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1 Introduction

We study a model in which households make decisions according to a dual-process

framework widely used in the cognitive psychology literature to describe human

decision making (see, e.g., Stanovich and West (2000)). In this framework, System

1 uses heuristics to make fast, low-effort decisions that are prone to errors. System

2 engages in slower, more deliberate reasoning that is cognitively costly but more

accurate. Our analysis builds on the elegant formulation of dual-process reasoning

proposed by Ilut and Valchev (2023).

In our model, households make purchase errors because optimizing their con-

sumption bundle involves cognitive effort. Monopolistic producers, for whom these

errors result in high levels of demand relative to the rational optimum, have an incen-

tive to keep their prices constant to discourage households from activating System 2

and reconsidering their purchasing decisions. This strategic behavior gives rise to a

novel form of price inertia.

Our model is consistent with three important empirical facts. The first is the

puzzling empirical regularity documented by Karrenbrock (1991), Neumark and

Sharpe (1992), Borenstein, Cameron, and Gilbert (1997), and Peltzman (2000) known

as ”rockets and feathers”: prices rise rapidly when costs increase, but fall slowly when

costs decrease. In our model, when costs rise substantially, all firms increase prices

to avoid losses, leading costs and prices to rise in tandem. In contrast, when costs

fall, firms enjoying strong demand have an incentive to keep prices fixed to avoid

triggering re-optimization by consumers. As a result, prices decline, on average, more

slowly than costs.

The second fact is the “sticky winners” phenomenon documented by Ilut, Valchev,

and Vincent (2020), whereby firms experiencing unexpectedly high demand at prevail-

ing prices are less likely to adjust them. This behavior is central to our model: firms

with favorable demand realizations avoid changing prices to prevent households

1



from engaging System 2 and reoptimizing, which could trigger a new, potentially less

favorable, demand shock.

The third empirical regularity is the downward-sloping hazard functions observed

within narrowly defined goods categories (see Nakamura and Steinsson (2008) and

Campbell and Eden (2014)). This pattern arises naturally from demand heterogeneity

across firms producing the same type of good: those facing weak demand are more

likely to adjust prices early, while firms experiencing strong demand tend to keep

prices fixed for longer.

In standard models of cashless economies with sticky prices, price stability is

typically optimal because it eliminates relative price distortions caused by inflation

(see Woodford (2003)). In contrast, our framework implies that price stability is not

optimal due to the strategic interaction between monopolistic firms and boundedly

rational households. When average inflation is zero, there is still dispersion in the

consumption of varieties because of cognitive errors. Firms that benefit from high

demand keep their prices unchanged, which locks in consumption errors and leads

households to settle on inefficient consumption bundles. Deflation is optimal because

it increases the relative price of goods produced by sticky-price firms, reducing

demand for those goods and mitigating the effects of behavioral biases.

We now discuss three observations consistent with the importance of System 1

in consumer behavior. The first is “shrinkflation,” a situation where manufacturers

reduce product sizes while keeping prices constant. The UK Office for National Statis-

tics (2019) identified 206 cases between September 2015 and June 2017 in which

product size was reduced with prices remaining largely unchanged. Budianto (2024)

reports that 35 percent of the products included in the U.K. consumer price index

between 2012 and 2023 experienced changes in product size, with prices remaining

constant in most instances.

This practice suggests that some manufacturers are prepared to incur considerable

expenses to keep prices stable, presumably to avoid triggering a re-optimization of
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household purchasing decisions.1

The second phenomenon is the increasing adoption of subscription-based business

models, such as streaming or software-as-a-service, and the tendency for subscription

prices to remain stable over long periods. This stability can be interpreted as a tactic

producers use to dissuade households from engaging System 2 and reassessing the

value of their subscriptions.2

Amazon Prime subscription prices are remarkably sticky. Initially offered at an

annual rate of $79 in 2011, the fee has only been adjusted a few times: to $99 in

2014, $119 in 2018, and $139 in 2022. These adjustments were often accompanied by

enhancements in service offerings, including the introduction of Amazon Prime Day,

which served to justify the higher fees.

Netflix provides a case study of both price stability and shrinkflation. The stan-

dard subscription price remained at $7.99 from November 2010 until May 2014. At

that point, the price was increased to $8.99, but only for new subscribers. Exist-

ing subscribers were grandfathered in at the $7.99 rate for an additional two years.

Concurrently, Netflix rolled out a new basic plan priced at $7.99, which offered

only standard-definition video on a single screen, a downgrade from the two high-

definition screens available under the regular plan. The price for this basic plan

remained unchanged until 2019.

The third observation consistent with the elements of our model is that convenient

prices that are slightly below a round number (e.g., $9.99 instead of $10) are widely

used (Kashyap (1995) and Blinder, Canetti, Lebow, and Rudd (1998)), and less likely

to change than other prices (Levy, Lee, Chen, Kauffman, and Bergen (2011) and Ater

1President Biden deemed shrinkflation important enough to merit discussion in a February 2024
Super Bowl video broadcast. The president noted that “sports drinks bottles are smaller, a bag of chips
has fewer chips, but they’re still charging us just as much [...] ice cream cartons have shrunk in size
but not in price. [...] Some companies are trying to pull a fast one by shrinking the products little by
little and hoping you won’t notice.”

2See Della Vigna and Malmendier (2006) for evidence that consumers often fail to rationally assess
the value they derive from subscription services.
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and Gerlitz (2017)). This practice can be interpreted as a way to exploit System 1

thinking, creating the perception that the price is lower than its actual value.

The paper is organized as follows. Section 2 reviews the related literature. Section

3 presents a version of the model with fully rational households, and Section 4 intro-

duces bounded rationality into household decision-making. Section 5 demonstrates

that the model is consistent with the rockets and feathers phenomenon. Section 6

examines the welfare costs of bounded rationality and evaluates how large these

costs must be for the model’s rockets-and-feathers behavior to align with empirical

estimates. Section 7 analyzes optimal fiscal and monetary policy. Section 8 develops a

dynamic partial-equilibrium model of the firm and shows that it implies downward

sloping hazard functions. Section 9 concludes.

2 Related literature

Our paper builds on the cognitive psychology literature (e.g., Evans and Stanovich

(2013) and Stanovich and West (2000)), which distinguishes between two modes of

decision-making: low-cost, heuristic thinking (System 1) and high-cost, analytical

reasoning (System 2).

Ilut and Valchev (2023) develop a formulation of the dual-system framework

and use it to study the household consumption-savings behavior in an incomplete

markets environment. In familiar contexts, where beliefs about the policy function are

precise, households rely on prior beliefs to make decisions. In unfamiliar situations,

where beliefs are imprecise, households draw costly signals to update their beliefs

about the policy function.

Building on Ilut and Valchev (2023), we model household decisions regarding the

consumption of differentiated products. We show how strategic interactions between

firms and boundedly rational consumers give rise to a new form of price inertia.

We extend Ilut and Valchev (2023)’s framework in two directions. First, we use
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a quadratic approximation to embed the tracking problem that determines signal

precision within the utility maximization problem, rather than treating it separately.

Second, we ensure that behavioral decisions satisfy the budget constraint directly,

removing the need to specify a residual variable (the savings rate in their analysis)

that adjusts so that the budget constraint holds.

The cognitive costs in our model are consistent with the findings of Afrouzi,

Dietrich, Myrseth, Priftis, and Schoenle (2024). Using survey evidence, these authors

show that households prefer inflation to be zero. Seen through the lens of our model,

this preference reflects the fact that cognitive costs are minimized when inflation is

zero.

Our paper is linked to the literature on limited attention, limited information,

or costly control by firms, including Mankiw and Reis (2002), Woodford (2009),

Maćkowiak and Wiederholt (2009), Costain, Nakov, and Petit (2019), and Ilut, Valchev,

and Vincent (2020).

In addition, our work relates to prior research on the strategic interaction between

firms and consumers. Matějka (2015) show that firms strategically adopt a limited

set of reference prices in the presence of inattentive consumers. De Clippel, Eliaz,

and Rozen (2014) explore how limited household attention impacts competition.

Rotemberg (1982) proposes a framework where consumer anger over price changes

incentivizes firms to limit price adjustments.

The mechanism in our model complements those that produce asymmetric price

adjustments in menu cost models (see, e.g., Ellingsen, Friberg, and Hassler (2006)

and Burstein and Hellwig (2007)). Using a New Keynesian model with menu costs,

Cavallo, Lippi, and Miyahara (2023) show that prices tend to rise faster than they fall

following significant cost shocks, such as the 2022 surge in energy prices. This phe-

nomenon occurs because firms adjust prices more frequently when profit margins are

under pressure. In order for these models to generate substantial price asymmetries,

menu costs must be relatively large–around one percent of revenue (see Ellingsen,
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Friberg, and Hassler (2006)).3

An extended version of our model could potentially shed light on micro-level

price rigidities that traditional models struggle to explain (see, for example, Alvarez,

Le Bihan, and Lippi (2014)). These phenomena include the presence of small price

changes (Klenow and Kryvtsov (2008) and Eichenbaum, Jaimovich, Rebelo, and

Smith (2014)), the coexistence of high-frequency price changes with sticky reference

prices (Eichenbaum, Jaimovich, and Rebelo (2011)), and the observation that price

adjustments for new products are larger and more frequent (Argente and Yeh (2022)).

At the macro level, our mechanism offers insights into the non-neutrality of

monetary policy. Unlike standard menu-cost models (Golosov and Lucas (2007)),

where firms with large price gaps dominate adjustments, our framework allows for

heterogeneous endogenous adjustment costs. Firms with small price gaps may still

adjust prices. As a result, monetary policy might be more effective.

