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Abstract

We introduce “smooth diagnosticity.” Under smooth diagnosticity, agents overreact

to new information defined as the difference between the current information set and a

previous information set. Since new information typically changes not just the condi-

tional mean, but also the conditional uncertainty, changes in uncertainty surrounding

current and past beliefs affect the severity of the Diagnostic Expectations (DE) dis-

tortion. Smooth DE nests the baseline DE of Bordalo et al. (2018) and implies a joint

and parsimonious micro-foundation for various properties of survey data: (1) overre-

action of conditional mean to news, (2) stronger overreaction for weaker signals and

longer forecast horizons, and (3) overconfidence in subjective uncertainty. We embed

Smooth DE in an analytical RBC model. The model accounts for overreaction and

overconfidence in surveys, as well as three salient properties of the business cycle: (1)

asymmetry, (2) countercyclical micro volatility, and (3) countercyclical macro volatility.
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1 Introduction

There has been a growing interest in psychological foundations that enrich models of belief

formation in economics. A prominent example is the “representative heuristic” of Kahneman

and Tversky (1972), which serves as the underpinning of a recent and expanding literature

on the paradigm of Diagnostic Expectations (DE). According to this heuristic, when new

information arrives, as measured with respect to a reference distribution based on past data,

memory selectively recalls more vividly past events that are more associated with, or repre-

sentative of, that current news. Models of DE formalize the details on how memory retrieval

distorts the subjective probability of uncertain events away from its objective, “kernel of

truth,” frequency (see Bordalo et al. (2022) for an overview).

One immediate manifestation of the kernel of truth logic is that when the new information

completely eliminates uncertainty over the variable to be forecast, there is objectively no

room for memory to distort conditional judgements (Gennaioli and Shleifer (2010)). While

in existing DE models this logic holds in its extreme version of no conditional uncertainty,

the literature has so far not captured a “smoothed” version of the same intuition, namely

that the severity of the DE distortion might depend on conditional uncertainty.

Smooth Diagnostic Expectations. We contribute to the theoretical development of

the DE paradigm by providing a framework that captures such “smooth diagnosticity”.

Under the Smooth Diagnostic Expectations (Smooth DE) framework, agents overreact to

new information defined as the difference between the current information set and a previous

information set. Since new information typically changes not just the conditional mean,

but also the conditional uncertainty, changes in uncertainty surrounding current and past

beliefs affect the extent of the DE distortion. This is a minimal, but conceptually important

change to the baseline DE paradigm developed by Bordalo et al. (2018) (BGS) and it aligns

well with the original “representative heuristic” of Kahneman and Tversky (1972). In the

BGS formulation, the reference distribution is centered on the conditional mean under the

true density formed at some given past time, but shares the same uncertainty as the true

distribution conditional on current information. Instead, since we condition exclusively on

the past information set, the reference distribution reflects the level of uncertainty at that

past time in which expectations were formed, as opposed to the current level of uncertainty.

When the current and reference distributions are Normal, the baseline BGS formulation

delivers a distorted distribution that is also Normal, but in which only the mean is affected by

DE. In comparison, under Smooth DE we uncover two key novel properties of the distorted

distribution. First, the severity of the Smooth DE distortion decreases as the current level

of uncertainty decreases compared to past uncertainty. Put differently, we obtain a smooth
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version of the logic expressed by Gennaioli and Shleifer (2010), as now an agent is less prone

to overreact to the new information the more precise the current information is with respect

to past information. In the limit, as uncertainty is fully resolved by the new information,

the distortion vanishes, as in the baseline DE. However, with Smooth DE, the extent of the

distortion varies smoothly as current uncertainty increases with respect to past uncertainty,

while the baseline DE features a discontinuity once current uncertainty goes to zero.

Second, Smooth DE delivers a disconnect between the objective and subjective level of

uncertainty. This is because under Smooth DE, not only the mean, but also the variance of

the DE distribution is distorted. When agents experience a reduction in uncertainty with

respect to the reference distribution, agents over-state the precision of their forecasts, leading

to overconfidence. In other words, in that case the DE distribution features a variance lower

than under RE. Given that typically events close in the future are easier to predict than

events far into the future, agents’ beliefs will typically feature such overconfidence. However,

the Smooth DE paradigm can also accommodate underconfidence following an increase in

uncertainty, like in response to an uncertainty shock (Bloom (2009)).

We incorporate Smooth DE within a signal extraction environment, by extending the

Diagnostic Kalman filter of Bordalo et al. (2019). This application is particularly interesting

because by allowing for imperfect information, we can study how the degree of overreaction

and confidence varies with the degree of uncertainty due to learning about the underlying

state. Under the Smooth Diagnostic Kalman filter, the posterior mean features overreaction

to news, as in the original Diagnostic Kalman filter. However, under Smooth DE the de-

gree of overreaction depends on the level of current uncertainty (posterior variance) about

the hidden state relative to past uncertainty (prior variance). Furthermore, compared to

the Bayesian forecast, the conditional forecast implied by the Smooth Diagnostic Kalman

Filter systematically exhibits not only (a) overreaction of the conditional mean, but also

(b) overconfidence: The subjective uncertainty is lower than the corresponding Bayesian

uncertainty.

A parsimonious micro-foundation for survey evidence. As the traditional DE, Smooth

DE is characterized by a primitive stochastic environment and two parameters controlling

(i) the severity of the distortion, θ > 0, and (ii) the lag of the reference distribution, J ≥ 1.

Thus, Smooth DE makes use of no additional degree of freedom. Instead, by allowing the

reference distribution to be based only on the information set available at some given past

time, the kernel of truth logic endogenously generates predictions for the effective distortion.

Under Smooth DE, the primitive parameter θ > 0 measures the severity of the DE distor-

tion for a given level of relative uncertainty, while the effective severity changes with the

relative uncertainty. These disciplined predictions allow Smooth DE to offer a parsimonious
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micro-foundation for a wide range of stylized facts.

The novel property that the effective overreaction to news is stronger when relative un-

certainty is higher helps to account for two sets of stylized survey facts. First, overreaction

increases with the horizon of the survey forecast (see for example Bordalo et al. (2019),

d’Arienzo (2020), Bordalo et al. (2020), Augenblick et al. (2021), and Bordalo et al. (2023)).

Here we start by noting that for standard stationary processes the same piece of information

is less informative about horizons further in the future. Critically, under Smooth DE this rel-

atively smaller reduction in conditional uncertainty leads to a relatively stronger overreaction

to news for longer horizons forecasts, consistent with the stylized findings.

Second, Augenblick et al. (2021) document that compared to Bayesian forecasts, decision-

makers overreact to weaker signals while underreacting to stronger signals. To connect to

these findings, we build into our proposed Smooth Diagnostic Kalman Filter a simple form

of subjective attention noise perceived by the agent, which in isolation is a force towards

underreaction compared to the econometrician’s forecast. We show how the overreaction

produced by the representativeness force behind Smooth DE can be relatively stronger than

the cognitive noise effect for weaker signals, but not for stronger signals, leading to measured

overreaction for the former, but underreaction for the latter. The key mechanism is again

that, under Smooth DE, stronger signals reduce agent’s conditional uncertainty more than

weaker signals, dampening the impact of representativeness on forecasts.

The property that Smooth DE implies a disconnect between subjective and measured

uncertainty makes the proposed framework relevant for a separate literature on overconfi-

dence. Recent work documents that in survey data firms (i) overreact to news and (ii) are

overconfident in their subjective forecasts (see, among others, Barrero (2022), Born et al.

(2022), and the reviews in Altig et al. (2020) and Born et al. (2022)). While the baseline DE

model can account for overreaction, it is silent on overconfidence. Smooth DE can instead

account for both these seemingly separate properties since it distorts both the mean and

the variance of agents’ expectations in a way to typically generate both overreaction and

overconfidence.

More broadly, the overreaction and overconfidence properties have been typically stud-

ied in the literature as two distinct behavioral departures from full rationality (see Barberis

(2018) for an overview). While overreaction has been typically the focus on the standard

DE literature, a separate literature (including for example De Bondt and Thaler (1995) and

Daniel et al. (1998, 2001)) is motivated by extensive psychological evidence for overconfi-

dence and argues that models based on this behavioral property are promising in accounting

for asset market puzzles. Our results elucidate that Smooth DE can offer a joint micro-

foundation, based on the representativeness heuristic, of these two-widely documented and
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studied departures from standard Bayesian updating.

Business cycle implications. We leverage our theoretical insights to study a parsimonious

business cycle model with time-varying uncertainty to illustrate how state-dependent over-

reactions from Smooth DE generate important cyclical implications. We consider an island

economy subject to economy-wide and island-specific TFP shocks. Following Bloom et al.

(2018), we assume that the island-specific TFP shocks are subject to time-varying volatil-

ity that is negatively correlated with economy-wide TFP innovations. We show that this

parsimonious model can account for Barrero (2022)’s survey evidence on overreaction and

overconfidence, as well as three key empirical properties of the business cycle: (1) asymmetry

(recessions are deeper than expansions), (2) countercyclical micro volatility (cross-sectional

variances of microeconomic variables rise in recessions), and (3) countercyclical macro volatil-

ity (time-series variances of macroeconomic variables rise in recessions).1

First, consider the asymmetry property. A negative economy-wide TFP shock generates

higher uncertainty about the island-specific TFP shocks. Hence, agents overreact to the

economy-wide TFP shock more than usual, leading to a sharper fall in hours, consump-

tion, and output. In contrast, a positive TFP shock reduces agents’ uncertainty, and the

rise in economic activity is mild. Second, consider countercyclical micro volatility. In re-

cessions, agents face higher uncertainty, so they overreact to the island-specific TFP and

as a result, the cross-sectional variances of island-level hours, output, and consumption

increase. Conversely, during expansions, agents’ overreactions are milder, and hence the

cross-sectional dispersion decreases. Third, consider countercyclical macro volatility. The

state-dependent overreaction implies that in recessions, economic activity responds strongly

to an economy-wide shock to TFP, while in expansions the responses are more muted. As

a result, the aggregate volatility rises in recessions even when there is no change in the

volatility of economy-wide shocks. These mechanisms highlight that the micro-level uncer-

tainty and macroeconomic volatility are tightly linked through the agent’s state-dependent

overreaction. As a result, a novel policy implication emerges: a redistributive policy that re-

duces idiosyncratic uncertainty could be beneficial for macroeconomic stabilization because

it dampens this state-dependent overreaction.

Outline. In Section 2, we derive the Smooth DE density and discuss its properties. In Sec-

tion 3, we show how Smooth DE can serve as a joint and parsimonious micro-foundation for

various properties of survey data. In Section 4, we showcase the macroeconomic implications

1These properties have been extensively documented in the literature. For instance, Neftci (1984), Hamil-
ton (1989), Sichel (1993), McKay and Reis (2008), and Morley and Piger (2012) show macroeconomic asym-
metries using various econometric approaches. Bloom (2009), Fernández-Villaverde et al. (2011), Ilut et al.
(2018), Jurado et al. (2015), Basu and Bundick (2017), and Bloom et al. (2018) document that volatility or
uncertainty rise in recessions at the micro and macro levels.
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of Smooth DE using an analytical RBC model with time-varying uncertainty.

2 The Smooth Diagnostic Expectations density

Our starting motivation is the Gennaioli and Shleifer (2010) definition of representativeness

of a given trait x̂ for a group G as
f(x̂|G)

f(x̂| −G)
(1)

where−G is the reference group, and f(x̂|G) and f(x̂|−G) are true distributions. In building

this definition, Gennaioli and Shleifer (2010) explain in detail how representativeness can be

intuitively understood as the tendency to overweight representative traits, arising due to

limited memory and the fact that representative traits are easier to recall.

2.1 Discrete distributions

To understand how we connect to the original concept of representativeness in a time series

dimension, it is useful to first consider a series of simple examples. These examples are

based on discrete distributions and are meant to illustrate how in rich settings, the whole

distribution contributes to pin down the level of overreaction to new information. Along the

way, we will also show how implicitly the support of the distribution and the level of detail

in the information and reference group contribute to shaping the level of overreaction. This

will allow us to draw an explicit connection between the representativeness heuristic and

Smooth DE as developed below.

Two states. Consider a simple example in which x̂ is the hair color of a person. This

can assume only two values, “red” or “non-red/other”, which we denote as R and NR,

respectively. The numbers here are chosen to illustrate a series of key features of represen-

tativeness and are not necessarily reflecting the actual incidence of the hair color red in the

world population. In this first example, “−G” coincides with the information set available

to an agent before learning the nationality of a person. “G” is the information set once the

nationality is revealed. The agent subject to the representativeness heuristic distorts the

true probabilities by the following weights, where:

Weight (x̂ = i) =

(
Posterior(x̂ = i)

Prior(x̂ = i)

)θ
1

Z
, Z =

∑
i

Posterior(x̂ = i)

(
Posterior(x̂ = i)

Prior(x̂ = i)

)θ

,

where i = R,NR. Thus, the distorted probability of hair color being red is given by

P θ(x̂ = R) = Posterior(x̂ = R)Weight (x̂ = R) .
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Figure 1: News and uncertainty in a two-states discrete distribution

Notes: The figure displays how, as we vary the posterior probability of a red hair color (x̂ = R), the

following objects change: (a.1) the distorted probability of red hair, (a.2) the distorting weight on the red

hair probability, (b.1) the news component, measured using the KL divergence of the posterior distribution

from the prior distribution, (b.2) the uncertainty component, measured using the normalized entropy of the

posterior distribution, (c.1) the overall overreaction, measured using the KL divergence of the distorted

probability distribution from the posterior distribution, and (c.2) the normalized entropy of the distorted

probability distribution. We fix the prior probability of a red hair color at Prior(x̂ = R) = 0.4.

For instance, imagine “G = Irish.” In this case, Posterior(x̂ = i) = P (x̂ = i|Irish) and

Prior(x̂ = i) = P (x̂ = i|Unknown). The new information implies an objective increase in

the probability of the hair color being red. The red color becomes more representative of

the Irish population, and, as a result, the agent subject to the representativeness heuristic

distorts the true probabilities of a red hair color by

Weight (x̂ = R) =

(
P (x̂ = R|Irish)

P (x̂ = R|Unknown)

)θ
1

Z
.

