The Origins and Propagation of Animal Spirits Shocks

Makoto Nirei ¹ Xavier Ragot ²

¹University of Tokyo

²Sciences Po-CNRS, OFCE, and CEPR

13th Annual CIGS conference on Macroeconomic Theory and Policy
June 17, 2025

- Develop a business cycle model with:
 - Comovement of investment, consumption, and inflation
 - No exogenous aggregate shocks such as:
 - Aggregate TFP shock
 - Monetary policy shock
- The model features "investment avalanches."
 - State-dependent synchronization of firms' investments
 - with underlying idiosyncratic productivity shocks
 - No common shocks assumed
- Motivation

Introduction

- Animal spirits
 - Investments fluctuate without apparent shocks.
 - We provide microfoundation.
- Procyclical inflation
 - in contrast to productivity shocks

Introduction

Comovement of investment, consumption, and inflation

- Structural VAR for US 1947Q2-2024Q4
- TFP (Fernald 2014; utilization-adjusted for non-equipment production)
- Investment shocks orthogonalized to lags and predicted TFP
- Cholesky identification in the order of (inv-exog, tfp, GDP, C, CPI)
- Quarterly, one st.d. shock (3.72% for inv), responses annualized %

Lumpy investments

- Investment rate (gross investment/capital) $> \lambda 1$
- Typical histogram:

Introduction

(Annual data for Japanese firms, provided by Tokyo Shoko Research Ltd.; Nirei 2024)

Introduction 00000

- Lumpy investments account for one-third of aggregate investments
- Lumpy investments account for most of the time-variation of aggregate investments
 - Cooper and Haltiwanger 1996; Doms and Dunne 1998; Gourio and Kashyap 2007

Left: ratio to GDP. Right: growth rate.

Source: Basic Survey of Japanese Business Structure and Activities; Nirei 2024

Literature

Investment shocks

0000

- Fisher 2006; Justiniano, Primiceri, and Tambalotti 2010
- Financial imperfections (Christiano, Motto, and Rostagno 2014)
- Animal spirits and higher-order belief (Angeletos and La'O 2013)
- We generate inflationary investment shocks without exogenous aggregate shocks.
- Sectoral business cycle models feature realistic technological shocks, but they aggregate too fast
- (S,s) models feature non-linear dynamics
 - Irrelevance in continuum-of-firms models (Caplin and Spulber 1987; Caballero and Engel 1991; Thomas 2002; Khan and Thomas 2008)
 - Reevaluations (Auclert, Rognlie, and Straub 2020; Koby and Wolf 2020; Winberry 2021)
- Sunspots / multiple equilibria
 - Galí 1994; Brock and Durlauf 2001; Wang and Wen 2008
 - Our model features a determinate, locally unique equilibrium.
- Fat tails
 - Granular effects (Gabaix 2011; Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi 2012)
 - Stochastic synchronization (Scheinkman and Woodford 1994)

Model

- Final goods wholesalers with sticky pricing
 - Aggregate output Y_t and price P_t
- Intermediate goods producers
 - Aggregate output Y_t^m and price P_t^m
 - Differentiated intermediate good y_{it}^m , i = 1, ..., n
 - Each firm invests and owns lumpy capitals
- Representative households
 - · consume final goods, supply labor, hold bonds, and own firms
- Taylor-rule policy for nominal interest rate
- Markets clear
 - Final goods
 - Intermediate goods
 - Labor
 - Net zero supply of risk-free bonds

