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Abstract

This paper investigates what features of an economy determine whether con-
vergence under learning is fast or slow. In all of the models that we consider,
people’s beliefs about model outcomes are central determinants of those out-
comes. We argue that under certain circumstances, convergence of a learning
equilibrium to the rational expectations equilibrium can be so slow that policy
analysis based on rational expectations is very misleading. We also develop new

analytic results regarding rates of convergence in learning models.
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1 Introduction

Rational expectations may be a useful modeling strategy in tranquil times like the Great
Moderation. This strategy is less appealing, however, when people are confronted with
novel events, such as the Great Recession or the COVID-19 pandemic. This fact was
self evident to the founders of rational expectations. For example, referring to the

model in his seminal paper on asset prices, Robert E. Lucas, Jr. writes:

....The model described above “assumes” that agents know a great deal
about the structure of the economy, and perform some non-routine com-
putations. It is in order to ask, then: will an economy with agents armed
with “sensible” rules-of-thumb, revising these rules from time to time so

as to claim observed rents, tend as time passes to behave as described...’
Lucas (1978, p. 1437)

This paper analyzes the evolution of economic aggregates after a novel event. We
assume that people must learn about their environment by forming beliefs about future
economic outcomes and update those beliefs as the data come in.

There is a voluminous literature that addresses the question of whether economies in
which people are learning about their environment converge to a rational expectations
equilibrium (REE).! In contrast, much less attention has been paid to the question of
how long it takes to converge to an REE.?

The answer to this question is critical to assessing the usefulness of rational ex-
pectations for understanding the effects of shockson the economy and the efficacy of
policies to deal with the repercussions of those shocks. As Vives (1993, p. 329) writes,
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in a changing world, for all practical purposes, “slow’ convergence may mean no con-

Y

vergence.” This paper investigates what features of an economy determine whether

learning is fast or slow. Critically, in all of the models we consider, people’s beliefs
about model outcomes are central determinants of equilibrium outcomes.?

Our central finding is that when beliefs are partially self-fulfilling, learning equilibria

1See, for example, Bray and Savin (1986), Marcet and Sargent (1989b), and Evans and Honkapohja
(2001).

2Some exceptions include Vives (1993), Marcet and Sargent (1995), Ferrero (2007), and Chien et
al. (2021).

3There is a large literature that explores the speed with which people learn the parameters of
exogenous stochastic processes. For example, Erceg and Levin (2003), Gust et al. (2018) and Farmer
et al. (2021) describe an empirically relevant set of time series representations with hard-to-learn low
frequency components.



converge slowly to rational expectations. Indeed, learning can be extraordinarily slow,
with progress being measured in millennia. Under these circumstances, policy analyses
based on rational expectations can be very misleading.

We begin by considering a model developed by Bray and Savin (1986) that is a
workhorse in the learning literature. An important virtue of the model is that it is a
very simple setup in which people’s beliefs determine market outcomes. The reduced
form of the model encompasses cases in which beliefs are partially self-fulfilling and
cases in which beliefs are self-defeating. A particular parameter, which we denote by
b, controls how beliefs about market outcomes affect actual market outcomes. When
0 < b < 1, beliefs are partially self fulfilling. The Lucas (1973) supply model, in which
a higher expected price level leads to a higher actual price level, falls into this case.
When b < 0, beliefs are self defeating. Muth (1961)’s version of the classic Cobweb
model, in which a higher expected price level leads to a lower actual price level, falls
into this case.

In the REE of the Bray and Savin (1986) model, people’s beliefs about economic
aggregates are constants, independent of past data. Bray and Savin (1986) show that
when people behave like Bayesians, their beliefs converge almost surely to rational
expectations. In contrast, we focus on the rate at which beliefs converge under both
Bayesian and classical (least squares) learning. In both cases, beliefs are a stochastic
process that depends on past data. Building on Ljung (1977), Marcet and Sargent
(1989¢) and Evans and Honkapohja (2001) show that in a class of learning models,
the eigenvalues of a particular ordinary differential equation (ODE) determine whether
or not the system converges asymptotically. Those eigenvalues can also be used to
characterize the amount of time it takes for learning to converge. In the Bray and
Savin (1986) model, there is only one eigenvalue and it is equal to b. Convergence can
be very slow, depending on the value of b.

Consistent with results in Christopeit and Massmann (2018), for moderately high
values of b, we show that it takes an extraordinarily large number of periods to close
two-thirds of the expected gap between the initial priors and the rational expectations
belief. The intuition behind the possibility of slow convergence is as follows. When
people’s expectations of a variable are largely self-fulfilling, they are slow to adjust
their priors, and it takes a long time for them to converge to rational expectations. In
contrast, when people’s expectations lead to outcomes different from their beliefs, they

are quick to change those beliefs, and convergence is fast. For convenience, we refer to



this intuition as the learning principle.*

The possibility of slow convergence is not just a theoretical curiosum. The binding
zero lower bound (ZLB) during the Great Recession was a novel event that few people
understood when it first occurred. We argue that when the ZLB is binding, learning
is particularly slow. We also argue that the implications of slow learning for policy
are substantial: The predicted effects of monetary and fiscal policies are very different
under rational expectations than under slow learning. We make these arguments using
a simple version of the New Keynesian (NK) model that was widely used to understand
the Great Recession and the effect of the binding ZLB.?

We begin by considering learning equilibria in the ZLB in the absence of government
interventions. Our key result is that convergence is very slow. Indeed, in the benchmark
parameterization of the model the ZLB would almost certainly be over long before
learning has come close to converging. The reason for slow convergence is that in the
ZLB, the expectations of households and firms tend to be self-fulfilling. To understand
why, suppose that firms and households expect lower inflation in the future. Because
of price-setting adjustment costs, firms are incentivized to cut prices today. In the
ZLB, low inflation expectations mean households believe the real interest rate is high.
Consequently, households reduce their demand for consumption, which leads to a fall
in the marginal cost of production. Hence, the actions of both households and firms
lead to lower current inflation. With learning, low current inflation shifts expected
inflation down in the next period. The previous mechanism repeats itself in the next
period so that actual inflation in the next period is also low. We conclude that, in the
Z1LB, deflation expectations are partially self fulfilling, and the NK model behaves like
a high b economy.

In the NK model, when people have rational expectations, a shock that triggers
a binding ZLB leads to a sharp decline in inflation and output (see Eggertsson and
Woodford (2004)). The large effects arise because the shock triggers high expected
deflation and real interest rates. In contrast, under learning the same shock leads only
to a moderate and gradual decline in inflation because, with learning, expectations
are partially backward-looking. So, if people begin the episode not expecting a large

deflation, then the actual decline in inflation will be relatively moderate.

4A version of the learning principle has been studied by Heemeijer et al. (2009) and Hommes
(2011).

5Much of the work in the initial aftermath of that event combined rational expectations with the
NK model. See, for example, Eggertsson and Woodford (2004), Christiano et al. (2011) and Del Negro
et al. (2023).



Next, we consider the effects of fiscal policy in the ZLB. We find that the efficacy
of fiscal policy is much smaller under learning than under rational expectations. Under
rational expectations, the multiplier is very large in the ZLB because an increase in
government purchases causes a rise in expected inflation (see Christiano et al. (2011)).
Because the nominal interest rate is fixed, this rise generates a fall in the real interest
rate, a rise in consumption, and a multiplier substantially larger than unity. Under
learning, expected inflation is partially backward-looking and does not move much after
an increase in government purchases. So, the real interest does not fall by very much,
and consumption rises by only a small amount. As a result, the key driver of the large
REE multiplier is effectively eliminated, and the multiplier is close to unity.

Next, we turn to the efficacy of monetary policy in the wake of a shock to the
discount rate, under learning. We begin by considering the effects of a simple form of
forward guidance: The monetary authority commits to keeping the nominal interest
rate at zero for one period after the shock that makes the ZLB binding returns to
its steady-state level. Interestingly, the number of REEs proliferates under forward
guidance. However, we show that only one equilibrium is stable under learning. Con-
sistent with the existing literature (for example, Del Negro et al. (2023) and Woodford
(2012)), we find that forward guidance is powerful under rational expectations. As
is well-known, the power of forward guidance under rational expectations reflects its
strong effect on expected inflation. Under learning, the effects of forward guidance have
very little influence on expected inflation because expectations are partially backward-
looking. It follows that under learning, forward guidance is not very powerful. So,
as with fiscal policy, a rational expectations-based analysis of monetary policy can be
very misleading.

In our analysis, people fully integrate the fact that they are learning when they solve
their problems. For convenience, we refer to this approach as internalized learning.
We formulate households’” and firms’ problems in recursive form. Given the recursive
structure of learning, this approach seems natural: People start a period with an
initial set of beliefs, then see data and update their beliefs using Bayes’ rule. In our
environment, aggregate prices adjust in a given period to clear markets. In our learning
equilibrium, however, we do not require that planned future individual decisions are
market clearing or that the sum of expected future individual decisions coincides with
the corresponding expected aggregate outcomes. People’s value functions incorporate

their understanding that they will continue learning and adapting their behavior as



new data arrive.

As it turns out, implementing internalized learning in the nonlinear solution of the
model is computationally very challenging. In a learning equilibrium, the parameters
that characterize beliefs are also state variables and this greatly exacerbates the curse
of dimensionality.® See Appendix C for details.

Next, we study the asymptotic properties of the model by linearizing its solution.
We establish three sets of results. First, we identify the analog of b in the linearized
solution, which determines the asymptotic rate of convergence of the NK model. It
is the largest real part of the eigenvalues of the matrix that maps beliefs about the
state of the economy into their realized values. This property is not specific to the
simple NK model. It applies to a broader class of multivariate models and extends
some results in Christopeit and Massmann (2018) to those multivariate models. So our
result about the analog of b allows an analyst working with a model falling within that
class to quickly determine whether learning is slow or fast. Second, we show that the
linearized solution to the NK is a good approximation to the nonlinear solution in a
nontrivial neighborhood about the point at which the approximation is taken. Third,
we show that the asymptotic rate of convergence in mean beliefs is a good guide to the
small ¢ (finite sample) rate of convergence.

In contrast to internalized learning, much of the learning literature works with a
version of Kreps (1998)’s Anticipated Utility approach. In this approach, people update
their beliefs every period as new data come in. But, when they make their decisions,
people proceed as though their beliefs will never be revised again. This approach has
been criticized for its internal inconsistency (see Cogley and Sargent (2008) and Adam
and Marcet (2011)).

We simulate our model under both internalized learning and anticipated utility. We
find that the results under both approaches are qualitatively similar. However, for some
experiments there are important quantitative differences between the two approaches
due to the more prominent role played by uncertainty under internalized learning.
These results are consistent with those obtained by Cogley and Sargent (2008), who
studied a stochastic endowment economy with a storage technology.

The remainder of this paper is organized as follows. Section 3 analyzes learning in
the Bray and Savin (1986) environment. Section 4 discusses our approach to learning

in the NK model. Section 5 characterizes the set of minimal state variable REE while

6We solve our model using a compiled programming language (c++) and we make use of more
than 300 processors.



the representative household’s discount rate is low. Section 6 analyzes the local and
global learnability of those equilibria. In Section 7, we analyze the speed of convergence
of the learning equilibrium in the NK model after a drop in the discount rate. In that
section, we also compare the internalized learning and anticipated utility approaches
to learning. Section 8 assesses the sensitivity of the efficacy of fiscal policy and forward
guidance to learning. Section 9 extends our analytic results about rates of convergence
reported in section 9 to the vector case that encompasses the NK model. Section 10

contains concluding remarks.

2 Related Literature

Our paper relates to a number of literatures. The first is the literature that studies the
properties of recursive stochastic estimators in learning models. As noted above, Ljung
(1977) establishes that a recursive estimator, é\t, converges almost surely to a limiting
value, 6, if a particular ordinary differential equation, ODE, which is determined by
the underlying system, has eigenvalues with real parts that are less than unity. (1989c;
1989a), Woodford (1990), (2000; 2001) and others build on Ljung (1977) to study the
conditions under which learning equilibria converge to rational expectations.

Marcet and Sargent (1995) study the rate at which learning equilibria converge
to rational expectations using results from Benveniste et al. (1990), who show that
if the real parts of the eigenvalues of the ODE identified by Ljung (1977) are less
than 1/2, then ¢'/2 («/9; — 9) has an asymptotic Normal distribution with finite, non-
zero variance. However, eigenvalues with real parts greater than 1/2 can easily arise in
practice. We show that the NK model analyzed below has this property in the ZLB.
In addition, Marcet and Sargent (1995) use numerical simulations to study versions of
the Cagan (1956) model of hyperinflation. In some of those simulations, eigenvalues
are substantially larger than 1/2. Christopeit and Massmann (2018) extend the results
in Benveniste et al. (1990) for the Bray and Savin (1986) model to the case of 1/2 <
b < 1. We extend some of the results in Christopeit and Massmann (2018) to a class
of multivariate models that nests our NK model.

Ferrero (2007) discusses learning in the context of a linear NK model in which the
ZLB on interest rates is not binding. He uses the simulation methods proposed by
Marcet and Sargent (1995) to study convergence rates of learning equilibria. Ferrero

(2007) adopts the so-called Euler-equation approach to learning as opposed to our



approach; see Evans (2021) for a definition of the Euler-equation approach to learning.”
Another difference with Ferrero (2007) is that we compare rates of convergence in a
nonlinear NK model when the ZLB on interest rates is and is not binding. Ferrero
(2007) only considers the latter case.

Cogley and Sargent (2008), Adam and Marcet (2011), and Adam et al. (2017)
develop the internalized learning approach in the context of endowment economies.
Adam and Merkel (2019) use this approach to analyze a real business cycle model in
which peoples’ beliefs do not nest an REE. In contrast, we study an NK model in
which peoples’ beliefs do nest an REE and we characterize rates of convergence to that
equilibrium.

Preston (2005) and Eusepi et al. (2022) study the effects of monetary policies in
linearized NK models under learning, both in and out of the ZLB. They use the an-
ticipated utility approach to modeling how people make decisions. In contrast, we
work with a nonlinear model and adopt the internalized learning approach to decision
making. Additionally, we characterize how quickly, under learning, monetary and fiscal
policies have effects similar to those obtained under rational expectations.

A different literature investigates prices’ information content for fundamentals ob-
served with noise. In this context, Vives (1993) asks a question similar to ours: How
quickly do people’s beliefs converge? Specifically, he studies a model in which people
use price signals and other noisy observations to learn about an object (a cost param-
eter) whose value is independent of beliefs. In our model, the values of the objects
that people are learning about—for example, aggregate output and inflation—depend on
their beliefs. Heemeijer et al. (2009) and Hommes (2011) study positive and negative
feedback loops from expectations to outcomes using laboratory experiments and uni-
variate models with constant gain. By contrast, we consider learning in the context of
the multivariate NK model under Bayesian learning and analytically characterize the
rate of convergence of beliefs.