We are interested in how the distorted probability distribution and its distance (appro-

priately defined) from the true posterior distribution depend on the underlying probability

distributions. In Figure 1 (a.1), we plot the distorted probability P θ(x̂ = R) for different

values of Posterior(x̂ = R). The prior probability is set at Prior(x̂ = R) = 0.4. We also

plot P θ(x̂ = R) for different diagnosticity parameter values θ = 0, 1, 2. θ = 0 corresponds to
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the RE case where P θ(x̂ = R) = Posterior(x̂ = R). When the posterior is lower than the

prior, the distorted probability is lower than the posterior. Conversely when the posterior

is higher than the prior, the distorted probability is higher than the posterior. The magni-

tude of the difference between the distorted probability and the posterior is increasing in θ.

Finally, this difference is hump-shaped. The difference between the distorted and posterior

probabilities is the largest for intermediate values between the prior of 0.4 and the lower and

upper bounds (0 and 1). Figure 1 (a.2) reports how the distorting weight, Weight (x̂ = R),

is non-monotonic in the posterior: the weight is increasing from Posterior(x̂ = R) = 0 to

some intermediate value between Prior(x̂ = R) = 0.4 and then start decreasing. Mathemat-

ically this is because the constant of integration Z in the distorting weight becomes larger

as posterior probability of red hair approaches 1. Intuitively, as the posterior becomes more

certain towards one type, the room for distortion becomes smaller as the total probability

has to sum to 1. This is the first observation indicating not only the revision of posterior

from the prior, but also uncertainty, matter for the representativeness distortion.

In panel (b.1), we measure the size of the news component: the size of the revision of the

posterior distribution from the prior distribution by computing the Kullback–Leibler (KL)

divergence of the two distributions:

KL(Posterior||Prior) =
∑
i

Posterior(x̂ = i) ln

(
Posterior(x̂ = i)

Prior(x̂ = i)

)
.

The KL divergence is U-shaped, with KL = 0 when the posterior distribution is equal to the

prior distribution. Panel (b.2) plots normalized entropy, which is our measure of posterior

uncertainty. The normalized entropy of posterior distribution is given by

Ω(Posterior) = −
∑

i Posterior(x̂ = i) ln Posterior(x̂ = i)

ln(2)
,

where the denominator ensures the entropy is between 0 and 1. The entropy shows an

inverted U-shape and peaks when the posterior is 50:50. Panel (c.1) shows the degree of

overreaction, as measured by the KL divergence between the distorted distribution and

the posterior distribution: KL(P θ||Posterior). The degree of overreaction again shows two

humps: a smaller one that peaks at the intermediate value between 0 and Prior(x̂ = R) = 0.4

and a larger one that peaks at the intermediate value between Prior(x̂ = R) = 0.4 and 1.

The two humps are the result of the interaction between news and uncertainty effects, which

both magnify overreaction, but display different patterns (U- and inverted U-shape). The

sizes of the two humps are different because the trough of the news component and the

model point of the uncertainty effect do not coincide. Finally, panel (c.2) considers the
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normalized entropy of the distorted distribution P θ. Lower entropy relative to the posterior

distribution means overconfidence; the agent is too certain about the hair color compared to

the true distribution. Indeed, the entropy of the distorted distribution exhibits bell-shapes,

rather than an inverted U-shape like for the posterior, indicating overconfidence except for

the posterior probability around 0.5. There, since the posterior entropy is larger than the

entropy at the prior of 0.4, the agent exhibits underconfidence. The degree of overconfidence

is more severe for the posterior on the right tail (Posterior(x̂ = R) > 0.6) than the posterior

on the left tail (Posterior(x̂ = R) < 0.4). This is because the news effect is larger for the

posterior on the right tail than that on the left tail. To summarize the discussion on Figure

1, the two-states example shows news and uncertainty both interact in a rich manner to

determine the overall degree of overreaction and overreaction.

Three states. Consider instead of two hair colors, suppose there are “red”, “blond”, and

“dark” hair colors, denoted by R, B, and D, respectively. We consider a prior equally split

between R and B so that Prior(x̂ = R) = Prior(x̂ = B) = 0.2 and Prior(x̂ = D) = 0.6. This

three-states example is instructive because posterior probabilities of R and B jointly deter-

mine the news and uncertainty component, thus underscoring the importance of the proba-

bility distribution shaping the degree of overreaction. In Figure 2, we use contour plots to

examine how news and uncertainty affect the overall overreaction as we vary Posterior(x̂ = R)

and Posterior(x̂ = B) when θ = 2. To ease interpretation, we mark the coordinates corre-

sponding to the prior with white pluses, and the coordinates representing equal probabilities

for all three outcomes, P (x̂ = R) = P (x̂ = B) = P (x̂ = D) = 1/3, with red diamonds.

Panels (a.1) and (a.2) report the distorted probability and the weight associated with a red

hair color. As in the two-states example, the distorted probabilities overreact to the revi-

sion in the red hair probability from prior to posterior. The distorting weight of the red

probability peaks when Posterior(x̂ = R) takes an intermediate value between 0.2 and 1 and

Posterior(x̂ = B) takes an intermediate value between 0 and 0.2. Similarly, Panel (b.1) and

(b.2) report the distorting probability and the weight associated with a blond hair color.

Panel (c.1) displays the news component, measured as the KL divergence of the posterior

distribution from the prior distribution. The news component increases as the posterior

distribution moves away from the prior and peaks when either of the hair color outcomes

reaches certainty (Posterior(x̂ = R) = 1 or Posterior(x̂ = B) = 1). The uncertainty compo-

nent, reported in panel (c.2) peaks when the posterior distribution assigns equal probabilities

for all three outcomes. Panel (d.1) reports the KL divergence from the distorted probability

distribution to the posterior distribution. The overreaction displays twin peaks resembling

the double humps displayed in the two-states example. Note, however, that in the current

three-states example how the posterior probabilities are split matters for the overreaction.
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Indeed, the overreaction is mild as we increase both the posterior probabilities of red and

blond hairs simultaneously in equal proportions. Finally, panel (d.2) reports the normal-

ized entropy of the distorted distribution. Compared to the entropy of the posterior, the

entropy of the distorted distribution is smaller in most regions, indicating overconfidence

(except for the neighborhood of the prior and the coordinate representing equal probabilities

for all three outcomes). The overconfidence is most severe around the three corners of the

triangle, when the posterior puts most probability weights on one hair color. Intuitively, as

one specific hair color becomes more representative, the agent overestimates the probability

of that hair color and becomes too certain. As in the two-states example, this three-states

example thus underscores a nuanced but tight connection between news/uncertainty effects

and overreaction/overconfidence.

2.2 Representativeness and information sets

In order to model the representativeness heuristic into time-series, we mirror the logic of

equation (1), and interpret groups as different information sets. In particular, we define the

representativeness of a random event x̂t+h for some horizon h ≥ 0 periods in the future as

f (x̂t+h|It)

f
(
x̂t+h|Iref

t

)
where f (x̂t+h|I) is the true density given some arbitrary information set I. With respect to

the approach proposed by Gennaioli and Shleifer (2010) in equation (1), the current group

G is represented by the current information set It, and the reference group −G corresponds

to a reference information set Iref
t ⊆ It. The latter thus implicitly defines the current

representativeness of an event.

Using this definition of the representativeness of an event, we then build on the DE

formulation introduced in BGS to construct a conditional density f θ (x̂t+h|It) distorted by

representativeness, as

f θ (x̂t+h|It) = f (x̂t+h|It)

 f (x̂t+h|It)

f
(
x̂t+h|Iref

t

)
θ

1

Z
(2)

Here Z is a constant of integration and the parameter θ ≥ 0 measures the severity of the

distortion. When θ = 0, the agent’s memory retrieval is perfect and beliefs collapse to the

standard frictionless model. When θ > 0, memory is limited and the agent’s judgments are

shaped by representativeness.
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Figure 2: News and uncertainty in a three-states discrete distribution

Notes: The figure displays how, as we vary the posterior probability of red and blond hair colors (x̂ = R

and x̂ = B), the following objects change: (a.1) the distorted probability of red hair, (a.2) the distorting

weight on the red hair probability, (b.1) the distorted probability of blond hair, (b.2) the distorting weight

on the blond hair probability, (c.1) the news component, measured using the KL divergence of the posterior

distribution from the prior distribution, (c.2) the uncertainty component, measured using the normalized

entropy of the posterior distribution, (d.1) the overall overreaction, measured using the KL divergence of

the distorted probability distribution from the posterior distribution, and (d.2) the normalized entropy of

the distorted probability distribution. We mark the coordinates corresponding to the prior with white

pluses, and the coordinates representing equal probabilities for all three outcomes with red diamonds.

Our bridge between the representativeness heuristic of Kahneman and Tversky (1972)

and the time-series domain is then to define the reference information set as follows:

Assumption 1 Assume that the reference information set is the whole information set avail-

able J ≥ 1 periods ago: Iref
t = It−J .

Normal densities. To illustrate the specific and rich implications of this approach

we follow BGS and focus on normal densities. As it will soon become clear, this leads to

significant gains in tractability and in the range of possible applications. This is because

when the true density is Normal, expression (2) delivers a closed form solution. In particular,
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let the true densities conditional on the current and past information sets be:

f (x̂t+h|It) = N
(
x̂t+h;µt+h|t, σ

2
t+h|t

)
f (x̂t+h|It−J) = N

(
x̂t+h;µt+h|t−J , σ

2
t+h|t−J

)
Given Assumption 1, the reference group pinning down the current representativeness of

the event x̂t+h is then simply given by

f
(
x̂t+h|Iref

t−J

)
= N

(
x̂t+h;µt+h|t−J , σ

2
t+h|t−J

)
. (3)

2.3 Smooth DE

Under the proposed reference group given by equation (3), we obtain a closed form solution

in Proposition 1 below for the distorted density, which we refer to as Smooth Diagnostic

Expectations, or in a more abbreviated form as Smooth DE.

Proposition 1 (Smooth DE). Consider the reference group given by density in equation (3).

Denote the ratio of variances for the current and reference groups as

Rt+h|t,t−J ≡ σ2
t+h|t/σ

2
t+h|t−J (4)

If Rt+h|t,t−J < (1 + θ) /θ, the Smooth DE density f θ (x̂t+h) in equation (2) is Normal with

conditional mean

Eθ
t (xt+h) = µt+h|t + θ

Rt+h|t,t−J

1 + θ
(
1−Rt+h|t,t−J

) (µt+h|t − µt+h|t−J

)
(5)

and conditional variance

Vθ
t (xt+h) =

σ2
t+h|t

1 + θ
(
1−Rt+h|t,t−J

) (6)

Proof. See Appendix.

The condition Rt+h|t,t−J < (1 + θ) /θ guarantees that the variance of the resulting dis-

torted Normal distribution is finite and positive. As the ratio of conditional variances be-

tween the current and reference distribution approaches this limiting value, the variance of

the Smooth DE distribution approaches infinity and the corresponding Normal distribution

approaches a degenerate, flat distribution. Thus, the condition requires that the current

uncertainty with respect to a future event (σ2
t+h|t) is not too high with respect to the past
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uncertainty about the same event (σ2
t+h|t−J). The condition typically holds in stationary

environments with homoskedastic innovations in which events closer into the future are eas-

ier to predict than events far into the future. However, the condition also allows for the

possibility of an increase in uncertainty, for example as a result of heteroskedasticity, as long

as the increase is not too large with respect to the DE distortion.2

2.4 Standard DE

Under Normality, the assumption over the reference density in the denominator of equation

(2) implies that the Smooth DE framework differs from the original BGS formulation with

respect to the variance of the reference distribution. In BGS, the reference density uses

the mean conditional on the information set J periods ago, but shares the same conditional

uncertainty σt+h|t as the true density f (x̂t+h) conditional on the current information set:

Assumption 2 (BGS assumption) Assume that the density for the representative group is

f
(
x̂t+h|Iref

t

)
= N

(
x̂t+h;µt+h|t−J , σ

2
t+h|t

)
(7)

This BGS assumption delivers the following closed form standard DE density:

Proposition 2 (BGS implementation for DE). Consider the BGS assumption that the ref-

erence density is given by equation (7). When σ2
t+h|t > 0, the resulting DE density f θ (x̂t+h)

defined by equation (2) has a Normal distribution with mean:

Eθ
t (xt+h) = µt+h|t + θ

[
µt+h|t − µt+h|t−J

]
. (8)

and variance:

Vθ
t (xt+h) = σ2

t+h|t. (9)

When σ2
t+h|t = 0, the DE conditional mean Eθ

t (xt+h) collapses to µt+h|t.

Proof. See Bordalo et al. (2018).

2.5 Novel properties and comparison with standard DE

Smooth DE is characterized by three important properties, which we will connect to stylized

survey facts in Section 3. To understand these properties and the differences with the

2In Appendix B we discuss an approach that deals with this threshold condition by implementing an
upper bound on the Smooth DE overreaction in the conditional mean. The approach guarantees that both
the mean and variance distortions remain finite and non-decreasing as the ratio Rt+h|t,t−J goes to infinity.
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standard DE, it is helpful to define the effective overreaction of the conditional mean to

news in equation (5) as

θ̃t,t−J ≡ θ
Rt+h|t,t−J

1 + θ
(
1−Rt+h|t,t−J

) . (10)

Corollary 1 Assume the presence of residual uncertainty with respect to a future event:

σ2
t+h|t > 0. Compared to the RE forecast (θ = 0), the conditional forecast under Smooth DE

(θ > 0), characterized in Proposition 1, exhibits

1. overreaction of the conditional mean to new information, since

θ̃t,t−J > 0 (11)

2. an effective overreaction of the conditional mean to new information that is monoton-

ically increasing in the ratio Rt+h|t,t−J between current and past uncertainty

∂θ̃t,t−J

∂Rt+h|t,t−J

> 0 (12)

3. overconfidence when Rt+h|t,t−J < 1, since then by equation (6)

Vθ
t (xt+h) < σ2

t+h|t (13)

or underconfidence when Rt+h|t,t−J > 1, since then by equation (6)

Vθ
t (xt+h) > σ2

t+h|t. (14)

Novel properties. Under Smooth DE, we emphasize two types of novel properties

corresponding to the distorted conditional moments in Proposition 1 and their properties

emphasized in Corollary 1.