Intermediate producer $i = 1, 2, \dots, n$

- Production function: $y_{it}^m = a_{it}k_{it}^{\alpha}l_{it}^{1-\alpha}$
- Demand function: $y_{it}^m = \left(rac{p_{it}^m}{P_t^m}
 ight)^{-\eta} Y_t$
 - $P_t^m = \left(\sum_{i=1}^n (p_{it}^m)^{1-\eta}/n\right)^{\frac{1}{1-\eta}}, \quad \eta > 1$
 - $m_t := P_t^m/P_t$: real intermediate price
- Firm *i*'s real value: $\max \mathbb{E}\left[\sum_t \Lambda_t(\mu(a_{it}, k_{it}) x_{it})\right]$ where
 - $\mu(a_{it}, k_{it}) := \max_{l_{it}} \frac{p_{it}^m y_{it}^m}{P_t} w_t l_{it}$
 - $x_{it} := k_{i,t+1} (1 \delta)k_{it}$
 - $\Lambda_t := \beta^t u'(c_t)$: stochastic discount factor
- Lumpy capital $k_{i,t+1} \in \{(1-\delta)k_{it}\lambda^s\}_{s=0,\pm 1}$
 - Lumpiness parameter $\lambda > 1/(1-\delta)$
 - Possible to endogenize λ by fixed adjustment costs

Lumpy investment of intermediate producers

- Operating surplus $\mu(a_{it}, k_{it}; w_t, m_t, K_t)$
- Lower threshold k_{it}^* for investment spikes
- Indifference between k^* and λk^* :

$$\mathbb{E}_{t} \left[\Lambda_{t+1}(\mu_{t+1}(a, k^{*}) + (1 - \delta)k^{*}) - \Lambda_{t}k^{*} \right]$$

$$= \mathbb{E}_{t} \left[\Lambda_{t+1}(\mu_{t+1}(a, \lambda k^{*}) + (1 - \delta)\lambda k^{*}) - \Lambda_{t}\lambda k^{*} \right].$$

Threshold policy for lumpy investment

- Investment spikes in t if $(1-\delta)k_{i,t} < k_{i,t+1}^*$
- $K_t := \left(\sum_{i=1}^n (a_{it}^{1/\alpha} k_{it})^{\rho} / n\right)^{1/\rho}$ • $\rho := \frac{(1-1/\eta)\alpha}{1-(1-1/\eta)(1-\alpha)} \in (0,1)$
- Threshold is $k_{i,t+1}^* = \tilde{a}_{i,t+1} \Phi_t K_{t+1}$, where $\tilde{a}_{i,t} := a_{i,t}^{\eta-1}$ and

$$\Phi_t := \left(\frac{\kappa(\lambda^{\rho}-1)}{\lambda-1} \frac{\mathbb{E}_t \left[\Lambda_{t+1} m_{t+1}^{1/\alpha} w_{t+1}^{1-1/\alpha}\right]}{\mathbb{E}_t \left[\Lambda_t - \Lambda_{t+1} (1-\delta)\right]}\right)^{\frac{1}{1-\rho}}$$

•
$$\kappa := \left(\left(1 - \frac{\eta - 1}{\eta} (1 - \alpha) \right)^{\alpha} \left(\frac{\eta - 1}{\eta} (1 - \alpha) \right)^{1 - \alpha} \right)^{1/\alpha}$$

- Normalized capital: $s_{it} := \frac{\log k_{it} \log k_{it}^*}{\log \lambda} \in [0,1)$
- State distribution: $F_t(a_{it}, s_{it})$

Dynamics of normalized capital profile $(s_{it})_i$

- Transition of $s_{it} = \frac{\log k_{it} \log k_{it}^*}{\log \lambda} \in [0,1)$
 - $s_{i,t+1} = \left\{ egin{array}{ll} s', & ext{if } s' \geq 0 \\ s'+1, & ext{otherwise} \end{array} \right.$
 - $s' = \frac{\log(1-\delta) + \log k_{it} \log k_{i,t+1}^*}{\log \lambda} = \frac{\log(1-\delta) \log k_{i,t+1}^* + \log k_{it}^*}{\log \lambda} + s_{it}$
- Assumption
 - (i) Productivity $a_{i,t}$ is i.i.d. with finite support \mathcal{A} and $\max_{h,h'} |a(h) a(h')| < \frac{-\log(1-\delta)}{\log \lambda}$
 - (ii) Initial normalized capital $s_{i,0}$ is uniformly distributed over [0,1) conditional on every value of $a_{i,0} \in \mathcal{A}$.
- s_{it} stays in a uniform distribution $\rightarrow F(a, s)$ stationary
- Aggregating $k_{i,t+1}^* = \tilde{a}_{i,t+1} \Phi_t K_{t+1}$ across i gives

