
Online Appendix for “Hidden Stagflation”

Yuta Takahashi and Naoki Takayama∗

Institute of Economic Research, Hitotsubashi University

September 27, 2023

Contents

1 Detailed Explanation of the Methodology by Auer et al. (2019) 1

1.1 Framework by Auer et al. (2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Additional Figure 5

3 New Keynesian Model 6

3.1 Sensitivity of Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Almost Permanent Shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Detailed Explanation of the Methodology by Auer et al. (2019)

For the sake of completeness, we review the methodology developed by Auer et al. (2019) in this

section.

1.1 Framework by Auer et al. (2019)

There are N countries, indexed by i and j, and S sectors indexed by s and k. The primitive of the

analysis is the cost Wi,s,t of sector s in country i at date t, which is given by

Wi,s,t = Fi,s (χi,s,t,Pi,s,t) ,

where Fi,s is the cost function, χi,s,t is the domestic cost factor, and Pi,s,t is the input price vector,

which is given by Pi,s,t = (Pji,ks,t)j∈N,k∈S in US dollars. Here, production function Fi,s is assumed

to be time-invariant and to exhibit constant returns to scale.
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Log-linearizing the cost, Wi,s,t, at (Wi,s,t−1, χi,s,t−1,Pi,s,t−1) , we obtain

Ŵi,s,t = γCi,s,tχ̂i,s,t +
∑
j,k

γji,ks,t−1P̂ji,ks,t, (1)

where

γCi,s,t−1 =

∂Fi,s

∂χi,s,t
χi,s,t−1

Wi,s,t−1
γji,ks,t−1 =

∂Fi,s

∂Pji,ks,t
Pji,ks,t−1

Wi,s,t−1
,

and the variable with a hat represents the first log difference of the original variable (e.g., Ŵi,s,t =

lnWi,s,t/Wi,s,t−1). It follows from the envelop theorem that γCi,s,t−1 corresponds to the share of

costs associated with the domestic factor in the total costs and γji,ks,t−1 corresponds to the share

of costs associated with intermediate input from sector k in country j in the total costs of sector s

in country i. The constant-returns-to-scale property of Fi,s implies that

γCi,s,t−1 +
∑
j,k

γji,ks,t−1 = 1

for all i, s, and t. Equation (1) corresponds to equation (2) in Auer et al. (2019).

Note that we cannot directly observe the change in the marginal cost, Ŵi,s,t. We assume that

Ŵi,s,t is equal to the change in the output price of that good, which is observable:

Ŵi,s,t = P̂i,s,t. (2)

This assumption holds, for example, if the markup charged by the firm in country i in sector s is

time-invariant.

Moreover, we assume that P̂ji,ks,t is equal to the change in the cost of the destination:

P̂ji,ks,t = Ŵj,k,t. (3)

Substituting equations (2) and (3) into equation (1), we obtain the following linear equations

with respect to χ̂i,s,t :

P̂i,s,t = γCi,s,t−1χ̂i,s,t +
∑
j,k

γji,ks,t−1P̂j,k,t. (4)

Solving the system of the linear equations, we can recover the domestic factors, (χ̂i,s,t)i,s,t .
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1.2 Implementation

To back out the domestic factors (χ̂i,s,t) by solving equation (4), we need to specify the empirical

counterparts of P̂i,s,t, Êji,t, γ
C
i,s,t−1, and γji,ks,t−1. All the data we use are downloaded from the

World Input-Output Database 2016 Version (Timmer et al. (2015)). This database provides (1) the

world IO table (WIOT) in current prices denoted in US dollars. (2) the WIOT in US collars of the

previous year (WIOT-PYP), and (3) the exchange rates used to convert national values into US

dollars.

The first two datasets allow us to construct P̂i,s,t in US collars (not in national currencies). We

measure γji,ks,t as the expenditure for input imported from sector k in country j divided by the

gross output of sector s in country i. Then, γci,s,t is residually determined by

γci,s,t = 1−
∑
k,j

γji,ks,t.

