A Theory of Business Transfers

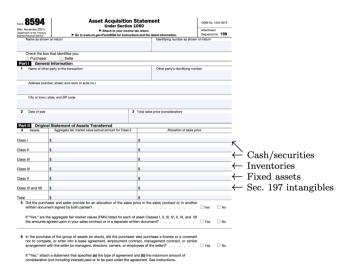
Anmol Bhandari Paolo Martellini Minnesota Wisconsin Ellen McGrattan Minnesota

Motivation

Privately-owned firms

- Account for 1/2 of US business net income
- Dominate discussions on growth, wealth inequality, tax policy
- But pose challenge for
 - · theory: technology of capital accumulation and transfer
 - measurement: no reliable data on private wealth
- This paper:
 - propose a theory of firm dynamics and capital allocation that is appropriate for such firms
 - use IRS data to bring discipline to the theory
 - study business taxation

What do we know about Private Business Capital?



What do we know about Private Business Capital?

- Transferred assets are primarily intangible (from form 8594 ≈ 70%)
 - Customer bases and client lists, non-compete covenants
 - Licenses and permits, trademarks, tradenames
 - Workforce in place
 - Goodwill and on-going concern value
- Assets are sold as a group
- Sale requires time to find buyers/negotiate (from brokered data ≈ 290 days)

⇒ Update Lucas-Hopenhayn model to reflect these characteristics

Related Literature

- Firm Dynamics
 - Hopenhayn (1992), Hsieh and Klenow (2009, 2014), Sterk et al. (2021)
- Capital Reallocation
 - Holmes and Schmitz (1990), Ottonello (2014), Guntin and Kochen (2020), Gaillard and Kankanamge (2020), David (2021)
- Entrepreneurship and Private Wealth
 - Cagetti and De Nardi (2006), Saez and Zucman (2016), Smith et al. (2019)
- Capital Gain Taxes and Wealth Taxes
 - Chari et al. (2003), Scheuer and Slemrod (2020), Guvenen et al. (2021), Agersnap and Zidar (2021)

Environment: Preferences

- Infinite horizon, continuous time
- Demographics:
 - total population N: workers and business owners
 - newborns enter the economy, choose occupation, exit at rate $\boldsymbol{\delta}$
- Preferences: risk-neutral (extension with risk aversion)
- Workers supply labor inelastically

Environment: Technology

• Production:

$$y(s,n) = z(s)k(s)^{\alpha}n^{\gamma}$$

Paolo Martellini 6 / 28

where n is a rentable input (labor)

- Productivity, z
 - non-transferable
 - evolves according to $dz = \mu z dt + \sigma z dB$
- Business capital, k
 - transferable
 - built through investment: $dk = \theta \delta_k$, convex cost $C(\theta)$
- Entry: entry cost $n_0 w$, draw $s \sim G(s)$, where s = (z, k)

- Capital:
 - Firms access market at rate η
 - Bilaterally traded:
 - type s = (z, k) can trade with any type $\tilde{s} = (\tilde{z}, \tilde{k})$
 - Allocation between s and \tilde{s} :
 - k^m(s, s̃) ∈ {k(s) + k(s̃), 0} ⇒ indivisibility (extension w/ costly divisibility)
 - Price paid by s to \tilde{s} :
 - p^m(s, s̃), negative if selling (extension w/ financing constraints: p^m(s, s̃) ≤ ξy(s, n))
- Labor:
 - competitive spot markets

Owner's Value

• The owner's value solves the following HJB

$$(r+\delta)V(s) = \underbrace{\max_{n} y(s,n) - wn + \max_{\theta} \partial_{k}V(s)(\theta - \delta_{k}) - C(\theta)}_{\text{production}}$$

$$+ \underbrace{\mu z \partial_{z}V(s) + \frac{1}{2}\sigma^{2}z^{2}\partial_{zz}V(s) + \max_{\lambda} \eta W(s;\lambda)}_{\text{evolution of productivity}}$$

$$\text{trade}$$

where

$$W(s;\lambda) = \int [V(z,k^{m}(s,\tilde{s})) - V(z,k) - \rho^{m}(s,\tilde{s})]\lambda(s,\tilde{s})d\tilde{s}$$

and

$$\int \lambda(s,\tilde{s})d\tilde{s} + \lambda(s,0) = 1$$

Free Entry and Law of Motion

Occupational Choice ("free-entry")

$$\int \ V(s)dG(s) - n_0 w \leq \frac{w}{r+\delta}, \quad \phi_e \geq 0, \quad \text{w/ c.s.}$$

ullet Distribution over the state space ϕ evolves according to the Kolmogorov Forward (KF) equation

$$\dot{\phi} = \Gamma(\theta, \lambda; \phi) + \phi_e$$

- Evolution of ϕ induced by

 - ▶ investment → trade → entry/exit
 - individual productivity process

May 25, 2023

Definition of Recursive Equilibrium

A (stationary) equilibrium is a set of value functions V(s), policy functions for investment $\theta(s)$ and trade $\lambda(s,\tilde{s})$, terms of trade $(k^m(s,\tilde{s}),p^m(s,\tilde{s}))$, wage w, and distribution over the state space $\phi(s)$ that satisfy