Our paper is also related to a recent game-theoretic grounded literature that ana-
lyzes the implications of bounded rationality for the effectiveness of fiscal and monetary
policy. Farhi and Werning (2019) use k-level thinking models to study how deviations
from rational expectations affect the effectiveness of forward guidance. Garcia-Schmidt
and Woodford (2019) study forward guidance and interest rate pegs using reflective
expectations. lovino and Sergeyev (2023) apply k-level thinking and reflective expec-

TOur approach is an example of what Evans (2021) calls the agent-based approach to learning.



tations to analyze the effects of quantitative easing. Angeletos and Lian (2017) develop
the idea that a lack of common knowledge can attenuate general-equilibrium effects and
damp the effects of government spending. Angeletos and Lian (2017; 2018) analyze the
consequences of bounded rationality for the size of fiscal multipliers.

Farhi and Werning (2019), Farhi et al. (2020) and Woodford and Xie (2019; 2022)
use different models of bounded rationality to study the size of the government-spending
multiplier. Vimercati et al. (2021) assess the implications of bounded rationality for the
effectiveness of tax and government spending policy at the ZLB. They do so through
the lens of a standard NK model in which people are dynamic k-level thinkers.

In all of the papers just cited, individuals have a limited ability to understand the
general equilibrium consequences of monetary and fiscal policies. Like learning, this
type of deviation from rational expectations can limit the power of forward guidance.
Our paper studies a form of deviation from rational expectations different from those
cited in the previous two paragraphs. Moreover, in contrast to our analysis, these

papers do not analyze rates of convergence to rational expectations.

3 Simple Example

We consider a workhorse model used in the learning literature; see, for example, Bray
and Savin (1986) and Evans and Honkapohja (2001). We use this model to exposit our
basic intuition about the factors determining how fast learning models converge. That
intuition is summarized by what we refer to as the learning principle. First, when peo-
ple’s expectations are partially self-fulfilling then convergence to REE is slow. Second,
when people’s expectations lead to outcomes that are different from their expecta-
tions, then convergence is quick. We exposit this principle using different measures of
convergence.

Suppose a variable, x;, for t = 1,2, ..., is determined as follows:

Ty = Qa + b]Et—lxt + Et. (1)

Here, £, has mean zero, variance o>

< 00, and is not correlated over time. The
operator, [E;_1, denotes the cross-sectional average of expectations based on the history
of observations on x; up to period ¢ — 1. Evans and Honkapohja (2001) show that when
b > 0, equation (1) is the reduced form of the Lucas (1973) supply model. When b < 0,

equation (1) is the reduced form of the Cobweb model analyzed in Muth (1961).



We consider two specifications of E;_; corresponding to whether people have ra-
tional expectations or use past data to learn about the data-generating process for z;.
When b # 0, the way people form their beliefs affects the law of motion for z;.

In the REE, E;_; corresponds to the mathematical expectation, F; 1, and x; is
given by

—. 2)
1—-0
That is, in the REE z; is distributed iid with mean a/ (1 — b) and variance ¢*. For
example, if &, ~ N (0,02), then 2, ~ N (a/ (1 — ), 0?).

mt:ﬂ—i_‘gt)u:

3.1 Beliefs about the Mean of z;

As in Bray and Savin (1986) and Evans and Honkapohja (2001), people assume that x;
is Normally distributed with mean p and variance o2, but they do not know the value
of 1.8 For ease of exposition, we assume people know the value of o2. The analysis
below is unchanged if we assume that people must also learn the value of o2 so long
as they have Normal-inverse-gamma priors about p and o2, which would result in the
same equations for pi.

Another approach to learning used in the related literature is constant gain learning.
In the model considered here, constant gain learning is not an optimal approach to
learning from the perspective of households and firms. As a result, it does not fit into a
framework of internalized learning. See Appendix B for further discussion of constant
gain learning and for a characterization of the rate of convergence of beliefs to REE.

We assume that before observing x;, people’s prior belief about u is given by the

Normal distribution

N (pe—1,0%/X21) - (3)

Here, \;_; characterizes the precision of the prior about ;.2 After seeing x; people’s

posterior belief about j; is N (s, 02/)\;), where

1
R — — [y 4
N1 +1 (xt Lot 1)7 ( )

M=NMo1+1=X+1, (5)

He = fhe—1 +

8Recall, we have not assumed that £; actually has a Normal distribution. People in the model
assume Normality of the likelihood when they derive Bayes’ rule.

9We can interpret ug as the average of person-specific priors, but, we require that all people have
the same value for A\qg .
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for t = 1,2,... , where 1/ (\o +t) is the optimal weight on new information.’® The
parameter, Ao, is finite and non-negative. If \g = 0 then y; in equation (4) corresponds
to the time t least-squares estimator of p.

Substituting from equation (1), and rearranging, we obtain

a-—+e&+ (b + )\t—l) Hi—1

= 6
e A1+ 1 (6)
After repeated substitution, we obtain a decomposition of yu; in terms of the shocks
and . Let
t
a=]]a-1v), (7)
j=1
where -
b= ——. 8
J )\O+j ( )

The following Lemma summarizes the time-series representation of u, that we work
with:

Lemma 1. The variable, u, in equation (6), has the following representation:

t
a 2 € a
= e - 9
iy 1_b+2{zj>\0+j}+2t(,u0 1—b)’ (9)

j=1

where z; s defined in equation (7).

For the proof, see Appendix A.

3.2 Characterizing Rates of Convergence

Bray and Savin (1986) prove that if b < 1, then p; — a/ (1 —b) almost surely. In
contrast, we are interested in the rate at which p; converges. To this end, we focus on
the mean of the posterior distributions of ;. The parameter b is the critical determinant

of the rate of convergence.

10T his result about posteriors is well known; see, for example, Hamilton (2020).
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3.2.1 Rate of Convergence of Mean of i,

We now consider the rate of convergence of Fu,;, where E is the unconditional mathe-

matical expectation. According to Lemma 1,

zn=F (ut_—%b) ) (10)
Mo — 1
for each ¢t > 1. We can interpret 1 — z; as the fraction of the initial gap, o —a/ (1 —b),
closed by period ¢.

From equations (7) and (8), we see that z; depends only on \g and b. The smaller
the precision, \g, the larger the gain at all dates (see equations (4) and (5)). This gain
effect implies that the less precise people’s initial priors are, the more weight they give
to the data and, in our simple model, the more quickly their views converge.

We now analyze numerically how the speed of convergence of Eu; depends on b.
Our metric is the amount of time it takes to close two-thirds of the initial gap. That
is, we calculate T, the value of ¢ such that zy ~ 1/3. In the following calculations, we
set A\g = 1.1¥ When b = 0,0.5,0.75,0.85, and .95, then T' = 3, 11, 113, 2201, and 5.2
billion, respectively. Note how the speed of convergence decreases nonlinearly with b.
When b = 0, people’s beliefs converge very quickly. In contrast, when b is large and
positive, for example, 0.95, beliefs essentially take forever to converge.

Suppose 0 < b < 1. Then, learning injects a positive feedback loop into the data.
For higher b, a large value of ;1 implies a large value of z; (see equation (1)). That, in
turn implies a higher value of p; (see equation (4)). The higher is b the more powerful is
the feedback loop. This positive feedback loop explains why the higher value of b leads
to a slower speed of convergence.!? As we discuss below, this intuition also applies for
b < 0. That is, for all b satisfying b < 1, convergence is faster for smaller values of b.

To discuss the rate of convergence of Eu;, we need to define what it means for
two sequences— x; and a;, both of which converge to zero—to have the same rate of
convergence. Loosely, two sequences have the same rate of convergence when their
ratio does not diverge or converge to zero. This condition is satisfied when (i) the ratio
converges to a finite, non-zero constant or (ii) the ratio oscillates in a bounded set.

Case (i) is relevant to our analysis of the Bray and Savin (1986) model. As it turns

HNote that the value of a is irrelevant for z;.
12Tf b is too large, then the feedback loop is too strong, so that the process would not converge.
That is the reason why we focus on b < 1 in these simulations.
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out, case (ii) is relevant to our analysis of the NK model. Our definition accommodates

both cases.

Definition 1. Consider two series, x; and a; > 0 that converge to zero—that is, lim; .., z; =
lim; ., a; = 0. We say that x; and a; converge at the same rate if (a) there exists an
A < oo such that |z, /a; < A for all t, and (b) there exists an ¢ > 0 such that for
any T' > 1 we have sup,>r |z:| /a; > €. If conditions (a) and (b) are satisfied we write

Ty ™ Q.

Conditions (a) and (b) correspond to the requirements that |z;| /a; does not diverge
and does not converge to zero, respectively.
The following proposition taken from Christopeit and Massmann (2018) establishes

the rate at which 2z, converges to zero:'3

Proposition 1. For any b < 1 and any 0 < \g < o0, if/\lo;ft £ 1 for allt, then z ~ t*=1.

flb
)\+t Ao+t*

then z, = 0 for all t > t* (see equation (7)). The assumption that (1 —b) /(Ao +t) # 1

only rules out isolated values of b and A\g. While the proof of Proposition 1 is somewhat

The requirement that <=2 = 1 for all ¢ is necessary because i = 1 for some t*,

involved, the intuition can be seen from the following approximations:

log () Zb~cl+ b—1)23N62+(b—1>10g(t),

where ¢; and ¢y are finite constants. The first approximation is the first-order Taylor
series approximation, log (1 —x) ~ —z. The second approximation puts the effect
of Ao in a constant (¢;). The third approximation captures well-known properties of
the harmonic sum. If these approximations held with equality then the result of the
proposition would follow trivially by exponentiating log z;,. Thus, the power conver-
gence result, that z; eventually evolves as t*~!, occurs because of the decreasing gain in
equation (4). In particular, if the gain were instead constant then z; would display geo-
metric convergence, i.e., it would eventually evolve according to A* where |[A| < 1. Tt is
well known that power convergence is qualitatively slower than geometric convergence.

The analog to the ODE considered in Ljung (1977) that is associated with equation
(4) is given by [ (1) =z (7) — pu (1), where z (7) = bu (7) and 7 denotes notional time.
The eigenvalue of the mapping from p (7) to z (7) is b. The solution to the ODE is

13See equation B.7 of their appendix.
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p(r) = e V7 (0). Consistent with Ljung (1977), whether p (7) converges to zero
is determined by the value of b. Proposition 1 shows that b also determines the rate
of convergence, in actual time, of Eu;. Note that the rate of convergence in actual
time is a power function of ¢, where the power is determined by b. This is notable
because convergence in notional time is geometric, which is always faster than power
convergence.

Proposition 1 says that for large enough ¢, |u; — a/ (1 — b)|, is approximately xt*~*
for some finite constant, k # 0. So, we can compute how many periods, T}, it takes to

close two-thirds of an initial gap, xt*~!, in period t. It is easily verified that:
T, = [3ﬁ - 1} t. (11)

Note that T; only depends on b, and not on other objects like A\g. We also compute
the time required, 7', to close the initial gap in period 0, obtained by simulating the
actual z;’'s. When b = 0, 0.5, 0.75, 0.85, and 0.95 then 77 (T) = 2(3), 8 (11), 80 (113),
1516 (2201), and 3.5 billion (5.2 billion). It is striking how well T tracks 7. We
infer that the asymptotic result in Proposition 1 is informative about the behavior of
e —a/ (1 —0b), even for small values of ¢.

We redo these calculations for the case of A\g = O-that is, the case of least-squares
learning. For b = 0, 0.5, 0.75, 0.85, and 0.95, we obtain T} (T') = 2 (1), 8 (3), 80 (36),
1516 (745), and 3.5 billion (1.9 billion). When )\ = 10, we obtain 77 (7)) = 2 (21),
8 (83), 80 (831), 1516 (15,804), and 3.5 billion (36.5 billion). The results for all three
values of )y are qualitatively similar. For small values of b, convergence is relatively
fast, and for large values of b, the time required to converge explodes.

The following corollary follows immediately from Lemma 1 and Proposition 1.

Corollary 1. For any b < 1 and any 0 < Xy < oo: (i) if po # a/(1—0>) and
L=b £ 1 for all t, then E (u; —a/ (1 —b)) ~ t*=1; and (i) if po = a/ (1 —b) then

Ao+t

E (e —af(1-1b)) =0,

Corollary 1 establishes the rate of convergence of E;.

3.2.2 Rate of Convergence of Distribution of s,

In this paper, we generally focus on convergence in terms of the rate of convergence in
mean. Marcet and Sargent (1995) propose an alternative measure of convergence, the

rate of convergence in the distribution of y;. They characterize that rate by the value
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of ¢ for which #° (j1; — a/ (1 — b)) converges to a non-degenerate distribution as t — oo.
If we knew what that distribution is, then the distribution approach to convergence
would provide us with an approximation to the entire distribution of ¢° (; — a/ (1 — b))
for small ¢.

At the time that Marcet and Sargent (1995) was written, there were no analytic
results that could be used to develop an approximation for 8, for b > 1/2. So, Marcet
and Sargent (1995) developed a numerical approach. Christopeit and Massmann (2018)
develop the required analytic results for the univariate case when b > 1/2. Their results
reveal some limitations of the distribution approach to the rate of convergence. First,
when b < 1/2, § is a constant, equal to 1/2. So, the rate of convergence in distribution
does not capture the fact that the rate of convergence of E'u; accelerates as b falls below
1/2. Second, when b = 1/2, there is no value § for which #° (u; —a/ (1 — b)) converges
to a non-degenerate distribution as ¢ — oo. Third, when 1/2 < b < 1, Eu; converges
at the same rate as its standard deviation, implying that the mean of the asymptotic
distribution, lim;_,., Ft'~° (ut — ﬁ), is not zero. So, the asymptotic distribution may
be misleading for small values of ¢ because it is not centered on the point, a/ (1 — b), to
which p; converges almost surely. Finally, although Christopeit and Massmann (2018)
show that an asymptotic limiting distribution exists when /2 < b < 1, they do not
provide a characterization of that distribution. Unless we use numerical simulations,
we cannot at this time use the distribution approach to approximate the distribution
of #° (s — a/ (1 — b)) for finite ¢, when /2 < b < 1.

4 Learning in the New Keynesian Model

In this section, we describe a simple NK model. As in Eggertsson and Woodford (2003),
we allow for a shock to the household’s discount rate that can cause the ZLB on the
interest rate to be binding. To study the properties of the model under learning, it is
convenient to express people’s problems in recursive form.

In the current period, households discount next period’s utility by 1/ (1 + 7). In
steady state, r = rss > 0. We assume that initially, the economy is in the unique
non-stochastic rational expectations steady state in which the nominal interest rate is
positive. Then, unexpectedly, r = r, < rg. People correctly understand that next

period’s discount rate, r’, is drawn from a two-state Markov chain, 1" € [ry, ry]|, with
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an absorbing state:

Pr[r’ =nrlr=r]=p, Prir'=ryp'=r]=1-p, (12)

Pr[r' =rr =1y = 0.