To solve the linear equation, we rewrite the linear system in the following vector format year-

by-year.

pt︸︷︷︸
NS×1

= diag
(
ΓC
t

)︸ ︷︷ ︸
NS×NS

× ct︸︷︷︸
NS×1

+ ΓT
t︸︷︷︸

NS×NS

× pt︸︷︷︸
NS×1

,

where

pi,t︸︷︷︸
1×S

= (pi,1,t, · · · , pi,S,t) , ci,t︸︷︷︸
1×S

= (χ̂i,1,t, · · · , χ̂i,S,t) ,

pt︸︷︷︸
NS×1

= (p1,t,p2,t, · · · ,pN,t)
T , ct︸︷︷︸

NS×1

= (c1, · · · , cN )T ,

Γ̃ij
t︸︷︷︸

S×S

= (γt,ij,k,s)k,s Γt︸︷︷︸
NS×NS

=
(
Γ̃ij
t

)
i,j∈N

ΓC
i,t︸︷︷︸

1×S

=
(
γCi,1,t, · · · , γCi,S,t

)
ΓC
t︸︷︷︸

NS×1

=
(
ΓC
1,t; · · · ; ΓC

N,t

)
.

With this formulation, it is easy to compute the domestic factors in the following manner:

ct =
(
diag

(
ΓC
t

))−1 (
INS×NS − ΓT

t

)
pt.

Now, we identify the effects of the imports to the Japanese computer sector (C26) on the relative
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computer price as depicted below:

P̂i,s,t − êi,s,t − πs,t = γCi,s,t−1 (χ̂i,s,t − êi,s,t − πs,t)︸ ︷︷ ︸
Domestic Factor Contribution

+
∑
j,k

γji,ks,t−1

(
P̂j,k,t − êi,s,t − πs,t

)
︸ ︷︷ ︸
International/Sectoral Trade Contribution

,

where êi,s,t is the change in the nominal exchange rate between the Japanese yen and the US dollar.
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2 Additional Figure

We list additional figures mentioned in the main text.
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(a) MST Am,t = Pn,t/Pm,t
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(b) Average Labor Productivity, Cn,t/Lt.

Notes: Strictly speaking, average labor productivity does not correspond to economy-wide TFP due to the presence
of the pricing distortion. But this distortion does not impact the growth rate of ALP. This figure illustrates that the
technology of the non-manufacturing firm has not improved over time.
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Figure 1: CPI VS Our Inflation Measure

Notes: This figure depicts the CPI inflation rate, excluding the impact of the VAT hikes and our inflation measure
before adjusting the level. It is evident that these two inflation rates move similarly, and the only main difference
between the two is the difference in level.
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(a) Relative Markup
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(b) Relative Price

Figure 2: ICT Equipment

Notes: We depict the relative markup and the relative price of the ICT equipment in Figure 2. The growth rate
of the relative markup has been weakly declining, and the magnitude of the decline in the relative markup is much
smaller than that of the relative price of the ICT equipment.

3 New Keynesian Model

In the main text, we argue that the impulse response of inflation to a temporary TFP shock

qualitatively differs from that to a permanent TFP shock. We formally establish this result in

Section 3.1. Next, using the same model, we show that when the nominal interest rate is pegged,

an almost permanent TFP shock has the unrealistically huge impacts on inflation and the output

gap. We then demonstrate how to eliminate these implausible features.

3.1 Sensitivity of Expectation

Consider the canonical three-equation New Keynesian models. The so-called IS curve is

xt = Etxt+1 − [rt − Etπt+1 − r∗t ] ,

where xt denotes output gap and r∗t is the natural rate of interest. The Taylor rule is

rt = ϕπt,

where ϕ > 1. The Phillips curve is

πt = βEtπt+1 + κxt,
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where κ > 0 and β is a discount factor. Output gap, interest rate, and inflation are endogenous

variables, and the natural rate is exogenously given.

r∗t = Etat+1 − at,

where at denotes a TFP shock.

We consider the following two cases. First, the growth rate of at follows a first-order autoregres-

sive process:

∆at = ρ∆at−1 + εt ∆at ≡ at − at−1, (5)

where ρ ∈ [0, 1) and εt is an iid shock. Second, TFP shock at follows a first-order autoregressive

process:

at = ρat−1 + εt. (6)

Under the first case, (5), the natural rate is

r∗t = ρ∆at.

It is easy to show that the locally unique rational expectation equilibrium is given by

xt = ρ (1− ρβ)ψ∆at and

πt = ρκψ∆at,

where ψ = [(1− ρ) (1− ρβ) + κ (ϕ− ρ)]−1 . Thus, the inflation initially rises.

Now, consider the second case, (6). Then, the natural rate boils down to

r∗t = (ρ− 1) at.

Again, we derive the locally unique rational expectation equilibrium in the following manner:

xt = − (1− ρ) (1− βρ)ψat and

πt = − (1− ρ)κψat.

Now, inflation initially declines.