First, by equation (12), the severity of the mean distortion increases as the ratio Rt+h|t,t−J

of today’s uncertainty to past uncertainty increases. Smooth DE thus micro-founds an

inverse smooth link between overreaction of conditional mean to news and the (objective)

informativeness of the new information compared to the reference distribution. The latter

is captured by the ratio Rt+h|t,t−J : the more the new information reduces uncertainty σ2
t+h|t

(compared to σ2
t+h|t−J) the lower is the role of memory in distorting probability judgements,

and thus the lower is the effective overreaction to news. Conversely, everything else equal,

the larger today’s uncertainty, the larger the observed Smooth DE distortion. As we will

argue later in Section 3, this relationship between the conditional overreaction and the
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change in conditional uncertainty helps Smooth DE to produce forecast implications that

are consistent with a range of stylized facts documented by the survey literature. More

broadly, even if the parameter θ controlling the severity of the Smooth DE distortion does

not change, the observed deviations from rational expectations (RE) will change in response

to changes in policymakers’ behavior or perceived shifts in the size of the shocks. In this

sense, the parameter θ has a structural interpretation, robust to the Lucas (1976) critique.

Second, Smooth DE has important implications for the level of subjective confidence

that agents show with respect to their expectations. As summarized in Corollary 1, if

agents experience a reduction of uncertainty with respect to the reference distribution, so

that Rt+h|t,t−J < 1, Smooth DE implies a new property with respect to the original BGS

formulation, namely overconfidence, i.e. agents overstate the precision of their expectations.

Under this scenario, independently of the direction and size of the mean distortion, agents

are overconfident about the precision of their expectations. If agents do not experience a

change in uncertainty, Rt+h|t,t−J = 1, like in the BGS formulation, we do not observe a change

in confidence with respect to RE. Finally, if agents experience an increase in uncertainty, so

that Rt+h|t,t−J > 1, they will be less confident than the RE agents.

Nesting the original BGS formulation of DE. Our approach recovers the standard

BGS formulation in two cases. First, in the limit case of no conditional uncertainty. In

particular, note that in both approaches, with θ > 0, there is a distortion if and only if the

conditional variance σ2
t+h|t > 0. Intuitively, when σ2

t+h|t = 0, the conditional likelihood of

observing any other scenario for xt+h than the one the agent is now fully informed on (given

that there is no positive uncertainty) has become equal to zero. As noted by Gennaioli

and Shleifer (2010), the lack of such conditional (or “residual”) uncertainty leaves no room

for memory to distort conditional forecasts. In fact, our Proposition 1 formally nests that

limiting possibility, which would amount to Rt+h|t,t−J = 0 and thus effectively no distortion

even if θ > 0. In the BGS formulation that limit is imposed through a discontinuity at

σ2
t+h|t = 0: in the language developed in Bordalo et al. (2018), to compute Eθ

t (xt+h) the

realization xt+h constitutes its infinitely representative state (see appendix in Bordalo et al.

(2018) on Corollary 1), and the result is Eθ
t (xt+h) = µt+h|t. Instead, under Smooth DE the

effective overreaction θ̃t,t−J in equation (10) smoothly goes to zero as current uncertainty

goes to zero. Thus, the transition from distorted beliefs in the presence of uncertainty to

non-distorted beliefs absent uncertainty occurs smoothly in the framework proposed here,

as opposed to discontinuously, as in the original BGS formulation.3

3Smooth DE is built on the key informational difference between conditional (or posterior) and uncondi-
tional (prior) distribution information. In this sense, our approach relates to recent work in Bordalo et al.
(2020), which features a sampling by similarity framework that under conditional probability assessments
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Second, and more importantly, away from the zero conditional uncertainty case, in the

original BGS formulation the ratio Rt+h|t,t−J is always 1 because, by the BGS Assumption

2, the reference RE distribution differs from the current RE distribution only in terms of its

mean, implying that the ratio of today’s uncertainty to past uncertainty is always equal to

1. Thus, the proposed Smooth DE density nests the original specification of BGS. To see

this, note that if Rt+h|t,t−J = 1, the effective overreaction θ̃t,t−J = θ, and formulas (5) and

(6) collapse to their respective counterparts in equations (8) and (9).

2.6 Overreaction to new information and Smooth DE

At its heart, representativeness leads decision-makers to overreact to new information. Smooth

DE formalizes the interpretation of new information as a change in information sets. To fur-

ther understand Smooth DE, we rewrite the distorted conditional mean and variance in

Proposition 1 as a function of the revised information, as follows.

Corollary 2 (A revision representation). The Smooth DE density of Proposition 1 can be

represented as distorting the RE revisions in conditional mean and variance, as follows:

Eθ
t (xt+h)− µt+h|t−J︸ ︷︷ ︸
Smooth DE revision

=
(
µt+h|t − µt+h|t−J

)︸ ︷︷ ︸
RE revision

(1 + θ)︸ ︷︷ ︸
BGS effect

[
1 + θ

(
1−Rt+h|t,t−J

)]−1︸ ︷︷ ︸
Smooth DE effect

Vθ
t (xt+h)

σ2
t+h|t−J︸ ︷︷ ︸

Smooth DE revision

=
σ2
t+h|t

σ2
t+h|t−J︸ ︷︷ ︸

RE revision

[
1 + θ

(
1−Rt+h|t,t−J

)]−1︸ ︷︷ ︸
Smooth DE effect

This representation indicates how the revision in conditional moments under Smooth DE

can be decomposed as having three parts: (1) the RE revision, (2) an overreaction effect

from representativeness as assumed in the standard BGS implementation of DE, and (3) a

separate and novel effect stemming from Smooth DE.

In Figure 3 we use a series of illustrative examples to show the different effects at work

in Corollary 2.4 In the first row, we report the reference, current, DE, and Smooth DE

distributions. In the second row, we report the weights that capture the belief distortion

yields a result reminiscent of DE. In a similar spirit to Smooth DE, there it is also important to keep track
of the entire prior distribution, which plays a major role in memory interference.

4We use the following parameter values for the mean and variances of the current and reference distribu-
tions: µt+h|t−J = [0, 0, 0, 0, 0], µt+h|t = [1, 0, 0, 1, 1], σ2

t+h|t−J = [1, 1, 1, 1, 1], and σ2
t+h|t−J = [1, .5, 1.3, .5, 1.3].
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Figure 3: Smooth Diagnostic Expectations and standard Diagnostic Expectations densities

Notes: The figure is obtained using the following parameter values for the mean and variances of the

current and reference distributions: µt+h|t−J = [0, 0, 0, 0, 0], µt+h|t = [1, 0, 0, 1, 1], σ2
t+h|t−J = [1, 1, 1, 1, 1],

and σ2
t+h|t−J = [1, .5, 1.3, .5, 1.3].

under DE and under Smooth DE. These are computed as:

Weight (x̂t+h) =

(
N(x̂t+h;µt+h|t, σ

2
t+h|t)

N(x̂t+h;µt+h|t−J , σ
2
t+h|t)

)θ
1

Z
,

for the standard DE and

Weight (x̂t+h) =

(
N(x̂t+h;µt+h|t, σ

2
t+h|t)

N(x̂t+h;µt+h|t−J , σ2
t+h|t−J)

)θ
1

Z
,

for the Smooth DE.

Revision only in conditional mean. We first consider a case in which the reference

and current distributions only differ in terms of the mean: µt+h|t > µt+h|t−J and Rt+h|t,t−J =

1. This implies that the new information did not lead to any change in uncertainty. In this

case, Corollary 2 indicates that the additional Smooth DE effect is absent. Therefore, Smooth

DE and DE lead to the same distorted normal distribution, in which only the conditional

mean is distorted. Both the SDE and DE means are shifted to the right with respect to the
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current RE distribution by θ(µt+h|t − µt+h|t−J). The lower panel in the first column shows

that the weights increase as we move from left to right: The weights shift probability mass

to the right of the current density, lowering the probability assigned to events that became

less likely, and inflating the probability of events that became more likely. The weights keep

increasing as elements in the right tail of the current RE density became much more likely

to occur in relative terms. However, the RE probability of these events goes to zero faster

than the weights increase, preserving the normality of the SDE and DE distributions.

Revisions only in conditional uncertainty. In the second and third columns, we

consider two cases in which the reference and current distributions only differ in terms of

variance, while keeping µt+h|t = µt+h|t−J . Corollary 2 shows that the absence of a revision in

the RE conditional mean implies no revision in the distorted conditional mean, under both

Smooth and Standard DE. However, Corollary 2 also indicates that Smooth DE implies a

novel distortion in the revision of conditional uncertainty, that is absent under DE.

Specifically, in the second column the current RE distribution features a lower variance,

i.e σ2
t+h|t < σ2

t+h|t−J and thus Rt+h|t,t−J < 1. This case is typical for standard stochastic pro-

cesses when new information and a shorter time-horizon (i.e., h < h+J) lead to a reduction

of uncertainty and more precise forecasts. Under the standard BGS implementation of DE,

the change in variance does not lead to any change in the DE distribution. The weights are

uniformly equal to 1, as illustrated by the dashed line in the second row of column 2. Under

standard DE, the fact that events close to the mean, and the mean itself, became more

likely does not have any effect. Instead, under Smooth DE , the agent revises her beliefs in

light of the new information. She inflates the probability of the mean and the other events

that became more representative, while further downplaying the probability of events that

became less likely. The result is an even narrower distribution with respect to the current

RE distribution. As indicated in Corollary 2, under Smooth DE, the new information leads

to overreaction in terms of the decline in uncertainty and, as a result, to a novel implication:

overconfidence.

The third case considers a situation in which the current distribution has a larger variance

than the reference distribution, i.e. σ2
t+h|t > σ2

t+h|t−J , and thus Rt+h|t,t−J > 1. This situation

could arise, for example, in response to a positive uncertainty shock. Now tail events become

more representative under the revised density and receive a magnified weight under Smooth

DE. The probability mass is moved from the center to the tails, but preserving normality.

This example also allows us to illustrate the role of the upper bound on Rt+h|t,t−J : As this

ratio increases, more and more probability mass is moved to the tails, flattening the normal

distribution. As Rt+h|t,t−J → (1 + θ)/θ , the variance of the Smooth DE density goes to

infinity, as an increasing probability mass is moved to the tails. Under DE, the weights are
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once again uniformly equal to 1, and the DE density coincides with the RE density.

Revisions in conditional uncertainty affect revisions in conditional mean. The

fourth and fifth columns combine a revision in mean with a revision in variance. The key

observation here is illustrated by the decomposition of the distorted conditional mean in

Corollary 2: under Smooth DE, a change in uncertainty affects the degree to which the

distorted revision responds to the RE revision. Since changes in information sets typically

involve changes in both RE conditional moments, this is a particularly novel and important

aspect of Smooth DE.

In particular, the fourth case combines the first two, with an increase in the conditional

mean and a reduction of conditional uncertainty. As in the first case, under DE we observe

a shift of the probability mass to the right. Accordingly, the DE density moves to the right,

but with no change in shape with respect to the RE density. Under Smooth DE, instead,

the agent recognizes that, despite the increase in the mean, the new information made tail

events to the right less representative. Thus, for a given θ, the Smooth DE density still shifts

to the right, but by a smaller amount, and becomes visibly more narrow, as the weights take

into account the change in uncertainty.5

Finally, new information can also bring a shift in the mean, but now with more uncer-

tainty. The last column considers this case, where the shift in the mean is positive like in

the fourth column. The agent’s overreaction in terms of revisions to the conditional mean

is now stronger than under standard DE because tail events have become more likely under

the current distribution. Thus, the weights determine an even more significant shift of prob-

ability mass to the right (the scale for the SDE weights is on the left). In terms of distorted

conditional uncertainty, in this case, we observe underconfidence. This is again in itself a

form of overreaction, as the agent magnifies the increase in uncertainty as this appears large

compared to the reference uncertainty.

News and uncertainty. In Figure 4, we study how news and uncertainty effects de-

termine the overreaction of the Smooth DE density relative to the posterior distribution.

To facilitate comparison with Figure 3, we mark the coordinates corresponding to the prior

mean and variance with white pluses, and the coordinates corresponding to the posterior

means and variances of each scenario in Figure 3 with red circles. Panel (a) and (b) visu-

ally illustrate how the Smooth DE mean and variance change as the posterior mean and

variance change and confirm our results in Corollary 1: panel(a) shows larger overreactions

for higher posterior variances and panel (b) highlights overconfidence for posterior variances

5If the current conditional uncertainty would become continuously smaller and converge to zero, the shift
in the distorted conditional mean also smoothly becomes smaller. In contrast, under standard DE, the shift
would change only in the extreme case of σ2

t+h|t=0, when it would become nil.
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Figure 4: News and uncertainty in a Normal distribution

Notes: The figure displays how, as we vary the posterior mean and variance, the following objects change:

(a) the Smooth DE mean, (b) the Smooth DE variance, (c) the news component, measured using the KL

divergence of the posterior distribution from the prior distribution, (d) the uncertainty component,

measured using the posterior variance, and (e) the overall overreaction, measured using the KL divergence

of the Smooth DE distribution from the posterior distribution. We mark the coordinates corresponding to

the prior mean and variance with white pluses, and the coordinates corresponding to the posterior means

and variances of each scenario in Figure 3 with red circles.

lower than the prior variance and underconfidence for posterior variances higher than the

prior variance. Panel (c) shows the news effect, measured in terms of the KL divergence

of the posterior distribution from the prior distribution. Interestingly, the KL divergence is

large when the posterior variance is low and there is a large shift in the mean. The news

effect is large in that case because we are moving probability masses of tail events under the

prior distribution. In contrast, the uncertainty effect is large when the posterior variance

is high (panel (d)). Panel (e) shows that the uncertainty effect of higher posterior variance

dominates the news effect, so the overreaction of the Smooth DE density (measured in terms

of the KL divergence of the Smooth DE density to posterior density) is largest when there

is a large shift in the mean and an increase in variance.