- business owners' optimality
- no-arbitrage in occupational choice
- market clearing
- consistency of measures

Discussion of the Capital Trading Protocol

- ⇒ Trade of multiple differentiated goods
 - Standard approach:
 - CES demand/monopolistic competition
 - frictional market with fixed point on matching set
 - Our model:
 - rich heterogeneity in market participants
 - friction-less matching + infrequent trade

Define gains from trade between s, \tilde{s} :

$$X(s,\tilde{s}) = \max_{k^m \in \{k(s)+k(\tilde{s}),0\}} \{V(z(s),k^m) + V(z(\tilde{s}),k(s)+k(\tilde{s})-k^m)\} - (V(s)+V(\tilde{s}))$$

The social value from optimally matching buyers and sellers is

$$\begin{split} Q(\phi,V) &= \max_{\pi \geq 0} \Sigma_{s,\tilde{s}} X(s,\tilde{s}) \pi(s,\tilde{s}) \\ s.t. & \Sigma_{\tilde{s}} \pi(s,\tilde{s}) + \pi(s,0) = \frac{\phi(s)}{2} \ \forall s \ \left[\mu^{a}(s)\right] \\ & \Sigma_{\tilde{s}} \pi(\tilde{s},s) + \pi(0,s) = \frac{\phi(s)}{2} \ \forall s \ \left[\mu^{b}(s)\right] \end{split}$$

Auxiliary Problem: Static Planner

Lemma

•
$$W(s) = \frac{\partial Q}{\partial \phi(s)} = \frac{\mu^a(s) + \mu^b(s)}{2} \equiv \mu(s) \Rightarrow \mathsf{HJB}$$

•
$$\lambda(s,\tilde{s}) = \frac{2\pi(s,\tilde{s})}{\phi(s)} \Rightarrow \mathsf{KF}$$

•
$$k^m(s,\tilde{s}) = \arg\max X(s,\tilde{s})$$
 $p^m(s,\tilde{s}) = V(z,k^m(s,\tilde{s})) - V(z,k) - W(s)$

$$X(s,\tilde{s}) = \max_{k^m \in \{k(s)+k(\tilde{s}),0\}} \{V(z(s),k^m) + V(z(\tilde{s}),k(s)+k(\tilde{s})-k^m)\} - (V(s)+V(\tilde{s}))$$

$$Q(\phi) = \max_{\pi \geq 0} \sum_{s,\tilde{s}} X(s,\tilde{s})\pi(s,\tilde{s})$$

$$s.t. \ \sum_{\tilde{s}} \pi(s,\tilde{s}) + \pi(s,0) = \frac{\phi(s)}{2} \ \forall s \ [\mu^a(s)]$$

$$\sum_{\tilde{s}} \pi(\tilde{s},s) + \pi(0,s) = \frac{\phi(s)}{2} \ \forall s \ [\mu^b(s)]$$

dual

May 25, 2023 A Theory of Business Transfers Paolo Martellini 13 / 28

Properties of the Equilibrium

• Competitive prices are independent of seller's z

$$p^m(s,\tilde{s}) = \mathcal{P}(\kappa(\tilde{s}))$$

Intuition: competitive nature of the equilibrium, same good sold at same price

- Pairwise stability: $\nexists(s,\tilde{s})$ and feasible trade that makes the pair (strictly) better off
- Competitive allocation solves the planner's problem

$$\int \exp(-\rho t) \int [y(s) - C(\theta(s,t)) - m(t)c_e] \phi(s,t) dtds$$

given
$$\phi(s,0) = \phi^{ss}(s)$$

Using the Model

- Calibration using data on
 - firm dynamics
 - business transfers
- Model deliverables
 - dispersion in mpk
 - business price and value
- Tax policy analysis

Calibration Strategy

- Life-cycle firm dynamics ⇒ productivity process, rentable input share, exit rate
- ullet Transaction data \Rightarrow production, investment, meeting technology

Calibration Strategy

- Life-cycle firm dynamics ⇒ productivity process, rentable input share, exit rate
- Transaction data ⇒ production, investment, meeting technology