$$\Phi_t = \Phi =: \mathbb{E}^F [\tilde{a} \lambda^{\rho s}]^{-1/\rho}$$

Rest of the model: Sticky prices

- Wholesaler $j \in [0, 1]$ purchases intermediate goods y_{iit}^m produces $y_{it} = Y_{it}^m$ where $Y_{it}^m = (\int (y_{iit}^m)^{\frac{\eta-1}{\eta}} di)^{\frac{\eta}{\eta-1}}$, and sells y_{it} at price p_{it}
 - Wholesalers incur price-adjustment costs $(\psi_P/2)\pi_t^2$
 - Cost-subsidy τ_t^Y financed by lump-sum tax t_t^Y corrects monopoly distortion
 - Aggregate final goods: $Y_t = \left(\int y_{jt}^{\frac{\epsilon_c 1}{\epsilon_c}} dj\right)^{\frac{\epsilon_c}{\epsilon_c 1}}$
 - CPI: $P_t = \left(\int p_{it}^{1-\epsilon_c} dj\right)^{\frac{1}{1-\epsilon_c}}$
 - Inflation rate: $\pi_t := P_t/P_{t-1} 1$
 - Wholesale profits: $\Omega_t = \left(1 m_t \frac{\psi_P}{2} \pi_t^2\right) Y_t$
- New Keynesian Phillips curve is derived (in the first order) as:

$$\pi_t = \frac{\epsilon_c - 1}{\psi_P}(m_t - 1) + \beta \mathbb{E}_t [\pi_{t+1}]$$

Intermediate cost m_t and $\mathbb{E}_t[\pi_{t+1}]$ determine π_t .

Representative households' choice

- Preference: $\sum_{t=0}^{\infty} \beta^t (u(C_t) v(N_t))$
 - $u(C) = \frac{C^{1-\sigma}-1}{1-\sigma}$ and $v(N) = \chi_n \frac{N^{1+1/\psi}}{1+1/\psi}$
 - Choose χ_n so that $N_{ss} = 1$
- Saving choice: $u'(C_t) = \beta \mathbb{E}_t \left[\frac{R_t^N}{1 + \pi_{t+1}} u'(C_{t+1}) \right]$
- Budget constraints:

$$P_tC_t + A_{t+1} = R_t^N A_t + P_t(w_t N_t + \Omega_t + \sum_{i=1}^n (\mu(a_{it}, k_{it}) - X_t)/n)$$

- Households own monopolistic intermediate firms and instruct discount factors $\Lambda_{t+\tau}$.
- Aggregate investment $X_t = \sum_{i=1}^{n} x_{it}$
 - $x_{it} = k_{i,t+1} (1 \delta)k_{it}$
- Firms choose dividends Ω_t and $\sum_{i=1}^n \mu(a_{it}, k_{it}) X_t$
 - exogenous to households

Closing the model

- Monetary policy
 - sets risk-free nominal rate at: $R_t^N = (1 + r_{ss})(1 + \pi_t)^{\phi}$
 - Taylor principle $\phi > 1$
- Sticky real wage: for a $g \in [0, 1]$,
 - $w_t = (w_t^f)^g (w_{ss})^{1-g}$
 - $w_t^f = \sqrt{(N_t)/u'(C_t)}$
- Markets clear
 - $N_t = \sum_{i=1}^n I_{it}/n$
 - $Y_t = \overline{C_t} + X_t + \frac{\psi_P}{2} \pi_t^2 Y_t$
 - $A_t = 0$ (zero net supply of risk-free asset)