This result arises for the following reasons. Consider a simplified version of the the first case: the

TFP today increases, a0 > 0, but tomorrow and onward it will be higher, a0 < a1 = a2 = · · · . The

economy reaches the steady state tomorrow. Then, from the household’s perspective, the economy
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will be better technologically tomorrow and the households want to consume more tomorrow. Thus,

the natural rate of interest at date t = 0 increases.

r∗0 = ρ∆a0 > 0.

If the interest rate rate does not increase sufficiently (i.e, r0 < r∗0), households consume more today

and the labor demand becomes higher. Then, the wage today increases and, consequently, so does

the price today. This is why we have high inflation today.

Now, consider a simpler version of the second case. Suppose that the TFP is temporarily higher

today, a0 > a1 = a2 · · · = 0. Then, from the households’ perspective, the economy will be worse

tomorrow, and the natural rate declines, not increases. Again, if the interest rate does not decline

sufficiently (i.e., r0 > r∗0), then the households consume less today and the labor demand shrinks.

This weak demand lowers the nominal wage and, consequently, the price today. This is why inflation

is lower today. Note that in both cases, as ϕ→ ∞, (xt, πt) → 0.

3.2 Almost Permanent Shock

We can use the same New Keynesian model to study how the economy responds to the following

almost permanent technology shock. Consider the following almost permanent shock.

∆at =

∆a 0 ≤ t ≤ T

0 t > T
,

where T is a large integer. We assume that from T +1, the economy goes back to the original steady

state. In other words, for all k = 1, 2, 3, · · · ,

xT+k = πT+k = 0.

Given these terminal conditions, we solve the model backward:

xt = xt+1 − ϕπt + πt+1 +∆a and

πt = βπt+1 + κxt.

Then, the output gap and inflation at date t = 0 isxt
πt

 =
(
I +A+A2 + · · ·+AT

)
B

∆a

0

 , (7)
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where

A =

 1 ϕ

−κ 1

−11 1

0 β

 , B =

 1 ϕ

−κ 1

−1

.

Suppose that the nominal interest rate is pegged, ϕ = 0. Then,

A =

 1 0

−κ 1

−11 1

0 β

 =

1 1

κ κ+ β

 .

The characteristic function of A, f (·) , is

f (λ) = (λ− 1) (λ− κ− β)− κ.

We know that f (1) = −κ < 0 and f (0) = β > 0. Thus, there are two distinct eigenvalues. One

of them is greater than one and the other is positive but smaller than one. Therefore, the sum in

equation (7) eventually diverges, as T → ∞.1

This instability can be easily understood. Suppose that ∆a < 0. This decline in the real rate

pushes down output gap at date T. This decline in output gap lowers inflation at date T through

the Philips curve. Then, these declines further lower output gap and inflation at date T −1 through

the Euler equation and the Philips curve. These compounding effects force the sum in equation (7)

to diverge as T → ∞.

Now, we introduce cognitive discounting formalized by Gabaix (2020) and show that this mod-

ification eliminates the counterintuitive results mentioned above. We generalize the Euler equation

and the Philips curve in the following manner:

xt =Mxt+1 − ϕπt + πt+1 +∆a and

πt =Mfβπt+1 + κxt,

where M and Mf are the parameters that govern cognitive discounting.

We establish the following result:

Proposition 1. Suppose that
(
M,Mf

)
∈ M, where

M =

{(
M,Mf

)
∈ [0, 1) ;Mf <

1− κ−M

(1−M)β

}
.

Then, (x0, π0) is finite even in the limit that T → ∞.

According to Proposition 1, if agents have sufficiently strong cognitive discounting, the implau-
1This feature implies that the model is not solved linearly.
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sible implication disappears. Thus, this behavioral New Keynesian model allows us to model the

durability of the manufacturing good.

Proof. Let A denote

A =

 1 0

−κ 1

−1M 1

0 Mfβ

 =

 M 1

Mκ, κ+Mfβ

 .

It suffices to show that the largest absolute eigenvalue of matrix A is less than one. The characteristic

function of A, f (·) , boils down to

f (λ) = (λ−M)
(
λ− κ−Mfβ

)
−Mκ.

We know that f (M) = −Mκ < 0 and

f (−1) = 1 + κ+Mfβ +M +MMfβ > 0.

Therefore, the absolute values of the eigenvalues are strictly less than one if and only if

f (1) > 0.

It is easy to show that

f (1) = 1− κ−M + (M − 1)Mfβ.

Then, f (1) = 0 if and only if

Mf =
1− κ−M

(1−M)β
.

Therefore, as long as Mf is less than 1−κ−M
(1−M)β , f (1) > 0. Thus, we have established the claim.
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