Finally, our analysis complements other explanations of the rockets and feath-

ers phenomenon. For instance, Tappata (2009) proposes a model where persistent

cost shocks interact with consumers’ limited information about market prices and

production costs.

3 Model with fully rational households

In this section, we present a version of the model in which households are fully

rational. We describe the household problem, the problem of monopolistic producers,

the government’s fiscal and monetary policies, and the economy’s equilibrium.

To streamline the presentation, we relegate the proofs of most lemmas and propo-

sitions in the remainder of the text to the Appendix.

3According to data compiled by Aswath Damodaran (see data on operating and net margins by
industry sector for the U.S. at this link) in January 2025, the pre-tax operating margin for grocery and
food retail–defined as operating income (revenue minus cost of goods sold minus operating expenses)
as a fraction of revenue–is 3.3 percent. So, a seemingly modest one percent menu cost would represent
an implausibly large fraction–roughly 1/3–of operating income.
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3.1 Household problem

There is a representative household that maximizes its utility,

U =
C1−σ − 1

1 − σ
− ϑ

N1+ψ

1 + ψ
, σ, η > 0, (1)

which depends on aggregate consumption (C) and hours worked (N).

Aggregate consumption results from a composite of differentiated goods,

C =

(ˆ 1

0
C

θ−1
θ

i di

) θ
θ−1

, θ > 1, (2)

where Ci denotes consumption of good i.

The household’s budget constraint is given by,

ˆ 1

0
PiCidi ≤ WN + Π − T, (3)

where Pi is the nominal price of good i, W is the nominal wage, Π are total firm

profits, and T are nominal taxes.

It is convenient to solve the household problem in two steps.

Step 1 For a given level of consumption expenditure, E, determine the purchases of

differentiated goods, Ci, that maximize the utility derived from consumption. The

Lagrangian for this problem is

Le =
C1−σ − 1

1 − σ
+ Λe

(
E −
ˆ 1

0
PiCidi

)
, (4)

where C is given by equation (2).

The solution to this problem is given by,

Ci =

(
Pi

P

)−θ E
P

, (5)
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Λe =

(
E
P

)−σ 1
P

, (6)

where

P ≡
(ˆ 1

0
P1−θ

i di

) 1
1−θ

. (7)

Equations (2), (5), and (7) imply that C = E/P.

Step 2 Given the solutions, Ci, to the first problem, choose the optimal levels of total

consumption expenditure and hours worked. The Lagrangian for this problem is,

Lu = U (C, N) + Λu (WN + Π − T − PC) . (8)

The first-order conditions imply the familiar intratemporal condition for hours

worked,

ϑCσNψ =
W
P

.

3.2 Firm’s Problem

Differentiated goods producers are monopolistically competitive. Firm i produces Yi

units of good i using Ni hours according to a linear production function,

Yi = ANi. (9)

The firm’s nominal profits, Πi, are given by

Πi =

[
Pi − (1 − τ)

W
A

] (
Pi

P

)−θ

C.

where τ is the rate at which the government subsidizes wages.

The profit-maximizing price takes the familiar form,

Pi =

(
θ

θ − 1

)
(1 − τ)

W
A

, (10)

which implies that all firms choose the same price.
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3.3 Fiscal and monetary policy

For simplicity, we assume that the central bank uses monetary policy to target nominal

expenditure,

M =

ˆ 1

0
Pi Ci di. (11)

The government finances the wage subsidies provided to firms at a rate τ through

lump-sum taxes,

T = τWN. (12)

3.4 Equilibrium

Suppose A = A, M = M, and τ = τ, where

1 − τ =
θ − 1

θ
.

This value of the labor subsidy eliminates the monopoly distortion, so that the price

equals marginal cost.

Let C, N, and P denote the equilibrium values of aggregate consumption, labor,

and the price level associated with A, τ, and M.

The equations above imply that,

C =

(
1
ϑ

) 1
σ+ψ

A
1+ψ
σ+ψ ,

N =

(
1
ϑ

) 1
σ+ψ

A
1−σ
σ+ψ ,

and

P =
M
C

.

Since each firm’s price equals marginal cost, profits are equal to the labor subsidies

received: Π = T, and P C = W N.
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3.5 A Second-Order Approximation

To set the stage for the study of household decisions under bounded rationality,

we consider a log-quadratic approximation to the household’s problem around the

rational baseline equilibrium associated with A, τ, and M.

Throughout, we use lowercase variables to denote the logarithmic deviation of a

variable from the rational baseline equilibrium, i.e., for any X, x ≡ ln
(
X/X

)
. Given

a function f (X), we define d f ≡ f (X)− f (X).

The following lemma presents quadratic approximations to the utility function

and the two Lagrangians for the household problem.

Lemma 1. Let L̂e ≡ dLe/C 1−σ and L̂u ≡ dLu/C 1−σ. Then

L̂e = −1
2

σ c2 − 1
2θ

Vari[ ci ] −
ˆ 1

0
pi ci di + λe

(
e − p − c

)
+ Ωe, (13)

and

L̂u = −1
2

σ c2 − 1
2θ

Vari[ ci ] − 1
2

ψ n2 + w n −
ˆ 1

0
pi ci di

+ λu

[
w + n + 1

θ

(
ln

Π
Π

− ln
T
T

)
− p − c

]
+ Ωu ,

(14)

where

p ≡
ˆ 1

0
pi di, (15)

c ≡
´ 1

0 cidi, Vari [ci] ≡
´ 1

0 (ci − c)2 di, and Ωe and Ωu are exogenous to the household

problem.

Under rational expectations, the first-order conditions from Lagrangian (13) yield

the standard demand function, which in logarithmic form is given by:

c∗i (z) = c − θ (pi − p) ,

where c ≡ e − p and z ≡
(

c, {pi}i∈[0,1]

)
.

To set the stage for our discussion of bounded rationality, it is useful to restate the

problem of optimally choosing consumption varieties as follows.
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Lemma 2. Let L̂∗
e denote the optimized Lagrangian (13), and define ∆L̂e ≡ L̂e − L̂∗

e as the

percentage deviation of the Lagrangian evaluated at arbitrary values ci from its optimized

value. Then

∆L̂e = − 1
2θ

ˆ 1

0
[ci − c∗i (z)]

2 di + (θσ − 1)

(ˆ 1

0
[ci − c∗i (z)] di

)2
+µe

(
c −
ˆ 1

0
cidi

)
.

(16)

The proof of this lemma follows directly from the properties of quadratic forms.

Under full rationality, the household chooses {ci}i∈[0,1] and µe to maximize expression

(16), which yields ci = c∗i (z), i ∈ [0, 1].

4 Model with boundedly-rational households

This section presents a version of the model in which households make decisions

under bounded rationality along the lines of Ilut and Valchev (2023).

To isolate the effects of bounded rationality on the purchases of differentiated

consumption goods, we assume that the household makes fully rational decisions

regarding aggregate consumption expenditure and labor supply. Bounded rationality

applies only to the choice of individual consumption varieties.

Households can compute the demand for the baseline equilibrium associated with

A, τ, and M, but are uncertain about how to respond to shocks. The household solves

its problem using the second-order approximations described in Lemma ??.

When deciding the composition of the consumption basket, the household ob-

serves perfectly the state variables, z, but is uncertain about c∗i (z), i ∈ [0, 1]. The

household enters the period with a prior belief, cb
i (z), about c∗i (z) governed by a

Gaussian Process (GP),

cb
i (z) ∼ GP (µi (z) , γi (z, z̃)) ,
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where cb
i (z) and cb

j (z) are orthogonal and

µi (z) = E
[
cb

i (z)
]

, γi (z, z̃) ≡ Cov
[
cb

i (z) , cb
i (z̃)

]
.

The household can obtain a noisy signal about the optimal consumption of variety i,

si(z) = c∗i (z) + γϵ(z)ϵi,

where ϵi ∼ N (0, 1), and ϵi and ϵj are orthogonal for i ̸= j.

This signal induces a posterior distribution for the optimal consumption of variety

i, given by

cb
i (z) | si ∼ GP

(
µi|s (z) , γi|s (z, z̃)

)
,

where µi|s (z) and γi|s (z, z̃) are computed using the standard expressions for the

conditional mean and covariance of a Gaussian process.

To generate a signal for the optimal consumption of good i, the household incurs

a cognitive cost that increases with the precision of the signal. The utility of the

boundedly rational household is Û − I , where I is the total cognitive cost of all the

signals generated by the household.

We assume that cognitive costs are proportional to the reduction in uncertainty.

Following Sims (2003), we measure this reduction as the decrease in entropy, or

equivalently, as the Shannon mutual information,

I =
κ

2

ˆ 1

0

[
ln γ2

i (z)− ln γ2
i|s (z)

]
di,

where

γ2
i (z) ≡ Var

[
cb

i (z)
]

, γ2
i|s ≡ Var

[
cb

i (z) | si

]
.

The expression for the conditional distribution of a normal random variable

implies that

γ2
i|s (z) =

γ2
i (z) γ2

ϵ (z)
γi (z) + γ2

ϵ (z)
,
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so we can model the selection of the signal variance as a choice over the posterior

variance, γ2
i|s (z).

It is useful to define the expression analogous to (2) for the household making

decisions under bounded rationality:

∆L̂b
e = − 1

2θ

ˆ 1

0

[
ci − cb

i (z)
]2

di + (θσ − 1)

(ˆ 1

0

[
ci − cb

i (z)
]

di

)2
+µe

(
c −
ˆ 1

0
cidi

)
.