Recursive equilibrium when $n \to \infty$: Irrelevance

$$\begin{aligned} Y_t &= \mathcal{K}_t^\alpha L_t^{1-\alpha} & \text{(Production)} \\ L_t &= ((1-1/\eta)(1-\alpha)m_t/w_t)^{\frac{1}{\alpha}} \, \mathcal{K}_t & \text{(Labor demand)} \\ w_t &= (v'(L_t)/u'(C_t))^g w_{ss}^{1-g} & \text{(Labor supply)} \\ C_t + X_t &= \left(1 - \frac{\psi_P}{2} \pi_t^2\right) Y_t & \text{(Goods market clearing)} \\ \mathcal{K}_{t+1} &= (1-\delta)\mathcal{K}_t + A_X X_t & \text{(Capital accumulation)} \\ 1 &= \mathbb{E}_t \left[\frac{\beta u'(C_{t+1})}{u'(C_t)} \frac{(1+r_{ss})(1+\pi_t)^\phi}{1+\pi_{t+1}} \right] & \text{(EE and Taylor)} \\ 1 &= \mathbb{E}_t \left[\frac{\beta u'(C_{t+1})}{u'(C_t)} \left(\tilde{\kappa} m_{t+1}^{1/\alpha} w_{t+1}^{1-1/\alpha} + 1 - \delta \right) \right] & \text{(Factor prices)} \\ \pi_t(1+\pi_t) &= \frac{\epsilon_c - 1}{\psi_P} (m_t - 1) + \beta \mathbb{E}_t \left[\frac{u'(C_{t+1})}{u'(C_t)} \frac{Y_{t+1}}{Y_t} \pi_{t+1} (1+\pi_{t+1}) \right] & \text{(Phillips curve)} \end{aligned}$$

• These conditions determine an expected equilibrium path $K_{t+1}^e = \Xi(K_t)$

Investment avalanches

- Now, consider an economy with finite n firms.
- Rule-of-thumb: Agents expect $(a_{it}, s_{it})_{i=1}^n$ to follow F^n . $\Rightarrow k_{it}^* = \tilde{a}_{it} \Phi K_t$
- Investment in the finite economy is $X_t = (1 + \epsilon_t)X_t^e$,
 - Expected investment $X_t^e = (\Xi(K_t) (1 \delta)K_t)/A_X$.
 - Avalanche effect ϵ_t .
- Timing. $(K_t, X_t^e, (s_{it})_i)$ is predetermined.

$$(a_{it})_i \rightarrow \epsilon_t \rightarrow K_{t+1} \rightarrow C_t, L_t, w_t, m_t, \pi_t$$

- Investment avalanche
 - Idiosyncratic productivity shocks ait
 - Normalized capital s_{it} is heterogeneous due to past productivity shocks
 - Aggregate variations caused by (a, s) is substantial (later).

Rule-of-thumb and the propagation of avalanche shocks

Expectation for $t \geq 2$ given K_2

$$\begin{split} Y_t &= K_t^{\alpha} L_t^{1-\alpha} \\ L_t &= ((1-1/\eta)(1-\alpha)m_t/w_t)^{\frac{1}{\alpha}} K_t \\ w_t &= (v'(L_t)/u'(C_t))^g w_{ss}^{1-g} \\ Y_t &= C_t + X_t^e \\ K_{t+1} &= (1-\delta)K_t + A_X X_t^e \\ 1 &= \mathbb{E}_t \left[\frac{\beta u'(C_{t+1})}{u'(C_t)} \frac{(1+r_{ss})(1+\pi_t)^{\phi}}{1+\pi_{t+1}} \right] \\ \pi_t &= \frac{\epsilon_c - 1}{\psi_P} (m_t - 1) + \beta \mathbb{E}_t \left[\pi_{t+1} \right] \\ 1 &= \mathbb{E}_t \left[\frac{\beta u'(C_{t+1})}{u'(C_t)} \left(\tilde{\kappa} m_{t+1}^{1/\alpha} w_{t+1}^{1-1/\alpha} + 1 - \delta \right) \right] \end{split}$$