Once r = rg, the economy returns to the initial rational expectations steady state.
There is another rational expectations steady state in which there is deflation and the
nominal interest rate is unity (see Benhabib et al. (2001)). We abstract from that
steady state equilibrium because it is not stable under the learning that we consider.
Moreover, focusing on one steady state greatly simplifies our analysis. See Arifovic et
al. (2018) for a discussion of stability for other learning models in which the deflationary

steady state is learnable.

4.1 Fiscal and Monetary Policy

Monetary policy is given by
R=max{l,1+ry+a(r—1)}, (13)

where a/ (14 rs) > 1 and the max operator reflects the ZLB constraint. Later, we
discuss other variations on monetary policy including forward guidance.

We consider two specifications for GG. In the baseline specification, G = G, its
nonstochastic steady-state value. We also consider a policy where G = G, > G, while
r = rp. The government finances its expenditures with lump-sum taxes, G' + vwN,

where vwN represents a subsidy paid to intermediate goods firms.

4.2 Private Agents’ Problems

Below, we define the household and firm problems.

4.2.1 The Household’s Problem When r = 7,

The household enters a period with a stock of bonds, b, = Bj—1/Pi—1. Here, Bj, ;1
denotes the beginning-of-period t payoff on nominal bonds acquired in the previous
period, when the price of consumption goods was P,_;. At the beginning of a pe-

riod, before markets open, the household also knows the value the vector, ©, which

16



summarizes its beliefs about the distribution of a vector, z:

Here, C' and 7 denote the current period’s aggregate consumption and aggregate infla-
tion. The variable, 7, corresponds to P,/P;_;, where P, and P;,_; denote the current
and previous period’s aggregate price level, respectively.

In a standard recursive equilibrium, people know current-period market prices and
profits when they make their current decisions. Typically, when markets open in these
models, people can deduce the prices and profits from a small set of variables. In our
context, these variables are the two components of x. In this spirit, we assume that
people observe x when markets open, and they make their current consumption, saving,
and labor decisions. In making those decisions, households internalize the effect of x
on their beliefs about the distribution x’~that is, the value of x in the next period.
Those beliefs, ©, are given by

O =L(O,1). (14)

The form of L depends on the model of learning being analyzed. The household is
internally rational in the sense of Adam and Marcet (2011). Specifically, when making
decisions, it takes into account uncertainty about the distribution of x and the fact
that beliefs about that distribution will evolve as new data arrive (see Section 4.3.2).

Let Cp, Np, b, denote the representative household’s consumption, hours worked

and end-of-period bond holdings. The household solves

maxc, N b, {log (Ch) — g (Nn)? (15)
b (1= ) Vi () + B0V 0,010
subject to
Ch + b;l —h—i—w(x)Nh—l—T(x). (16)
R(z) = 7 (x)

Here, T (z) denotes profits net of lump-sum taxes, w (x) denotes the real wage, R (z)

denotes the nominal rate of interest, and 7 (x) denotes the inflation rate.!* In equation

14We constrain the choice of b}, to a compact set [Q,ﬂ, which we discuss in Appendix C.
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(15), Viss (b)) denotes the value function of the household conditional on 7" = ry, and

Vi, (b),, ©', 2") denotes the value conditional on 7’ = ry. The expectation operator, Eg/, is

evaluated using the marginal data density for 2’ implied by ©' = L (©,x) and r' = r,.

Using the first order optimality condition for N, and equation (16), we reduce the

household problem to finding an optimal decision rule, b}, (by, ©,x), for bond holdings.
The function, Vj, s (by), satisfies the following fixed point:

Vh,ss (bh) = Cfll\%bxb’ {log (Ch) - g (Nh>2 +
» VRO,

Vi <bz>} , (17)

1+ rg

subject to
/
b
Oh+ L S_h—i_wssNh—i_Tssa
RSS 7TSS

where Ty, denotes steady-state profits net of taxes in steady state, w,s denotes the
steady-state real wage, R denotes the steady-state nominal interest rate, and
denotes the steady-state inflation rate.

The function, V},, in equation (15) has the fixed point property:

Vi (bp,©,7) = max {1og<ch)_K(Nh)2

Ch,Np b}, 2
1
b () Vi ) + B 0,020} (1)

where the maximization is subject to equation (16) and the law of motion for © in

equation (14).

4.2.2 The Firm’s Problem When r = r,

A final homogeneous good, Y, is produced by competitive and identical firms using the

1., \&=1
Y:(/o stdf) , (19)

where ¢ > 1. The representative firm chooses inputs, Y}, to maximize profits Y P —
fol Y Psdf, subject to (19). The firm’s first order condition for the f input is

Y = (%) % (20)

technology
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The f™ intermediate good is produced by a monopolist with production technology
Yy = Ny, where Ny is labor hired by firm f. Let p; denote the f™ firm’s price in the
previous period, scaled by that period’s aggregate price index-that is, Pp; 1/P;_1.
Also, let p} denote the firm’s current choice of price scaled by the current aggregate
price index. In our scaled notation,
/
P
Pro— Tre (21)
Py Ppi
Firms value a unit of real profits by the marginal utility of consumption, 1/C.
Prices are sticky as in Rotemberg (1982). When r = r; the current-period problem of
firm f is to set its price p/; so that

p/f (pf7 97‘%) = argmaxp,f%) {(p/f _ (1 _ l/) w (I)) (p/f)—ay (CL’)

C(
o () 2
-3 (p_fﬂ(x)—1> (C($)+G(7“£))}

+

T [(1=p) Vs (p’f) + pEe/ Vs (plf7 o,z)]. (22)
Here, Vi s (p}) denotes the value of the firm’s problem conditional on ' = r,, and
Viss (p’f, o, 2 ) denotes its value conditional on 7" = r;.'> Firms and households have
the same information sets and update priors in the same way. Thus, the expectations
operator is the same as the one in the household’s problem. In equation (22), we
follow the literature by scaling price adjustment costs by real GDP.16 Also, v is a tax
subsidy on employment designed to eliminate the effect of monopoly distortions in
steady state.!”

The function, V; 4 (ps) , has the fixed-point property

Vi (o) =m { - (00 = (1= ) w) (45) Y )

Py L
1
Css

oy \ 1 /
5 (pf Tgs 1 (Oss + Gss) + 1 T Tos Vf,ss (pf) . (23)

15We constrain the choice of log (p’f) to a compact set @, ﬁ]. See Appendix C for a discussion.

16See, for example, Kaplan and Violante (2018, page 711).
"That is, (1 —v)e/(e —1) = 1.
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The function, V}, in equation (22) has the fixed point property

Vi (ps,©,2) = max{ctaj) ( ! s) (p'f)st(x)

1 )%(_ (2 )—1)2(C(sc)+G(7°é))

+

o [0 D) Vi () + pEo V) (p;,@f,x')}}. (24)

The maximization takes into account the law of motion of ©, L, in equation (14).

4.2.3 The Mapping from = to Aggregate Variables

For individual households’ and firms’ problems to be well defined, they must know
the values of seven aggregate variables, [ C m RY N w T } We assume that
each agent knows the model’s static equilibrium conditions so they can deduce those
variables from x = [ C 7 ] We denote this mapping by F' (z). Households derive R
from 7 using equation (13). The mappings from x and r to Y, N, and w are given by
¢

:@+G@»Q+—

2(7r—1)2),N:Y,w:XNC.

The first two equalities correspond to goods market clearing and the aggregate produc-
tion function. The third equality corresponds to the belief that the labor supply curve
of the individual household holds as an aggregate condition. These equalities hold in
every period of our learning equilibria (described in the next sub-section).

Aggregate firm profits net of taxes implied by x and r are

T:u—my—gw—n%c+Gw»—Gm.

4.3 Equilibrium and Beliefs

The equilibrium for our model is a learning equilibrium for the duration of time that
r = 1y, followed by a jump to the positive interest rate, steady state REE. The learning

equilibrium is a sequence of period equilibria.
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4.3.1 Equilibrium Definitions

We now define a temporary equilibrium.

Definition 2. Given © and r,, a period equilibrium is a set of values of x and ©" =
L (O, z) such that

(i) households and firms solve their optimization problems, defined in equations
(15) and (22), respectively

(ii) labor, goods and bond markets clear

(iii) pf =1,Ch=C, Ny =N

Because firms are identical, in a learning equilibrium, no firm will ever inherit a
pr # 1. Then, equation (21) and the first part of condition (iii) imply that people’s
views about inflation, 7, are correct. The second and third parts of condition (iii)
imply that people’s views about C' and N are correct.

The only new conditions in Definition 2 relative to those imposed by F (z) are that
bond markets clear (bj, = 0) and firms choose p; = 1. These two conditions determine
the two elements of x.

Two comments about the period equilibrium are worth emphasizing. First, peo-
ple have perfect foresight regarding current aggregate variables. Second, in general,
they do not have perfect foresight about future aggregates. It follows that the period
equilibrium under learning is, in general, different from what it would be if people had
rational expectations.

We now define a learning equilibrium.

Definition 3. A learning equilibrium is :

(i) a sequence of period equilibria in which beliefs are updated according to equation
(14) when r = ry,

(ii) a steady state REE with R > 1, when r = rg,.

In a learning equilibrium, the value of © in the first period when r = r, is exoge-
nous. We assume that in the case of an unprecedented event, people’s priors about the
economic variables, z, are very diffuse. Below, we describe how our parameterization

of the initial © captures this property.

4.3.2 Beliefs and Equilibrium

We now describe in detail how households’” and firms’ common beliefs evolve, starting

in the first period that r = r,. People assume that each of the two elements of log (x)
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is drawn from a Normal distribution:

log (C)

os () = log ()

+
Ex

_ | Ho €c (25)
fin
Eec = Ee, =0, Fe% = 02 and Ee? = o2, These distributions are independent across

time and the elements of log (x). People are uncertain about the values of u;, o? for
2

i € {C,m}. Their prior about p; conditional on ¢; is Normal, parameterized with a

mean, m;, and variance, o2 /\;, where ); characterizes the precision of the prior about
2

w;. The marginal density of their prior for o; is proportional to an inverse-gamma
distribution, with shape and scale parameters, a; and (? (o; + 1/2)), respectively. The
prior for o? is not exactly an inverse-gamma distribution because we truncate the
support of o2 so that F[C] and F[r]| have finite values. We find it convenient to
express the scale parameter in this way because 1); is a consistent estimator for ;. The
joint density of ju;,c? is proportional to the Normal inverse-gamma distribution. We

collect the parameters of the priors in the vector ©:

@:<mc m 1/)\0 1/)\7r Qﬂc I/JW 1/&0 1/057r>. (26)

The posterior distribution is also proportional to the Normal inverse-gamma distribu-
tion, and the function, L, in equation (14) can be constructed using standard updating

formulas, which are detailed in Appendix C.

4.3.3 Anticipated Utility

Virtually all of the related literature works with a version of Kreps” Anticipated Utility
approach to how people integrate learning into their decisions. While this approach
has computational advantages, it has been criticized for being internally inconsistent
(see Cogley and Sargent (2008) and Adam and Marcet (2011)). We assess the ro-
bustness of our results to using the anticipated utility approach. In our context, that
approach assumes that when households and firms make their state-x contingent deci-
sions, they assume that in the current and all future periods, log (z) will be drawn from
a Normal distribution with mean and variance fized at the values of m; and v¥? from
the beginning-of-period ©. We make two changes to the household and firm decision
problems to implement this assumption. First, we set © = O in their next-period

value functions. Second, in evaluating the expectation operator, Eg/, that appears in
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the household and firm problems, we use the log Normal density for x with mean and
variance fixed at the values of m; and ¥? from ©. Importantly, at the beginning of the
next period, firms and households set ©' = L (0, x).

In sum, anticipated utility differs from internalized learning in two ways. First, in
making their state-r contingent decisions, people ignore the fact that after they see
current z, they will update their views, using ©' = L (O, x). Second, they ignore their

uncertainty about the mean and variance of the distribution of log (z).

5 Multiple Rational Expectations Equilibria

In this section, we describe the equilibria in our model when agents have rational
expectations.

An equilibrium is a set of values for output, employment, inflation, and consump-
tion, Yy, Ny, mp, Cy, respectively, when r = r,. We assume that the economy reverts
to the unique rational equilibrium steady state, Yi,, Ny, 745, Css, with Ry, > 1 when
r= 1.t

The four equilibrium conditions associated with the four unknowns, m,, Cy, R, Ny,

are
1 1 c,
1= — 4+ (1- 2
e aen & (27)
e—1
(me = 1) (Co+ Gy) = 5 (XNeCp — 1) N, (28)
1

+ mp(m — 1)71'3 (Ce + Gz),
N, = (Cg + Gg) (1 + % (7Tg — 1)2> , and (29)
Ry=max{l,1+rg+a(m—1)}. (30)

In equations (27) and (28) we have taken into account that my, = 1. In addition, we
verify and use the fact that R, = 1. Equation (27) can be expressed as one equation
in the unknown, 7, after using equations (27) and (29), to express C;, and N, as
functions of my. We compute Cy, using the steady state of the model. Then, we can

find a candidate equilibrium by finding a value of 7, that sets a function, f (m;) = 0.

8Throughout the paper, we only consider equilibria in which quantities and prices are constant for
a given value of r. For example, we do not consider sunspot equilibria.
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To verify that a candidate value of 7, is an equilibrium, we must verify that the implied
aggregate quantities and firm values are non-negative.

Our baseline parameters are:
p=0.80, r, = —0.0015, G4 = G (rss) = 0.20, S = 0.995,

e=4, ¢=110, y =125 a =15

In the R > 1 steady-state REE, Cs, = 0.8,7,s = 1, Nis = 1. In the alternative

specification of government purchases,
Gy =G (ry) =1.05 x G (rgs), (31)

while r = r,.

Figure 1: f (7) Corresponding to the Target-Inflation Steady-State Equilibrium
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Note: The function, f, is defined in the text. The dashed line is discussed in Section 8.1 below.
The range of my in the figure includes the two values of 7, that correspond to an equilibrium.
Source: Authors’ calculations.

Figure (1) displays the function f (m,) for a range of values of 7, in the baseline
(solid blue line) and alternative (dashed blue line) cases. In each case, there are two
values of my for which f (m,) = 0. Table 1 reports the values of Cy, wy, Ny, Ry and
at these zeros of f. Each crossing corresponds to an interior equilibrium in which the
ZLB binds. The values of the variables corresponding to the equilibria in Figure (1)

are reported in Table 1.
The economy’s response to a drop in r is the result of two countervailing forces.
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Table 1: Equilibrium Values While r; = r,, Returning to Target-Inflation Steady State

Bad ZLB Good ZLB
Label A B
400(x" —1) | -35.78 -6.60
400(Rf — 1) 0 0
C* 0.48 0.74
Nt 0.98 0.95
wt 0.59 0.88
(a) Gy = Gy,
Bad ZLB Good ZLB
Label A B
400(7" —1) | -36.99 -3.00
400(R" — 1) 0 0
C* 0.47 0.77
N¢ 1.00 0.98
wt 0.58 0.95
Actad -0.17 3.95

(b) G =1.05 x G4
Note: This table reports {ms, Re, Cy, Ny, we} for two equilibria indicated by A and B when G = G,
(2a) and when G = 1.05G5; (2b). Each equilibrium returns to the target-inflation steady state as soon
as 1 = rgs. The government purchases multiplier reported in the last line of panel is the change in
GDP per unit increase in G within each of the type A and B equilibria. Source: Authors’ calculations.