2.7 Some examples of stochastic processes

We illustrate the tractability of Smooth DE for some standard stochastic processes. For a

simpler exposition we focus on the one-step-ahead horizon (h = 1) and recent past (J = 1).
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2.7.1 AR(1) process

Like in the original BGS DE formulation, the Smooth DE density derived above can be easily

applied in the standard case of an AR(1) process. Consider

xt+1 = ρxt + εt+1, εt+1 ∼ N (0, σ2) (15)

where ρ ≤ 1 and σ2 > 0. The true conditional density is simply

f (x̂t+1|It) = N
(
x̂t+1; ρxt, σ

2
)
.

The reference density is the counterpart of equation (3)

f
(
x̂t+h|Iref

t−J

)
= N

(
x̂t+h; ρ

2xt−1,
(
1 + ρ2

)
σ2
)

As a result, Rt+1|t,t−1 defined in Proposition 2 takes the form

Rt+1|t,t−1 =
σ2

(1 + ρ2)σ2
(16)

The Smooth DE density hθ (x̂t+1) in Proposition 1 is then Normal, with a conditional mean

Eθ
t (xt+1) = ρxt +

θ

1 + ρ2(1 + θ)

(
ρxt − ρ2xt−1

)
(17)

and conditional distorted variance

Vθ
t (xt+1) =

σ2

1 + ρ2

1+ρ2
θ

(18)

This AR(1) example illustrates well some of the general principles behind Smooth DE.

First, as long as θ > 0, Smooth DE exhibits a positive effective overreaction in equation

(17) of the conditional mean to news. Second, given σ2, a higher persistence parameter ρ

implies that the new information determines a larger reduction in current uncertainty about

the variable of interest xt+1 compared to the reference density. This lower variance ratio

Rt+1|t,t−1 leaves less room for memory to distort probability judgements which makes the

effective overreaction in equation (17) decrease in the persistence parameter ρ. Third, since

new information at time t lowers the conditional uncertainty from (1 + ρ2)σ2 to σ2, the ratio

Rt+1|t,t−1 < 1 in equation (16). Thus, the distorted density is characterized by overconfidence,

so that Vθ
t (xt+1) < σ2, as seen in equation (18), and the level of overconfidence is increasing
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in the persistence of the process as captured by ρ.

2.7.2 Signal extraction under Smooth DE

An important class of models emphasizing changes in subjective uncertainty belongs to the

large literature on Bayesian learning. In what follows, we incorporate Smooth DE within

this class of models, and use the resulting framework to connect to survey data.

Consider a standard state-space representation. The observation equation is:

st = xt + εt, εt ∼ N(0, σ2
ε)

and the state transition equation for the unobserved xt is

xt = ρxt−1 + ut, ut ∼ N(0, σ2
u)

The Kalman Filter derived under RE is standard. The one-step-ahead prediction from

the period t− 1 estimate x̃t−1|t−1 and its associated error variance Σt−1|t−1 are given by

x̃t|t−1 = ρx̃t−1|t−1; Σt|t−1 = ρ2Σt−1|t−1 + σ2
u.

Then, the estimates are updated according to

x̃t|t = x̃t|t−1 +Kt(st − x̃t|t−1), Kt =
Σt|t−1

Σt|t−1 + σ2
ε

,

where Kt is the Kalman gain and the updating rule for the variance is

Σt|t =

[
σ2
ε

Σt|t−1 + σ2
ε

]
Σt|t−1. (19)

Smooth Diagnostic Kalman filter. We extend the diagnostic Kalman filter derived

within the standard BGS formulation in earlier work like Bordalo et al. (2019) and Bordalo

et al. (2020) to the case of Smooth DE.

Let ft(xt) be the probability density of the rational, or Bayesian, period t estimate of the

underlying state xt. Define the representativeness of state x at period t as:

rept(xt) = ft(xt)/ft−1(xt)

Intuitively, a state xt is more representative if it becomes more likely relative to the t − 1

forecast. As in our discussion of equation (2), the key feature with respect to the original
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BGS formulation is to condition on the whole past information set, and as a result, to take

into account the associated uncertainty.

The posterior is then distorted using the following Smooth DE density:

f θ
t (xt) = ft(xt) [rept(xt)]

θ (1/Z), (20)

where Z is a normalizing constant so that f θ
t (xt) integrates to one.

Let the ratio of current to prior estimation uncertainty under RE be denoted as

Rt|t,t−1 ≡ Σt|t/Σt|t−1.

We derive the following result.

Proposition 3 (Smooth DE Kalman Filter.) The density f θ
t (xt) in equation (20) has a

Normal distribution with mean

Eθ
t (xt) = x̃t|t +

Rt|t,t−1θ

1 +
(
1−Rt|t,t−1

)
θ

(
x̃t|t − x̃t|t−1

)
, (21)

and variance

Vθ
t (xt) =

Σt|t

1 +
(
1−Rt|t,t−1

)
θ

(22)

Proof. See Appendix.

Like in our earlier general discussion, we observe overreaction of the conditional mean

when θ > 0 and the new information does not fully resolve uncertainty, i.e. when σ2
ε > 0.

Furthermore, similarly to the earlier AR(1) example, this environment is also characterized

by a conditional reduction in uncertainty, and therefore by overconfidence. Indeed, as long

as σ2
ε is finite, by equation (19) estimation uncertainty decreases over time, as the new signal

is at least partly informative. It follows that the ratio Rt|t,t−1 < 1,∀t and that given equation

(22), subjective uncertainty is lower than Bayesian estimation uncertainty, i.e. Vθ
t (xt) < Σt|t.

3 A parsimonious micro-foundation for survey evidence

Like in existing work on DE, we take the underlying θ ≥ 0 and J ≥ 1 as primitive parameters

characterizing the decision’s maker limited memory and the effect that the representativeness

heuristic has on agent’s judgments. As discussed in Section 2, given θ and J, the Smooth

DE density does not introduce any further degress of freedom. Nevertheless, by allowing

the density for the representative group to reflect the time t− J conditional uncertainty, we
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find that Smooth DE can offer a joint and parsimonious micro-foundation for a range of

observable implications consistent with survey data. These implications refer to the broad

properties of Smooth DE emphasized and collected by Corollary 1.

At its core, Smooth DE captures the intuition that new information that significantly

reduces current uncertainty over the variable of interest leaves less room for memory and

representativeness to distort judgements. As we discuss below, this implication of a stronger

(weaker) effective overreaction of the conditional mean to new information that reduces less

(more) current uncertainty helps to account for two sets of stylized survey facts.

3.1 Stronger overreaction for longer forecast horizons

The first set of over-identifying restrictions on our theory of overreaction relates to the

model’s implications for short- versus long-horizon forecasts. A strand of literature using

survey data argues that overreaction appears to be increasing with the horizon of the fore-

cast. For example, Bordalo et al. (2019) and Bordalo et al. (2023) point to such stronger

overreaction for equity analysts’ forecasts of long-term earnings growth and emphasize the

potential for this type of overreaction to account for stock market volatility. Using pro-

fessional forecasters’ forecasts of interest rates, other contributions, including for example

Bordalo et al. (2020), d’Arienzo (2020), find evidence of significant overreaction for expec-

tations of long-term interest rates, but not for expectations of short-term interest rates.

Augenblick et al. (2021) use field data from betting and financial markets to argue that

compared to the Bayesian forecast there is relatively stronger overreaction to signals with a

longer (shorter) time-to-resolution, conceptually similar to longer (shorter) forecast horizons.

Smooth DE is consistent with such evidence as it by predicts that overreaction increases

with the horizon of the forecast. The basic intuition appears in Section 2. Smooth DE

formalizes an inverse relation between the informativeness of the new piece of information

obtained by the decision-maker and the overreaction of her conditional forecasts (see for

example equation (12) in Corollary 1). In the context of forecasting at different horizons, the

same piece of information is less informative about horizons further in the future, leading to

a smaller reduction in uncertainty and a stronger overreaction. Thus, Smooth DE naturally

predicts that overreaction is relatively stronger for long-horizon forecasts.

The simplest environment to showcase this basic insight is the AR(1) process introduced

with equation (15) in Section 2. For an horizon h ≥ 1 and a J− lagged reference distribution

(J ≥ 1), the conditional mean for the Smooth DE density f θ (x̂t+h) is

Eθ
t (xt+h) = ρhxt + θ̃t,t−J

(
ρhxt − ρh+Jxt−J

)
(23)
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where the effective severity θ̃t,t−J of DE distortion is given in equation (10).

Given the AR(1) process in equation (15), the ratio Rt+h|t,t−J of conditional variances,

defined in Proposition 1, takes the particular form

Rt+h|t,t−J =
Vt [xt+h]

Vt−J [xt+h]
=

[
1−ρ2h

1−ρ2(h+J) when ρ2 < 1
h

h+J
when ρ2 = 1

]

Proposition 4 The ratio Rt+h|t,t−J increases in the forecast horizon h. Thus, the effective

overreaction θ̃t,t−J of Eθ
t (xt+h) in equation (23) is stronger for longer forecast horizons.

For a given lag J in the reference distribution, as the forecast horizon h increases, the

effective horizon of the current RE forecast (h), and the effective horizon of the reference

RE forecast (h + J) become increasingly similar. As a result, the levels of uncertainty

associated with the two forecasts also become increasingly similar because the information

set is implicitly more similar. Intuitively, the uncertainty around the two forecasts reflects

a larger and larger number of the same shocks. In relative terms, the current information

set is less and less informative for the variable that the agent is trying to predict. Given

that under Smooth DE overreaction is increasing in the level of relative uncertainty, as h

increases, so does the amount of overreaction to a given revision of the RE forecasts.

3.2 Stronger overreaction for weaker signals

The same logic of differential overreaction as a function of the informativeness of signals

connects to a second set of facts, documented recently in Augenblick et al. (2021). That

work, using experimental evidence, finds that, compared to Bayesian forecasts, decision-

makers (1) overreact to weaker signals and (2) underreact to stronger signals. To formalize

the argument, we build on the Smooth DE filtering setup of Section 2.7.2 and connect to

the experimental setup of Augenblick et al. (2021) as follows.

First, we let the true process be described as noisy signals over some xt ∼ N(0, σ2
x), with

σ2
x > 0. In particular, weak and strong signals are respectively defined as

s∗W,t = xt + ε∗W,t, ε∗W,t ∼ N(0, σ2
W )

s∗S,t = xt + ε∗S,t, ε∗S,t ∼ N(0, σ2
S)

where we model objectively weak signals as being more noisy than strong signals by assuming

σ2
W > σ2

S > 0.
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The conditional Bayesian forecasts formed by an econometrician are then

E∗ (xt| s∗W,t) = K∗
W s∗W,t, E∗ (xt| s∗S,t) = K∗

Ss
∗
S,t (24)

where the corresponding signal-to-noise ratios satisfy

0 < K∗
W =

σ2
x

σ2
x + σ2

W

< K∗
S =

σ2
x

σ2
x + σ2

S

< 1

Second, representativeness is a model of overreaction of the conditional mean to news,

irrespective of how informative the latter is (see for example Corollary 1). To connect to the

evidence in Augenblick et al. (2021), which finds underreaction (to stronger signals), we thus

add subjective noise perceived by the decision-maker. As a result, the signals as perceived

by the agent, as opposed to drawn under the true process, are:

sW,t = s∗W,t + εct , sS,t = s∗S,t + εct , εct ∼ N(0, σ2
ε,c)

The randomness εct captures cognitive noise, arising from limited attention or cognition (see

eg. Woodford (2001)). We keep this cognitive noise symmetric: both objectively weak and

strong signals are subject to the same amount of cognitive noise, governed by σ2
ε,c > 0. The

resulting signal-to-noise ratios used by the agent in forming conditional forecasts satisfy

KW =
σ2
x

σ2
x + σ2

W + σ2
ε,c

< K∗
W , KS =

σ2
x

σ2
x + σ2

S + σ2
ε,c

< K∗
S (25)

Since the agent understands that she faces cognition noise, her subjective conditional

forecasts of xt underreacts to the true s
∗
W,t and s∗S,t compared to the econometrician. Formally,

this is evident by the inequalities in equations (25). Thus, without Smooth DE, she would

underreact to both weak and strong signals, in contrast to the evidence. Thus, the key

modeling ingredient is to introduce Smooth DE in this environment. Proposition 3 can be

used to derive conditional forecasts under Smooth DE, here made further tractable by the

maintained iid assumptions, as follows:

Eθ (xt| sW,t) =

[
1 +

θ(1−KW )

1 + θKW

]
KW sW,t

Eθ (xt| sS,t) =

[
1 +

θ(1−KS)

1 + θKS

]
KSsS,t

Comparing the above responses of conditional forecasts under Smooth DE to those formed

by the econometrician in equation (24), we can establish the following result:
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Proposition 5 (Weak vs. strong signal reaction). Given some amount σ2
ε,c > 0 of cognitive

noise, if the noise variances of weak and strong signals satisfy the following inequalities

σ2
W >

σ2
ε,c

θ
> σ2

S (26)

the agent’s conditional forecasts overreact to weak signals compared to the Bayesian forecast:

∂Eθ (xt| sW,t)

∂s∗W,t

>
∂E∗ (xt| s∗W,t)

∂s∗W,t

(27)

while at the same time they underreact to strong signals:

∂Eθ (xt| sS,t)
∂s∗S,t

<
∂E∗ (xt| s∗S,t)

∂s∗S,t
(28)

Proof. See Appendix.

Intuitively, compared to the econometrician’s forecast, representativeness produces over-

reaction, while the presence of cognitive noise leads to underreaction. Consider first weak

signals. When the representativeness effect is stronger than the cognitive noise effect, summa-

rized by the first parameter inequality in equation (26), we obtain a measured overreaction,

as evident in equation (27). However, if that level of representativeness effect were to ap-

ply equally to strong signals, as implied by standard DE, then we would also measure the

same overreaction to strong signals, in contrast to the evidence. Instead, with Smooth DE,

stronger signals reduce agents’ conditional uncertainty more than weaker signals, and thus

dampen the representativeness effect on forecasts. Thus, the cognitive noise effect can be

relatively more powerful for stronger signals (when the second inequality in equation (26)

is satisfied), leading to measured underreaction in equation (28). These joint properties are

consistent with the experimental evidence in Augenblick et al. (2021).