Realization after ϵ_1

$$\begin{split} Y_1 &= K_1^{\alpha} L_1^{1-\alpha} \\ L_1 &= ((1-1/\eta)(1-\alpha)m_1/w_1)^{\frac{1}{\alpha}} K_1 \\ w_1 &= (v'(L_1)/u'(C_1))^g w_{ss}^{1-g} \\ Y_1 &= C_1 + X_1 \\ K_2 &= (1-\delta)K_1 + A_X X_1 \\ 1 &= \mathbb{E}_t \left[\frac{\beta u'(C_2)}{u'(C_1)} \frac{(1+r_{ss})(1+\pi_1)^{\phi}}{1+\pi_2} \right] \\ \pi_1 &= \frac{\epsilon_c - 1}{\psi_P} (m_1 - 1) + \beta \mathbb{E}_t \left[\pi_2 \right] \end{split}$$

A four-equation model

- Special case of constant real wage (g = 0)
- Equilibrium conditions of a finite economy boil down to:

$$\frac{K_{ss}^{\alpha}L_{ss}^{1-\alpha}}{C_{ss}}(1-\alpha)\tilde{L}_{t} = \tilde{C}_{t} + \frac{X_{ss}}{C_{ss}}\epsilon_{t}$$

$$\tilde{m}_{t} = \alpha\tilde{L}_{t}$$

$$\pi_{t} = \frac{\epsilon - 1}{\psi_{P}}\tilde{m}_{t} + \beta\pi_{t+1}$$

$$\tilde{C}_{t+1} - \tilde{C}_{t} = \frac{1}{\sigma}(\phi\pi_{t} - \pi_{t+1})$$

- Investment demand ϵ_t shifts out labor demand.
- An increase in labor reduces the marginal product of labor.
 - Capital is essential ($\alpha > 0$).
- Pushing up intermediate goods price m_t , given real wages

Impulse responses when g > 0

Figure: Annual IRFs for capital, consumption, and inflation rates. X: years. Y: % deviations from steady states.

Time to build

Figure: Quarterly IRFs for capital, consumption, and inflation rates (%) with six quarters time-to-build.

Parameters calibrated at the quarterly frequency

α	β	δ	ψ	$\epsilon_{\it c}$	η	σ	ψ_{P}	λ	ϕ
0.36	0.995	0.025	0.5	6	30	3	30	1.2	1.2

 g is set at 0.03 (0.12 at the annual frequency) so that the real wage volatility matches data (st.d. 0.73% in the model; 0.44% in NIPA weekly real earnings of wage and salary workers 1979Q1-2024Q3)

Procyclical inflation

- Negative inflation after a capital increase
 - Capital and consumption are above the steady-state at t+1 and decrease afterward.
 - Euler equation: $1=\mathbb{E}_t rac{eta u'(\mathcal{C}_{t+1})}{u'(\mathcal{C}_t)} rac{(1+ au_{ss})(1+\pi_t)^\phi}{1+\pi_t}$
 - Taylor principle $\phi > 1 \Rightarrow$ future $\pi < 0$
- Positive inflation on the impact of an investment demand shock
 - Increased goods demand by investment shock.
 - Wealth effect of future capital raises consumption.
 - Sticky real wage raises marginal unit cost and intermediate price, leading to inflation.
- Policy analysis
 - If inflation is suppressed on impact, $C_1 < C_{ss}$ and $L_1 = L_{ss}$
 - Inflation helps intermediate production and facilitates higher consumption and hours worked

Contrasting with investment-specific technological (IST) shocks

- $K_{t+1} = (1 \delta)K_t + A_X X_t$
- A shock on A_X not known in $t \Rightarrow No$ change in t
- The case of "news shock": IST shock known in t
 ⇒ leading to disinflation on impact