First, the drop in r leads to an increase in desired savings. In the first best equi-
librium, the real interest rate would drop enough to undo the increased desire to save
completely, allowing market clearing in the bond and goods market without any change
in consumption and employment. When monetary policy is operated by a Taylor rule,
and prices are sticky, then we know that policy goes only part-way towards achieving
the first best equilibrium. The real interest rate falls, but not by enough so that market
clearing must be accomplished in part by a drop in output and income, which reduces
the desire to save, as long as the low-r spell is expected to be short enough (that is, p
is small enough).'? If the required fall in the nominal interest rate is sufficiently large,
then the ZLB on the nominal interest rate binds. When the ZLB binds, a form of
deflation spiral is triggered. The fall in output leads to a drop in marginal cost that
reduces actual and expected deflation. The latter raises the real interest rate, amplify-

ing the desire to save, leading to an additional drop in actual and expected inflation.

9Further discussion of this point appears below.
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An important countervailing force limits the extent of this spiral. As output drops,
consumption smoothing leads people to save less. The lower is p, the shorter is the
expected duration of the ZLB and the stronger is the consumption smoothing motive.

Three observations about the ZLB follow. First, the logic of the deflation spiral
provides intuition into why the fall in output can be very large when the ZLB is binding.
The larger the expected deflation in an REE, the larger is the drop in output. Second,
the interplay between the deflationary spiral and consumption smoothing provides
intuition for why there can be multiple REEs in the ZLB. Third, if p is sufficiently
large, the consumption smoothing motive is very weak. When the deflationary spiral
is too dominant, an REE does not exist.?’

Turning to the fiscal multiplier, we calculate the effect of an increase in G comparing
A to A" and B to B’~that is, comparing two Bad-ZLB equilibria and two Good-ZLB
equilibria (see Figure 1). Table 1 shows that the multiplier is very large in the latter
case and very small in the former. Consistent with this observation, expected deflation
is much larger at A’ than at B'.

In sum, this section highlights the central role that expected deflation plays in
determining the properties of an REE in the ZLB. We expect that because expectations
are backward looking, the properties of the learning equilibrium will be very different
from those of the REE.

6 Equilibrium Selection

In this section, we consider whether the multiplicity of REEs can be resolved by learn-
ability. We analyze the learnability of an REE by considering a small perturbation in
the REE beliefs. We consider these perturbations by analyzing learning equilibria with
initial values of © that are not REE beliefs, but are close to the REE values. We say
that an REE is learnable if learning equilibria that begin with beliefs in a neighborhood
of the REE beliefs converge to the REE. In this section, we conduct the analysis nu-
merically and consider initial values for © that have m¢ and m, equal to log (Cy) and
log (m), respectively, where Cy and 7, are the REE values of C' and . Importantly,
the variance of the priors is greater than zero. If learning equilibria starting with these
values of © converge to the associated REE, then we say that the REE is learnable.

We have also considered learning equilibria that begin with a vector © in which m¢

20See Werning (2012), who also discusses the possibility of nonexistence of equilibrium in the ZLB.
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and m, are near, but not equal to, the associated REE values. In these cases, we find
similar results and our conclusions about learnability are unchanged.

Other initial values of © are of particular interest. For example, beliefs with m¢ and
m, equal to log (Css) and log (7ss), respectively, are natural candidates in the initial
values of ©. If an REE is learnable and learning equilibria beginning with these initial
values of © also converge to that REE, then we say that the REE is quasi-globally
learnable. In a model with multiple REEs (like the NK model), any particular REE
cannot be globally learnable. This result obtains because if beliefs are consistent with
another REE, then beliefs will not diverge from that equilibrium.

We initially consider the learnability of the Bad-ZLB equilibrium by examining a
learning equilibrium with m; set to the Bad-ZLB equilibrium values. Figure 2a suggests
that the learning equilibrium deviates from the Bad-ZLB equilibrium. The red dot
shows where that equilibrium is after 10,000 periods and indicates that it is headed
toward the Good-ZLB equilibrium. In Section 9, we use linearization methods to prove
that at the assumed parameter values, the learning equilibrium cannot converge to the
Bad-ZLB equilibrium.?! We conclude that the Bad-ZLB equilibrium is not learnable.

2LOur proof is by contradiction. We linearize our learning model around the Bad-ZLB equilibrium.
Suppose the Bad-ZLB equilibrium is stable. Then, the learning equilibrium would eventually (as
long as r = r’) arrive in an arbitrary small interval, U, about the Bad-ZLB equilibrium, where our
linearized system is arbitrarily accurate. We show that that model satisfies the conditions of Theorem
7.2 in Evans and Honkapohja (2001) for beliefs to leave U. This outcome contradicts the hypothesis
that the Bad-ZLB equilibrium is stable.
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Figure 2: Equilibrium Selection in the ZLB, by Learning

(a) Non-learnability of Bad-ZLB Equilibrium
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Note: In the panels (a) and (b), m; is initially set to the associated REE value. In panel (c¢) m; is
initially set to the steady state REE value. In all sub-figures, ¥; = 0.02, A; = 1, o; = 2. Source:
Authors’ calculations.

Figure 2b shows that the learning equilibrium is converging to the Good-ZLB equi-
librium. In Section 9, we use linearization methods to prove that at the assumed
parameter values, the learning equilibrium will converge to the Good-ZLB equilibrium

if beliefs start in a neighborhood of that REE. Figure 2c shows that the learning equi-
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librium converges to the Good-ZLB equilibrium when the beliefs are initially centered
on the steady-state REE. Taken together, these results indicate that the Good-ZLB is
quasi-globally learnable.

7 Speed of Convergence

In this section, we consider how quickly the learning equilibrium converges to the
unique learnable REE. In the first subsection, we consider our results for the baseline
parameterization of the model. In the second subsection, we consider the effect of the

ZLB on the interest rate on the speed of learning.

7.1 Baseline Results

We now consider the effects of a drop in r in our learning model. Our basic assumption
is that when people are confronted with an unprecedented observation, here modeled
as a drop in 7, they become very uncertain about how market-determined variables will

evolve. We set the initial value of © to the following vector:

< me my 1/Ac 1/A\: Yo r 1/ac 1/ag )l
= ( log (Cys), log(ms), 1, 1, 0.02, 0.02, 1/2, 1/2 )I.
Figure 3 displays the marginal density of log C' and log 7 associated with anticipated
utility (that is, the Normal distribution evaluated at the prior estimates of the means
and variances) and with internalized learning (that is, the marginal data density as-
sociated with the Normal-inverse-gamma prior on the parameters of the Normal dis-
tribution). Note the fatter tails on the density function associated with internalized
learning. The tails are fatter for consumption than inflation because we set a higher
upper bound on o¢ (0.05) than on o, (0.025). The bounds on the standard deviations
correspond to typical period-by-period shock sizes equal to about 6 percent for aggre-

gate consumption and about 10 percentage points for annualized aggregate inflation.
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Figure 3: Data Density Under Two Models of the Interaction of Beliefs and Decisions
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Note: The dashed line corresponds to Normal density functions with means m; and standard deviations
;. The solid line corresponds to the marginal data density of log (x) at time one, using © before it
is updated by the time one value of x is realized. Source: Authors’ calculations.

The thin and thick solid lines in Figure 4 display the evolution of inflation, consump-
tion, and the real interest rate after the drop in 7 under REE and learning, respectively.
First, consider Figure 4a, which reports results for the REE and internalized learning.
Two key features are worth noting. First, in the REE, there is a very large drop in
inflation and consumption, and the real interest rate rises sharply. The fall in inflation
and consumption and the rise in the real rate are much smaller under learning. Second,
the learning economy converges very slowly to the REE. As shown in Figure 2c, after
people initially change their views somewhat quickly, the rate at which they change
their views slows dramatically. For example, the dot labeled T" = 10, 000 displays peo-
ple’s views about the variables after 10,000 quarters. Given our value, p = 0.8, r is only
expected to be low for about five quarters. Whether convergence to the REE happens
after 20 quarters or 10,000 quarters is irrelevant. The crucial point is that in a typical
ZLB episode, people’s beliefs are very far from rational expectations.

Now consider Figure 4b. This figure compares the evolution of the learning equilib-
rium under anticipated utility (dashed line) and internalized learning (solid line). The
key takeaway is that we obtain the same slow-learning result qualitatively regardless of
which approach we take to learning. However, consumption and inflation fall somewhat

more under internalized learning.
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Figure 4: Simulations of Benchmark Model

(a) Speed of Convergence in the Benchmark Model
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7.2 The Role of the ZLB in the Baseline Results

Figure 5 reports a simulation of our benchmark model in which the ZLB on the interest
rate is ignored. For convenience, we reproduce the results from Figure 5 in which the
ZLB is binding. The key result is that the learning economy converges very quickly
when the ZLB is not binding. The reason is that the Taylor rule weakens the connection
between expected and realized inflation. To understand why, suppose people’s prior
is that inflation will be high in the next period, causing firms to want to raise prices
in the current period. When the Taylor principle is operative, the central bank takes
actions in the current period that make actual inflation lower. Because expectations
are less self fulfilling, the learning principle implies that people will quickly adjust their
beliefs. The speed with which they do so depends very much on the value of «, a point

that we return to in Section 9.
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Figure 5: Benchmark Simulations with and without Binding ZL.B
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8 Learning and Government Policy

In this section, we analyze the sensitivity of monetary and fiscal policy analysis in the
ZLB to deviations from rational expectations. We juxtapose that sensitivity to the

lack of sensitivity when the ZLB is not binding.

8.1 Government Purchases Multiplier

We begin by analyzing the effect of learning on the government purchases multiplier
when the ZLB binds. We compute the multiplier by considering the effect on GDP,
C+G, of a 5 percent rise in government purchases relative to its steady-state level-that
is, G (ry) = 1.05 x G (rss). We denote the difference in consumption and government
purchases across the two equilibria by AC' and AG = 0.05x G (rss). Since the Bad-ZLB
equilibrium is not stable under learning, we focus on AC' across Good-ZLB equilibria.

We define the multiplier as
AC + AG

AG
In the REE, the multiplier in the ZLB is equal to 3.95 (see Figure 6b). The multiplier

is large when the ZLB is binding because the rise in G generates an increase in expected

(32)

inflation (see the left panel in Figure 6b). Because R is fixed, this rise generates a fall
in the real interest rate and a rise in C' (see the middle panel). So, in this case, the

multiplier is bigger than one.
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Figure 6: Equilibria with and without Jump in G

(a) Increase in Government Purchases During ZLB
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(b) Government Purchases Multiplier in ZLB
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Notes: The solid lines in Figure 6a reproduce the results based on G = G, in Figure 4a. The dashed
lines report the simulation of the model when G = 1.05 x Ggs. Figure 6b displays the government
purchases multiplier under internalized learning and in the REE. That figure reports results for the
case in which the ZLB is imposed and not imposed (‘no ZLB’).

Under learning, expected inflation is backward-looking and does not move much
with a rise in G (compare the thick dashed and thick solid lines in the left panel of
Figure 6a). Hence, the real interest rate does not fall very much and the response in
consumption is small (middle panel).

Figure 6b displays the value of the multiplier over time in the REE and under
learning in the ZLB. Consistent with the results above, the multiplier in the learning
case is small compared with what it is in the REE. Significantly, there is very little
convergence of the learning multiplier to its REE value over the 20 quarters displayed.

We now turn to the case when the ZLB is not binding. The REE multiplier, in this
case, is much smaller, 0.80, than when the ZLB is binding (see Figure 6b). When the

33



ZL.B is not binding, the rise in inflation causes the monetary authority to raise the real
interest rate, which leads to a fall in C'. That rise is why the REE multiplier is less than
unity outside the ZLB. Figure 6b displays the government purchases multiplier in the
learning equilibrium when the ZLB is ignored. Note that the value of the multiplier
is very similar to its value in the REE. This result is not surprising in light of our
demonstration that when the ZLB is not binding, the learning equilibrium converges
quite quickly to the REE.

8.2 Forward Guidance

In this subsection, we consider the sensitivity of the effects of forward guidance to
learning. Under such a policy, the monetary authority commits to keeping the nominal
interest rate at the ZLB for J periods after the discount rate has returned to its steady-
state level. To make our point as simply as possible, we consider the case J = 1. In the
first subsection we show that the number of REE proliferates under forward guidance.
Only one of those equilibria is stable under learning. Second, we analyze the effect of

forward guidance.

8.2.1 Rational Expectations Equilibria

We construct the REEs with forward guidance by working backward in three steps.
First, we compute the unique non-stochastic steady state with R > 1. Second, we
compute the continuation equilibrium in the period, I, in which r switches from 7, to
rss, where I € [2,3,...]. Third, we compute the equilibrium allocations in the periods
before I, denote by I_;.

In period I, R = 1 even though r = rg. People know that the economy will
transition to steady state in period [ + 1. The equilibrium conditions in period I are

equations (27) through (29) adjusted for forward guidance:

1 G
1 N ]- + TSS WSSOSS (33)
(7T[—1)7T[(C[+GSS)—%(XN[O[—DN]:O (34)
N; = (C; + Gyy) (1 + (g (7 — 1)2> , (35)
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Equations (33) and (35) define functions mapping m; to C; and N;. These functions
allow us to express the left-hand side of equation (34) as a function of 7;. We denote
this function by f; (7). A candidate continuation equilibrium in period I is a value of
7r such that f; (7;) = 0 along with the associated values of Cy, Ny, w; and the present
value of the intermediate good firm in period /. For a candidate equilibrium to be an
equilibrium, the four variables must be non-negative. Figure 7 displays the f; function
for a range of values of ;. We find two continuation equilibria corresponding to the

two zeros of f; displayed in the figure (see points A and B).??

Figure 7: Equilibria in Period of Switch from r = r, to r = r,, Under One-Period
Forward Guidance
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Notes: Graph of the function, fr (77), discussed after equation (35). The two crossings with the zero
line correspond to equilibria in period I, the date when r switches from r = ry to r = rgs. Monetary
policy in period I corresponds to one-period forward guidance—that is, the interest rate is held at
zero in period I and then reverts to Rss. The red star indicates the level of inflation in period I in
the absence of forward guidance.

We now compute the equilibrium allocations in the periods before I_; conditional on
the continuation equilibrium starting in period I. The period I_; equilibrium conditions

are the appropriate analog of equations (27) through (29):

1 Cy

Cy
1= P
1+ e Cl

G (36)

+(1-p)

22From equation (33) we see that C; does not vary with 77. It follows that f7 is quadratic function
of 7y, so that the two solutions displayed in Figure 7 are the only zeros of f;.
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(71'4 — 1) Ty (Cg + Gg) — 3 (XNgCg — 1) N, (37)
T p(m—1)m (C’g—i-G‘f) +(1—p)(nr— l)m% (C’I—i-Gss)] =0
Ny = (C,+GY) (1 + % (e — 1)2) (38)

Here, we impose the condition that R, = 1. In effect, we assume that the ZLB is
binding in periods I_;, and the Taylor rule holds. In all of the examples that we have
studied, this assumption is satisfied.