(17)

Under bounded rationality, the problem of allocating spending across differen-

tiated goods to maximize utility for a given total consumption expenditure can be

written as

max
ci,γ2

i|s(z),µE

E
[
∆L̂b

e

]
− I s.t. γ2

i|s (z) ≤ γ2
i (z) i ∈ [0, 1] , (18)

where the constraint guarantees that the solution is consistent with Bayes’ rule.

We begin by solving for ci. The first-order conditions yield:

ci = µi|s (z) + c −
ˆ 1

0
µi|s (z) di. (19)

The demand for each good equals its posterior mean, adjusted by a constant term

(c −
´ 1

0 µi|s (z) di) to ensure that the constraint, c =
´ 1

0 ci di, is satisfied.

Having derived the demand functions given a set of signals, we now solve for

the optimal posterior variance for each consumption variety, which is equivalent to

selecting the optimal signal precision.

Lemma 3. The optimal posterior variance for the optimal consumption of good i is the solution

to the following problem,

max
γ2

i|s(z)
− 1

2θ

ˆ 1

0
γ2

i|s (z) di− κ

2

ˆ 1

0

[
ln γ2

i (z)− ln γ2
i|s (z)

]
di s.t. γ2

i|s (z) ≤ γ2
i (z) , i ∈ [0, 1] .

(20)
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The first-order conditions for problem (20) are:

γ2
i|s (z) = min

{
γ2

i (z) ; θκ
}

. (21)

This condition implies that the household activates System 2 for good i whenever

the value of pi is unfamiliar, i.e., when the prior uncertainty about the optimal value

for ci corresponding to pi is high (γ2
i (z) > θκ).

The likelihood of activating System 2 declines with κ and θ. A higher κ increases

cognitive costs, reducing the incentive to engage System 2. A higher θ implies

greater substitutability across goods, reducing the utility contribution of each variety.

Consequently, for a given level of aggregate consumption, c, the value of learning the

optimal demand for each variety declines.

Learning in the pre-period There is a pre-period in which households choose their

consumption for each variety, i.

To ensure that ex-ante biases do not drive our results, we assume, as in Ilut

and Valchev (2023), that the pre-period prior distribution is centered on the rational

demand,

µi,0 (z) = c∗i (z) . (22)

The diagonal elements of the pre-period covariance function, γi,0 (z, z̃), are equal

to γ2
c and the off-diagonal elements are equal to zero. We assume that γ2

c > θκ, so the

initial level of uncertainty justifies activating System 2.

The form of the pre-period covariance function, γi,0 (z, z̃), incorporates two key

assumptions. First, cognitive uncertainty about the demand for good i depends only

on its nominal price. The household knows how to adjust the consumption of each

variety i to changes in the aggregate price level, p, or aggregate consumption, c, but

not in response to shifts in individual prices, pi. Second, prior demands at different

prices are uncorrelated. Knowing the demand at one price conveys no information
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about the optimal demand for a different price. This independence assumption

preserves the computational simplicity that is the hallmark of System 1 reasoning.

Equation (21) implies that the household chooses to learn whenever its prior

variance about optimal consumption of good i exceeds θκ. In the pre-period, all prior

variances are above this threshold. As a result, the household generates a signal for

the prices set by firms, pi,0, and updates its beliefs about the corresponding optimal

consumption levels.

The household does not update its beliefs for prices not posted by firms in the

pre-period. For those prices, the posterior distribution about optimal consumption

is equal to the prior (recall that we assume the priors are centered on the rational

demand). Given these considerations, the resulting pre-period posterior means and

variances are:

µi (z) =

{
c − θ (pi − p) + αγϵϵi,0, if pi = pi,0

c − θ (pi − p) , if pi ̸= pi,0
,

where

α ≡ 1 − θκ

γ2
c

, γϵ =

√
θκ

α
, (23)

and

γ2
i (z) =

{
θκ, if pi = pi,0

γ2
c , if pi ̸= pi,0

.

Since γ2
c > θκ, the household relies on System 2 only when pi ̸= pi,0. When the

price of good i is the same as in the pre-period, uncertainty about the optimal con-

sumption of good i is sufficiently low that the household chooses to avoid cognitive

costs and follows the rule inherited from the pre-period.

The period-one posterior means µi|s (z) are

µi|s (z) = c − θ (pi − p) + αγϵϵ̃i, (24)

where ϵ̃i = ϵi,0 if pi = pi,0, and ϵ̃i = ϵi,1 ∼ N (0, 1) otherwise.
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When firm i sets its price, it knows the value of ϵi,0 but not ϵi,1. By combining

equations (19) and (24) we obtain the following expression for the demand for good i:

ci = c − θ (pi − p) + αγϵ [ϵ̃i − Ei (ϵ̃)] , (25)

where the term Ei [ϵ̃] ≡
´ 1

0 ϵ̃idi ensures that the constraint c =
´ 1

0 ci di is satisfied.

Combining equations (14) and (25) and taking the first-order conditions with

respect to c, n, and λu yields the standard intratemporal condition for labor choice,

expressed in logarithmic form,

σc + ψn = w − p. (26)

4.1 The firm’s problem

We now revisit the firm’s problem, taking into account the fact that households

make decisions under bounded rationality. We write the problem in levels, using the

relation X = Xex.

The ex-post nominal profits of firm i are given by,

Πi =

[
Pi − (1 − τ)

W
A

]
Ci.

The firm makes two decisions: whether to adjust its price, and if so, by how much.

Suppose that Pi,0 = P0 for all i ∈ [0, 1]. The following lemma characterizes the

optimal pricing policy of firm i.

Lemma 4. Define π ≡ p − p0 and Θ ≡ ln (θ/(θ − 1)). Firm i’s optimal pricing policy is:

pi =

{
padj, if ϵi,0 < ϵ

p0, if ϵi,0 ≥ ϵ
. (27)

where

padj = w + ln
(

1 − τ

1 − τ

)
− a, (28)
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and

ϵ =

1
2 αγϵ − 1

αγϵ

{
(θ − 1)

[(
padj − p

)
+ π

]
+ ln

[
1−e(padj−p)+π−Θ

1−e−Θ

]}
, if

(
padj − p

)
+ π < Θ

∞, if
(

padj − p
)
+ π ≥ Θ

.

(29)

Figure 1: Inaction region for firms price setting

The optimal reset price, padj, coincides with the price in the model with fully

rational households for two reasons. First, firms set prices before observing the

cognitive errors made in the current period. Second, conditional on a price change,

cognitive errors are uncorrelated with prices.

Equation (29) implies that when
(

padj − p
)
+ π ≥ Θ, no realization of the past

noise ϵi,0 makes it optimal for the firm to keep its current price. In this case, the

implied profit margin is non-positive, so the firm can always increase profits by

adjusting its price. This asymmetry, which plays a central role in our “rockets and

feathers” result, is illustrated in Figure 1.
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High cost inflation erodes margins evaluated at fixed prices, prompting most

firms to abandon their existing demand shocks and raise prices. In contrast, when

costs decline, firms may choose to maintain their favorable demand shocks rather

than reduce prices. Although a price cut could increase the quantity sold, some firms

already sell more than they would if households were fully rational. Lowering prices

would activate the household’s System 2, prompting a reassessment of demand and

generating a new demand shock. To avoid this reset and preserve their high demand

levels, firms often choose to keep their prices constant.

The pricing policy described in Lemma 4 implies that a fraction χ of firms choose

not to adjust their prices, where

χ ≡ 1 − Φ (ϵ) , (30)

and Φ is the cumulative distribution function of the standard normal distribution.

Using the definition of the aggregate price level from equation (15), we obtain the

following standard relationship between padj and π:

0 = −χπ + (1 − χ)(padj − p). (31)

4.2 Equilibrium

To define the equilibrium, we normalize the initial price level to one, which implies

that the log price level at time zero is zero, p0 = 0.

An equilibrium consists of allocations {ci}i∈[0,1], c, n, prices {pi}i∈[0,1], w, and in-

formation acquisition strategies {γi|s}i∈[0,1], such that, given a, m, τ, p0 = 0, and

{µi, γi}i∈[0,1], the following conditions are satisfied:

1. Given c, the price vector {pi}i∈[0,1], and the belief parameters {µi, γi}i∈[0,1], the

household chooses ci and {γi|s}i∈[0,1] to solve the optimization problem (18);

2. Given consumption decisions for ci, the household chooses c and n to maximize

utility;
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3. Each firm i chooses pi to maximize profits;

4. The aggregate price level p satisfies equation (15);

5. Markets clear:

π + c = m, (32)ˆ 1

0
ni di = n. (33)

ci = a + ni (34)

The government budget constraint is redundant.

Using equations (33) and (34) we obtain:

c = a + n, (35)

which shows that, to a first-order approximation, there are no productive distortions.

The equilibrium conditions for the aggregate variables are given by equations

(26), (28), (29), (30), (31), (32), and (35). Substituting equations (28) and (31) into this

system of equations allows us to reduce the equilibrium conditions to equation (30),

(32), and the condition for the cutoff ϵ:

ϵ =

1
2 αγϵ − 1

αγϵ

[
(θ − 1) π

1−χ + ln
(

1−e
π

1−χ
−Θ

1−e−Θ

)]
, if π

1−χ < Θ,

∞, if π
1−χ ≥ Θ,

and

c = c∗ +
1

ψ + σ

[
χ

1 − χ
π − ln

(
1 − τ

1 − τ

)]
,

where

c∗ ≡
(

1 + ψ

ψ + σ

)
a,

denotes aggregate output in the equilibrium of the model with fully rational house-

holds.
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The following proposition summarizes the existence and uniqueness properties of

our model.