3.3 overreaction and overconfidence

A recent literature studying the properties of survey responses, including Barrero (2022),

Born et al. (2022), and the recent reviews in Altig et al. (2020) and Born et al. (2022),

documents that while firms’ forecasts are unconditionally unbiased, i.e forecast errors are on

average not significantly different from zero, firms make conditionally predictable forecast

errors. In particular, firms (a) overreact to news and (b) are overconfident in their subjective

forecasts.

These stylized facts provide a challenge for models featuring standard rational belief
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updating. As a result, the overreaction and overconfidence empirical properties have been

typically addressed in existing models through two distinct behavioral primitive assumptions

that do not distort unconditional forecasts. overreaction of conditional forecasts has been

explained as an outcome of DE, modelled according to the original BGS formulation. Under

DE, agents overreact only in presence of new information and in a symmetric way, preserving

unbiased unconditional forecasts, but failing to account for overconfidence. Thus, the finding

of overconfidence has been typically addressed with an additional overconfidence bias (as

reviewed above). An example of this approach is Barrero (2022), who uses both distinct

features to account for the three survey facts.

Smooth DE can instead account for all three stylized facts. Consider for example the

Gaussian environment of Section 2 where a firm’s fundamental (eg. productivity) follows a

simple AR(1) process. Or, the arguably more empirically plausible extension, where those

fundamentals are not directly observed, but firms can learn about their realizations from

noisy signals, like in the simple state-space model described in Section 2.7.2. In either case,

Corollary 1 and Proposition 3, respectively, describe how forecasts made under Smooth DE

are characterized by precisely these two key properties: overreaction to news and over-

confidence. Moreover, as in the RE case (θ = 0), forecasts under DE are nevertheless

unconditionally unbiased, being on average driven by the underlying rational forecasts.

The discussion and formalism in Section 2 indicate that, in contrast to the generality

of the overreaction of the conditional mean, overconfidence is not a universal property of

Smooth DE. However, we view it as a ’typical’ property, because the necessary condition

for overconfidence is simply that new information reduces uncertainty. This condition is

ubiquitous as it holds in stationary, homoskedastic environments, where events closer into

the future are naturally easier to predict than events far into the future. At the same time,

the condition might not hold if new information entails a sufficiently large and unexpected

increase in uncertainty, as indicated by some of our examples in Figure 3.

Finally, we further note the broader context of a large literature on overconfidence (eg.

De Bondt and Thaler (1995) and Daniel et al. (1998, 2001)). This work has been motivated

by extensive psychological evidence for overconfidence and argues that models based on this

behavioral property are promising in accounting for asset market puzzles. Our key insight

here is that Smooth DE emerges as a potential parsimonious micro-foundation, based on the

representativeness heuristic, for overreaction and overconfidence, two behavioral features

argued as important in understanding a variety of economic outcomes.6

6See further Barberis (2018) for a review of these two-widely documented, but typically studied separately,
departures from standard Bayesian updating.
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4 Business cycle implications

We illustrate the business cycle implications of Smooth DE in a parsimonious RBC model

with time-varying uncertainty. We argue that Smooth DE emerges as a novel behavioral

propagation and amplification mechanism for time-varying uncertainty. We first show that

the model replicates, without relying on additional frictions, several salient features of data

thanks to the state-dependent overreaction: (1) asymmetry (recessions are deeper than ex-

pansions), (2) countercyclical micro volatility (cross-sectional variances of microeconomic

variables rise in recessions), and (3) countercyclical macro volatility (time-series variances of

macroeconomic variables rise in recessions).7 We also show that, the perceived increase of un-

certainty in recessions is more than three times larger than the actual uncertainty increase.

We then discuss a novel policy implication: a redistributive policy that reduces idiosyn-

cratic uncertainty could be beneficial for macroeconomic stabilization because it dampens

the state-dependent overreaction.

4.1 The model

To isolate and highlight the role of Smooth DE as a propagation mechanism, we keep the

model simple and abstract from conventional frictions in the uncertainty shock literature,

such as adjustment costs (Bloom (2009) and Bloom et al. (2018)) and sticky prices (Basu

and Bundick (2017) and Fernández-Villaverde et al. (2015)). The economy consists of a

continuum of islands i ∈ [0, 1]. In each island i, an agent has the following per-period utility

function

U(ci,t, hi,t) =
c1−γ
i,t

1− γ
− β

h1+η
i,t

1 + η
.

where ci,t is consumption, hi,t is the amount of hours worked, γ is the coefficient of relative

risk aversion, and η is the inverse of the Frisch labor elasticity. We simplify the algebra

below by multiplying the disutility of labor by the discount factor β.

Output in each island is produced according to

yi,t = zi,thi,t−1. (29)

The t − 1 subscript on hours reflects the assumption that the labor input is chosen before

7As described in the Introduction, these properties have strong empirical support in the literature. The
concept of asymmetries have a long tradition in macroeconomics, including Neftci (1984), Hamilton (1989),
Sichel (1993), and more recently McKay and Reis (2008) and Morley and Piger (2012). The extensive
literature of the macroeconomics of time-varying uncertainty, including Bloom (2009), Fernández-Villaverde
et al. (2011), Ilut et al. (2018), Jurado et al. (2015), Basu and Bundick (2017), and Bloom et al. (2018)
confirm that volatility or uncertainty is countercyclical at both micro and macro levels.
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the random realization of productivity zi,t is known. The island resource constraint is

ci,t = yi,t. (30)

We obtain aggregate variables by simply adding up variables of all islands:

Ht =

∫ 1

0

hi,tdi, Yt =

∫ 1

0

yi,tdi, Ct =

∫ 1

0

ci,tdi

The island productivity zi,t+1 is the sum of aggregate and idiosyncratic components:

ln zi,t+1 = At+1 + ai,t+1,

The economy-wide TFP shock At+1 is common across all islands and follows the process

At+1 = ρAAt + uA,t+1, uA,t+1 ∼ i.i.d.N(0, σ2
A).

The idiosyncratic TFP ai,t+1 is instead specific to island i, and it is composed of a predictable

component si,t ∼ i.i.d.N(0, σ2
s), known one-period-in-advance, and an unpredictable compo-

nent ua,i,t+1 ∼ i.i.d.N(0, σ2
a,t) realized at t+ 1:

ai,t+1 = si,t + ua,i,t+1.

Following Bloom et al. (2018), we assume the volatility σa,t is time-varying and negatively

correlated with the economy-wide TFP. In particular, as we describe in Section 4.4, σa,t

increases when there is a negative innovation to the economy-wide TFP, and vice versa.

We use σa,t to denote the volatility of the period t + 1 innovation to reflect the assumption

that the volatility of the next period’s innovation is known one-period-in-advance. We also

assume that the volatility of the predictable component, si,t, is constant. This implies that

the cross-sectional dispersion of labor is driven only by the news effect of the uncertainty

shock. If we were to relax the assumption of constant volatility of si,t, the cross-sectional

dispersion would also depend on its realized volatility, but none of the main qualitative

properties of the model would change.

The conditional posterior mean and variance of ai,t+1 after observing the predictable

component si,t are given by

Ei,t [ai,t+1] = si,t, Vi,t [ai,t+1] = σ2
a,t.

We can define the residual uncertainty (posterior variance relative to ex-ante uncertainty)
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as in David et al. (2016) as σ2
a,t/(σ

2
s + σ2

a,t), which is increasing in σ2
a,t. Intuitively, in times

of low aggregate TFP and higher uncertainty σ2
a,t, the predictable component si,t serves as

a weaker signal in forecasting ai,t+1 relative to times of lower uncertainty.

4.2 RE solution

We first characterize the equilibrium under Rational Expectations (RE). The island i agent’s

Bellman equation is given by

V(hi,t−1, zi,t) = max
hi,t

{U(ci,t, hi,t) + βEi,t [V(hi,t, zi,t+1)]} ,

subject to yi,t = zi,thi,t−1 and ci,t = yi,t.

Combining the first order condition for labor with the envelope condition, we obtain

(hi,t)
η = Ei,t

[
(ci,t+1)

−γ zi,t+1

]
. (31)

The optimality condition equates the current marginal disutility of working with its expected

benefit. The latter is given by the marginal product of labor weighted by the marginal

utility of consumption. We log-linearize the condition and use the method of undetermined

coefficients to obtain the RE solution.

Proposition 6 Using hats to denote log-deviations from the steady state, the equilibrium

under RE is given as follows:

1. Individual hours worked are given by

ĥi,t = ε [ρAAt + si,t] ,

where

ε =
1− γ

η + γ
.

Equilibrium output and consumption follow immediately as

ŷi,t = At + ai,t + ĥi,t−1 = ĉi,t.

2. Equilibrium aggregate variables are given by

Ĥt = ερAAt, Ŷt = At + Ĥt−1 = Ĉt
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Proof. See Appendix.

The response of individual and aggregate hours to news about expected economy-wide

productivity ρAAt and island-specific productivity si,t is affected by the intertemporal elas-

ticity of consumption (IES), which here also equals the inverse of the coefficient of relative

risk aversion. When the IES is large enough, so that γ−1 > 1 and thus ε > 0, an increase

in expected productivity raises hours. In that case the intertemporal substitution effects

dominates the wealth effect that would lower hours through the effect on marginal utility.

The next proposition characterizes the cross-sectional variance under RE.

Proposition 7 The cross-sectional variance of hours worked is given by∫ 1

0

(
ĥi,t − Ĥt

)2
di =

[
1− γ

η + γ

]2
σ2
s ,

and is constant over the business cycle. The cross-sectional variances of output yi,t and

consumption ci,t are increasing in the volatility σ2
a,t−1 of the idiosyncratic TFP.

Proof. See Appendix.

Under RE, the cross-sectional variance of hours stays constant over the business cycle.

This is because once the model is linearized, the news effect of changes in uncertainty is muted

under RE. The cross-sectional variances of output and consumption are instead mechanically

affected by σ2
a,t−1 because of the change in realized volatility.

4.3 Smooth DE solution

We now solve the model under Smooth DE. We consider the case of distant memory, meaning

that agents’ memory recall is based on a more distant past, rather than just the immediate

past. In terms of Assumption 1, this means that the reference group is based on the infor-

mation set available J > 1 periods ago. Bianchi et al. (2024) find that in standard models,

distant memory can account for salient features of data, such as persistence and repeated

boom-bust cycles. However, under distant memory , a time-inconsistency problem arises due

to the failure of the law of iterated expectations. Bianchi et al. (2024) address this issue by

adopting the näıveté approach (e.g. O’Donoghue and Rabin (1999)), which we also follow

here. Under this approach, the agent fails to take into account that her preferences are

time-inconsistent and thinks that in the future she will make choices under perfect memory

recall, or RE. However, when the future arrives, the agent ends up changing behavior and

be again subject to her imperfect memory recall.8

8In Bianchi et al. (2024) we further argue that the näıveté approach is psychologically coherent and
consistent with the underlying foundation of diagnostic beliefs as a heuristic and a mental short-cut.
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Let θ-superscripts andRE-superscripts denote equilibrium Smooth DE choices and choices

under a RE policy function, respectively. The island i agent’s Bellman equation is

max
hθ
i,t

{
U(cθi,t, h

θ
i,t) + βEθ

i,t

[
V(hθ

i,t, zi,t+1)
]}

,

subject to yθi,t = zi,th
θ
i,t−1 and cθi,t = yθi,t. The continuation value is given by

V(hθ
i,t−1, zi,t) = max

hRE
i,t

{
U(cRE

i,t , h
RE
i,t ) + βEi,t

[
V(hRE

i,t , zi,t+1)
]}

,

subject to yRE
i,t = zi,th

θ
i,t−1 and cRE

i,t = yRE
i,t .

Similar to the RE problem, the agent optimally equates the marginal disutility of labor

with its expected benefit, except that the benefit is evaluated under Smooth DE:

(
hθ
i,t

)η
= Eθ

i,t

[(
cRE
i,t+1

)−γ
zi,t+1

]
. (32)

Proposition 8 The equilibrium under Smooth DE is given as follows:

1. Individual hours worked are given by

ĥθ
i,t = ε [ρAAt + si,t]

+
θ̃t,t−Jη

η +
(
1 + θ̃t,t−J

)
γ
ε [ρANt−J,t [At] + si,t] ,

(33)

where ε is given in Proposition 6 and Nt−J,t [At] ≡ At − Et−J [At] represents the news

in At, compared to past expectation. Equilibrium output and consumption follow as

ŷθi,t = At + ai,t + ĥθ
i,t−1 = ĉθi,t. (34)

2. The effective diagnosticity parameter θ̃t,t−J is given by

θ̃t,t−J =
Rt+1|t,t−Jθ

1 +
(
1−Rt+1|t,t−J

)
θ
, (35)

where

Rt+1|t,t−J =
Vi,t

(
−γĉRE

i,t+1 + At+1 + ai,t+1

)
Vi,t−J

(
−γĉRE

i,t+1 + At+1 + ai,t+1

) . (36)
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3. Equilibrium aggregate variables are given by

Ĥθ
t = ερAAt +

θ̃t,t−Jη

η +
(
1 + θ̃t,t−J

)
γ
ερANt−J,t [At] (37)

Ŷ θ
t = At + Ĥθ

t−1 = Ĉθ
t

Proof. See Appendix.

First, consider the policy function for individual hours hθ
i,t. The first line of (33) is iden-

tical to the RE policy function. The second line captures the overreaction to news, i.e.

surprises.9 Consider, for instance, a positive surprise to an economy-wide TFP At. Smooth

diagnostic agents are over-influenced by this surprise and become over-optimistic about the

future benefit of working, and hence work more (if ε > 0). The coefficient on this overre-

action,
θ̃t,t−Jη

η+(1+θ̃t,t−J)γ
, is increasing in the effective diagnosticity θ̃t,t−J . From (34) individual

output and consumption also overreact when individual hours overreact. Second, the effec-

tive diagnosticity θ̃t,t−J is positively related to Rt+1|t−J , given by (36): the ratio between the

current uncertainty about the (log-linearized) marginal benefit of labor and the uncertainty

perceived at period t − J . Third, aggregate hours, output, and consumption also feature

overreaction, controlled by θ̃t,t−J , to news about economy-wide shocks.

The expressions (35) and (36) in Proposition 8 suggest that an increase in uncertainty

about future idiosyncratic productivity could raise θ̃t,t−J and, in turn, the overreaction to

news.10 The Proposition below indeed confirms this is the case.