We now compute the equilibrium allocations in the periods before I, which we
denote by I_;. Given Cj and 7y, equations (36) through (38) define a mapping from
7y to Cp and N,. Now, we can express the left-hand side of equation (37) as a function
of m;. We denote this function by f;_, (m; 7, Cr). There are two functions, f;_,,
conditional on the 7, C; associated with the period I continuation equilibria, A and
B.

Figure 8 displays both f;_, functions for a range of values of 7; see the dotted and
dot-dashed lines. We chose the range of 7, so that the graph only displays zeros of
fr_, that correspond to equilibria. We find two equilibria corresponding to the f;_,
associated with A (see D and E in Figure 8) and one associated with B (see C in Figure
8). So there are three REEs with forward guidance. The two REEs without forward

guidance can be seen in the solid line in Figure 8 (this curve is taken from Figure 1).
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Figure 8: REE Equilibria at the ZLB with and without Forward Guidance
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Notes: The solid line reproduces the solid line in Figure 1 and corresponds to the case of no forward guidance. The
dashed and dot-dashed lines correspond to the case of forward guidance. The dashed line corresponds to the case in
which the economy goes to point B in the period of the switch in r to rss (that is, period I). It crosses the zero line
more than once, but the other crossing involves very high inflation and is not an equilibrium because the present value
of intermediate goods monopolists is negative. The dot-dashed line corresponds to the case in which the economy goes
to point A in period I (see Figure 7).

8.2.2 Learning Equilibria

In the period of forward guidance, r = rg;, R = 1. In all periods when r = r; (that
is, I_1), people understand that the economy reverts to an REE when r = ry. As
discussed, there are two REEs starting in period I, the first date when r = rg, (see
points A and B in Figure 21).

We are interested in three questions. First, do any of the learning equilibria converge
to a particular REE in I ;7 Second, if any do converge, how quickly do they do
so? Third, are the effects of forward guidance different under learning and rational
expectations?

Consider the first question. Two of the three REEs in I_; are not learnable. These
are the equilibria associated with points A and C' in Figure 8. In contrast, the equilib-
rium represented by B is learnable. Thus, learnability selects a unique REE.

We now consider a learning equilibrium using the same initial values for © as in
Section 7.1. Interestingly, forward guidance has no measurable effect on the learning
equilibrium. The two learning equilibria are indistinguishable in Figure 9. It follows
that the learning equilibrium converges slowly and that there is no forward guidance

puzzle under learning.?® Promises about interest rates in the future do not have implau-

ZFor a discussion of the forward guidance puzzle, see Del Negro et al. (2023).
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sibly large effects on current economic outcomes. Indeed, under internalized learning,

these effects are virtually zero.?*

Figure 9: Forward Guidance Under Learning and REE
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The power of forward guidance under REE reflects its strong effect on expected
inflation. Under learning, the effects of forward guidance have very little influence on

expected inflation expectations, because expectations are backward-looking.

9 The Analog of b in the NK Model

In analyzing our nonlinear model. we used the ‘learning principal’ that emerged from
the Bray and Savin model: The larger the parameter, b, that controls how self-fulfilling
expectations are, the longer it takes to converge. In this section, we accomplish two
tasks. First, we demonstrate that the analog of b in the linearized solution of our NK
model is the largest real part of the eigenvalues of the matrix that maps beliefs about
r = [ C ] into the realized values of x. Specifically, we develop the analog of
Proposition 1 for the NK model, which characterizes the asymptotic rate of convergence
of the learning equilibrium as a function of b. Second, we argue that the asymptotic
rate of convergence is a good guide to the small ¢ rate of convergence.

We base our analysis below on linearized versions of the policy functions defined in
equations (15) and (22). Here, we find it convenient to use time notation rather than
recursive notation. The details of our linearization appear in Appendix D. Recall that

the household problem can be reduced to finding an optimal decision rule for bond

24Under anticipated utility (not displayed) forward guidance has a slight effect, but not large enough
to be economically meaningful.
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holdings, O (b, ©, z), denoted here by by, ;. Log-linearizing this decision rule, we obtain

l;h,t = ’Yb,bi?h,tq + VT + ’Yb,cét + Vo Mt + VoueMC it (39)

With one exception, the hat notation, ¢;, denotes log (¢;/q) where ¢ denotes the REE
value of ¢; about which the linearization is done. The exception is household bond
holdings, by, +, in which case IA)hyt denotes bpy — bp. Also, iz = [Mqt, M| represents
the log deviation of people’s time ¢ posterior of E;z;,; and the REE value of Fx;iq
conditional on 7,1 = r%.?® We use the posterior means (E¢xiy1) rather than the
prior means (E;_jz;.1) because, with © and x, households and firms can compute ©'.
Variance of beliefs do not appear because of the certainty equivalence implied by the
linearization. The parameters in equation (39) are functions of model parameters and
the point about which the linearization is done. These points correspond to different
REEs when r = r¢. Similarly, the linearized price decision rule, P (pr,©, 1), of the

firm (denoted by pg,) is

ﬁf,t = Vp,pﬁf,tfl + ’Yp,ﬂﬁ't + 'Yp,CCt + ’Yp,uﬁmrr,t + ’Yp,,ucmC,t- (40)

The time t realized value of Z; enters the decision rules, equations (39) and (40),
by two channels. The first channel reflects that people use Z; to determine the period
t values of the exogenous variables in their period ¢ budget constraint. The second
channel reflects that ji; depends on 4, ji;_1, and the gain in the Bayesian updating
equation.

In each period we compute a linearized period equilibrium (see Definition 2), so
that (i) tht_l = pri—1 = 0 and (ii) @, is determined by the requirements, /b\h,t =0 and

]A)f’t == Ol

0= f)/b,ﬂ'ﬁ-t + ’}/b,CCt + P)/b,,uwmﬂ',t + fyb,ucmc,t

0= Ypame + ”Yp,CCt + Vp i Mt + ’Vp,pcmc,t-

25Note that the only exogenous random variable in our model is the natural rate of interest. Given
the model structure, in the REE, F (a:t+1\rt+1 = 7“15) is equal to the value of z; while r, = rf. We
discuss posterior and prior means because when the natural rate of interest is low households and
firms believe that there are additional sources of variation (see equation 25). See Mayer (2021) for a
discussion of rates of convergence in univariate learning models with additional stochastic regressors.
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Assuming the relevant matrix inverse exists, Z; is given by

& = B, (41)

—1
5 _ Yo,r Vb,C Yo,ux Vouc _
Yp,x  Vp,C Your Voo

The law of motion of i; is a stacked version of the updating expressions in equation

where?6

(4). For simplicity, we impose the same gain, v, = 1/ (\g +t), on the two equations.
Here, )y denotes the initial precision of beliefs about the mean of inflation and con-
sumption. Combining the vector Bayesian updating expression with equation (41) we

obtain:

fir = (I = By) fi—1, (42)

where By = [I — B(1 — ) (I — %B)_l} is the analog of b; in equation (8).27 A differ-
ence is that (1 — ;) (I —B)~" does not appear in by, reflecting the timing differences
between the two models. These timing differences are negligible for our purpose; if
we replaced (1 —~,) (I —~B) ™" by I, then the asymptotic convergence result stated
below would be unchanged.

The mapping from beliefs about z;~that is, fi;_1-to realized values of 2, is obtained

by multiplying equation (42) by B and using equation (41):
ZIAft - B (I - Bt) ﬂt—l' (43)

The period equilibrium of the linearized model corresponds to the values of &, i, V;
which solve equations (42) and (43).

For ¢ large enough, equation (43) is approximately #; = Bji;_1. In a slight abuse
of notation, we let b denote the largest real part of the eigenvalues of B. The central
result of this subsection is that b characterizes the asymptotic speed at which the

learning equilibrium converges to the stable REE. Therefore, it plays the same role as

26Tn the examples that we have considered, we have not encountered an exception to the invertibility
assumption.

27 According to the Bayesian updating equations, iy = fi;—1 +7; (#; — fiz_1) . Substituting out for &
using equation (41), we obtain fi; = fir—1 + v (Bfiy — fiz—1). Equation (42) follows after rearranging.
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the parameter, b, in the Bray and Savin (1986) model.
Our analysis of the speed of convergence of ji; holds for any finite-dimensional fi;.

We extend Definition 1 to the vector case of #; as follows:?®

Definition 4. The vector series, Z;, and the scalar series, a; > 0, converge to zero at
Ja; = 0, and (ii) for

the same rate if (i) for all j either (a) Z;; >~ a; or (b) lim; o |Z;,

at least one j, condition (a) holds.

Our definition requires that all elements of Z; converge to zero at least as fast as a;
and that at least one element converges to zero at the same rate as a;.

In what follows, it is useful to denote the eigenvalue-eigenvector decomposition of B
as B = QAQ ™!, where A is a diagonal matrix with the eigenvalues of B in the diagonal
elements.?? In the NK model, one cannot rule out the possibility that the eigenvalues,
A;, of B are complex. Let A; = A, ; +iA.;, where A, ; and A.; denote the real and
complex parts of A;, respectively. Let 7;; denote the modulus of the j™ eigenvalue of
I — By, and let j* denote a value of j for which A, ; attains its maximal value, b. Also,
define ji, = Q'fi;, where fig is given. The following proposition establishes the rate of

convergence of fi;.

Proposition 2. Suppose that (i) B has an eigenvalue-eigenvector decomposition with
A, <1 forall j, (ii) jij«o # 0, and (i) rj«; # 0 for each t. Then, fi; ~ t*~1.

See Appendix A for a proof.

Some comments about Proposition 2 are in order. First, violations of (ii) or (iii)
are isolated special cases. Condition (ii) rules out the case in which the initial priors
are orthogonal to the left eigenvector associated with the eigenvalue, A;«. In that
case, A« plays no role in the system’s dynamics. Condition (iii) is analogous to the
requirement in Proposition 1 that ; (1 — b) # 1. Second, our proposition is consistent
with the result of Evans and Honkapohja (2001, Theorem 1) that lim; ., ji; = 0. The
novelty of Proposition 2 is that it establishes the rate at which fi; converges to zero.
Third, as in our analysis of the Bray and Savin (1986) model, the rate of convergence
of learning in the NK model is decreasing in b. Fourth, the fact that b plays a similar
role in the Bray and Savin (1986) and NK models can be seen by noting that pre-

multiplication of equation (42) by Q! diagonalizes the system into a set of first-order

28See Definition 1 for ‘~'.
29A sufficient condition for this decomposition to exist is that the eigenvalues of B are distinct. This
condition is satisfied in all the examples that we consider.
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scalar difference equations in fi;; that are independent across j. Each of these equations
resembles equation (6) in Bray and Savin (1986). So the representation of ji;; has the
form given in equations (7) and (9) (though fi; is potentially complex valued), and its
behavior is determined by the j* eigenvalue of B. Since ji; = Qfi; and the columns
of @ are linearly independent, it follows that the largest real part of the eigenvalues of
B determines the rate of convergence of at least one element of fi;. Fifth, when the
eigenvalues of B are complex, fi; can exhibit sinusoidal fluctuations. That is why our
definition of the rate of convergence (Definition 1) needs to accommodate the possibility
that the fi;/t*~! oscillates in a bounded set.*°

Table 2 displays the eigenvalues of B corresponding to the Good-ZLB and Bad-ZLB
equilibria for the benchmark parameter values. The maximal eigenvalue (‘Eigenvalue
17), b, associated with the Good-ZLB and Bad-ZLB equilibria are 0.92 and 1.26, respec-
tively. Consistent with the claim in Section 6, the Bad-ZLB equilibrium is not locally
learnable because b > 1. The Good-ZLB equilibrium is locally learnable because, in
that case, b < 1.

Table 2 displays the eigenvalues of B corresponding to the Good- and Bad-ZLB
equilibria for the benchmark parameter values. The maximal eigenvalue (‘Eigenvalue
17), b, associated with the Good-ZLB and Bad-ZLB equilibria are 0.92 and 1.26, respec-
tively. Consistent with the claim in Section 6, the Bad-ZLB equilibrium is not locally
learnable because b > 1. The Good-ZLB equilibrium is locally learnable because, in
that case, b < 1.

Asymptotic convergence to the Good-ZLB REE is slow because b is large. According

is approximately xt*~! for some x # 0 and t sufficiently large.

to Proposition 2 |fi;«;
The amount of time it takes to close two-thirds of a gap, i, for ¢ sufficiently large, is
given by T; in equation (11). Table 2 reports values of T} for different variants of the
model. In the benchmark model, when b = 0.92, then 77 = 920, 482. This large value
of T7 is qualitatively consistent with the basic prediction of the nonlinear solution to
the model-namely, that the rate of convergence is quite slow (see Figure 4a). Similarly,
the small value of T} reported in the table for the case in which the ZLB is not binding
and a = 1.5 is qualitatively consistent with the finding for the nonlinear solution to the
model (see Figure 5). In this sense, the asymptotic result in Proposition 2 is a useful
guide about the rate of convergence, even for small .

A different way to assess the usefulness of the asymptotics is to calculate the actual

30A discussion about the possibility of oscillations follows the proof of Proposition 2 in Appendix
A.
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amount of time, T, required to close two-thirds of the initial gap between priors and
steady state according to the linearized solution to the model.3* To this end, we
simulate the linearized solution to the model when the ZLB is binding and when we
ignore the ZLB. In the latter case, we consider a = 1.5 and 3. The results are reported
in Table 4a. We find that, for the benchmark model, when the ZLB is binding, T" =
944,710. In sharp contrast, when the ZLB is not binding and o = 1.5 and 3, we find
that T = 3 and 1 periods, respectively. These results about the importance of the
ZLB and the value of « in determining the speed of convergence are qualitatively the
same as our results using 77. Thus, the rule of thumb, equation (11), suggested by
Proposition 2 is informative about actual rates of convergence in the linearized solution
to the model.

Table 2: Eigenvalues of B

’ \ Eigenvalue 1 \ Eigenvalue 2 \ Ty \ T ‘
Good ZLB 0.92 -0.48 920,482 | 944,710
Bad ZLB 1.26 -1.21 NA NA

No ZLB, a = 1.5 | 0.054+0.44i | 0.054-0.44i 2 3
No ZLB, a =3 | -0.1354+0.84i | -0.135-0.84i 2 1

Note: The matrix, B, is defined in equation (41). The scalar, b, discussed in the text is the largest real part of the
eigenvalues of B. The reported values of T" are based on simulations of the linearized solution to the model. For the
definitions of T" and T} see the text.