Proposition 1. An equilibrium exists. Moreover, if ψ + σ ≥ 1, the equilibrium is unique.

4.3 The Phillips curve

For τ = τ, the Phillips curve for this economy is given by

c − c∗ =
1

ψ + σ

(
χ

1 − χ

)
π. (36)

Figure 2 displays this Phillips curve. The output gap is defined as the current level

of log output minus the level of log output in the economy with fully rational house-

holds. When inflation exceeds 12 percent, the Phillips curve becomes approximately

vertical: firms face low or negative profit margins at current prices and choose to

adjust prices regardless of their demand shocks. The Phillips curve has a conventional

upward slope when the inflation rate is between -3.8 and 3 percent. In this range,

higher inflation is associated with a more positive output gap. As inflation rises

beyond 3 percent, price flexibility increases as more firms adjust their prices, causing

the Phillips curve to slope backward and the output gap to approach zero. Because

firms are more responsive to inflation than to deflation, the inflation rate at which

the Phillips curve becomes approximately vertical is lower in absolute value when

inflation is positive (12 percent) than negative (19 percent).

We now examine the properties of the equilibrium. The following proposition

characterizes the relationship between the threshold ϵ and inflation π, using the fact

that χ = 0 when ϵ = ∞.

Proposition 2. The equilibrium relationship between ϵ and π is given by:

ϵ(π) =

1
2 αγϵ − 1

αγϵ

[
(θ − 1) π

1−χ + ln
(

1−e
π

1−χ
−Θ

1−e−Θ

)]
, if π < Θ,

∞, if π ≥ Θ.
(37)
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Figure 2: Phillips curve: inflation rate versus output gap.

Moreover, the function ϵ(π) satisfies the following properties:

1. ϵ(π) attains its minimum at π = 0;

2. For any a > 0, we have ϵ(a) > ϵ(−a).

Proposition 2 implies that the function

χ(π) ≡ 1 − Φ [ϵ(π)] ,

attains its maximum at π = 0 and satisfies χ(a) < χ(−a) for all a > 0. Hence, the

model predicts an asymmetric hazard function, with the price-change probability rising

faster with positive inflation than with deflation. This asymmetry plays a key role in

explaining the rockets and feathers phenomenon discussed in Section 5.

5 Rockets and Feathers

We now study the impact of cost shocks and show that our model is consistent with

the rockets and feathers phenomenon: prices rise quickly when costs increase but fall
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slowly when costs fall.

To do so, we examine the equilibrium response to symmetric shocks to potential

output, ν > 0 and −ν, assuming m = 0. Define the deviation of consumption from its

steady-state value as

c̃(π) ≡ c(π)− c∗ =
1

ψ + σ

(
χ

1 − χ

)
π.

Figure 3: The impact of cost shocks on the absolute value of the logarithm of inflation

A cost increase (ν > 0) leads to inflation, while a cost decrease (ν < 0) results in

deflation. To compare the price response to both types of shocks, Figure 3 plots the

absolute value of the logarithm of gross inflation against the absolute value of the cost

shock, |ν|. The orange line represents cost decreases, and the blue line cost increases.

In a fully rational model, these lines would overlap, as inflation and deflation would

be symmetric in magnitude.

This symmetry holds in our model for infinitesimal shocks. However, for larger

values of |ν|, prices adjust more in response to cost increases than to equivalent
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decreases. When costs rise substantially, all firms adjust prices upward to avoid

negative margins, causing prices to move closely with costs. By contrast, when costs

fall, firms with strong demand prefer to maintain their prices to avoid triggering

household reoptimization. As a result, average price declines are smaller than cost

declines.

As |ν| increases, the orange and blue curves in Figure 3 converge. When positive

cost shocks exceed roughly 12 percent, most firms adjust their prices. When costs fall

by more than 19 percent, almost all firms choose to reduce prices.

The following proposition states our key result:

Proposition 3. Let ν > 0, and consider the equilibria with c∗ = ν and m = 0. Then the

corresponding inflation rates satisfy π(ν) < 0, π(−ν) > 0, and

π(−ν) > −π(ν).

For sufficiently large cost shocks, inflation responds more strongly (in percentage

terms) than deflation to shocks of equal absolute size.

6 The Welfare Cost of Dual-Process Decisions

In this section, we examine the welfare costs of dual-process reasoning in a model

calibration that matches the inflation asymmetries documented in the rockets and

feathers literature. We quantify these costs using a consumption-equivalent measure:

the fraction of consumption the representative household would be willing to forgo

to eliminate cognitive frictions and behave fully rationally.

To set ideas, suppose that the logarithm of productivity, a, follows a normal

distribution with mean zero and variance γ2
a and let ũ

(
a; κ, γ2

c
)

be the utility associ-

ated with the equilibrium in our economy. In the analogous economy with rational

households, aggregate consumption and labor are

c∗ =
1 + ψ

σ + ψ
a, n∗ =

1 − σ

σ + ψ
a.
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Lemma 1 implies that utility in the rational economy is:

u∗ (c∗, n∗) = c∗ +
1 − σ

2
(c∗)2 − n∗ − 1 + ψ

2
(n∗)2 .

Now suppose that, for any level of log productivity, a, consumption is reduced by

100 × λw percent. In that case, the representative household would receive

u∗ [c∗ (a)− λw, n∗ (a)] .

The consumption-equivalent welfare cost of the friction, λw, is the solution to:

Ea

[
ũ
(

a; κ, γ2
c

)]
= Ea {u∗ [c∗ (a)− λw, n∗ (a)]} .

In our calibration, we set θ = 5, σ = 1, and ψ = 0. We choose γa so that the

standard deviation of log consumption in the efficient economy matches 0.032, the

standard deviation of consumption originally used by Lucas (1987) in his study of

the cost of business cycles,

γa =
σ + ψ

1 + ψ
× 0.032.

Figure 4 depicts our results. We consider two scenarios, where the variance of

the prior is such that the welfare cost of bounded rationality is λ = 0.07 and 0.5

percent, respectively. We measure asymmetry by the difference between the absolute

values of the inflation and deflation responses, for a given prior variance and varying

cost shocks. Each time the household engages in System 2 reasoning, it reduces the

posterior variance of optimal consumption for good i to θκ (see equation 21). Thus, the

posterior variance is independent of the prior variance. However, the prior variance

still affects α, which determines how much the household updates its prior mean

using the signal (see equation (23)). When the prior variance is high–meaning the

prior is relatively uninformative–the household places greater weight on the signal,

resulting in more firms facing strong demand and choosing to keep their prices fixed.

The model with λw = 0.07 generates inflation asymmetries of approximately

0.15 × 8 for cost shocks around 8 percent. This magnitude is consistent with the
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Figure 4: Asymmetry

estimates of Peltzman (2000), which imply an asymmetry of 0.15 for each one percent

change in costs.

7 Optimal Policy

We now characterize the optimal values for the labor subsidy rate, τ, and the growth

rate of money, m. We start by computing the indirect utility, net of cognitive costs, for

a particular equilibrium.

The government can eliminate monopolistic distortions by setting,

ln
(

1 − τ

1 − τ

)
= padj − p =

χ

1 − χ
π.

The next Lemma implies that the aggregate level of consumption and labor, c and

n, can be chosen independently from π.
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Lemma 5. The Lagrangian associated with the planner’s problem is

L̂p = −1
2

σc2 − 1
2

ψn2 − 1
2θ

∆ (π) + a +
1
2

a2 + an + λp (n + a − c) .

where

∆ (π) ≡ Vari [ci] + 2θI ,

Vari[ ci ] = θ2 1 − Φ
(
ϵ(π)

)
Φ
(
ϵ(π)

) π2 + α2 γ2
ϵ

{
1 + ϵ ϕ

(
ϵ(π)

)
− ϕ2(ϵ(π)

)}
+ 2 θ α γϵ π ϕ

(
ϵ(π)

)
,

2θI = Φ [ϵ (π)] αγ2
ϵ ln

(
1

1 − α

)
,

and λp denotes the Lagrange multiplier.

The solution to the planner’s problem involves

c = c∗ =
(

1 + ψ

σ + ψ

)
a,

and

n = n∗ =

(
1 − σ

σ + ψ

)
a.

That is, the natural rate of output corresponds to the first-order response of aggregate output

in the rational economy.

The previous Lemma implies that the optimal inflation rate solves

min
π

∆ (π) .

We first show that if prior uncertainty is sufficiently high, then price stability

(π = 0) is preferable to incentivizing all firms to change prices (π ≥ Θ).

Lemma 6. There is γc such that, if γc ≥ γc, then ∆ (0) < ∆ (Θ).

We now show that even under parameter conditions that ensure that price stability

is preferable to full flexibility, it is not optimal to set π = 0.
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Lemma 7. There is δ > 0 such that for all π ∈ (−δ, 0), ∆ (π) < ∆ (0).

Proof. The result follows from the fact that

∆′ (0) = 2θαγϵϕ [ϵ (0)] > 0.

The intuition for this result is as follows. When average inflation is zero, firms ex-

periencing high demand due to household decision errors do not change their prices.

Other firms slightly increase or decrease their prices to draw a new demand shock. As

a result, sizeable behavioral mistakes become ingrained, leading households to select

a highly suboptimal consumption basket. Moving from zero inflation to deflation

mitigates this inefficiency by improving consumption choices.