Proposition 9 An increase in the volatility σ2
a,t of idosyncratic TFP raises the effective

diagnosticity parameter θ̃t,t−J .

Proof. See Appendix.

There are two important implications of this proposition. First, the business cycle is

asymmetric, even if the underlying shocks are symmetric. A positive TFP shock would

lower uncertainty and, as result, overreaction. In contrast, a negative TFP shock would

raise uncertainty and, as result, overreaction. Thus, a drop in economic activity in response

9Note that, for si,t, since it is i.i.d., the surprise is si,t itself.
10In the current model, we must take a stance on how agents deal with time-varying volatility when

forming expectations. There are two approaches to compute the conditional variance at t − J in (36)
that preserve normality of the Smooth DE density. The first approach consists of making an “anticipated
utility” assumption (Kreps (1998)). In this case, agents’ uncertainty depends on the volatility at the time
of the forecast, disregarding the possibility of volatility changes. The second approach consists of assuming
that agents take into account the possibility of volatility changes, but that memory retrieves a Normal
approximation of the resulting mixture of Normal’s. We adopt the first approach, as it is arguably more
consistent with the näıveté assumption and the general motivation of DE as a mental heuristics.
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to a negative shock would be sharper, while an expansion in response to a symmetric pos-

itive shock would be milder, generating asymmetric fluctuations. Second, macroeconomic

volatility is countercyclical. During expansions uncertainty and overreaction are low while

in recessions agents overreact more to economy-wide shocks.

State-dependent overreaction also implies that micro-level volatility is countercyclical:

Proposition 10 The cross-sectional variance of hours worked is given by

∫ 1

0

(
ĥθ
i,t − Ĥθ

t

)2
di =

[
(1 + θ̃t,t−J)(1− γ)

η + (1 + θ̃t,t−J)γ

]2
σ2
s ,

and is increasing in θ̃t,t−J and, thus, in the volatility σ2
a,t of the idiosyncratic TFP. The

cross-sectional variances of output yi,t and consumption ci,t are similarly increasing in the

volatility σ2
a,t−1 of the idiosyncratic TFP.

Proof. See Appendix.

As uncertainty increases, the overreactions to the predictable component of idiosyncratic

TFP and the future benefit of labor, captured in the
[
(1+θ̃t,t−J )(1−γ)

η+(1+θ̃t,t−J )γ

]2
term, rise. Hence,

an increase in uncertainty about idiosyncratic TFP raises the cross-sectional variances of

individual actions.

Our theory has an important policy implication. As we saw above, the micro-level volatil-

ity and macroeconomic volatility are tightly linked through the state-dependent overreaction

controlled by θ̃t,t−J . Thus, a policy that reduces microeconomic uncertainty through, for in-

stance, a redistributive tax policy can also be effective in stabilizing the macroeconomy. To

fix ideas, consider a progressive income tax and subsidy scheme where the individual rate

τi,t is increasing in the realized idiosyncratic productivity level:

τi,t = τai,t,

where τ ≥ 0 is a parameter that controls the progressivity. The island resource constraint is

ci,t + τi,tyi,t = yi,t,

so the agent pays a tax (τi,t > 0) if the realized TFP shock is positive (ai,t > 0) and

receives a transfer (τi,t < 0) otherwise. The scheme is budget neutral (up to a first-order

approximation).

Proposition 11 A higher progressivity τ is associated with a smaller increase in the effective

diagnosticity parameter θ̃t,t−J when the volatility σ2
a,t of idiosyncratic TFP rises.
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Proof. See Appendix.

Intuitively, redistribution dampens the state-dependent overreaction by reducing cross-

sectional uncertainty about the future benefit of labor. Thus, the government can stabilize

the macroeconomy by using the tax policy to reduce the increase in uncertainty and overreac-

tion. For instance, in times of low aggregate TFP and high uncertainty, the government can

implement the tax policy or increase its progressivity. These interventions would dampen

the overreaction and make the downturn less severe.

4.4 Calibrated example

We illustrate the quantitative potential of the Smooth DE mechanism in the context of the

parsimonious RBC model presented above by examining its dynamics.

Calibration. We calibrate the model to a quarterly frequency. We set the discount

factor β = 0.99, the IES γ−1 = 0.25−1, and η = 0.4, which implies a Frisch elasticity of labor

supply of 2.5.11 For the economy-wide TFP shock, we set ρA = 0.95 and σA = 0.7/100. The

calibration satisfies the condition γ−1 > 1, so labor increases in response to an increase in

expected TFP.

Consider the time-varying standard deviation σa,t of the idiosyncratic TFP shocks. Using

Census micro data, Bloom et al. (2018) and Ilut et al. (2018) find that, during recessions, the

dispersion of TFP shocks increases by 13% and 7%, respectively. Motivated by these findings,

we assume that a larger-than-or-equal-to- one-standard-deviation negative economy-wide

TFP innovation is associated with a 10% increase in the standard deviation σa,t of the

idiosyncratic TFP shocks relative to the steady-state standard deviation σa. Conversely,

a larger-than-or-equal-to- one-standard-deviation positive economy-wide TFP innovation is

associated with a 10% decrease in the standard deviation σa,t.

We assume that the agent’s comparison group is the expectation formed J = 5 periods

ago. The parameter J mainly determines the persistence of overreaction and the value is

consistent with Bianchi et al. (2024), who find that in an estimated structural model the

memory weights center around five- and six-quarters-ago expectations.

There are three remaining parameters: the steady-state standard deviation of the un-

predictable component of the idiosyncratic TFP shock σa, the standard deviation of the

predictable component of the idiosyncratic TFP shock σs, and the diagnosticity parameter

θ. We calibrate these parameters so that the model matches the three empirical moments

11These values of IES and Frisch elasticity allow us to generate realistic labor volatility. Our calibrated
model generates the time-series standard deviation of aggregate hours worked of 1.67%. In the data, the
standard deviation of total hours worked in the nonfarm business sector (1983:Q1–2019:Q4) is 1.66%.
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Table 1: Internally calibrated parameters and targeted moments

Parameters Targeted moments

Data Model

σa 0.022 Realized absolute forecast error 0.143 0.143
σs 0.027 Residual uncertainty 0.41 0.41

θ̃ 1.547 Skewness of aggregate hours −0.21 −0.21

Notes: The table reports the parameters and their calibrated values as well as the targeted moments. σa is

the steady-state standard deviation of unpredictable component of the idiosyncratic TFP shock, σs is the

standard deviation of the predictable component of the idiosyncratic TFP shock, and θ̃ is the long-run

average effective diagnosticity implied by the calibrated value of θ. The realized absolute forecast error is

reported in Barrero (2022) using survey data on US managers, calculated from realized forecast errors of

sales growth between t to t+ 4, with observations employment-weighted. The residual uncertainty from

David et al. (2016) captures the amount of posterior uncertainty relative to the ex-ante uncertainty. The

skewness of aggregate hours is calculated using total hours worked in the nonfarm business sector

(1983:Q1–2019:Q4). The model moments are calculated using simulated data from the Smooth DE model.

summarized in Table 1.12 While multiple model parameters jointly affect these moments, we

select the moments so that each moment is informative about a parameter of interest.

The first empirical moment, the mean of realized absolute forecast errors, is from Barrero

(2022) who uses survey data (Atlanta Fed / Chicago-Booth / Stanford Survey of Business

Uncertainty (SBU)) on US managers. Forecast errors are computed by subtracting realized

sales growth between t to t+4 from managers’ forecasts. The model counterpart is obtained

by calculating the mean absolute forecast error on the simulated distribution of the realized

forecast error Eθ
i,t

[
ŷRE
i,t+4

]
− ŷθi,t+4.

13 This moment is informative about the steady-state

standard deviation of the unpredictable component of idiosyncratic TFP.

The second moment, residual uncertainty, captures the amount of posterior uncertainty

relative to the ex-ante uncertainty. David et al. (2016) estimate the residual uncertainty to

be 41%. The model counterpart is given by σ2
a/(σ

2
s +σ2

a). This moment is useful to pin down

the standard deviation σs of the predictable component of idiosyncratic TFP.

Finally, the third moment is the skewness of total hours worked in the nonfarm busi-

ness sector (1983:Q1–2019:Q4).14 The negative skewness (−0.21) reflects macroeconomic

12We choose the parameters so that the squared-sum of distance between the data moments and the
model-implied moments is minimized.

13Specifically, we generate 100 replications of T = 200 time series with n = 500 islands. The number of
islands roughly matches the the number of firms surveyed in the SBU data in Barrero (2022).

14The empirical skewness of hours increases significantly to −1.75 when we extend the sample until 2022:Q1
to include the 2020 Covid-19 recession. We use the simulated data to compute the skewness of aggregate
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Table 2: Untargeted survey moments: overreaction and overconfidence

(1) (2) (3) (4)
Ft(∆yi,t+4|t)−∆yi,t+4|t Absolute forecast error

on ∆yi,t|t−1 Realized Subjective (Subjective)/(Realized)
Data 0.173 0.143 0.023 0.16

(0.059) (0.012) (0.002)

Model 0.095 0.143 0.017 0.12

Notes: The table reports the coefficient on overextrapolation and realized and subjective mean absolute

forecast errors. The data moments are computed by Barrero (2022) using survey data on US managers,

with observations employment-weighted and standard errors in parentheses. The first column reports the

coefficient from a panel regression where managers’ time t forecast of t+ 4 sales growth minus the

realization is regressed on the sales growth between quarter t− 1 to t. The second column is the realized

mean absolute forecast error, calculated using realized forecast errors of sales growth between t to t+ 4.

The realized mean absolute forecast error is used in the calibration as a target, but is included in this table

to facilitate comparison. The third column is the subjective mean absolute forecast error, where the

hypothetical realizations are drawn from managers’ subjective probability distributions. The fourth column

is the ratio of the subjective absolute forecast error to the realized error. The model moments are

calculated using the simulated data from the Smooth DE model.

asymmetry: drops in hours worked are steeper than increases. In our model, a negative

economy-wide TFP innovation increases uncertainty σ2
a,t and, in turn, the effective overre-

action θ̃t,t−J . A positive TFP innovation, in contrast, reduces overreaction. Under Smooth

DE, the diagnosticity parameter θ governs the strength of this mechanism to generate asym-

metry. Under RE model and the standard DE model where the overreaction is constant,

there is no asymmetry, and the skewness is zero.

The model moments match the empirical moments perfectly. The calibrated σa and σs

imply the predictable and unpredictable components’ variances are about the same in steady

state. The long-run average effective diagnosticity parameter θ̃, implied by the calibrated

value of θ, is 1.54. This value is somewhat larger than Bordalo et al. (2018), Bordalo et al.

(2019), and d’Arienzo (2020), which tend to estimate the diagnosticity parameter (under

standard DE) around 1 but smaller than the estimate of 1.97 in Bianchi et al. (2024).15

Implications for untargeted survey moments. We examine to what extent our

theory can explain untargeted survey evidence on overreaction and overconfidence. We use

hours worked in the model. Both simulated and actual time series are HP-filtered with λ = 1600.
15Like Bianchi et al. (2024), our current model features distant memory (J > 1). Bianchi et al. (2024) notes

that existing estimates are based primarily on models where imperfect memory is assumed to be driven only
by the immediate past (J = 1), and this assumption changes inference about the diagnosticity parameter.
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Barrero (2022)’s survey moments as an external validation because the study shows both

overreaction and overconfidence based on a single dataset (SBU). The first column of Table

2 reports the coefficient from a panel regression where managers’ time t forecast of t+4 sales

growth minus the realization is regressed on the sales growth between quarter t−1 to t. The

coefficient is positive, meaning that managers’ forecasts tend to be excessively optimistic

during high growth period: managers overextrapolate. The second column is the realized

mean absolute forecast error, reported in Table 1, and is shown here again to facilitate

comparison. The third column is the subjective mean absolute forecast error, where the

hypothetical realizations are drawn from the managers’ subjective probability distributions.

The subjective absolute forecast error is only 16% the size of the empirical errors (fourth

column), indicating overconfidence: managers overestimate the precision of their forecasts.

The model moments are computed by simulating the model under Smooth DE. First,

consider the overextrapolation regression coefficient. The model counterpart is the coeffi-

cient on pooled OLS where we regress the Smooth DE four-quarters-ahead forecast error,

Eθ
i,t

[
ŷRE
i,t+4

]
− ŷθi,t+4, on output growth,

[
ŷθi,t − ŷθi,t−1

]
, which proxies for news. The coefficient

is positive, but smaller than in the data. The reason why the calibrated model understates

this coefficient relative to the data is as follows. In our model, economy-wide shocks are

persistent while island-specific shocks are i.i.d. In contrast to persistent shocks, when shocks

are i.i.d., the Smooth DE forecasts are orthogonal to news, so the idiosyncratic shocks push

the coefficient toward zero.16 While we specified idiosyncratic TFP shocks to be i.i.d. for

tractability, allowing for persistence would increase the overextrapolation coefficient. Thus,

our model provides a conservative lower bound on the macroeconomic effects of Smooth DE.

Next, consider the mean absolute forecast errors. The subjective error (third column) is

obtained first by calculating the Smooth DE variance of output growth

Vθ
i,t

[
ŷRE
i,t+4

]
=

Vi,t

[
ŷRE
i,t+4

]
1 +

(
1−Rt+1|t,t−J

)
θ
, (38)

and then leverage the normality of the RE output growth so that the subjective absolute

forecast error is given by
√
2/π

(
Vθ

i,t

[
ŷRE
i,t+4

]) 1
2 . The model closely matches the subjective

forecast error. The size of the absolute subjective error is 12% of the size of the realized fore-

cast error (fourth column), in line with the survey data’s 16%. According to (38), the Smooth

DE variance Vθ
i,t

[
ŷRE
i,t+4

]
would be lower than the econometrician’s variance Vi,t

[
ŷθi,t+4

]
due

to two factors. The first factor is that, under näıveté, (Smooth) DE agents perceive future

output to follow the RE law of motion ŷRE
i,t+4 instead of the equilibrium law of motion ŷθi,t+4.