10 Conclusion

In this paper, we consider the speed with which people learn about their environment
after an unusual event. We do so in a non-linear NK model with internally rational
households and firms that are learning about how the economy will evolve after the
event. To characterize the speed of convergence of people’s beliefs, we analytically
extend results in the literature to encompass circumstances when learning is very slow.
We argue that the slow convergence result arises naturally in the NK model when the
ZLB is binding. Under these circumstances, analyses of fiscal and monetary policies
under rational expectations can be very misleading. Since inflation declined by a mod-
est amount during the Great Recession, learning moves the model toward the data

relative to rational expectations. In this sense, learning provides a possible resolution

31The initial gap in log x;, i = 1,2, corresponds to the log-deviation of z; in the initial steady state
and the REE while r = r,.

43



to the ‘missing deflation puzzle’ (see Del Negro et al. (2023)). It would be interesting
to pursue this possibility in an empirically plausible version of the NK model of the
sort considered by Christiano et al. (2016) or Del Negro et al. (2023).

Finally, we note that there are other circumstances in which slow learning could
arise. For example, plausible parameterizations of Cagan (1956)’s model of money de-
mand under hyperinflation map into high b economies. Results in Marcet and Sargent
(1995, Table 6.3) imply that estimates of the elasticity of money demand in hyperin-
flations (see, for example, Christiano (1987) and Taylor (1991)) map into high values
of b. More generally, the learning principle suggests that any model with strong strate-
gic complementarities could exhibit slow convergence to rational expectations under

learning.
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A Proofs of Lemmas and Propositions

A.1 Proof of Lemma 1

Lemma 1 follows from the following Proposition.

Proposition 3. Suppose b, # 1 for all t, then u; can be written as

t
. a ﬁ'éfj _ a
“t_1—b+;{zjbf1—b}+zt<“o 1—5)
LA __“
1o T 1y
t ﬁ 2b2 O_g
zi) TA=b)?*
j=1 J
Proof. Note that

a . Et . _ a
(“t_ 1—5) by b (““ 1—b)

and has mean

and variance

€ €4 a
:btl —t b (1= b)) b 1 t_lb + (1 —=b) (1 —b-1) <Mt2 — m)
€ €t €t
=bi7 — p T (1—b) let__lb + (1 =) (1= b1) bt721t—_2b
a
+ (1 - bt) (1 - bt—l) (1 - bt—2) (,Ut_3 - 1_ b)
- -1 j ) .
_ t t—j
_btl —b + o { [g (1- bt—k—i—l)] bt—j—l — b} + 2 <,u0 k. b)

t
Zt €j a
= —b, — )
Z{zj J1—b}+zt (“0 1—b>
Jj=1
The results of the proposition follow immediately from the properties of &;.

A.2 Proof of Proposition 1

We first state a number of lemmas that will be useful in the proof.
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Lemma 2. For any b < 1 and any 0 < X, there exists a t* so that 0 < by < 1 for all
t>tr.

Proof. Let t* = max {1, [2 — b — \g|} where [z] is the smallest integer larger than z.

The result follows immediately. O

Lemma 3. Define Hy, 7 = Zthl ﬁ Suppose 0 < \g < 00, then
lim {H/\O,T — log ()\0 + T)} = Cxo>
T—o00

where ¢y, is a finite constant.

Proof. Note that Hy,r > 0 and

1 ot 1
Hy,r < +/ —dt = +log (N + 1) —log (Mo +1).
R W N N+ 1 g (Ao ) g(Ao+1)
Define the sequence yy, 7 = log (Ao + 1) + Hy, 7 — log (Ao + 7T') . The above inequality
and the convexity of t~! imply 0 < yy,r < ﬁ for all T > 1. Also,

Yno.T+1 — Yoo T = +log (Mo +T) —log(N+T+1) <0

N+T+1

Thus, y,,r is a monotone, decreasing series. The result of the lemman follows by the

monotone convergence theorem. O

Lemma 4. Define Hy,7 = .,_, ﬁ Suppose 0 < \g < 00, then there exist positive,

finite constants c,, and ¢y,, and a finite constant cy, so that

Cxo

o o
=

T < log(T—i—/\g) + ¢y, _H)\O,T <

Proof. Using cy, from Lemma 3, noting that ¢! is convex, and following the geometric
logic in Young (1991) “Euler’s Constant” The Mathematical Gazette, Vol. 75, No. 472
(Jun., 1991) we have

1 1
———— <log (Ao +T —Hy,r < .
2(>\0+T) Og( o+ )+C>\o Ao, T )\0+T
The result of the lemma follows immediately. O]

We are now in a position to prove Proposition 1.
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Proof. Consider 0 < b < 1. Note that 0 < b; < 1for all j. Define y, = log (()\0 + t)l_b zt).
Note that,

h
h
— 1y =(1=0)1 1 | 1—5
Yerh — Ye = ( )og( +>\o+t)+; og ( k)

h
h 1
—(1-0)[log (1 B P —
( )<0g( +)\o+t) kl)\0+t+k>+Rt,t+h

where Ry ;ij is the remainder term from Taylor’s Theorem in the representation of

log (+). By Lemma 3, log (Ao + t) — 22:1 ﬁ is a Cauchy sequence. So, for any € > 0
there exists a t; so that if ¢ > t;then for any h > 0

<€
4—4b

h L 1
log (1+ =
Og( )\o+t) ;Awwk

From Taylor’s Theorem, |Rj, n] < So0_ K (W)z for some 0 < K < oo. Because
Zfil t=2 converges, for any € > 0 there exists a t5 so that if t > t, then for any h >0
|Rptn| < €/4. It follows that if ¢ > max {t1,t2}, then |yn — y| < €/2. As a result,
if ¢ > max {t1,t,} for any j,k > 0, |yi+; — yetr| < €. That is y; is a Cauchy sequence.
The conclusion of the proposition follows for 0 < b < 1 is then immediate.

Now consider b < 0. By Lemma 2 there exists a t* so that for all ¢ > t* we have
0 < by < 1. Define the sequence y; = (1 —b)log (Ao +t) + Z;:t* log (1 —b;). Using
the same argument as in the case when 0 < b < 1, we have that y; is Cauchy, so it

converges to a finite constant. For ¢ > t*, we have
N -1
1z = —— exp (y; 1—-0)].
= (551 p(yt>[g< n]

The conclusion of the proposition for b < 0 follows by noting that we have ruled out
the possibility that sz_ll (1 — b;) = 0 through our assumption that b, # 1 for all ¢. [

A.3 Proof of Proposition (2) and related results

Throughout, we assume that B has an eigenvalue-eigenvector decomposition meaning
that B = QAQ~! where the columns of @Q are linearly independent eigenvectors of B

and A is a diagonal matrix with eigenvalue A, + A; .7 in the jth diagonal element. To
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prove the proposition, we will need some Lemmas and notation.

Lemma 5. ), = B <I — /\—HB) (1 — /\_+t) has an eigenvalue-eigenvector decomposi-

tion so that 0 = QA,Q ™! where Q is the same matriz as in the eigenvector-eigenvalue

decomposition of B.

Proof. From the definition of {2,

0,Q=RB(1I Ly B 1 1
Q= (_/\0+t> <_A0+t)Q

-1
— QAQ™! (QQ‘I - L@AQ*) (1 — ) Q
vy +1

IZ0) +t
1 - 1
=QAQ'Q (I - ——A 11—
QQ Q( 1/0—|—t ) Q ( Vg+t>Q
= QN
where Ay = A ([ — VolthA>_ (1 — +t> is a diagonal matrix. O

Lemma 5 says that the columns of () are eigenvectors of §2;, though €); has different
eigenvalues than B. Denote the jth diagonal element of A, by A;,; + Aj 2. The

following Lemma follows from tedious algebra.

Lemma 6. Suppose Aj,;, N, Njc., and A, are as defined above and that for all j

either 1;011"; # 1 orAcjr # 0 for all t. Then limy_ oo Aj,p = Ajr, limy oo Aj oy

Ajcand there exists a finite, positive constant K so that [Aj,., — Aj,| < K (Ao +1)
and [Nje; — Njo| < K (Mo +1)".

-1

It will be useful to define fi, = Q 'y, , which is given by

O (R R ( (B

i >)> fo. (4d)

The modulus of the jth diagonal element of (I — A_+t (I — At))

. ) . o\ 1/2
= 1-— 1—A; ——A; 4
Tjt <{ No + ¢ ( J77’7t):| + ()\0 Ty J7C7t) ) (45)

We will use the following Lemma.
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Lemma 7. Suppose rj; # 0 for allt and A;, <1 , then

t

1-Aj

t 7 Hrj,k—>/<;j>0
k=1

where 15 is given by equation (45).

Proof. For a given 7, define

Note that

h
1 1
=3 log (14 2———— (Ajin — 1
T3 Og(+A0+t+k(“’t+’“ )
-1 N LA
Ntk Xo+t+ kIO

h
h 1
=(1-A;,) |1 1 — _— R
( J,)<0g(+)\0+t) ;)\0+t+k>+ tt+h

1
+> (m (Ajrerr — Ajir)

h
k=1
1 1 S| 1 2
(R | VR | (S Y
+2{/\o+t+k<J”t+k )}+2(Ao+t+k y,,t+k)>

where R, is the remainder term from Taylor’s theorem. For any e, there exists a t;

(which does not depend on h) so that if t > ¢; then for any £ > 0 by Lemmas 3 and 6
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we have

k 1 €
1 1 — <
Og( +y0+t) ;Vo+t+n 61— Al
K
’ ]7T1t+k ]7T| AO‘I’t"_k

Ak = 1" < (1= A;0)" +e
Aicka < A?}C +e

for some finite, positive K. Then

1 2 1 ) 1, .,
|Gt — Uil <6 + Z (m) <K+ 3 (Ajr =17 +¢) + 5 (Afe+ E)) + [ Rt

Because Y -, t~% converges, for any € there exists a ¢, (which does not depend on h)
so that if ¢ > t5 > ¢; then

i (ﬁy <K+ % (A — 1) +€) + % (A2, + e)) <

k=1

(o)1 Ne

Now, consider

h
1 1
R E — A, -1
| t7t+h e 1+$k 4|: )\O—f-t—'—k}( J,rtt+k )

1 2 1 ?
(A1 A,
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For any h, if t > t,

L 1 2 1 1
| Rt 4] <Z< ) 57
o oLtk (1—2 ! (Ajr—1—e)> 4

Ao+t2

X 2K +2(1— Ay, 4 ) + [(Aj, — 1) + ¢ + (A2, +)]".

Because Y, t~2 converges to a finite constant, for any e, there exists a t3 > ¢ (which

does not depend on h) so that if t > ¢3 then

€

\Rt,t+h\ < G

Combining results, for any € > 0, there exists a t3 so that if ¢ > ¢3, then for any h

€

|Gn — Ut <2

Then forr any n,m >0

|gt3+m - ?jt3+n| <€

meaning that g, is a Cauchy sequence, and thus converges to a finite constant.

follows immediately that y; converges to a finite, non-zero constant.
We are now in a position to prove the proposition.

Proof. Note that

tl_b,ut = tl_bQﬂt =Q (tl_b (g (] - N :_ 2 (I - Ak))) ﬂo) .

The jth element of t'=° <HZ:1 (] - ﬁ (I — Ak)>> fig is given by

t t
b <H Tng) exp (z Z gpj,k) 15,0
k=1

k=1

It

If Aj, = b, then by Lemma 7 lim,o t'~° ([T},_, 7j%) = &; for some finite, positive ;.

If Aj, < b then lim;_,o =t (szl rj,k) = 0. The conclusion of the proposition follow

by noting that fi;«o # 0 by assumption, that exp (¢7) is bounded for all ¢, and that

the columns of ) are linearly independent.
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A comment related to the possibility of sinusoidal fluctuations in ¢'~°f,«, is in

order. From the definition of ¢;« ; and the power series representation of sin~!

Aj*,k:,c
sin (90 ) =
’f’j,k
o0 on)! 2n+1
sin”! (7) = (2n) 5 °
p— (2"n') 2n + 1

By Lemma 6, for large enough £ all of the terms in the power series representation
of sin (¢, ;) are of the same sign. It follows that for large enough ¢ it must be that
ZZ=1 @;= 1 is either strictly increasing or strictly decreasing in ¢ and that

| Ao ]
Ao+k

) 4] >

j*7t

2 0 we have lim;_, Zzzl | k| =
oo. This result, along with the observation that lim; ,. ¢;«; = 0, implies sinusoidal

By Lemma 6 and because limy_,o rj«; = 1, if [Aj« .

fluctuations in ¢!/ ;.

B Constant gain learning

Another, widely-used way to model learning based on past data is to have people
update beliefs using a constant gain. When people update their beliefs using constant-

gain learning, equation (4) becomes
fe = po—1 + v (T — pe-1)
for 0 < 7, < 1. Rearranging, we obtain the analog of equation (9)

t
a

= = (£ wr =) (- 15) o0

J

where v, = (1 —0)v. As long as |1 — | < 1 the impact of pp on p; goes to zero
eventually. As in the case of Bayesian learning, the rate of convergence is decreasing in

b. So, the positive feedback loop discussed in the previous section continues to operate.
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Rewriting equation (46) .
BRI — (1)
Mo — 175

Here, convergence occurs at a geometric rate, A, 0 < A < 1. In contrast, convergence
under Bayesian learning proceeds at a power rate, t %, § > 0 ( Proposition 1). Power
convergence is well known to be slower than geometric convergence for any § > 0 and
A< L

Nevertheless, convergence can be very slow under constant gain learning. For ex-
ample, when v = 0.5 and b = 0,0.5,0.75,0.85, .95. Again, let T satisfy (1 — %)T ~ 1/3.
Then T'=2(3),4(11),9(113),15 (2201), and 44 (5.2 billion), respectively. Numbers in
parentheses reproduce the results under Bayesian learning when Ay = 1. The variable,
T, is increasing at an increasing rate as b gets larger. While learning under constant

gain learning can be very slow for large b, it is much faster than when the gain is

decreasing.

C Solution algorithm for non-linear NK model

In this Appendix we detail our solution strategy for the non-linear NK model we con-
sider in our paper. We exploit the model’s structure to simplify its solution. In partic-
ular, because the steady state is an absorbing state for the REE and learning equilibria
that we consider, we can solve the steady state decision rules without reference to the
period when r = r,. With this solution in had, we then turn to the period when r = ry,
which is where we consider learning.

Our main model code is implemented in c++, with reliance on the Eigen, boost,
and nlopt libraries. Our computations were conducted using nearly 400 processors
with heavy reliance on MPI. Our computations took roughly two weeks to complete.
Details related to our model code are available in the README file associated with
the replication materials. This Appendix outlines the strategy used to solve the model

that is implemented in that code.

C.1 Steady state

In the steady state, there is no uncertainty. However, households still face a bond-

holding choice and firms still face a relative-price choice. In an REE, households will
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choose to hold zero bonds and firms will choose to set their price to the aggregate price

level.