Why is deflation locally better than inflation? The logic is as follows. Due to

cognitive costs, households do not choose the fully-rational value of ci. The planner

would like to reduce the consumption of goods supplied by firms that have sticky

prices, since these firms received positive demand shocks. When inflation is positive,

the relative price of the goods produced by firms with sticky prices falls, inducing

households to consume more of these goods and exacerbating the impact of behavioral

biases. In contrast, when inflation is negative, the relative price of the goods produced

by firms with sticky prices rises. As a result, the consumption of these goods falls,

mitigating the impact of behavioral biases.

8 A Dynamic Model

In this section, we consider a dynamic partial equilibrium model of a firm that faces

the dual-process demand discussed in Section 4. To simplify notation, we omit the

subscript i, so, in this section, Pt denotes the price of the individual firm. We assume

that the aggregate price level is constant and normalized to one.
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Consider a firm with marginal cost Ξt and nominal price Pt. The firm’s demand is

given by:

Ct = P−θ
t

{
eαγϵt−1 , if pt = pt−1

E (eαγϵϵt) , if pt ̸= pt−1
,

where ϵt ∼ N (0, 1). As before, lowercase variables denote logarithmic deviations, e.g.

ln(Pt/1) = ln(pt).

This demand specification assumes that households have incomplete memory:

when the price changes, they forget past prices and purchase decisions, and learn a

noisy estimate of their optimal demand at the new price. So, prices observed before

period t − 1 are irrelevant for household choices.

Flow profits are given by:

Πt = (Pt − Ξt) P−θ
t

{
eαγϵϵt−1 , if pt = pt−1

E (eαγϵϵt) , if pt ̸= pt−1
.

To simplify, we use a second-order log-approximation to flow profits around

the following solution to the firm’s problem: Ξ ≡ 1, P ≡ θ/(θ − 1), and Π =

(1/θ)[θ/(θ − 1)]1−θ.

Lemma 8. Let rt ≡ ln
(
Πt/Π

)
. The firm’s per-period reward, computed using a second-

order approximation, is

rt = − (θ − 1) ξt −
θ (θ − 1)

2
(pt − ξt)

2 +

{
αγϵϵt−1, if pt = pt−1
1
2 (αγϵ)

2 , if pt ̸= pt−1
.

We assume that the logarithm of marginal cost, ξt = log(Ξt), evolves according to

a random walk,

ξt = ξt−1 + υt,

where the innovation υt follows a jump-diffusion process:

υt

{
0, with probability ρ

∼ N
(
0, γ2

υ

)
, with probability 1 − ρ

.
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Let xt = pt−1 − ξt denote the beginning-of-period price gap, and let x̃t = pt − ξt be

the price gap chosen in period t. Under the random walk assumption for marginal

costs, we have:

xt+1 = pt − ξt+1 = x̃t − υt+1.

The firm’s problem can be formulated recursively with two state variables: xt and

ϵt−1. Let β < 1 denote the firm’s discount factor. The firm’s value function is given

by:

V (x, ϵ) = max
{

VNo Adj (x, ϵ) ; VAdj
}

, (38)

where

VNo Adj (x, ϵ) = (1 − β)

[
−θ (θ − 1)

2
x2 + αγϵϵ

]
+ βEυ

[
V
(
x − υ′, ϵ

)]
, (39)

and

VAdj = max
x

{
(1 − β)

[
−θ (θ − 1)

2
x2 +

1
2
(αγϵ)

2
]
+ βEϵ

[
Eυ

[
V
(
x − υ′, ϵ′

)]]}
. (40)

The following lemma describes some key properties of the firm’s value function.

Lemma 9. VNo Adj (x, ϵ) is strictly increasing in ϵ and V (x, ϵ) is nondecreasing in ϵ.

Proof. Suppose V (x, ϵ) is nondecreasing in ϵ. From equation (39), VNo Adj (x, ϵ) is

strictly increasing in ϵ. Since VAdj is a constant, the operator implied by equation (38)

maps into a nondecreasing function. Because the space of nondecreasing functions is

closed, V (x, ϵ) is nondecreasing.

Corollary 1. The optimal policy involves a threshold ϵ (x) such that if ϵ > ϵ (x), VNo Adj (x, ϵ) >

VAdj.

Figure 5 shows how the discount factor affects the inaction region–the set of

conditions under which firms keep prices unchanged. The orange curve represents
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Figure 5: Inaction region

myopic firms (β = 0), while the blue curve corresponds to forward-looking firms that

value future profits.4

Myopic firms place less value on favorable demand shocks than forward-looking

firms. This property has two implications illustrated in Figure 5. First, when the price

gap is small, myopic firms are less inclined to adjust prices to activate System 2 in

hopes of eliciting a strong demand realization, because they fail to account for the

future value of a high demand shock. Second, when the price gap is large, they require

unusually strong demand shocks to justify leaving prices unchanged, again because

they disregard the future benefits of high demand. In contrast, forward-looking firms

are more likely to keep prices fixed even with large price gaps, because they recognize

that positive demand shocks are valuable in the future.

We now highlight an important property of the dynamic model: it can account

for a key empirical regularity emphasized by Nakamura and Steinsson (2008) and

4Figure 5 is analogous to Figure 1. Although Figure 1 displays inflation on the x-axis, inflation
effectively determines the price gap in the static model. However, Figure 5 lacks the asymmetries seen
in Figure 1 because the firm problem is solved using a quadratic approximation.
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Figure 6: Hazard function: probability that a firm changes its price in period t,
conditional on the price having remained unchanged for the previous t − 1 periods

Campbell and Eden (2014): the hazard function for individual goods categories is

downward sloping.5 In contrast, standard menu cost models typically generate

upward-sloping hazard functions.

Figure 6 plots the hazard function implied by our model. In our framework, firms

facing unfavorable demand shocks are more likely to adjust prices early, while those

experiencing favorable shocks tend to keep prices fixed for longer periods. This

heterogeneity in demand conditions naturally gives rise to downward-sloping hazard

rates.
5The aggregate hazard function across all CPI categories is sharply downward-sloping (see, e.g.,

Klenow and Kryvtsov (2008)). This property is primarily due to a composition effect across different
categories. Prices of goods such as gasoline and fresh food products change frequently, while service
prices are more stable. At short durations, all categories are represented, but at longer durations,
services dominate. Our focus is not on these compositional effects across categories but on the fact that
hazard functions tend to be downward-sloping even within narrowly defined categories.
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9 Conclusion

This paper develops a model in which households make decisions according to a

dual-process framework. This approach gives rise to a novel form of price rigidity that

stems from the strategic interaction between consumers and monopolistic producers.

There is a range of cost shocks for which some producers refrain from adjusting prices

so that households do not reassess their purchasing decisions.

The model is consistent with three important empirical facts. First, it accounts for

the well-known ”rockets and feathers” phenomenon: prices rise quickly in response

to cost increases but fall slowly when costs decline. Second, it is consistent with the

finding of Ilut et al. (2020) that firms experiencing strong demand realizations are less

likely to adjust their prices. Third, it produces downward-sloping hazard functions,

consistent with those estimated from micro data.
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10 Appendix

10.1 Proof of Lemma 1

Let

u (c) ≡

(
1
n ∑n

k=0 C
θ−1

θ
k
n

)(1−σ) θ
θ−1

− 1

1 − σ
,

and let

C k
n
≡ Ce

c k
n .

Then

u (c) =
C1−σ

(
1
n ∑n

k=0 e
( θ−1

θ )c k
n

)(1−σ) θ
θ−1

− 1

1 − σ

Now

uk (c) = C1−σ

(
1
n

n

∑
k=0

e
( θ−1

θ )c k
n

)(1−σ) θ
θ−1−1

1
n

e
( θ−1

θ )c k
n

ukj (c) = C1−σ
[
(1 − σ)

(
θ

θ − 1

)
− 1
](

1
n

n

∑
k=0

e
( θ−1

θ )c k
n

)(1−σ) θ
θ−1−2 (

1
n

e
( θ−1

θ )c k
n

)(
1
n

)(
θ − 1

θ

)
e
( θ−1

θ )c j
n ,

and

ukk (c) = C1−σ

 1
n

e
( θ−1

θ )c k
n

[
(1 − σ)

θ

θ − 1
− 1
](

1
n

n

∑
k=0

e
( θ−1

θ )c k
n

)(1−σ) θ
θ−1−2

1
n

(
θ − 1

θ

)
e
( θ−1

θ )c k
n

+

+ C1−σ

(
1
n

n

∑
k=0

e
( θ−1

θ )c k
n

)(1−σ) θ
θ−1−1 (

θ − 1
θ

)
1
n

e
( θ−1

θ )c k
n

Evaluated at c = 0, we get

u (0) =
C1−σ − 1

1 − σ
,
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uk (0) =
1
n

C1−σ
,

ukj (0) = C1−σ
[
(1 − σ)−

(
θ − 1

θ

)](
1
n

)2

,

and

ukk (0) = C1−σ
[
(1 − σ)−

(
θ − 1

θ

)](
1
n

)2

+ C1−σ
(

θ − 1
θ

)
1
n

Therefore

u (c) ≈ u (0)+C1−σ 1
n

n

∑
k=0

c k
n
+

(
1
2

)
C1−σ

(
θ − 1

θ

)
1
n

n

∑
k=0

c2
k
n
+

1
2

C1−σ
[
(1 − σ)−

(
θ − 1

θ

)](
1
n

n

∑
k=0

c k
n

)2

,

so that taking n → ∞,

u (c)− u (0)

C1−σ
≈
ˆ 1

0
cidi +

1
2

(
θ − 1

θ

) ˆ 1

0
c2

i di +
1
2

[
(1 − σ)−

(
θ − 1

θ

)](ˆ 1

0
cidi

)2

Now consider the disutility of labor,

g (n) = ϑ
N1+ψ

1 + ψ
e(1+ψ)n.