Key parameters

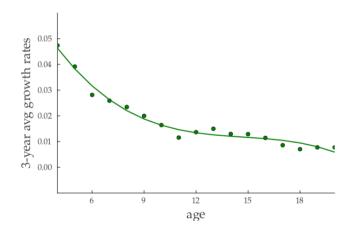
- meeting rate η
- investment cost $C(\theta) = A\theta^{\rho}$
- output elasticity wrt k, $y(z, k, n) = zk^{\alpha}n^{\gamma}$
- volatility of $\log(z)$, σ_z

Key moments from data

- brokered sales: time to sell
- IRS filings
 - relative size of buyer/seller
 - sale price/wage bill
 - level and volatility of growth rates

Life-Cycle of the Firm

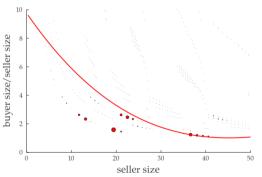
• Declining growth rates over the life cycle (from 5% to < 1%)

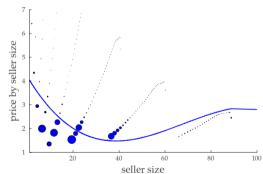


May 25, 2023 A Theory of Business Transfers Paolo Martellini 17 / 28

Paolo Martellini 18 / 28

- Buyer's size does not scale up with seller's
- Lower price per unit for large sellers (less competition)

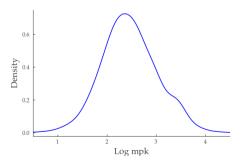




Parameter	Value
Discount rate	r = 0.06
Share of rentable input	γ = 0.70
Entry distribution, G	mass point at $z = z_0, k = 1$
Death rate, depreciation rate	$\delta=0.1, \delta_k=0.058$
Investment cost, $C(\theta) = A\theta^{\rho}$	$A = 13, \rho = 2$
Trading rate	$\eta=1$
Returns to scale	α = 0.09
Productivity process	$\mu_z=0, \sigma_z=0.075$
	•

Dispersion in MPK

- $\bullet \ \ \text{Idiosyncratic change in productivity} \rightarrow \text{input reallocation toward higher MPK}$
- Dispersion in marginal product of capital induced by
 - decentralized trading
 - indivisibility of asset sold
- Standard deviation of log-mpk: 55%



May 25, 2023 A Theory of Business Transfers Paolo Martellini 20 / 28

Business Wealth

- Finance textbook: Present value of owner's dividend
 - Model counterpart: V(s)

- SCF respondent: Answer to the survey question-"What could you sell it for?"
 - Model counterpart: $\mathcal{P}(k)$

Model Predictions for Business Wealth

- Heterogeneity in transferable share and returns
- Inputs to analysis of capital and wealth taxation

Transferable Share	Income Yield
$\frac{\mathcal{P}(k)}{V}$	$\frac{y-wn-C(\theta)}{V}$
0.00	-0.06
0.14	0.09
0.21	0.10
0.29	0.11
0.43	0.13
0.57	0.14
	$\frac{P(k)}{V}$ 0.00 0.14 0.21 0.29 0.43

Business Taxation

- Recent debate on business taxation
- What to tax
 - flows: business income
 - stocks: business capital or wealth (Guvenen et al. 2022)
 - transfers: capital gains (Sarin et al 2022, Agersnap and Zidar 2021)
- Our model can speak to all three forms of taxation

details

Comparison of

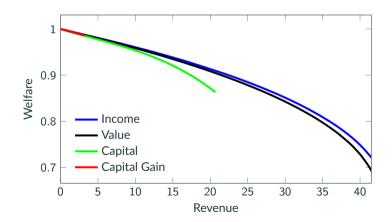
- capital gains: $\tau_c \mathcal{P}(k)$ [capital transaction]
- business income: $\tau_b(y wn)$
- **business capital**: $\tau_k \mathcal{P}(k)$ [capital ownership]
- wealth: $\tau_{v}V$

Welfare measure: steady-state value at birth conditional on raising revenue R

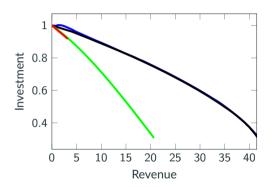
ullet by indifference at entry, all agents' ex-ante value is proportional to w

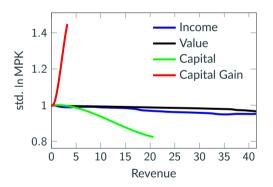
Main Results: Welfare

• For most levels of R, use tax on business income (or wealth) but not capital or gains