16This need not be the case when agents forecast endogenous variables in models with slow-moving en-
dogenous states, such as capital. See Bianchi et al. (2024) for details.
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Table 3: Countercyclical cross-sectional standard deviation of labor growth

(1) (2) (3) (4)
Data Smooth DE DE RE

(Recessions)/(Expansions) 1.16 1.12 1 1

Notes: The table reports the ratio of the cross-sectional standard deviation of labor growth during

recessions to the cross-sectional standard deviation during expansions. The first column shows the ratio in

the data, reported by Ilut et al. (2018), where recessions and expansions are defined as NBER recessions

and NBER expansions, respectively. The second, third, and fourth columns report the model-implied ratios

for the Smooth DE, DE, and RE models, respectively.

The second factor is the Smooth DE effect (the denominator in (38)) on uncertainty, accord-

ing to which a reduction of uncertainty contributes to overconfidence about the precision of

expectations. To disentangle these two factors, we calculate the subjective mean absolute

forecast error without the Smooth DE effect. We obtain
√
2/π

(
Vi,t

[
ŷRE
i,t+4

]) 1
2 = 0.053, which

is 37% of the size of the realized errors. This ratio is more than double the values recovered

by the data (16%) and implied by the baseline model (12%). We conclude that the Smooth

DE effect is important to account for overconfidence as observed in survey data.

Countercyclical micro and macro volatility. We now study the model’s ability to

generate countercyclical micro and macro volatility. First, consider the micro volatility. In

Table 3, we report the ratio of the cross-sectional standard deviation of labor growth during

recessions to the cross-sectional standard deviation during expansions. The first column

shows this ratio from the data, as reported by Ilut et al. (2018), where recessions and

expansions are defined as NBER recessions and NBER expansions, respectively. The cross-

sectional dispersion is countercyclical: in recessions, it is 16% higher than during expansions.

The second column reports the ratio in our model, where we define recessions and expansions

as periods when there are one-standard-deviation negative and positive innovations to the

economy-wide TFP, respectively. Under Smooth DE the cross-sectional standard deviation

of labor growth is 12% higher during recessions than in expansions, so the model explains

75% of the empirical countercyclicality of micro volatility. In the model, a negative aggregate

TFP innovation triggers an increase in idiosyncratic TFP uncertainty σa,t. As a result, the

overreaction θ̃t,t−J to the predictable component si,t of idiosyncratic TFP rises, so the cross-

sectional dispersion of actions such as labor increases. As shown in the third and the fourth

columns, the cross-sectional dispersion is constant over the business cycle under the standard

DE model, where the overreaction is constant, and the RE model, where we have θ = 0.

Next, consider macro volatility. In our model, in times of low TFP and high idiosyncratic
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Table 4: Countercyclical volatility of aggregate labor growth

(1) (2) (3) (4)
Data Smooth DE DE RE

(Recessions)/(Expansions) 1.23 1.22 1 1

Notes: The table reports the ratio of the rolling standard deviation of aggregate labor growth during

recessions to the rolling standard deviation during expansions. The first column shows the ratio in the data

for the period 1983:Q1-2019:Q4, where recessions and expansions are defined as NBER recessions and

NBER expansions, respectively. The second, third, and fourth columns report the model-implied ratios for

the Smooth DE, DE, and RE models, respectively.

uncertainty σa,t, aggregate labor responds more to economy-wide shocks because the overre-

action is stronger. Table 4 examines to what extent this countercyclical macro volatility is

consistent with data. To measure time-varying volatility of aggregate hours worked in data,

similar to Ilut et al. (2018), we compute the rolling window standard deviation as

σH,t =

√√√√ 1

nw − 1

(nw−1)/2∑
k=−(nw−1)/2

(
∆ lnHt+k −∆ lnHt

)2
, (39)

where ∆ lnHt+k is the log change of total hours worked in the nonfarm business sector from

a quarter t+k−1 to t+k and ∆ lnHt ≡ (1/nw)
∑(nw−1)/2

k=−(nw−1)/2∆ lnHt+k. We set the window

size nw = 3 and consider the sample 1983:Q1-2019:Q4. The first column of Table 4 reports

the measured σH,t during NBER recessions relative to σH,t during NBER expansions. The

measured volatility of aggregate labor growth is 23% higher in recessions than in expansions.

We then compute the same rolling standard deviation (39) on the simulated data from

the model. We define recessions and expansions as periods when there are larger-than-or-

equal-to one-standard-deviation negative and positive innovations to the economy-wide TFP,

respectively. The second column shows that in the Smooth DE model, the aggregate labor

growth volatility σH,t is 22% higher in recessions than in expansions. Thus, the Smooth DE

model generates the countercyclical macro volatility that is quantitatively in line with the

data, even though the volatility of economy-wide shocks is constant. DE and RE models, in

contrast, do not generate such countercyclical volatility (third and fourth columns).

Perceived vs. actual increase in uncertainty. Discussions of Corollary 1 and Figure

3 indicate that, in our model, agents would overestimate the increase in uncertainty in

recessions. This is because tail events become more representative when uncertainty rises. To

quantify how much the agent’s perceived uncertainty rises relative to the actual uncertainty,
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we compute the Smooth DE variance of the future marginal benefit of labor,

Vθ
i,t

(
−γĉRE

i,t+1 + At+1 + ai,t+1

)
=

Vi,t

(
−γĉRE

i,t+1 + At+1 + ai,t+1

)
1 + θ(1−Rt+1|t,t−J)

. (40)

We are interested in (40) because it controls the labor-supply decision in response to an uncer-

tainty increase. We find that, under our calibration, a 10% rise in σa,t raises the perceived un-

certainty (40) by 69%. In contrast, actual uncertainty, given by Vi,t

(
−γĉθi,t+1 + At+1 + ai,t+1

)
rises only by 19%. Thus, the perceived rise in uncertainty is more than three times larger

than the actual uncertainty increase in recessions.17

5 Conclusions

We developed a tractable and structural bridge from the representativeness heuristic of

Kahneman and Tversky (1972) to the time-series domain. We built on the formalization

of representativeness by Gennaioli and Shleifer (2010) and of diagnostic expectations (DE)

by Bordalo et al. (2018) to allow for what we call “smooth diagnosticity.” Under Smooth

DE new information is defined as the difference between the current information set and a

previous information set. A critical consequence of this basic approach is that current and

past uncertainty interact to determine the intensity of the DE overreaction, but also create

the preconditions for novel properties such as over- and under- confidence.

After formally characterizing Smooth DE and its key properties, we leveraged its insights

along two substantive directions. First, we embedded the Smooth DE framework in a stan-

dard signal extraction problem and showed that Smooth DE can account for recent evidence

indicating that overreaction is stronger for weaker signals and for longer horizon forecasts.

Second, we embedded Smooth DE in a parsimonious RBC model with time-varying uncer-

tainty. This model can account for survey data on overreaction and overconfidence as well

as three salient properties of the business cycle: (1) asymmetry, (2) countercyclical micro

volatility, and (3) countercyclical macro volatility. We uncovered a novel policy implica-

tion: a redistributive policy that reduces idiosyncratic uncertainty could be beneficial for

macroeconomic stabilization because it dampens the state-dependent overreaction.

17Since we linearize our model, the increase in uncertainty affects first-order economic outcomes through
the state-dependent overreaction and not through the conventional risk channel. The risk adjusted log-
linearization method as in Bianchi et al. (2023) would allow us to capture the impact of perceived increase
in uncertainty while preserving tractability.
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A Proofs

A.1 Proof of Proposition 1

Expression (2) can be written as:

hθ
t (ω̂t+1) ∝ exp

[
− 1

2σ2
t+h|t

(
ωt+1 − µt+1|t

)2]
 exp

[
− 1

2σ2
t+1|t

(
ωt+1 − µt+1|t

)2]
exp

[
− 1

2σ2
t+1|t−J

(
ωt+1 − µt+1|t−J

)2]


θ

1

Z

Collecting the terms in the exponents, we get:

hθ
t (ω̂t+1) ∝ exp

[
− 1

2σ2
t+1|t

[
(1 + θ)

(
ωt+1 − µt+1|t

)2 − σ2
t+1|t

σ2
t+1|t−J

θ
(
ωt+1 − µt+1|t−J

)2]] 1

Z

Developing the squared terms and keeping track of the terms involving ωt+1, we obtain:

hθ
t (ω̂t+1) ∝ exp


− 1

2σ2
t+1|t

(
1 + θ −

σ2
t+1|t

σ2
t+1|t−J

θ

)
[
ω2
t+1 − 2ωt+1

(
1 + θ −

σ2
t+1|t

σ2
t+1|t−J

θ

)−1(
µt+1|t (1 + θ)−

σ2
t+1|t

σ2
t+1|t−J

θµt+1|t−J

)]
 1

Z

where the remaining terms are absorbed in the constant of integration.

Define: Rt+1|t,t−J ≡
σ2
t+1|t

σ2
t+1|t−J

. If Rt+1|t,t−J > (1 + θ)/θ, the expression above corresponds

to the kernel of a normal with mean:

Eθ
t (ωt+1) =

(
1 + θ −

σ2
t+1|t

σ2
t+1|t−J

θ

)−1 [
µt+1|t (1 + θ)−

σ2
t+1|t

σ2
t+1|t−J

θµt+1|t−J

]

=

[
µt+1|t +

Rt+1|t,t−Jθ

1 +
(
1−Rt+1|t,t−J

)
θ

(
µt+1|t − µt+1|t−J

)]

and variance:

Vθ
t (ωt+1) = σ2

t+1|t

(
1 + θ −

σ2
t+1|t

σ2
t+1|t−J

θ

)−1

=
σ2
t+1|t

1 +
(
1−Rt+1|t,t−J

)
θ
.

This gives us the result stated in Proposition 2.
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A.2 Proof of Proposition 3

Re-writing the expression (20):

hθ
t (xt) ∝ exp

[
− 1

2Σt|t

(
xt − x̃t|t

)2] exp
[
− 1

2Σt|t

(
xt − x̃t|t

)2]
exp

[
− 1

2Σt|t−1

(
xt − x̃t|t−1

)2]
θ

1

Z

Collecting the terms in the exponents, we get:

hθ
t (xt) ∝ exp

[
− 1

2Σt|t

[
(1 + θ)

(
xt − x̃t|t

)2 − Σt|t

Σt|t−1

θ
(
xt − x̃t|t−1

)2]] 1

Z

Developing the squared terms and keeping track of the terms involving xt, we obtain:

hθ
t (xt) ∝ exp

 − 1
2Σt|t

(
1 + θ − Σt|t

Σt|t−1
θ
)[

x2
t − 2xt

(
1 + θ − Σt|t

Σt|t−1
θ
)−1 (

(1 + θ) x̃t|t −
Σt|t

Σt|t−1
θx̃t|t−1

)]
 1

Z

where the remaining terms are absorbed in the constant of integration. The one above is

the kernel of a normal with mean:

Eθ
t (xt) =

(
1 + θ −

Σt|t

Σt|t−1

θ

)−1(
(1 + θ) x̃t|t −

Σt|t

Σt|t−1

θx̃t|t−1

)
= x̃t|t +

Rt|t,t−1θ

1 +
(
1−Rt|t,t−1

)
θ

(
x̃t|t − x̃t|t−1

)
= x̃t|t−1 +

(
1 +

Rt|t,t−1θ

1 +
(
1−Rt|t,t−1

)
θ

)(
x̃t|t − x̃t|t−1

)
= x̃t|t−1 +

(
1 +

Rt|t,t−1θ

1 +
(
1−Rt|t,t−1

)
θ

)
Kt(st − x̃t|t−1),

where Rt|t,t−1 ≡ Σt|t/Σt|t−1 and in the fourth line we used (2.7.2), and variance:

Vθ
t (xt) = Σt|t

(
1 + θ −

Σt|t

Σt|t−1

θ

)−1

=
Σt|t

1 +
(
1−Rt|t,t−1

)
θ
.

This gives us the result stated in Proposition 3.
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A.3 Proof of Proposition 5

First, consider the inequality (27). We have

∂Eθ (xt| sW,t)

∂s∗W,t

−
∂E∗ (xt| s∗W,t)

∂s∗W,t

=

[
1 +

θ(1−KW )

1 + θKW

]
KW −K∗

W

=
(1 + θ)KW

1 + θKW

−K∗
W

=

[
(1 + θ)KW

K∗
W

− (1 + θKW )

]
K∗

W

1 + θKW

=

[
(1 + θ)(σ2

x + σ2
W )

σ2
x + σ2

W + σ2
ε,c

−
(
1 + θ

σ2
x

σ2
x + σ2

W + σ2
ε,c

)]
K∗

W

1 + θKW

=
[
θσ2

W − σ2
ε,c

] K∗
W

1 + θKW

,

which is positive if σ2
W >

σ2
ε,c

θ
.

Next, consider the inequality (28). We have

∂Eθ (xt| sS,t)
∂s∗S,t

−
∂E∗ (xt| s∗S,t)

∂s∗S,t
=

[
1 +

θ(1−KS)

1 + θKS

]
KS −K∗

S

=
(1 + θ)KS

1 + θKS

−K∗
S

=

[
(1 + θ)KS

K∗
S

− (1 + θKS)

]
K∗

S

1 + θKS

=

[
(1 + θ)(σ2

x + σ2
S)

σ2
x + σ2

S + σ2
ε,c

−
(
1 + θ

σ2
x

σ2
x + σ2

S + σ2
ε,c

)]
K∗

S

1 + θKS

=
[
θσ2

S − σ2
ε,c

] K∗
S

1 + θKS

,

which is negative if σ2
S <

σ2
ε,c

θ
.

A.4 Proof of Proposition 6

First, consider the equilibrium individual policy functions. To characterize dynamics we use

a log-linear approximation of decision rules around the steady state. We take logs of the

optimality condition with respect to hours in (31) and constraints (29) and (30):

ηĥi,t = Ei,t [−γĉi,t+1 + ẑi,t+1] ,

ŷi,t = ẑi,t + ĥi,t−1 = ĉi,t.
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Substitute the constraints into the labor supply condition:

ηĥi,t = Ei,t [−γĉi,t+1 + ẑi,t+1]

= Ei,t

[
−γ
(
ẑi,t+1 + ĥi,t

)
+ ẑi,t+1

]
ĥi,t =

1− γ

η + γ
Ei,t [ẑi,t+1]

=
1− γ

η + γ

[
ρAAt + ãi,t+1|t

]
=

1− γ

η + γ
[ρAAt + si,t] .