Note that at the equilibrium,

ϑNψCσ
= A =

C
N

⇐⇒ ϑN1+ψ
= C1−σ

,

so that

g (n) =
C1−σ

1 + ψ
e(1+ψ)n

≈ C1−σ

1 + ψ

[
1 + (1 + ψ) n +

1
2
(1 + ψ)2 n2

]
,

so that

Û ≡ u (c)− u (0)

C1−σ
− g (n)− g (0)

C1−σ

≈
ˆ 1

0
cidi +

1
2

(
θ − 1

θ

) ˆ 1

0
c2

i di +
1
2

[
(1 − σ)−

(
θ − 1

θ

)](ˆ 1

0
cidi

)2

− n − 1
2
(1 + ψ) n2

= c − n − 1
2

σc2 − 1
2

ψn2 +
1
2

ˆ 1

0
c2

i di − 1
2

n2 − 1
2θ

Vari [ci] ,
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where

Vari [ci] =

ˆ 1

0
c2

i di −
(ˆ 1

0
cidi

)2

Now consider the constraint terms associated with each of the problems.

Ge ≡ Λe

(
E −
ˆ 1

0
PiCidi

)
.

Let

Λe ≡
C−σ

P
,

E ≡ P × C.

Write

Ge = Λeeλe

(
Eee − P × C

ˆ 1

0
epi+ci di

)

= C1−σeλe

(
ee −
ˆ 1

0
epi+ci di

)
,

so
Ge

C1−σ
= eλe

(
ee −
ˆ 1

0
epi+ci di

)
.

Let

fe (c, λe, p, e) = eλe+e −
ˆ 1

0
eλe+pi+ci di.

Then

eλe+e ≈ 1 + λe + e +
1
2
(λe + e)2

= 1 + λe + e +
1
2

λ2
e + λee +

1
2

e2

and

e(λe+pi+ci) ≈ 1 + (λe + pi + ci) +
1
2
(λe + pi + ci)

2

= 1 + (λe + pi + ci) +
1
2

λ2
e + λe (pi + ci) +

1
2
(pi + ci)

2
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Therefore

fe (c, λe, p, e) ≈ 1 + λe + e +
1
2

λ2
e + λee +

1
2

e2

−
ˆ 1

0

[
1 + (λe + pi + ci) +

1
2

λ2
e + λe (pi + ci) +

1
2
(pi + ci)

2
]

di

= e + λee +
1
2

e2 −
ˆ 1

0

[
(pi + ci) + λe (pi + ci) +

1
2
(pi + ci)

2
]

di

= e +
1
2

e2 −
ˆ 1

0
(pi + ci) di + λe

[
e −
ˆ 1

0
(pi + ci) di

]
− 1

2

ˆ 1

0
(pi + ci)

2 di

= e +
1
2

e2 − p − c + λe (e − p − c)− 1
2

ˆ 1

0
p2

i di −
ˆ 1

0
picidi − 1

2

ˆ 1

0
c2

i di

Now consider the constraint of Step 2,

Gu = Λu

(
WN + Π − T −

ˆ 1

0
PiCidi

)
,

Analogously, we can write

Gu = Λueλu

(
W × New+n + Πeln(Π

Π) − Teln( T
T ) − P × C

ˆ 1

0
epi+ci di

)
.

Note that W × N = P × C, and Π = T. Moreover, Λu = C−σ
/P. Therefore

Gu

C1−σ
= eλu+w+n +

Π
P C

[
eλu+ln(Π

Π) − eλu+ln( T
T )
]
−
ˆ 1

0
eλu+pi+ci di

Now

Π =

[
P −

(
θ − 1

θ

)
W
A

]
C

=
1
θ

PC.
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Therefore

Gu

C1−σ
= eλu+w+n +

1
θ

(
eλu+ln(Π

Π) − eλu+T
)
−
ˆ 1

0
eλu+pi+ci di

= w +
1
2

w2 + n +
1
2

n2 + wn + λu (w + n) +

+
1
θ

[
ln

Π
Π

+
1
2

ln2 Π
Π

+ λu

(
ln

Π
Π

− ln
T
T

)
− ln

T
T
− 1

2
ln2 T

T

]
−
ˆ 1

0

[
pi +

1
2

p2
i + ci +

1
2

c2
i + λu (pi + ci) + pici

]
di

= n +
1
2

n2 − c − 1
2

ˆ 1

0
c2

i di + wn −
ˆ 1

0
picidi + λu

[
w + n +

1
θ

(
ln

Π
Π

− ln
T
T

)
− p − c

]
+ w − p +

1
2

w2 − 1
2

ˆ 1

0
p2

i di +
1
θ

(
ln

Π
Π

+
1
2

ln2 Π
Π

− ln
T
T
− 1

2
ln2 T

T

)
Summing utility with the constraint terms yield the results.

10.2 Proof of Lemma 3

Combining equation (19) and E
[
∆L̂e | s

]
,

E
[
∆L̂e | s

]
= − 1

2θ
E

ˆ 1

0

[
c −
ˆ 1

0
µi|s (z) di + µi|s (z)− cb

i (z)

]2

di | s


= + (θσ − 1)E

(ˆ 1

0

[
c + µi|s (z)−

ˆ 1

0
µi|s (z) di − cb

i (z)

]
di

)2

| s

 .

Let
´ 1

0 µi|s (z) di ≡ µ|s. The first expectation is

E

[ˆ 1

0

[
c − µ|s + µi|s (z)− cb

i (z)
]2

di | s

]
=
(

c − µ|s

)2
+

ˆ 1

0
γ2

i|s (z) di.
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The second expectation is

E

(ˆ 1

0

[
c − µ|s + µi|s (z)− cb

i (z)
]

di

)2

| s

 = E

(ˆ 1

0

[
c − µ|s + µi|s (z)− cb

i (z)
]

di

)2

| s


= E

(c − µ|s +

ˆ 1

0

[
µi|s (z)− cb

i (z)
]

di

)2

| s


=
(

c − µ|s

)2
+ E

(ˆ 1

0

[
µi|s (z)− cb

i (z)
]

di

)2

| s


=
(

c − µ|s

)2
.

The last equality results from the law of large numbers. Therefore

E
[
∆L̂e | s

]
= − 1

2θ

ˆ 1

0
γ2

i|s (z) di − 1
2

σ
(

c − µ|s

)2
.

Finally, letting µ ≡
´ 1

0 µi (z) di,

E

[(
c − µ|s

)2
]
= E

[(
c − µ + µ − µ|s

)2
]

= (c − µ)2 + E

[(
µ|s − µ

)2
]

= (c − µ)2 ,

where the last equality follows again from the law of large numbers. Therefore

E
[
∆L̂e

]
= − 1

2θ

ˆ 1

0
γ2

i|s (z) di − 1
2

σ (c − µ)2 ,

which implies that only the first term depends on the distribution of the signal.

10.3 Proof of Lemma 4

Using the approximation X = Xex, we have

Πi = PC
(

epi−p − ew−p−a+τ−Θ
)

ec−θ(pi−p)+αγϵ{ϵ̃i−E[ϵ̃]}.
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Conditional on a price change, expected profits are

Πi = PC
(

epi−p − ew−p−a+τ−Θ
)

ec−θ(pi−p)+ 1
2 (αγϵ)

2−αγϵE[ϵ̃].

Taking the first-order condition with respect to pi yields

pi = w − a + ln
(

1 − τ

1 − τ

)
≡ padj.

Therefore optimized profits conditional on a price change are

Πadj = PC
(

1 − e−Θ
)

e−(θ−1)(padj−p)+c−αγϵE[ϵ̃]e
1
2 (αγϵ)

2
.

Conditional on keeping the price, profits are:

Πno-adj = P C
(

1 − e(padj−p)+π−Θ
)

ec+(θ−1)π+αγϵ(ϵi,0−E[ϵ̃]).

Provided that

e(padj−p)+π−Θ < 1,

Πno-adj is strictly increasing in ϵi,0, so a threshold rule is optimal. The threshold ϵ is

given by:

Πno-adj = Πadj,

which implies:

ϵ =
1
2

αγϵ −
1

αγϵ

{
(θ − 1)

[
(padj − p) + π

]
+ ln

[
1 − e(padj−p)+π−Θ

1 − e−Θ

]}
.

10.4 Proof of Proposition 2

We show the properties included in this proposition one at a time.
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Uniqueness of ϵ (π). We first show that when π < Θ, (37) is a well-defined function.

Let

f (ϵ, π) =
1
2

αγϵ −
1

αγϵ

[
(θ − 1)

π

Φ (ϵ)
+ ln

(
1 − e

π
Φ(ϵ)

−Θ

1 − e−Θ

)]
− ϵ.

First note that f (ϵ, π) is only defined if π < Φ (ϵ)Θ. Therefore, if π < 0, f is always

well-defined. Otherwise, it is only defined for

ϵ > Φ−1
(π

Θ

)
.

