Behavioral Sticky Prices

Sergio Rebelo, Miguel Santana, Pedro Teles

June 2025

System 1 and System 2

Psychology literature: decisions made with dual-process framework (Stanovich and West (2000)).

- System 1: Fast, low effort decisions... but prone to biases and systematic errors.
- System 2: **Slow**, cognitively costly decisions... but more **accurate**.

Due to cognitive costs, System 2 only activated in **unfamiliar** situations.

Suggestive evidence that firms take advantage of this behavior.

- Shrinkflation: Changing product size instead of prices.
- Subscription services: Rare price changes put consumer purchases on auto-pilot.
- Convenient prices: Prices ending in 9 are the most common and the least likely to change.

Shrinkflation

- In 2016, Toblerone changed the weight of its chocolate bars in the U.K. market from 400 gr. to 360 gr. and from 170 gr. to 150 gr.
 - Packet size and price stayed the same.
- 35 percent of the products included in the U.K. consumer price index between 2012 and 2023 have suffered changes in quantity (Budianto (2024)).
 - Most of the time, product size varies but price remains the same.

Shrinkflation

President Biden discusses shrinkflation.

This paper

- Households use dual-process framework in purchasing decisions of consumption goods.
- Households can figure out optimal demand, but not always in their interest due to cognitive costs.
- Optimal information-acquisition decision depends on familiarity of state of the world.
 - ▶ If nominal prices do not change, keep historic demand function System 1.
 - ▶ If nominal price changes, unfamiliar situation triggers reassessment System 2.
- Firms exploit this behavior to their advantage.
- Novel price inertia: goods with irrationally high demand have sticky prices.

Model properties

- Model is consistent with puzzling "rockets and feathers" phenomenon.
 - Prices increase rapidly when costs rise but decrease slowly when costs fall.
- Model also consistent with "sticky winners" phenomenon: Ilut, Valchev, and Vincent (2020).
 - Firms that receive a high demand realization are less likely to change their prices.
- Oownward-sloping hazard functions within narrowly defined goods categories.
 - ▶ Klenow and Krystov (2008), Alvarez et al. (2011), Nakamura and Steinsson (2013).
- Unlike in other cashless sticky price models, price stability is not optimal.

Related literature

- System 1 vs. System 2
 - ► Stanovich and West (2000), Ilut and Valchev (2023).
- Price stickiness due to information frictions
 - Mankiw and Reis (2002), Mackowiak and Wiederholt (2009), Woodford (2009), de Clippel et al. (2014), Matejka (2015), Ilut et al. (2020).
- Rockets and feathers
 - Empirical: Karrenbrock (1991), Neumark and Sharpe (1992), Borenstein, Cameron, and Gilbert (1997), Peltzman (2000).
 - ▶ Industrial Organization: Eckert (2003), Noel (2007), Tappata (2009).
 - Menu Costs: Ellingsen, Friberg, and Hassler (2006), Cavallo, Lippi, and Miyahara (2023).
- Declining hazard.
 - Nakamura and Steinsson (2013), Alvarez et al. (2011), Klenow and Krystov (2008)
- Optimal monetary policy
 - Woodford (2003), ...

Preferences and technology

Model is static, with pre-period for initial conditions.

Household preferences:

$$U=rac{C^{1-\sigma}-1}{1-\sigma}-rac{N^{1+\eta}}{1+\eta}-\mathcal{I}, \ \sigma,\eta>0,$$

C =composite of differentiated goods,

$$C = \left(\int_0^1 c_i^{\frac{\theta-1}{\theta}} di\right)^{\frac{\theta}{\theta-1}}, \ \theta > 1.$$

N = labor supply.

 $\mathcal{I} = \text{cognitive cost of using System 2}$

Production: $y_i = An_i$.

Market structure: monopolistic competition.

Policy rule: $\int P_i C_i di = M$.

Household problem with full rationality

Step 1: For a given level of consumption expenditure, E, determine the purchases of differentiated goods, C_i , that maximize

$$\mathcal{L}_{e} = rac{C^{1-\sigma}-1}{1-\sigma} + \Lambda_{e}\left(E - \int_{0}^{1} P_{i}C_{i}di
ight).$$

expenditure and hours worked:

Step 2: Given the solutions, C_i , to the first problem, choose the optimal levels of total consumption

$$\mathcal{L}_{u}=\textit{U}\left(\textit{C},\textit{N}\right)+\Lambda_{\textit{u}}\left(\textit{WN}+\Pi-\textit{T}-\textit{PC}\right).$$

Modeling policy function uncertainty

Behavioral bias limits ability to solve for optimal demands.