Equating the coefficients we obtain the equilibrium elasticities.

Next, consider aggregate variables. Note we have∫ 1

0

si,tdi = 0,

∫ 1

0

ẑi,tdi = At +

∫ 1

0

ai,tdi = At,

by law of large numbers. Then

Ĥt =

∫ 1

0

ĥi,tdi = ερAAt + ε

∫ 1

0

si,tdi

= ερAAt

Ŷt =

∫ 1

0

ŷi,tdi =

∫ 1

0

ẑi,tdi+

∫ 1

0

ĥi,t−1di

= At + Ĥt−1

= Ĉt.

A.5 Proof of Proposition 7

Note we have∫ 1

0

s2i,tdi = σ2
s ,

∫ 1

0

u2
a,i,tdi = σ2

a,t−1,

∫ 1

0

a2i,tdi =

∫ 1

0

(si,t−1 + ua,i,t)
2di = σ2

s + σ2
a,t−1.

Then ∫ 1

0

(
ĥi,t − Ĥt

)2
di =

∫ 1

0

(εsi,t)
2 di = (ε)2

∫ 1

0

s2i,tdi

= (ε)2 σ2
s ,
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which is constant. Next consider the cross-sectional variance of output:∫ 1

0

(
ŷi,t − Ŷt

)2
di =

∫ 1

0

((
At + ai,t + ĥi,t−1

)
−
(
At + Ĥt−1

))2
di

=

∫ 1

0

(ai,t + εsi,t−1)
2 di

=

∫ 1

0

(si,t−1 + ua,i,t + εsi,t−1)
2 di

= (1 + ε)2
∫ 1

0

s2i,t−1di+

∫ 1

0

u2
a,i,tdi

= (1 + ε)2 σ2
s + σ2

a,t−1,

which is increasing in σ2
a,t−1. It follows that the cross-sectional variance of consumption:

∫ 1

0

(
ĉi,t − Ĉt

)2
di = (1 + ε)2 σ2

s + σ2
a,t−1,

is increasing in σ2
a,t−1 as well.

A.6 Proof of Proposition 8

First, consider the equilibrium individual policy functions. As in the RE solution, to charac-

terize dynamics we use a log-linear approximation of decision rules around the steady state.

We take logs of the optimality condition with respect to hours in (32) and constraints (29)

and (30):

ηĥθ
i,t = Eθ

i,t

[
−γĉRE

i,t+1 + ẑi,t+1

]
ŷθi,t = ẑi,t + ĥθ

i,t−1 = ĉθi,t.

49



Substitute the constraints into the labor supply condition:

ηĥθ
i,t = (1 + θ̃t,t−J)Ei,t

[
−γĉRE

i,t+1 + ẑi,t+1

]
− θ̃t,t−JEi,t−J

[
−γĉRE

i,t+1 + ẑi,t+1

]
ηĥθ

i,t = (1 + θ̃t,t−J)Ei,t

[
−γ
(
ẑi,t+1 + ĥθ

i,t

)
+ ẑi,t+1

]
− θ̃t,t−JEi,t−J

[
−γ
(
ẑi,t+1 + ĥRE

i,t

)
+ ẑi,t+1

]
[
η +

(
1 + θ̃t,t−J

)
γ
]
ĥθ
i,t = (1 + θ̃t,t−J) (1− γ)Ei,t [ẑi,t+1]− θ̃t,t−J (1− γ)Ei,t−J [ẑi,t+1] + θ̃t,t−JγEi,t−J

[
ĥRE
i,t

]
[
η +

(
1 + θ̃t,t−J

)
γ
]
ĥθ
i,t = (1 + θ̃t,t−J) (1− γ) [ρAAt + si,t]

− θ̃t,t−J (1− γ) ρJ+1
A At−J + θ̃t,t−Jγ

[
ερJ+1

A At−J

]
ĥθ
i,t =

(1 + θ̃t,t−J) (1− γ)

η +
(
1 + θ̃t,t−J

)
γ
ρAAt +

(1 + θ̃t,t−J) (1− γ)

η +
(
1 + θ̃t,t−J

)
γ
si,t

− θ̃t,t−Jη

η +
(
1 + θ̃t,t−J

)
γ

[
1− γ

η + γ

]
ρJ+1
A At−J ,

where the effective diagnosticity parameter θ̃t,t−J is given by (35). Equating the coefficients

we obtain the equilibrium elasticities. As in the RE economy, we obtain equilibrium aggregate

variables by simply aggregating the individual policy functions.

A.7 Proof of Proposition 9

Consider Rt+1|t,t−J :

Rt+1|t,t−J =
Vi,t

(
−γĉRE

i,t+1 + ẑi,t+1

)
Vi,t−J

(
−γĉRE

i,t+1 + ẑi,t+1

)
=

Vi,t

(
−γ
(
ẑi,t+1 + ĥθ

i,t

)
+ ẑi,t+1

)
Vi,t−J

(
−γ
(
ẑi,t+1 + ĥRE

i,t

)
+ ẑi,t+1

)
=

Vi,t

(
(1− γ) ẑi,t+1 − γĥθ

i,t

)
Vi,t−J

(
(1− γ) ẑi,t+1 − γĥRE

i,t

) ,
where the numerator is

Vi,t

(
(1− γ) [ρAAt + uA,t+1 + si,t + ua,i,t+1]− γĥθ

i,t

)
= (1− γ)2

(
σ2
A + σ2

a,t

)
,

which is increasing in σ2
a,t. Thus Rt+1|t,t−J and in turn θ̃t,t−J are increasing in σ2

a,t.
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A.8 Proof of Proposition 10

First consider the cross-sectional variance of hours. Defining εθs,t ≡
(1+θ̃t,t−J )(1−γ)

η+(1+θ̃t,t−J )γ
, we have

∫ 1

0

(
ĥθ
i,t − Ĥθ

t

)2
di =

∫ 1

0

(
εθs,tsi,t

)2
di =

(
εθs,t
)2 ∫ 1

0

s2i,tdi

=

(1 + θ̃t,t−J) (1− γ)

η +
(
1 + θ̃t,t−J

)
γ

2

σ2
s ,

which is increasing in θ̃t,t−J . Next consider the cross-sectional variance of output:∫ 1

0

(
ŷθi,t − Ŷ θ

t

)2
di

=

∫ 1

0

((
At + ai,t + ĥθ

i,t−1

)
−
(
At + Ĥθ

t−1

))2
di

=

∫ 1

0

(
si,t−1 + ua,i,t + εθs,t−1si,t−1

)2
di

=

1 +

(1 + θ̃t,t−J) (1− γ)

η +
(
1 + θ̃t,t−J

)
γ

2

σ2
s + σ2

a,t−1

which is increasing in θ̃t,t−J and σ2
a,t−1. It follows that the cross-sectional variance of con-

sumption:

∫ 1

0

(
ĉθi,t − Ĉθ

t

)2
di

1 +

(1 + θ̃t,t−J) (1− γ)

η +
(
1 + θ̃t,t−J

)
γ

2

σ2
s + σ2

a,t−1

is increasing in θ̃t,t−J and σ2
a,t−1 as well.

A.9 Proof of Proposition 11

First, we solve for the log-linearized RE decision rules under the tax policy. The optimality

conditions are

ηĥi,t = Ei,t [−γĉi,t+1 + At+1 + (1− τ)ai,t+1]

ŷi,t = ẑi,t + ĥi,t−1

ĉi,t + τai,t = ŷi,t.
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Substitute the constraints into labor supply conditions:

ηĥi,t = Ei,t [−γĉi,t+1 + At+1 + (1− τ)ai,t+1]

= Ei,t

[
−γ
(
At+1 + (1− τ)ai,t+1 + ĥi,t

)
+ At+1 + (1− τ)ai,t+1

]
ĥi,t =

1− γ

η + γ
Ei,t [Ai,t+1] +

1− γ

η + γ
(1− τ)Ei,t [ai,t+1]

=
1− γ

η + γ

[
ρAAt + (1− τ)ãi,t+1|t

]
=

1− γ

η + γ
[ρAAt + (1− τ)si,t]

Equilibrium output and consumption follow immediately as

ŷi,t = ẑi,t + ĥi,t−1 = At + ai,t + ĥi,t−1, (41)

ĉi,t = ŷi,t − τai,t = At + (1− τ)ai,t + ĥi,t−1. (42)

Next, consider the log-linearized SDE decision rules under the tax policy. To characterize

dynamics we use a log-linear approximation of decision rules around the steady state. The

optimality conditions are

ηĥθ
i,t = Eθ

i,t

[
−γĉRE

i,t+1 + At+1 + (1− τ)ai,t+1

]
,

ŷθi,t = ẑi,t + ĥθ
i,t−1,

ĉθi,t + τai,t = ŷθi,t.

Substitute the constraints into the labor supply condition:

ηĥθ
i,t = (1 + θ̃t,t−J)Ei,t

[
−γĉRE

i,t+1 +At+1 + (1− τ)ai,t+1

]
− θ̃t,t−JEi,t−J

[
−γĉRE

i,t+1 +At+1 + (1− τ)ai,t+1

]
ηĥθ

i,t = (1 + θ̃t,t−J)Ei,t

[
−γ
(
At+1 + (1− τ)ai,t+1 + ĥθ

i,t

)
+At+1 + (1− τ)ai,t+1

]
− θ̃t,t−JEi,t−J

[
−γ
(
At+1 + (1− τ)ai,t+1 + ĥRE

i,t

)
+At+1 + (1− τ)ai,t+1

]
[
η +

(
1 + θ̃t,t−J

)
γ
]
ĥθ
i,t = (1 + θ̃t,t−J) (1− γ)Ei,t [At+1 + (1− τ)ai,t+1]

− θ̃t,t−J (1− γ)Ei,t−J [At+1 + (1− τ)ai,t+1] + θ̃t,t−JγEi,t−J

[
ĥRE
i,t

]
[
η +

(
1 + θ̃t,t−J

)
γ
]
ĥθ
i,t = (1 + θ̃t,t−J) (1− γ) [ρAAt + (1− τ)si,t]

− θ̃t,t−J (1− γ) ρJ+1
A At−J + θ̃t,t−Jγερ

J+1
A At−J

ĥθ
i,t =

(1 + θ̃t,t−J) (1− γ)

η +
(
1 + θ̃t,t−J

)
γ
ρAAt +

(1 + θ̃t,t−J) (1− γ)

η +
(
1 + θ̃t,t−J

)
γ
(1− τ)si,t

− θ̃t,t−Jη

η +
(
1 + θ̃t,t−J

)
γ

[
1− γ

η + γ

]
ρJ+1
A At−J ,
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where the effective diagnosticity parameter θ̃t,t−J is given by (35).

Consider Rt+1|t,t−J :

Rt+1|t,t−J =
Vi,t

(
−γĉRE

i,t+1 + At+1 + (1− τ)ai,t+1

)
Vi,t−J

(
−γĉRE

i,t+1 + At+1 + (1− τ)ai,t+1

)
=

Vi,t

(
−γ
(
At+1 + (1− τ)ai,t+1 + ĥθ

i,t

)
+ At+1 + (1− τ)ai,t+1

)
Vi,t−J

(
−γ
(
At+1 + (1− τ)ai,t+1 + ĥRE

i,t

)
+ At+1 + (1− τ)ai,t+1

)
=

Vi,t

(
(1− γ) (At+1 + (1− τ)ai,t+1)− γĥθ

i,t

)
Vi,t−J

(
(1− γ) (At+1 + (1− τ)ai,t+1)− γĥRE

i,t

)
where the numerator is

Vi,t

(
(1− γ) [ρAAt + uA,t+1 + (1− τ)si,t + (1− τ)ua,i,t+1]− γĥθ

i,t

)
= (1− γ)

2 (
σ2
A + (1− τ)2σ2

a,t

)
,

which is increasing in σ2
a,t but also a change in σ2

a,t have a smaller impact when the pro-

gressivity τ is higher. Thus a higher τ is associated with a smaller increase in Rt+1|t,t−J and

θ̃t,t−J .

B Upper bound on DE distortion

Suppose that we are interested in imposing an upper bound on the Smooth DE distortion.

Imposing such upper bound on the overreaction in the mean guarantees that both distortions

remain finite and non-decreasing as the ratio Rt+h|t,t−J goes to infinity. Thus, we propose

the following approach.

Let θ̃ be the desired upper bound of effective overreaction in conditional mean. By

effective overreaction we refer to the object defined in equation (10). As a first step, we

exploit the fact that the size of the distortion is increasing in Rt+h|t,t−J to find the threshold

value R, such that, for a given θ, for each Rt+h|t,t−J > R, the overreaction in the mean would

be larger than θ̃:

Rθ

1 + θ
(
1−R

) = θ̃
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It follows that the upper threshold in terms of Rt+h|t,t−J is

R =
θ̃

1 + θ̃

1 + θ

θ

Whenever Rt+h|t,t−J > R, we thus replace θ with θR, the value of θ such that the overre-

action in the mean is equal to θ̃. Thus, we solve:

Rt+h|t,t−JθR

1 + θR
(
1−Rt+h|t,t−J

) = θ̃

and obtain:

θR =
θ̃

Rt+h|t,t−J − θ̃
(
1−Rt+h|t,t−J

)
Plugging in θR in the formulas for the overreaction in mean and variance, we obtain:

Eθ
t (xt+h) = µt+h|t + θR

Rt+h|t,t−J

1 + θR
(
1−Rt+h|t,t−J

) (µt+h|t − µt+h|t−J

)
Eθ

t (xt+h) = µt+h|t + θ̃
(
µt+h|t − µt+h|t−J

)
and

Vθ
t (xt+h) =

1

1 + θR
(
1−Rt+h|t,t−J

)σ2
t+h|t

Vθ
t (xt+h) =

[
1 + θ̃

(
1− 1

Rt+h|t,t−J

)]
σ2
t+h|t

Note that while the overreaction in the mean remains constant once Rt+h|t,t−J > R, the

overreaction in the variance keeps growing as relative uncertainty increases, but it converges

to a finite value:

lim
Rt+h|t,t−J→∞

Vθ
t (xt+h) =

[
1 + θ̃

]
σ2
t+h|t
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