Hence, this function is only defined for π < Θ. First suppose that π < 0. Then

lim
ϵ→−∞

f (ϵ, π) =
1
2

αγϵ −
1

αγϵ

[
ln
(

1
1 − e−Θ

)]
− lim

ϵ→−∞

[
1

αγϵ
(θ − 1)

π

Φ (ϵ)
− ϵ

]
=

1
2

αγϵ −
1

αγϵ

[
ln
(

1
1 − e−Θ

)]
− lim

ϵ→−∞

{
1

Φ (ϵ)

[
1

αγϵ
(θ − 1)π − ϵΦ (ϵ)

]}
=

1
2

αγϵ −
1

αγϵ

[
ln
(

1
1 − e−Θ

)]
− 1

αγϵ
(θ − 1)π lim

ϵ→−∞

{
1

Φ (ϵ)

}
= ∞,

and

lim
ϵ→∞

f (ϵ, π) = lim
ϵ→∞

{
1
2

αγϵ −
1

αγϵ

[
(θ − 1)π + ln

(
1 − eπ−Θ

1 − e−Θ

)]
− ϵ

}
= −∞.

The case where π = 0 is trivial, since in that case

ϵ =
1
2

αγϵ.

When π ∈ (0, Θ),

lim
ϵ→Φ−1( π

Θ)
f (ϵ, π) =

1
2

αγϵ −
1

αγϵ

[
(θ − 1)

π

π/Θ
+ lim

x→0
ln (x)

]
− Φ−1

(π

Θ

)
= ∞.

Therefore, the equation f (ϵ, π) = 0 has at least one solution in ϵ. To show that it has

only one solution, note that

fϵ (ϵ, π) = − 1
αγϵ

(θ − 1)
[
− π

Φ2 (ϵ)
ϕ (ϵ)

]
− 1

αγϵ
×
[

−e
π

Φ(ϵ)
−Θ

1 − e
π

Φ(ϵ)
−Θ

]
×
[
− π

Φ2 (ϵ)
ϕ (ϵ)

]
− 1

=
1

αγϵ

[
(θ − 1)− e

π
Φ(ϵ)

−Θ

1 − e
π

Φ(ϵ)
−Θ

] [
π

Φ2 (ϵ)
ϕ (ϵ)

]
− 1.
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Note that

ln
(

θ

θ − 1

)
= Θ

⇐⇒ θ − 1 =
e−Θ

1 − e−Θ .

Therefore

fϵ (ϵ, π) =
1

αγϵ

[
1 − e

π
Φ(ϵ)

−Θ

1 − e−Θ − e
π

Φ(ϵ)

]
e−Θ

1 − e
π

Φ(ϵ)
−Θ

π

Φ (ϵ)

[
ϕ (ϵ)

Φ (ϵ)

]
− 1.

It is easy to show that the first term in square brackets is negative as long as

0 <
π

Φ (ϵ)
.

Therefore the first term in fϵ (ϵ, π) is negative, which implies that f (ϵ, π) is strictly

decreasing in ϵ. Hence, there is a unique solution for f (ϵ, π) = 0, and the implicit

function theorem globally defined ϵ (π). Now

fπ (ϵ, π) = − 1
αγϵ

e−Θ

1 − e−Θ
1

Φ (ϵ)
− 1

αγϵ

− 1
Φ(ϵ)

e
π

Φ(ϵ)
−Θ

1 − e
π

Φ(ϵ)
−Θ

=
1

αγϵ

1
Φ (ϵ)

e−Θ

1 − e
π

Φ(ϵ)
−Θ

[
e

π
Φ(ϵ) − 1 − e

π
Φ(ϵ)

−Θ

1 − e−Θ

]
.

The implicit function theorem then yields

ϵ′ (π) = − fπ (ϵ (π) , π)

fϵ (ϵ (π) , π)

=

1
αγϵ

1
Φ(ϵ)

e−Θ

1−e
π

Φ(ϵ)
−Θ

[
e

π
Φ(ϵ) − 1−e

π
Φ(ϵ)

−Θ

1−e−Θ

]
1 + 1

αγϵ

[
e

π
Φ(ϵ) − 1−e

π
Φ(ϵ)

−Θ

1−e−Θ

]
e−Θ

1−e
π

Φ(ϵ)
−Θ

π
Φ(ϵ)

[
ϕ(ϵ)
Φ(ϵ)

] ,

or

ϵ′ (π)π =
Ω (π)

1 + ϕ[ϵ(π)]
Φ[ϵ(π)]

Ω (π)
,
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where

Ω (π) ≡ 1
αγϵ

[
eφ(π)−Θ

1 − eφ(π)−Θ
− e−Θ

1 − e−Θ

]
φ (π) ,

and φ (π) ≡ π/Φ [ϵ (π)].

Minimum at π = 0. Note that ϵ′ (π) > 0 ⇐⇒ π > 0. Therefore ϵ (π) has a

minimum at π = 0. Therefore, χ ≡ 1 − Φ (ϵ), the fraction of sticky firms, has a

maximum at π = 0.

Limits as π → Θ or π → −∞. When π → Θ, we have

lim
π→Θ

ϵ (π) =
1
2

αγϵ −
1

αγϵ

 e−Θ

1 − e−Θ
Θ

limπ→Θ Φ (ϵ (π))
+ ln

1 − e
Θ

limπ→Θ Φ(ϵ(π))
−Θ

1 − e−Θ

 .

The term in the logarithm is smaller than zero unless Φ [ϵ (π)] → 1, i.e., ϵ (π) → ∞.

Moreover, ϵ (π) → ∞ is a fixed-point of the equation above and, for all π < Θ,

there is a unique ϵ (π). Therefore limπ→Θ ϵ (π) = ∞. For π → −∞, note that

Φ [ϵ (π)] ∈ [0, 1] implies that

ln

[
1 − e

π
Φ(ϵ(π))

−Θ

1 − e−Θ

]
→ ln

[
1

1 − e−Θ

]
,

and
π

Φ [ϵ (π)]
→ −∞.

These two facts imply that ϵ (π) → ∞ (and that therefore Φ [ϵ (π)] → 1).

Asymmetry of ϵ (π). To derive the asymmetry in ϵ (π), it is convenient to write

ϵ (π) =
1
2

αγϵ −
1

αγϵ

[
e−Θ

1 − e−Θ
π

Φ (ϵ)
+ ln

(
1 − e

π
Φ(ϵ)

−Θ

1 − e−Θ

)]
.
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Let a be some strictly positive scalar. Clearly, if a ≥ Θ, ϵ (a) = ∞ > ϵ (−a). Now

consider a ∈ (0, Θ). Since f (ϵ, π) is strictly decreasing in ϵ, to show that ϵ (a) >

ϵ (−a) it suffices to show that f [ϵ (−a) , a] > 0. Now

ϵ (−a) =
1
2

αγϵ −
1

αγϵ

[
e−Θ

1 − e−Θ
−a

Φ [ϵ (−a)]
+ ln

(
1 − e

−a
Φ[ϵ(−a)]−Θ

1 − e−Θ

)]
,

and

f [ϵ (−a) , a] =
1
2

αγϵ −
1

αγϵ

[
e−Θ

1 − e−Θ
a

Φ [ϵ (−a)]
+ ln

(
1 − e

a
Φ[ϵ(−a)]−Θ

1 − e−Θ

)]
− ϵ (−a) .

Therefore

f [ϵ (−a) , a] =
1
2

αγϵ −
1

αγϵ

[
e−Θ

1 − e−Θ
a

Φ [ϵ (−a)]
+ ln

(
1 − e

a
Φ[ϵ(−a)]−Θ

1 − e−Θ

)]
− ϵ (−a)

∝ ln

(
1 − e

−a
Φ[ϵ(−a)]−Θ

1 − e
a

Φ[ϵ(−a)]−Θ

)
− 2

e−Θ

1 − e−Θ
a

Φ [ϵ (−a)]
.

Let

ω ≡ a
Φ [ϵ (−a)]

,

and consider the function

g (ω) ≡ ln
(

1 − e−ω−Θ

1 − eω−Θ

)
− 2

e−Θ

1 − e−Θ ω.

Clearly g (0) = 0. Moreover,

g′ (ω) =
1

eΘ+ω − 1
+

1
eΘ−ω − 1

− 2
eΘ − 1

.

Again, g′ (0) = 0, and

g′′ (ω) =
eΘ−ω

(eΘ−ω − 1)2 − eΘ+ω

(eΘ+ω − 1)2 .
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Now note that

h (t) =
et

(et − 1)2

=⇒h′ (t) =
et (et − 1

)
− et × 2

(
et − 1

)
et

(et − 1)4

=⇒h′ (t) ∝ 1 − 2et < 0,

for t > 0. Therefore, for ω > 0,

g′′ (ω) > 0 =⇒ g′ (ω) > 0 =⇒ g (ω) > 0,

which implies that f [ϵ (−a) , a] > 0 for a > 0.

10.5 Proof of Proposition 1 (existence of equilibrium)

Define E(π) = π + c̃(π). Observe that c̃(π) → 0 as π → ±∞. Therefore,

lim
π→−∞

E(π) = −∞, lim
π→∞

E(π) = ∞,

Implying that the equation E(π) = −c∗ has at least one solution by the intermediate

value theorem.

To show uniqueness, consider the derivative:

c̃′(π) =
1

ψ + σ

{[
χ′(π)

[1 − χ(π)]2

]
π +

χ(π)

1 − χ(π)

}

=
1

ψ + σ

[
1

1 − χ(π)

]χ(π)−
ϕ[ϵ(π)]
Φ[ϵ(π)]

Ω(π)

1 + ϕ[ϵ(π)]
Φ[ϵ(π)]

Ω(π)


>

1
ψ + σ

[
1

1 − χ(π)

]
{χ(π)− 1}

= − 1
ψ + σ

.
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Hence, E ′(π) = 1 + c̃′(π) > 1 − 1
ψ+σ ≥ 0, which implies that E(π) is strictly increas-

ing and ensures uniqueness when ψ + σ ≥ 1. Therefore,

E ′(π) = 1 + c̃′(π) > 1 − 1
ψ + σ

.