- Household can perfectly observe relevant state variables...
- ...but cannot solve for the optimal demand functions due to cognitive costs.
- Limited form of bounded rationality.
 - ▶ Households know how to adjust the consumption of each variety *i* to changes in the aggregate price level, or nominal wages, but not in response to shifts in prices of individual varieties.
- Behavioral errors are common to all households, so we interpret these as fads and fashions.
- Idiosyncratic behavioral erros would wash out in the aggregate so we abstract from them.

Our approach is based on Ilut and Valchev (2023) with two refinements.

- Utility-based tracking problem.
- No need to specify a residual variable that adjusts so that the budget constraint holds.

When deciding the composition of the consumption basket, household observes state variables, \mathbf{z} , but is uncertain about $c_i^*(\mathbf{z})$, $i \in [0,1]$. Let $x \equiv \ln(X/\overline{X})$.

Household enters period with prior belief, $c_i^b(\mathbf{z})$, about $c_i^*(\mathbf{z})$,

$$c_{i}^{b}(\mathbf{z}) \sim \mathcal{GP}\left(\mu_{i}\left(\mathbf{z}\right), \gamma_{i}\left(\mathbf{z}, \tilde{\mathbf{z}}\right)\right),$$

where $c_i^b(\mathbf{z})$ and $c_i^b(\mathbf{z})$ are orthogonal and

$$\mu_{i}\left(\mathbf{z}\right) = \mathbb{E}\left[c_{i}^{b}\left(\mathbf{z}\right)\right], \ \gamma_{i}\left(\mathbf{z}, \tilde{\mathbf{z}}\right) \equiv \mathsf{Cov}\left[c_{i}^{b}\left(\mathbf{z}\right), c_{i}^{b}\left(\tilde{\mathbf{z}}\right)\right].$$

Household can obtain a noisy signal about the optimal consumption of variety i,

$$s_i(\mathbf{z}) = c_i^*(\mathbf{z}) + \gamma_{\epsilon}(\mathbf{z})\epsilon_i$$

where $\epsilon_i \sim \mathcal{N}(0,1)$, and ϵ_i and ϵ_j are orthogonal for $i \neq j$.

The signal induces a posterior distribution for the optimal consumption of variety i,

$$c_{i}^{b}\left(\mathbf{z}\right)\mid s_{i}\sim\mathcal{GP}\left(\mu_{i\mid s}\left(\mathbf{z}\right),\gamma_{i\mid s}\left(\mathbf{z},\tilde{\mathbf{z}}\right)\right).$$

To generate a signal, the household incurs a cognitive cost that increases with the precision of the signal.

We assume that cognitive costs are proportional to the decrease in entropy (Shannon mutual information),

$$\mathcal{I} = rac{\kappa}{2} \int_{0}^{1} \left[\ln \gamma_{i}^{2} \left(\mathbf{z}
ight) - \ln \gamma_{i|s}^{2} \left(\mathbf{z}
ight)
ight] di,$$

where

$$\gamma_{i}^{2}\left(\mathbf{z}\right)\equiv\mathsf{Var}\left[c_{i}^{b}\left(\mathbf{z}\right)\right],\ \gamma_{i\mid s}^{2}\equiv\mathsf{Var}\left[c_{i}^{b}\left(\mathbf{z}\right)\mid s_{i}\right].$$

Let $\hat{\mathcal{L}}_e^*$ denote the optimized Lagrangian, and define $\Delta \hat{\mathcal{L}}_e \equiv \hat{\mathcal{L}}_e - \hat{\mathcal{L}}_e^*$ as the percentage deviation of the Lagrangian evaluated at arbitrary values c_i from its optimized value. Then

$$\Delta \hat{\mathcal{L}}_e = -\frac{1}{2\theta} \left[\int_0^1 \left[c_i - c_i^* \left(\mathbf{z} \right) \right]^2 di + (\theta \sigma - 1) \left(\int_0^1 \left[c_i - c_i^* \left(\mathbf{z} \right) \right] di \right)^2 \right] + \mu_e \left(c - \int_0^1 c_i di \right).$$

Under full rationality, the household chooses $\{c_i\}_{i\in[0,1]}$ and μ_e to maximize $\Delta\hat{\mathcal{L}}_e$, which yields $c_i=c_i^*(\mathbf{z}),\ i\in[0,1].$

$$\Delta \hat{\mathcal{L}}_{e}^{b} = -\frac{1}{2\theta} \left[\int_{0}^{1} \left[c_{i} - c_{i}^{b} \left(\mathbf{z} \right) \right]^{2} di + (\theta \sigma - 1) \left(\int_{0}^{1} \left[c_{i} - c_{i}^{b} \left(\mathbf{z} \right) \right] di \right)^{2} \right] + \mu_{e} \left(c - \int_{0}^{1} c_{i} di \right).$$