C.1.1 Household problem

In the steady state, the household value function is given by

Vh,ss (bh) = max {log (Ch) - % (Nh>2 + th,ss (b;z)}

Cthhzb;l

subject to

/
b
Ch+ L S i +wssNh+Tss'
Rss Tss

Here, b, and b}, are household h’s real bond holdings chosen in the previous and current
period, respectively. The variables C}, and N}, are household h’s consumption and labor
supply. The aggregate variable R, ., wss, and Ty, are the gross nominal interest
rate, the gross inflation rate, the real wage, and taxes net of transfers and profits.
The values of these aggregate variables are known to the household. We constrain
households so that b} € [Q,ﬂ. Implicitly, we have functions Cj, s (b), Npss (br), and

b5 (br). Assuming the constraint on b}, is not binding, household maximization implies

1 1
Rss 47
Ch,ss (bh) ﬁ Ch,ss (b% (bh)) Tss ( )
XOh,ss (bh) Nh,ss (bh) = Wgs (48)
;zss (bh> bh
Ch,ss (bh) + 7R— = 7T_ + wssNh,ss (bh> + Tss (49)

We define a grid over [l_),ﬂ and approximate the functions Cj, s (by), Npss (br), and
.ss (bn) on that grid in the following way.*>

(i) We conjecture a value for b}, , (bs) at each grid point. Call the conjectured value
/i
h,ss (bh)

32In our implementation, we set —b = b = 1, which is equal to steady state output. We use a
symmetric grid with 25 points that includes zero and places more points near zero than at more
extreme values because b, = b}, = 0 in both REE and in learning equilibria.
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(ii) Note that equations (48) and (49) can be written as

b/i b b
XCh,ss (bh) (Ch,ss (bh> + st—(}L) — h - TSS) = w?s'

RSS 7TSS

The left-hand-side is increasing in Cj, 4 (by) > 0. For every by, we solve for the
value of C}, s (b,) that makes this hold with equality. We call this the conjectured
value for Cj, 4 (by) and denote it by Cj ,, (by). Note that with C} . (by), we can
back out Nj ., (bn) from equation (48).

(iii) For each grid point, by, find b}, that solves the following version of equation (47)

1

Oh/BRssi— —1=0
Ch,ss (b/h)
where C), > 0 solves
b, b
XCh (Ch ho —h — Tss) = w?s
RSS 7TSS

We use linear interpolation to compute Cj, . (bj,) for values of b}, that fall between
grid points. If the procedure would set b, > b or b, < b, we set b}, to the respective
endpoint of the grid. We record the value of 0} in by updating the conjectured
rule for b, ,, (by) using by t! (by) = b,

h,ss

(iv) Having computed b’,j*g; (by,) for every grid point, we check to see if

|b/i+1 (bh> - b;li,ss (bh)‘ <€

h,ss

at every grid point for some small €. If yes, we say that we have solved the

_pti41
- bh,ss

household problem in steady state. If no, we set by .. (by) (br) and repeat

steps (ii), (iii), and (iv).

Because f% = 1, it is not surprising that we find that b, , (by) = bp.

C.1.2 Firm problem

In the steady state, the firm value function is given by
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+B8Viss (V) } -

Here, py and p/; are the ratio of firm f’s price to the aggregate price level in the previous
and current period, respectively. The aggregate values 7y, wss, Css, Ggs, and Y, are
known to the firm. We constrain firms so that log (p’f) S []_9, ]‘9}. Implicitly, we have
a function p’; . (pr). Assuming the constraint on p’; is not binding, firm maximization

implies

/
1
¢ (pf <pf)7rss - ]-) ]9_7TSS (Css + Gss) -
f

(e—1) ( LI 1) (P} (pp)) " Yas

P (py)
vy (¢ (py) Py (v ()
+ ng ( p,f (pf) 58 1) (p'f ) (CSS + Gss) (50)

We define a grid over @, ﬁ] and approximate the function p; . (ps) on that grid in the

following way.?3

() We conjecture a value for p; . (py) at each grid point. Call the conjectured value

P} o (f)-

33In our implementation, we set —p =p = 1. We use a symmetric grid with 25 points that includes

zero that places more points near zero than at more extreme values because log (ps) = log (p’f) =0
in both REE and in learning equilibria.
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(ii) For each grid point, py, find p; that solves the following version of equation (50)

! 1
¢ (&ﬂ—ss - ]-> —Tss (Css + Gss) —
by by

+ B¢ (Mﬂ'ss - 1) Mﬂss (Cos + Gis)
(pf)

We use linear interpolation over log (p’f) to compute p}fss (p’f)for values of log (p})
that fall between grid points. If the procedure would set log (p}) > por log (p}) <
p, we set p’sto the respective endpoint of the grid. We record the value of p’; in

by updating the conjectured rule for p’ . (ps) using pﬁsl (py) = 0.

(iii) Having computed p’ﬁsl (py) for every grid point, we check to see if

D5 (pr) = Dfes (pr)| < e
at every grid point for some small e. If yes, we say that we have solved the firm
problem in steady state. If no, we set p’fivss (py) = p’;;l (py) and repeat steps (ii)
and (iii).

C.2 Solution when r» = ry
To address the case when » = r,, we assume that we have the steady state decision
rules in hand and that households and firms know these decision rules with certainty.

C.2.1 Beliefs

Before presenting the household and firm problems, some comments about beliefs are
in order when r = r,. To simplify the model, we assume households and firms have the
same beliefs (though they do not know that they have the same beliefs). Households
and firms believe that so long as r = r, the log of aggregate consumption, log (C),

and the log of aggregate inflation, log (7), have uncorrelated Normal distributions with
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unknown means and variances. That is

log () ~ N (tx, 07)
log (C) ~ N (¢, 0¢) -

We assume that households and firms have beliefs about the means and variances of
the distributions for log (C') and log (7) that are characterized by density functions
that are proportional to Normal-inverse-gamma distributions. These beliefs are not
exactly Normal-inverse-gamma distributions because the households and firms embed
in their beliefs an upper bound on the variances. This upper bound is important
because if variances were unbounded, E [7] = E [C] = oo, which would challenge the
applicability of an expected utility framework. The distributions characterizing beliefs

are independent across C and 7. That is, for i € {7, C}, ju; € (—00,0) and o? € [0,57]

we have
a; a;+1 :
) Fﬁ()ia,-) <ff_1f> =P <_f_§>
Pr (Uz|azaﬁﬁ) = M 7
T(a;)
VA A ’
P 7 '27 X )\z - 202 T i |
. (Iu ’UZ m ) 271_0_12 exp 20_12 (,u m )

Here, T"(+) is the gamma function and T" (-, -) is the incomplete gamma function. Note
that I'(-) = T'(-,0). Again, the advantage of truncating the support of o7 is that
E 7] < 00 if 72 < 0o and E [C] < oo if 72 < oc.

Even though we truncate the distributions for o2, we maintain conjugacy between
prior and posterior beliefs as well as the usual recursive updating equations because the
likelihoods associated with observations of 7 and C' are not truncated. Beliefs about
log (i) are parameterized by four values, a;, f;, m;, and \;. So, we have 8 total values

for both m and C'. The standard recursive updating formulas for these variables are

/_
T TN
o =a; +1/2

2(N+ 1)
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Here, a prime indicates the value taken after having observed log (7).

We need to include variables in © that will fully capture the values «;, 5;, m;, and
A; for i € {m, C'}. First, we keep i in ©, which is the inverse of the number of periods
that r has been equal to r,. We keep the inverse because it is bounded between zero
and one, which will be useful. From this value, we can trivially back out \; and «y,
given their values in the first period when r = r,. We set the initial value of \; = 1

and the initial value of o; = 2. We keep m¢c and m, in ©. And we also keep

20, Ao ,
¢£:\/ PrEsh (log () — mi)”.

2041 N +12a0+1

Note that by setting 8 = (¢;)” ¢/, it is clear that we recover the exactly recursive
structure of f; (given above). An advantage of using 1; in © rather than f; is that
1; is a consistent estimator for the standard deviation, whereas (; generally grows
without bound (except when the standard deviation is zero). Keeping the values of ©
within bounded grids will be important for the purposes of approximation. In total,
6= [%, Mo, Moy U, Vﬁc} has five elements and we have a mapping from © to «;, 3;, m;,
and \; for i € {m,C’}. We also have a law of motion for © so that ©' = L (0, [r,C]).
An advantage of the Normal-inverse-gamma setup detailed above is that we can have
analytic expressions for the distribution for the variables log (7) and log (C') conditional

on ©. In particular

Pr (log (i) | i, 07, ©) Pr (i, 07|0)
Pr (ui, 07| log (i) , ©)

L exp (5L (10g (i) = my)’)

2no

X ' )™\t /
o (- ) (i (2) e ()

K3 K3

Pr (log (i) |©) =

[N

X
>
D
I
T
/‘l'\
q |
|
3
S~—
[\]
N———

where



Then

A )1/2 T (o +1/2)

Pr(log (i) [©) = (@ (Ai+1)

(51)

QT% i -
Bi(Xi+1)

Notice that ] depends on the point of evaluation for log (7). Evidently, if we ignored

the ratio }/rk;, which would be correct in the case when 6 = oo, the pdf for log (4)

is a t distribution with location parameter m;, scale parameter ( m&?ﬁ))qmv and 2q;
degrees of freedom. If 57 is large, x./k; # 1 but is close to unity. For finite 67, the
ratio k. /k; serves to thin the tails of the distribution of log (7) by down-weighting the
probability of extreme values for log (i).>* Because the density function of the ¢ dis-
tribution is readily available and reliably computed in statistical software and because
k; and & are easily computed using readily available implementations of the gamma
and incomplete gamma functions, we can use equation (51) for quadrature weighting.
We use Gauss-Hermite quadrature with seven nodes when computing approximations

to integrals based on equation (51).

C.2.2 Household problem

When r = ry, the household value function is given by

Vi (bn,©,2) = max {1og<ch)—K(Nh)2

Ch,Nn,bj, 2

1 / / / /
b Bt (04, 6,0) + (1) Vi (0]}
+ 1y

subject to

v, b
Cpt+ < LN, +T.
R T

Here, 7 = [11, 0], Vi, 4s (+) is the steady state value function for the household, which
is defined above, and [Eg/ denotes expectations of the household computed conditional
on ©'. Given z and ©, we have © = L (0, z). So, the expectation of the household is

34We set 57 equal to the squared maximum value on the grid for ¢; (described below).
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taken with respect to 2/, which is believed to be iid. We assume that households know
the monetary and fiscal policy rules. We also assume that they correctly think that Y =
(C+ Q) (1 + %5 (m— 1)2), N =Y, and w = xCY. Given x, with these assumptions
R, m, w, and T can be computed. The steady state values of aggregate variables are
known to the household. We constrain households so that b}, € [b,b]. The household
optimization problem gives us implicit functions for Cj, (by, ©,z), Ny (bn, O, ), and

b, (bn, ©, ). Considering interior solutions for b}, we have

1 1
p— ]E !
Cr(bn©,2) 1+ s {p © {wc,; (o, @’,x’)}
lop) 2
+ ( p) ’/TssCh,ss (b/h):| (5 )
w = xC}, (by, ©,2) N}, (b, ©, ) (53)
i (b, O, 2) :i—uth (b, ©,2) + T — WLR@””). (54)

Instead of approximating Cj, (b, ©,x), Ny (bn, ©, ), and b}, (by, ©,x) directly, we ap-

proximate

1
v, (bn, ©) = Ee {m}

We take this approach because we can eliminate x as a state variable in the approx-
imation. We define grids on the elements of © and use the grid defined for by, in the

steady state. We then approximate vy, (by, ©) in the following way.3

(i) We conjecture a value for vy, (b, ©) at each grid point in the cross product of the

grids over the elements of b, and ©.3¢ Call the conjectured value v} (by, ©).

(ii) For a given grid point we use quadrature to get a value for Eg {(WC’h)_l} .To
solve for the expectation of interest, we need to solve for C, given many different
values for z. Conditional on a value for z, equations (53) and (54) can be written
as I

h h

Zh 2R o) =
XCh(Ch—l—R - ) w

35The grids for m; contain 12 points that are are not evenly spaced. They include each REE point
as well as the target-inflation steady state. The remaning points are bunched relatively close to the
REE points. The grid for ¥ contains 11 points that are evenly spaced from 0 to 0.1. The grid for ¢,
contains 11 points that are evenly spaced from 0 to 0.05. Note that inflation is expressed in quarterly
terms, so a change of 0.05 would be 20 percent if annualized.

36There are 435,600 = 12 x 12 x 11 x 11 x 25 points in the cross product of the grids for m;, ¥,
and by. The grid for t;l is handled in a way discussed below.

65



The left-hand-side is increasing in Cj, > 0. For a given b}, we solve for the value
of C that makes this hold with equality. We then search for the value of 0, that

makes the following version of equation (52) hold with equality:

1_ 1
Ch_l—{—Tg

1
Tss Oh,ss (b/h)

We use linear interpolation to compute vj (b}, ©) for values of b}, and ©’ that fall
between grid points. If the procedure would set b} > b or b, < b, we set bjto the
respective endpoint of the grid for b,. We record the associated value of Cj, and

use it in the quadrature to compute v} (b, ©) = Eg {(WC’h)fl}.

(iii) Having computed v} (by,, ©) for every grid point, we check to see if
|v;, (b, ©) — v (by, ©)] <€

at every grid point for some small e. If yes, we say that we have solved the
household problem when r = 7. If no, we set vi (b, ©) = vit! (b, ©), repeat

steps (ii) and (iii).