If ψ + σ ≥ 1, it follows that E ′(π) > 0 for all π. Hence, E(π) is strictly increasing,

and the equilibrium is unique.

10.6 Proof of Proposition 3 (“rockets and feathers”)

The equilibrium condition can be written as,

E(π) ≡ π + c̃(π) = −c∗.

Assume m = 0. The equilibrium condition for inflation is

π + c̃(π) = −ν.

To show that π(ν)ν < 0, consider the function

E(π) = π + c̃(π) =

{
1 +

1
ψ + σ

[
χ(π)

1 − χ(π)

]}
π.

The expression in curly brackets is strictly positive, so sign(π(ν)) = −sign(ν).

Since E ′(π) > 0, it suffices to show that

E [−π(ν)] < ν.

Note that

E [−π(ν)] = −π(ν) + c̃[−π(ν)],

and from the equilibrium condition,

π(ν) + c̃[π(ν)] = −ν.
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Therefore,

E [−π(ν)] < ν ⇐⇒ −π(ν) + c̃[−π(ν)] < ν

⇐⇒ − [−ν − c̃[π(ν)]] + c̃[−π(ν)] < ν

⇐⇒ c̃[π(ν)] + c̃[−π(ν)] < 0.

Substituting the expression for c̃(π), we obtain:

1
ψ + σ

[
χ(π(ν))

1 − χ(π(ν))

]
π(ν) +

1
ψ + σ

[
χ(−π(ν))

1 − χ(−π(ν))

]
(−π(ν)) < 0

⇐⇒
[

χ(π(ν))

1 − χ(π(ν))
− χ(−π(ν))

1 − χ(−π(ν))

]
π(ν) < 0.

Since π(ν) < 0, the inequality above holds if and only if

χ(π(ν))

1 − χ(π(ν))
>

χ(−π(ν))

1 − χ(−π(ν))
,

which is equivalent to

χ(π(ν)) > χ(−π(ν)).

This inequality follows directly from Proposition 2, completing the proof.

10.7 Proof of Lemma 5

We first derive the expression for ∆ (π). From equation (25),

Vari [ci] = θ2Var (pi − p) + (αγϵ)
2 Var [ϵ̃i − Ei [ϵ̃i]]− 2θαγϵCov [pi − p, ϵ̃i − Ei [ϵ̃i]] .

First note that

Var (pi − p) =
χ

1 − χ
π2.

Second,

Ei [ϵ̃i] = χE [ϵi,0 | ϵi,0 ≥ ϵ̃] = ϕ (ϵ) .
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Moreover, from the properties of the truncated normal distribution,

E
[
ϵ̃2

i

]
= χ

[
1 +

ϵϕ (ϵ)

χ

]
+ (1 − χ) = 1 + ϵϕ (ϵ) ,

from which it follows that

Var [ϵ̃i − Ei [ϵ̃i]] = E
[
ϵ̃2

i

]
− (E [ϵ̃i])

2 = 1 + ϵϕ (ϵ)− [ϕ (ϵ)]2 .

As for the covariance, note that

Cov[pi − p, ϵ̃i − Ei [ϵ̃i]] = E [(pi − p) (ϵ̃i − Ei [ϵ̃i])]

= χ (−π)

(
ϕ (ϵ)

χ
− ϕ (ϵ)

)
+ (1 − χ)

(
padj − p

)
(−ϕ (ϵ))

= χ (−π)

(
ϕ (ϵ)

χ
− ϕ (ϵ)

)
+ (1 − χ)

χπ

1 − χ
(−ϕ (ϵ))

= −χπ

(
ϕ (ϵ)

χ
− ϕ (ϵ)

)
− χπϕ (ϵ)

= −πϕ (ϵ) .

Therefore

Vari [ci] = θ2
(

χ

1 − χ

)
π2 + α2γ2

ϵ

[
1 + ϵϕ (ϵ)− ϕ (ϵ)2

]
+ 2θαγϵπϕ (ϵ) .

As for cognitive costs,

I =
κ

2

[
χ × 0 + (1 − χ)

(
ln γ2

c − ln θκ
)]

=
1
2θ

Φ [ϵ (π)] θκ ln
(

γ2
c

θκ

)
.

Now,

α = 1 − θκ

γ2
c

,

and

γϵ =

√
θκ

α
⇐⇒ θκ = αγ2

ϵ.

Therefore

α = 1 − θκ

γ2
c

⇐⇒ θκ

γ2
c
= 1 − α,
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from which it follows that

I =
1
2θ

Φ [ϵ (π)] αγ2
ϵ ln

(
1

1 − α

)
.

We start by showing that the implementable set of equilibria is characterized by

equation (35).

Recall that the equilibrium conditions for c, n, π, and ϵ can be summarized as

σc + ψn =
1 − Φ (ϵ)

Φ (ϵ)
π − τ + a, (41)

c = a + n, (42)

c + π = m, (43)

ϵ =

1
2 αγϵ − 1

αγϵ

[
e−ϑ

1−e−ϑ
π

Φ(ϵ)
+ ln

(
1−e

π
Φ(ϵ)

−ϑ

1−e−ϑ

)]
, if π < ϑ

∞, if π ≥ ϑ
. (44)

Given π, equation (44) determines ϵ. Given c and n, equation (43) determines m,

while equation (41) determines τ.

Since the set of implementable equilibria is characterized by equation (35), we can

write the (non-linear) Lagrangian associated with the Ramsey problem as

Lp = U + Λp

(
AN −

ˆ 1

0
Cidi

)
.

From Lemma 1,

Û = −c − 1
2

σc2 − 1
2

ˆ 1

0
c2

i di − n − 1 + ψ

2
n2 − 1

2θ
Vari [ci]

To derive the second-order approximation of the constraint term, write

Gp = Λp

(
AN −

ˆ 1

0
Cidi

)

= Λpeλp

(
A × Nea+n − C

ˆ 1

0
eci di

)
.
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So, again, we can write

Gp

C1−σ
= eλp+a+n −

ˆ 1

0
eλp+ci di

≈ 1 + λp + a + n +
1
2
(
λp + a + n

)2 −

−
ˆ 1

0

(
1 + λp + ci

)
di − 1

2

ˆ 1

0

(
λp + ci

)2 di

= a + n +
1
2
(
λp + a + n

)2 −
ˆ 1

0
cidi − 1

2

ˆ 1

0

(
λp + ci

)2 di

= a + n + λp (a + n) +
1
2
(a + n)2 −

ˆ 1

0
cidi − λc − 1

2

ˆ 1

0
c2

i di

= a +
1
2

a2 + n +
1
2

n2 + λp (a + n − c) + an − c − 1
2

ˆ 1

0
c2

i di

Letting

L̂p = Û − I +
Gp

C1−σ

yields the result. The solution to c and n follows from taking first-order conditions

with respect to c, n, and λp.

10.8 Proof of Lemma 6

It is easy to show that

∆ (Θ) = α2γ2
ϵ + αγ2

ϵ ln
(

1
1 − α

)
,

and

∆ (0) = α2γ2
ϵ

{
1 + ϵ (0) ϕ [ϵ (0)]− ϕ2 [ϵ (0)]

}
+ Φ [ϵ (0)] αγ2

ϵ ln
(

1
1 − α

)
.

53



Therefore

∆ (Θ)− ∆ (0) = {1 − Φ [ϵ (0)]} αγ2
ϵ ln

(
1

1 − α

)
− α2γ2

ϵ

{
ϵ (0) ϕ [ϵ (0)]− ϕ2 [ϵ (0)]

}

⇐⇒ ∆ (Θ)− ∆ (0)
αγ2

ϵϕ [ϵ (0)]
=

1 − Φ
(

1
2

√
θκ
α

)
ϕ

(
1
2

√
θκ
α

)
 ln

(
1

1 − α

)
− α

[
1
2

√
θκ

α
− ϕ

(
1
2

√
θκ

α

)]
.

As α → 0, the expression goes to zero (because the Mills ratio declines monotonically

to zero). As α → 1, the expression above goes to ∞. Therefore, there must be a α

(potentially zero) such that if α ≥ α, then ∆ (Θ)− ∆ (0) > 0. But

α = 1 − θκ

γ2
c

.

Therefore

α ≥ α ⇐⇒ γ2
c ≥ θκ

1 − α
≡ γ2

c .

10.9 Proof of Lemma 8

Using the logarithmic approximation,

Πert =
(

Pept − Ξeξt
)

P−θe−θptE
[
eαγϵ ϵ̃t

]
⇐⇒ 1

θ

(
θ

θ − 1

)1−θ

ert =

(
ept − θ − 1

θ
eξt

)(
θ

θ − 1

)1−θ

e−θptE
[
eαγϵ ϵ̃t

]
⇐⇒ ert =

[
θept − (θ − 1) eξt

]
e−θptE

[
eαγϵ ϵ̃t

]
⇐⇒ rt = ln

[
θept − (θ − 1) eξt

]
− θpt + ln

(
E
[
eαγϵ ϵ̃t

])
.

The standard second-order approximation of ln
[
θept − (θ − 1) eξt

]
around pt = 0 and

ξt = 0 yields

ln
[
θept − (θ − 1) eξt

]
≈ θpt − (θ − 1) ξt −

θ (θ − 1)
2

(pt − ξt)
2 .
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Moreover,

ln
(

E
[
eαγϵ ϵ̃t

])
=

{
1
2 (αγϵ)

2 , if pt ̸= pt−1

αγϵϵt−1, if pt = pt−1
.

Plugging into rt yields the result.
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