resource constraint (labor in advance)

$$c_{i,t} = y_{i,t} = \exp(z_{i,t})h_{i,t-1}$$

- Technology: AR(1) aggregate + i.i.d. island-specific

$$z_{i,t+1} = A_{t+1} + a_{i,t+1}$$

- Predictable component (known in advance) $s_{i,t} \sim N(0, \sigma_s^2)$ + unpredictable component $u_{a,i,t+1} \sim N(0, \sigma_{a,t}^2)$

$$a_{i,t+1} = s_{i,t} + u_{a,i,t+1}$$

Volatility $\sigma_{a,t}$ increases when A_t innovation negative (Bloom 2009)

Smooth DE solution

- Optimal labor supply (naïveté approach, Bianchi, Ilut and Saijo, 2024)

$$\eta \widehat{h}_{i,t} = \mathbb{E}_{i,t}^{\theta} \left(-\gamma \widehat{c}_{i,t+1}^{RE} + z_{i,t+1} \right)$$

- Equilibrium hours

$$\widehat{h}_{i,t} = \frac{1-\gamma}{\eta+\gamma} \mathbb{E}_{i,t} z_{i,t+1} + \frac{\widetilde{\theta}_t}{\eta+\gamma} \left(\mathbb{E}_{i,t} z_{i,t+1} - \mathbb{E}_{i,t-J} z_{i,t+1} \right)$$

- Hours increase with positive news if substitution effect is strong enough ($\gamma^{-1} > 1$)
- Higher uncertainty in recessions $(\sigma_{a,t}^2 \uparrow)$
 - ightarrow higher endogenous & exogenous conditional uncertainty $\mathbf{V}_{i,t}\left(-\gamma\widehat{c}_{i,t+1}^{RE}+z_{i,t+1}
 ight)$
 - \rightarrow larger over-reaction θ_t to news

Business cycle implications

1. Asymmetry

Negative economy-wide TFP shock \rightarrow negative news and higher uncertainty

ightarrow larger over-reaction ightarrow recessions sharper than expansions

2. Countercyclical micro volatility

Larger over-reaction to idiosyncratic shocks in recessions

 \rightarrow Cross-sectional variance of actions higher in recessions

3. Countercyclical macro volatility

Larger over-reaction to economy-wide shocks in recessions

→ Time-series variance higher in recessions

4. Amplification of uncertainty shocks

Tail events become more representative

 \rightarrow (Perceived uncertainty increase) >> (actual uncertainty increase)

Policy implications & calibration

Policy implication

- Policy that reduces micro uncertainty (eg. redistribution depending on $a_{i,t+1}$)
 - o lower equilibrium micro uncertainty o lower $\widetilde{ heta}_t$ o stabilize macroeconomy

Calibration

- Idiosyncratic uncertainty $\sigma_{a,t}$ rises by 10% in recessions (Bloom, Floetotto, Jaimovich, Saporta-Eksten and Terry 2018, Ilut, Kehrig and Schneider 2018)
- Set long-run diagnosticity $\widetilde{\theta}$ and idiosyncratic shocks σ_a , σ_s to match survey & micro/macro moments $\overline{}$
 - Calibrated $\widetilde{\theta} = 1.54$: in line with other studies

Untargeted survey moments

Table: Over-reaction and over-confidence

	(1)	(2)	(3)	(4)
	$F_t(\Delta y_{i,t+4 t}) - \Delta y_{i,t+4 t}$	Absolute forecast error		
	on $\Delta y_{i,t t-1}$	Realized	Subjective	Subjective Realized
Data (Barrero 2022)	0.173	0.143	0.023	0.16
Model	0.095	0.143	0.017	0.12

Business cycle implications

- Countercyclical micro and macro volatilities

(1)	(2)	(3)	(4)			
Data	Smooth DE	DE	RE			
A. Cross-sectional standard deviation of labor growth						
1.16	1.12	1	1			
B. Volatility of aggregate labor growth						
1.23	1.22	1	1			
	Data I deviat 1.16	Data Smooth DE I deviation of labor gr 1.16 1.12 bor growth	Data Smooth DE DE deviation of labor growth 1.16 1.12 1 bor growth			

- (Perceived uncertainty increase) >> (actual uncertainty increase): In recessions
 - Perceived uncertainty $\mathbb{V}^{\theta}_{i,t}\left(-\gamma \widehat{c}_{i,t+1}+z_{i,t+1}\right)$ rises by 69%
 - Realized uncertainty $\mathbb{V}_{i,t}\left(-\gamma\widehat{c}_{i,t+1}+z_{i,t+1}\right)$ rises by 19%

Conclusion

- Tractable application of the representativeness logic to time series
 - Distinct role of news and uncertainty in shaping over-reaction
 - Tight connection between uncertainty, over-reaction, over-confidence
- Parsimonious account for stylized properties of surveys
- RBC model with Smooth DE
 - Representativeness as a propagation mechanism for uncertainty shocks

Additional slides

Table: Internally calibrated parameters and targeted moments

Par	ameters	Targeted moments			
			Data	Model	
σ_{a}	0.022	Realized absolute forecast error	0.143	0.143	
σ_{s}	0.027	Residual uncertainty	0.41	0.41	
$\widetilde{ heta}_{oldsymbol{s}}$	1.547	Skewness of aggregate hours	-0.21	-0.21	