The problem of allocating spending across differentiated goods to maximize utility for a given total consumption expenditure can be written as

$$\max_{\left(c_{i},\gamma_{i|s}^{2}(\mathbf{z}),\mu_{E}\right)}\mathbb{E}\left[\Delta\hat{\mathcal{L}}_{e}^{b}\right]-\mathcal{I} \text{ s.t. } \gamma_{i|s}^{2}\left(\mathbf{z}\right)\leq\gamma_{i}^{2}\left(\mathbf{z}\right) \text{ } i\in\left[0,1\right],$$

where the constraint guarantees that cognitive costs are weakly positive.

Optimal actions

Solving for c_i :

$$c_i = \mu_{i|s}(\mathbf{z}) + c - \int_0^1 \mu_{i|s}(\mathbf{z}) di.$$

Demand for each good equals posterior mean, adjusted by constant term $(c - \int_0^1 \mu_{i|s}(\mathbf{z}) \, di)$ to ensure that the aggregate constraint, $c = \int_0^1 c_i \, di$, is satisfied.

Optimal signals

Lemma

Let $\gamma_{i|s}^2(\mathbf{z})$ be the posterior variance of demand for good i at \mathbf{z} , and $\gamma_i^2(\mathbf{z})$ the prior variance.

Under independence assumption, the problem of choosing the signal variance is

$$\max_{\gamma_{i|s}^{2}(\mathbf{z})}-\frac{1}{2\theta}\int_{0}^{1}\gamma_{i|s}^{2}\left(\mathbf{z}\right)di-\frac{\kappa}{2}\int_{0}^{1}\left[\ln\gamma_{i}^{2}\left(\mathbf{z}\right)-\ln\gamma_{i|s}^{2}\left(\mathbf{z}\right)\right]di\ s.t.\ \gamma_{i|s}^{2}\left(\mathbf{z}\right)\leq\gamma_{i}^{2}\left(\mathbf{z}\right).$$

Optimal posterior variance is

$$\gamma_{i|s}^{2}\left(\mathbf{z}\right)=\min\left\{ \gamma_{i}^{2}\left(\mathbf{z}\right);\theta\kappa
ight\} .$$

- Dual thinking: System 2 activated if prior uncertainty at z is high.
- ullet When heta is high, lower incentive to learn: any good matters less because of greater substitutability.

Priors

Pre-period in which the household has prior mean

$$\mu_{i,0}\left(\mathbf{z}\right)=c_{i}^{*}\left(\mathbf{z}\right)$$

and diagonal prior covariance $\gamma_{i,0}^2(p_i) = \gamma_c^2 > \theta \kappa$.

Assumption on prior mean from Ilut and Valchev (2023) to ensure no ex-ante biases.

Assumptions on prior covariance:

- ullet Dependence on p_i only: household knows what to do to basket composition if aggregates change;
- Zero covariance across prices
 - ▶ Knowing demand at one price conveys no information about optimal demand for different price.
 - ▶ This independence assumption preserves simplicity that is the hallmark of System 1 reasoning.

Demands: pre-period

Since $\gamma_{i,0}^2 = \gamma_c^2 > \theta \kappa$, learning occurs in pre-period at observed price.

Using formula for normal,

$$\mu_{i}\left(p_{i,0}\right) = c_{i}^{*}\left(p_{i,0}\right) + \alpha \gamma_{\epsilon} \epsilon_{i,0}$$

$$\gamma_i^2\left(p_{i,0}\right) = \theta \kappa$$

where

$$lpha=1-\left(heta\kappa/\gamma_c^2
ight)$$
 and $\gamma_\epsilon=\sqrt{ heta\kappa/lpha}.$

At $p_i \neq p_{i,0}$, no extrapolation due to zero covariance:

$$\mu_i(p_i) = c_i^*(p_i); \quad \gamma_i^2(p_i) = \gamma_c^2 > \theta \kappa.$$

Demands: period 1

Signal redrawn if situation is unfamiliar $(p_i \neq p_{i,0})$:

$$c_{i} = \operatorname{constant} + c - \theta \left(p_{i} - p
ight) + lpha \gamma_{\epsilon} egin{cases} \epsilon_{i,0}, & ext{if } p_{i} = p_{i,0} \ \epsilon_{i,1} \sim \mathcal{N} \left(0, 1
ight), & ext{if } p_{i}
eq p_{i,0} \end{cases}.$$

The constant ensures that the constraint $c=\int_0^1 c_i\,di$ is satisfied.