May 25, 2023 A Theory of Business Transfers Paolo Martellini 25 / 28





Compared with tax on income,

- tax on capital gains
 - distorts capital reallocation across firms
 - · decreases investment to sell
- tax on business capital plot
 - higher incidence on low and medium z firms
 - more elastic relative to high z firms in presence of infrequent trades
- tax on wealth ≈ tax on income + tax on option value of selling capital

Practical implementation: k and V are not observed

- Quantitative model with other salient features
 - undiversifiable risk
 - other motives for sales (retirements, etc)
 - financing constraints
- Measurement combining data on firm dynamics and business transfers
- Fuller study of tax policy

Business Transfers are Taxable Events

- Buyers and sellers both report sale
 - seller has to pay capital gains
 - buyer has to report depreciable assets
- Price allocated across asset types
 - seller wants to allocate to long-term
 - buyer wants to allocate to short-term

⇒ Conflict of interest and thus consistent reporting

- From the minimax thm, the solution of the primal problem is equal to the solution of the dual
- The multipliers in the primal are equal to the choice variable in the dual, and vice versa

$$Q(\phi) = \min_{\mu^{a} \geq 0, \mu^{b} \geq 0} \sum_{s} \left(\mu^{a}(s) + \mu^{b}(s) \right) \frac{\phi(s)}{2}$$
s.t. $\mu^{a}(s) + \mu^{b}(\tilde{s}) \geq X(s, \tilde{s}) \quad \forall s, \tilde{s} \quad [\pi(s, \tilde{s})]$

Trade with Preference Shocks

- After-trade values for buyers (v_b) and sellers (v_s)
 - $v_b(s, \hat{k}; p)$: value from buying \hat{k}
 - $v_s(s, 0; p)$: value from selling k(s)
- Matching probability

$$\lambda(s, \hat{k}; p) = \exp\left(\frac{v_b(s, \hat{k}; p) - W(s)}{\sigma}\right)$$
$$\lambda(s, 0; p) = \exp\left(\frac{v_s(s, 0; p) - W(s)}{\sigma}\right)$$

where $W(s) = \mathbb{E} \max\{v_b(s, \hat{k}; p), v_s(s, 0; p)\}$

• Find $\{p(s)\}$ such that $\forall \hat{k}$

$$\underbrace{\int \lambda(s, \hat{k}; p)}_{\text{demand}} = \underbrace{\int \lambda(s, 0; p) \mathbb{I}\{k(s) = \hat{k}\}}_{\text{supply}}$$

Price Cap and Taxes

• Under capital gain tax τ ,

$$v_b(s; \hat{k}) = V(z, k(s) + \hat{k}) - p(\hat{k})$$
$$v_s(s) = V(\tilde{s}, 0) + (1 - \tau)p(k(s))$$

• Under cap on paid price equal to $\xi y(s, n)$

$$v_b(s; \hat{k}) = \begin{cases} V(z, k(s) + \hat{k}) - p(\hat{k}) & \text{if } p(\hat{k}) \le \xi y(s, n) \\ -\infty & \text{o/w} \end{cases}$$
$$v_s(s) = V(\tilde{s}, 0) + p(k(s))$$

Feasibility and Pair-wise stability

Terms of trade $\{p^m, k^m\}$ satisfy

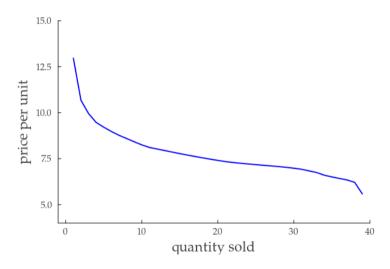
feasibility

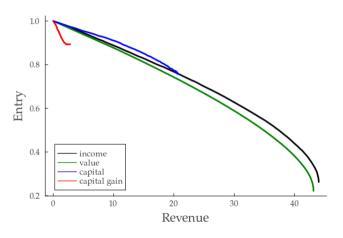
$$k^{m}(s,\tilde{s}) \in \{k(s) + k(\tilde{s}), 0\}$$

$$k^{m}(s,\tilde{s}) + k^{m}(\tilde{s},s) \le k(s) + k(\tilde{s})$$

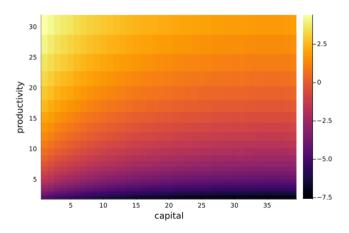
$$p(s,\tilde{s}) + p(\tilde{s},s) \ge 0$$

• pair-wise stability: $\nexists(s,\tilde{s})$ and feasible trade that makes the pair (strictly) better off





Who pays more from taxing business income instead of business capital?



log-ratio of taxes paid: $\log \left(\frac{\tau_b(y-wn)}{\tau_k \mathcal{P}(k)} \right)$