1 Ll 1]
t 1997987 1]
The first element of the grid corresponds to the case when infinite time has past.
In this case households think that they would update their beliefs so that @ = ©

because m; and 1; are consistent estimators for the means and variances. In our

The grid that we use on = is special. In particular, we let that grid be [O

numerical computations, we utilize this fact to first approximate vy in this case. We
then approximate vy, in the case where ¢, = 99. When ¢, = 99, we need to interpolate
between the solution to the case when ¢, = co and the conjectured value of v} (b, ©)
when t, = 99 to evaluate v}, (b},,©’). That is, when ¢, = 99 we have to find a fixed
point of this interpolation, which is computationally intense. To do the interpolation,
we linearly interpolate between ¢,' = 1/99 and ¢,' = 0. When t, = 98, having
approximated vy, (b, ©) for t, = 99 means that can evaluate vy, (b}, ') exactly at
t, = 99 without reference to v} (b,,©). We approximate for vy, (by, ©) when ¢, = 98
and work work back in this way to ¢, = 1. This strategy fits this into the structure of
steps 1-3 because we know that the value of vy, (by, ©) will not depend on its value at
any any t, that is smaller than implied by ©. So, we have a block dependent structure

to vy, (b, ©) . Additionally, we know that ¢, will only take integer values.
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C.2.3 Firm problem

When r = ry, the firm value function is given by

Vi (ps,©,2) = H;%X{é ((p} (1 =v)w) () Y - % <&ﬂ— 1) (C+G>>

f

e [y (7,6,) + (1= 1) Vys (0))]
Here, z = [m,C]’, V} s (+) is the steady state value function for the firm, which is defined
above, and E denotes expectations of the firm. Given z and ©, we have ©' = L (0, x).
So, the expectation of the firm is taken with respect to 2/, which is believed to be iid.
We assume that firms know the monetary and fiscal policy rules. We also assume that
they correctly think that Y = (C' + G) (1 + $(r—1) ) N =Y, and w = xCY. Given
x, with these assumptions 7, w, G, and Y can be computed. The steady state values of
aggregate variables are known to the firm. We constrain firms so that log (p’f) € @, 1_9] :
Implicitly, from firm optimization we have a function p’ (py, ©, ). Considering interior

solutions for p’f, firm maximization implies

5 (pf (py, ©, x)
Dy

) (C+G)=

e—1 ,0,2)) 7Y
( )<p} (ps,©, ) ) Py (b )
,0,7),0', 7' b (0} (0,0, 2),0", 2
LRIy /AT AV ECARD Y At 1 A R AL prere?
1+7r C Pf (pf7®7$> (p, (pf7@ l‘))

1 C P (0 (0,0, 7)) P (0 (0,0, 7))
1— —1
( p)¢< p} (o7, ©.2) T ( vy, 0, 2) )2 T

ss (Oss + Gss) :
(55)

Instead of approximating p's (ps, ©, ) directly, we approximate

o o1.0) = Ea { 56 (Lr—1) Lric + a0}
¢ \ps ps
We take this approach because we can eliminate x as a state variable in the approxima-

tion. We use the same grids on the elements of © that we use for the household problem
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and the grid defined for log (ps) in the steady state and we approximate vy (ps, ©) in

the following way.

(i)

(i)

(iii)

We conjecture a value for vs (ps, ©) at each grid point in the cross product of the

grids over the elements of p; and ©. Call the conjectured value v} (pf, ©).

For a given grid point we use quadrature to get a value for

2o () oy

To solve for the expectation of interest, we need to solve for p; given many
different values for x. Conditional on a value for x, we find a value of p’fthat

solves the following version of equation (55)

¢(pf7r—1) T(C+G) =

(e—1) ( ) )
C
1+ T .. Py (pf’@)p}
C pfss(p/f) pfss(p/)
1— s S =1 | L '
+1+T€Css( p)¢< p/f s (pf) 7T55(085+G58)

We use linear interpolation over log (p’f) to compute v} (p’f,@’ ) for values of
log (p}) and ©’ that fall between grid points. If the procedure would set log (p’f) >
p or log (p’f) < p, we set p’fto the respective endpoint of the grid for p;. We record
the value of p’f in and the associated aggregate variables so that the quadrature

procedure can approximate

vy (ps,©) = Ee {%b (p—}w— 1) P (0+G)}.

Py pr
Having computed U}H (pg, ©) for every grid point, we check to see if
‘v} (ps,©) — U}“ (ps, @)| <e€

at every grid point for some small €. If yes, we say that we have solved the
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household problem when r = 7. If no, we set v} (py, ©) = v}“ (pr, ©), repeat
steps (ii) and (iii).

Our use of the same grids as in the household problem allows us to exploit the same
block dependent structure in tgl.

C.3 Learning equilibria

Here we detail how we construct learning equilibria, given the solutions to the household

an firm problems—uy, and vy.
(i) Set r = r, and assume a value for ©; for ¢t = 1.
(ii) Conjecture a value for .
(a) Find the value of C; that would make the following equation hold

1 1 1

Cy Nt TeRt pon (0, f (O, [m, Ci])) + (1 = p) m

Note that with m; and C; the values of all other aggregate variables can be

computed.

(b) Check to see if the following equation holds

o (m—)m (Cy+ Gy) =

(5—1)(wt—1)+1

1 G
+
1+7’ng5

pog (1, f (O, [m, Ct])) Cy

Ty

(1 - p) (b <7Tss - 1) Tss (Css + Gss) .

If yes, we have a period equilibrium for period ¢ and we record m; and C}. If

no, conjecture a different value for ;.
(iii) Set ©41 = L (Oy, [m, Cy]) and repeat step (ii).

When we consider “anticipated utility,” we define ©, to be ©,, but with i =0. We
then perform step 2 with ©; instead of ©,. However, in step 3 we continue to use ;.
The switch between ©, and ©, highlights the way in which “anticipated utility” is not

internally rational.
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D Linearized NK Model

Here we describe our strategy for linearizing the NK model around an REE. We find

it convenient to use t notation, rather than recursive notation.

D.1 Household problem

The household have a flow budget constraint

b by 4
Chy 4 = = L 4 Npy + 7
Rt Tt

and optimality conditions given by

1 1 1
—— o = BiEn,
Ch,t R, ! tch,t+177t+1
XNh,tCh,t = W.

1
147,

and 8, with 3 > . The high value happens at period 1 and goes back to the low value

Here, Ej ; is Eo/ in our recursive notation. We assume that j3; takes two values: § =

with probability 1 — p. The low value is the absorbing state.

Let’s first consider the absorbing state. Log-linearize (except for by, which is
linearized) the equilibrium conditions around the zero inflation steady state (note that
the aggregate variables take their steady state value and the households know this, so

their log-deviation is zero).

Cah,t + 5/[;h,t = /Eh,t—l + ﬁh,t
ah,t = Ep4 [ah,tJrl]
0 - Nh,t + é\h,t

Evidently,
N 1 - 8 ~
Chi=—=——bpt—1 — —=——b
ht = GOl T o Ot
ah,t =, [ah,t—&—l}
B~ 14+ 6~ 1 ~

0—-1—1 hit+1 = 0——1—1 hit — C,—_th,t—l
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meaning

1 ~ O+ 1~ 15} ~
b1 — =——bps = ————E [b }
C ol T o e C 1t |t
We consider solutions of the form
bhe = Wepbn,i—1
where wy, satisfies
1 6+1 B,
— wpp + =——wp, = 0.
C+1l C+1 T Coy1vt
The solutions to this equation are
Bl 4 \/ B+12 41 B
C+1 C+1 C+1C+1

Whp =
c+1

We focus on wy, = 1 because that is the value that corresponds to the solution of the

nonlinear model. So,

1

Dp—1 = -5 (C+1) Ch,

bny = bh,t—l-

Let’s next consider the case where 3, = 3. Let & be the RE aggregate quantity while
B, = 3 and 7; be the (log-)linearized quantity around . We have

o~

-~ ~ b
CCh,t+bh,t = h;_ L +U)N'U)t+wNNht+TTt

1 = ~ P = i~
CRCht =-p [EEh,t (Ch,t+1 + 7Tt+1> +

(1—1?)1—53
Cr C4+1™

Uy = Nh,t +éh,t

Note that we have imposed R, = 1 while 8, = 3, which is true in the REE. In this
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sense, the system is local. We assume that households know that

)
Nt = (Ct + G) <]. —+ E <7Tt — 1)2)
wy = xN:Cy

0}
Tt:(1—wt)y;—5@-1)2((1#(;)—0.

These relations are true in the period equilibrium, and are log-linearized to be

~ o C = C+G)\ . s
Nt:(1+§(7r_1)2)ﬁct+@( N >(7T—1)7T7Tt

w; =N, + C,
~ ~ 2 ~ A ) ~ 2
= (1= @) VY, — Yy — (7 — 1)2CC,
—cb(fr—1)fr<(§+é> 7.
The household optimality conditions and aggregate relations that are known to the

household can be written as a single equation of the form =

—Kpi—1bni—1 + Kpibne — KeCr — Kr Tt

:’fb,t+1Eh,t (bh,t+1> — Rue,tMoet — Ku, tMrt
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where

Koy =20N ((1 +— (7 — 1)2) % + 1>
— (20 — 1) <1+§(7~r—1)2>é
- (w?+§(ﬁ— 1)2(5)
Foms =0
Kbt :BR%

5D
Ruct :BR%KCJE
s =BR (C+ 0N) 2
7
Here, m; ; is m! in our recursive notation and m¢ is my, in our recursive notation. Note
that the time subscripts on the £’s is to denote if the coefficient multiplies, for example,

b; or b;_1. The time subscript does not indicate time-variation in the coefficient.

We consider solutions to this equation of the form

bae = Yopbhi—1 + VoxTt + Yo,0Ct + Vo un Mert + Voo MOt

Note that this is a linear approximation to b}, (bs, ©). Our approximation does not
include 1, or )¢ because of the certainty equivalence of the linearized model.

Using the linear decision rule for l;h,t, M. 15 determined by

2
—Kbt—1 T Kot Vo,b = Kbt+1Vpp

which is given by

2
Kpt & \/ Ky — 4Kbt—1Kbt+1

2/€b,t+1

Yo,b =

Both of the solutions for v, ; are larger than unity. However, the smaller value is closer

to the solution of the nonlinear model at the REE, so we focus on that value. We
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determine the other four values of v, , using the following equations.

RptVor — Rrt = Ko t+170,07Vb,1
RbtVo,c — Kot = Kbt+176,07b,C
Kbt Vopin = Kbtt1Vb6Vopin + Kbtt1 (Voum + Vo) — Kpun t

Kbt Youe = Rt 1 Vb6 Youe T Kbt (Yoo + W6.0) = Kue t-

The first two equations imply

- Hw,t
Yo,r =
Kbt — Kbt+17b,b
- Ko
Tv,c =

Rpt — /fb,t+17b,b'
Then the third and fourth equations imply

Rurt — Kbt+17Vb,x
Kot1 (Vo + 1) — Kpg
Ruct — Kbt+17,C
Kot (Vo0 + 1) — Ky

fyb”uw

Vo,pc

This gives a solution to the household problem.

D.2 Household problem ignoring the ZLB

We wanted to know what would happen if we ignored the ZLB. In that case, the

nominal interest rate is set so that

~ 1 = T~
R:——i—ozﬁ'—l :R:O[Tﬁ—
t B (t ) t Rt

Then k. becomes
Knt = (C’ + u?N) R 'aw

and the rest of the analysis in the previous sub-section goes through.
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D.3 Firm problem

The firm’s optimality condition is

B ®
(pss— w)) (pye) Vi + (”ﬁm—Qpﬁmwﬁag
e—1 Pft—1 DPri—1

¢, @ Pfi+1 Pgi1
= BiEs4 e 1 ( iEs M1 — 1) s i1 (Crp1 + Gipa)
t+1 € — Pri Dyt

We log-linearize this condition for the case when 3; = [ and firms know the steady

state values of the variables to get

NN . )

Pret—— (Dre — Dpa-1) = F—1 (Dfiv1 — Dri)

We assume a solution of the form

so that
d

O—ﬁ 1pp (1+(1+6) q)l)wp’p+<€——1

which has solutions

(1+(1+8)2) i\/ 14 (1+8)2)° — 4 (2)°
Wpp = 258 :
e—1

Only one of these solutions is less than 1 in absolute value and we use that solution
because it resembles our non-linear solution.

Now we will consider the case when 8, = 3. In this case,

Y )
(e =0 Gy Vot 2 (L= 1) P2 (64.G) =

e—1\Dri—1 Dfi—1
C, @ P . D ~ ~ ~
pﬁ fit ! ( Ji’t+17Tt+1 - 1) f’t+17Tt+1 (Ct+1 + Gt+1>
Ct+1 e—1\ pse Dyt

C d Dri+1 Dfi+1
E : 1 C, G
+(1- )5 ftCt-i—l " ( bre M1 — bre 41 (Cri1 + Giin)

We log-linearize this to be
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Y (1+e(w—1)prs+ (1 —0)YY; — @Yy,

o /- ~ - 2 2 2 - ~ (XA ~ A
A (0+ G) (27 — 1) <pf7t T m) +— (F-1)7 (cct + GGt> -
~ ® B [~ ~ 2 S
ph—— (R =17 (C+6) (G- EpCr) +
= @ ~ = = ~ 2 2 2
pB " (C + G) (21 —1) (]Ef,tpf,t+1 —Dft T+ 7Tt+1>
~ ] B /=~ S ~ 2
+pﬁ€ 1 (r—-1)7 (OEf,tOt-H + GEf,thH) +
-C O ) s
1=p)Br-—7(C+G) (]Ef,tpf,tﬂ — Dyt 7Tt+1)
Using
= = d C= C+G\ . .
Yt:Nt:(l‘i‘g(ﬂ'—l)z)ﬁOt—f—q)( ]\N/' )(ﬂ'—l)ﬂ"ﬂ}
{f}t = Nt+ét

we can write the firm’s optimality condition as

CpptPft + CrotTe — Cpyi—1Pfi—1 =

CctCt — Quemaet + Cppir 1 EpiDrist + Cup Moy
f
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wherex

+pfB _17r(é+é> (27 — 1)
=) AL (046 (1 -y
Copi1 —flﬁ(é+é> (27 — 1)
Gy =i (C+ &) (27— 1)
Cﬂt:fl (C*+ )(2%—1)%+(1—21D)<D<C+G> (7F—1)7

e—1 -1
o =pB—— (7= 1)7G

P -
urt =PA—=7 (C n G) (27 — 1).

As in the household problem, the time subscripts on the (’s is to denote if the coefficient
multiplies, for example, ps; or ps,—1. The time subscript does not indicate time-
variation in the coefficient. For similar reasons to the solution to the household problem,

we consider solutions to this equation of the form
ﬁf,t = Vp,pﬁf,t—1 + 7p,7r7£Tt + Vp,cét T Vo Mt + Vpoue MOt
Note that v, , is determined by
Cort1Vep = Cpst Vo + Cppim1 =0

So,

Cpf,t + \/Cgf,t - 4Cpf,t+1Cpf,t71

2Cpf,t+1

Vp,p

The smaller root (which is stable) is a better approximation like the nonlinear model.
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We then have that

Cpf,t”)’p,fr + Gy = Cpf,tH”Vp,p”Yer

Copt Ve — St = Cpytt1VppVp.C
Cpf,t%z,uw - Cpmt = Cpf,t+17p,p7p,u7r + Cpf,t—&-l ('Vpﬂr + ’Yp”uﬂl’)
gpf,ﬂp,uc + Cuet = Cpf,t+17p,p7p,uc + Cpf,t+1 (Yo.c + Vouc)

So,
~ . Cﬂ',t
pT T T
Cpfﬂf - Cpf,t+17p,p
Cot
Tp,C

Cpf,t - (pf,t+17p,p

Gt T Gt 1Y
Topn = ot —
Dfs

Cpf t+1Vpp — Cpf t+1

= Cuet T G Tpe
’vaﬂc - C . —
Df,

Cpf,t-i-l'yp,p - Cpf,t-i-l‘

Because R; does not enter the firm optimality condition, ignoring the ZLB has no effect

on the linearization of the firm problem.

78



D.4 Slow convergence in the linearized solution

Figure 10: Slow convergence of beliefs is similar in linearized and non-linear solutions
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(b) Non-linear solution
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Note: In the sub-figures (a) and (b)m; is initially set to the steady state REE value. In all
sub-figures, ¢; = 0.02, \; = 1, a; = 2. Source: Authors’ calculations.
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