Firms' problem

Firms are fully rational: $\epsilon_{i,0}$ is known.

Price change triggers System 2: $\epsilon_{i,1}$ is unknown.

The firm has two decisions to make:

- Whether to change its price;
- Onditional on changing its price, by how much.

Solution to firm's problem

- Optimal reset price p^* sets markup over marginal costs.
 - Optimal price depends only on the demand elasticity not on the level of demand.
- Firm weighs benefit of setting MR = MC with cost of forsaking $\epsilon_{i,0}$.
- There is a threshold $\overline{\epsilon}$ such that if $\epsilon_{i,0} \geq \overline{\epsilon}$, the firm does not change the price.
- The firm only triggers System 2 if demand is too low.
- Sticky prices arise endogenously for goods with high demand.

Key asymmetry: high inflation

Profits at system 1 demand:

$$e^{lpha\gamma_{\epsilon}\epsilon_{i,0}}\left[\left(rac{P_{0}}{P}
ight)-MC\left(\pi,...
ight)
ight]\left(rac{P_{0}}{P}
ight)^{- heta}$$

For **high inflation** levels, **all firms reset** their price.

- \bullet As π increases, profit margin becomes small, eventually negative;
- Regardless of how high past demand was, prices optimally change.

Key asymmetry: low inflation

Profits at system 1 demand:

$$e^{\alpha \gamma_{\epsilon} \epsilon_{i,0}} \left[\left(\frac{P_0}{P} \right) - MC \left(\pi, \ldots \right) \right] \left(\frac{P_0}{P} \right)^{-\theta}$$

For low inflation levels, not all firms reset their price.

- ullet As π decreases, profit margins become unprofitably high.
- There is a sufficiently high past demand such that the firm does not want to reset prices.

Rockets and feathers

Price stability is not optimal

- Price stability minimizes cognitive costs.
- But there is consumption dispersion at zero inflation.
- Dispersion is mitigated with deflation.
 - ▶ Deflation raises the relative price of (high-demand) sticky firms.

Dynamic model: setup

- Partial equilibrium problem, a single firm.
- Incomplete memory: households only recalls one System 2 price.
- The logarithm of marginal cost, ξ , follows jump-diffusion process.

$$\xi'=\xi+v'$$

$$v'= \begin{cases} 0, & ext{with probability } 1-
ho \\ \sim \mathcal{N}\left(0,\gamma_v^2
ight), & ext{with probability. }
ho \end{cases}.$$

• We use second-order approximation to firm problem (p is the log of price.)

$$-\frac{\theta\left(\theta-1\right)}{2}\left(\rho-\xi\right)^{2}+\begin{cases}\alpha\gamma_{\epsilon}\epsilon_{t-1}, & \text{if } p_{t}=p_{t-1}\\ \frac{1}{2}\left(\alpha\gamma_{\epsilon}\right)^{2}, & \text{if } p_{t}\neq p_{t-1}\end{cases}.$$

• ρ and γ_v^2 are calibrated to match moments of cost shocks estimated in Eichenbaum, Jaimovich, and Rebelo (2011).

Dynamic vs static

In dynamic model, there is an option value.

- ullet Even if ϵ is positve, it might be worthwhile to change price to try to obtain a better demand shock.
- If ϵ is very high, it might be worthwhile to endure a large price gap (x) relative to marginal cost, to preserve the high demand shock for the future.

Option value

Hazard function

 $\alpha \gamma_{\epsilon}$ calibrated to match average price spell duration in weeks.

Firms with favorable demand shocks tend to keep their prices constant for longer periods.

Decreasing hazard

With a standard menu cost model, hazard is increasing.

• The longer the price spell, the more likely the price gap is to leave (S, s) bands.

In this model, not the case because (S, s) bands are ϵ -dependent.

Consistent with Ilut et al. (2020): "sticky winners".

• Firms with high demand realization are less likely to change prices.

Decreasing hazard driven by demand heterogeneity, not by permanent differences in hazards.

Conclusion

- We explore a framework where a dual process mechanism drives household choices.
- Framework gives rise to new kind of price rigidity due to strategic behavior by firms.
- Firms with high demands select into rigid prices ("sticky winners").
- Model generates "rockets and feathers" and decreasing hazard function.