• News shock: $a_2^x > 0$ is known in t = 1

$$\begin{split} \tilde{C}_{t+1} - \tilde{C}_t &= \frac{1 - \beta \left(1 - \delta\right)}{\sigma} \left(\left(1 - \alpha\right) \left(\tilde{L}_{t+1} - \tilde{K}_{t+1}\right) + \tilde{m}_{t+1} \right) \\ \frac{K_{ss}^{\alpha} L_{ss}^{1 - \alpha}}{C_{ss}} \left(1 - \alpha\right) \tilde{L}_t &= \tilde{C}_t + \frac{X_{ss}}{C_{ss}} \tilde{X}_t \\ \delta (a_t^{\mathsf{X}} + \tilde{X}_t) &= \tilde{K}_{t+1} \\ \tilde{m}_t &= \alpha \tilde{L}_t \\ \pi_t &= \frac{\epsilon - 1}{\psi_P} \tilde{m}_t + \beta \pi_{t+1} \\ \tilde{C}_{t+1} - \tilde{C}_t &= \frac{1}{\sigma} \left(\phi \pi_t - \pi_{t+1} \right) \end{split}$$

• $\tilde{K}_2>0$, $\tilde{m}_2<0$, and $\tilde{L}_2<0$. Thus $\tilde{C}_2<\tilde{C}_1$, leading to $\pi_1<0$.

Is ϵ_t large? Economy with n firms

- A finite number (n) of intermediate producers
 - Curse of dimensionality
 - Behavioral assumption: Agents expect $(a_{it}, s_{it})_{i=1}^n$ to follow $F^n \Rightarrow k_{it}^* = \tilde{a}_{it} \Phi K_t$
- Equilibrium of a model with *n* firms
 - Equilibrium condition:

$$k_{it} \in [k_{it}^*, \lambda k_{it}^*), \quad \forall i = 1, 2, \dots, n$$

• Future expectation is given by $K^e = \Xi(K_{-1})$

Equilibrium selection

Aggregate reaction function

$$\Gamma(K;\Phi) := \left(\sum_{i=1}^n \frac{(a_i^{1/\alpha}k_i)^\rho}{n}\right)^{1/\rho}, \ k_i \in [k^*, \lambda k^*), \ k^* = \tilde{a}_i \Phi K$$

- Select K_t closest to $K^e = \Xi(K_{t-1})$
- A finite number of locally-unique equilibria K_t
 - → Firms' decisions restrict output level.
 - $\leftrightarrow K_t$ is indeterminat in a continum-of-firms economy.

Investment avalanche

Origin: Avalanches

• State-dependent multiplier: Small changes in $(s_i)_i$ cause a large variation in the avalanche size.

Analysis: complementarity of investment spikes

- Perturbation experiment
 - Environment: a stationary economy with $n \to \infty$. Divide firms in H^2 groups where firms in group $h = (h_0, h_1)$ experience $a_{i,t} = a(h_0)$ and $a_{i,t+1} = a(h_1)$. Group-h firms have stationary measure $\omega(h)$.
 - Firms in h with $s_{i,t} \leq s^*(h) := \frac{-\log(1-\delta) + \Delta \log \tilde{a}(h)}{\log \lambda}$ invest.
 - Suppose firms in $[s^*(h), s^*(h) + \nu(h))$ additionally invest.
 - K_{t+1} increases, and s_{i,t+1} shifts.
 - Firms of measure ν' hit s^* . $\vartheta(h) := \lim_{\nu(h) \to 0} \frac{\nu'}{\omega(h)\nu(h)}$

 - $\vartheta := \sum_{h} \omega(h) \vartheta(h)$: Degree of complementarity

Origin: Avalanches 00000000000000

• Generalized model with $y_{it}^m = a_{it} (k_{it}^{\alpha} l_{it}^{1-\alpha})^{\theta}$, $\theta \leq 1$

Proposition

i.
$$\vartheta(h) = \frac{\tilde{a}(h_1)}{\mathbb{E}^F[\tilde{a}]} \tilde{\theta}$$

• $\tilde{\theta} = \frac{(\alpha\theta/\eta)/(1-(1-\alpha)\theta)}{1-\theta+\theta/\eta}$

ii.
$$artheta = ilde{ heta}$$

iii.
$$\tilde{\theta} \nearrow 1$$
 as $\theta \nearrow 1$

- Implications
 - A firm's lumpy investment induces $\tilde{\theta}$ firms' lumpy investment on average.
 - $\tilde{\theta} = 1$ under constant returns to scale $(\theta = 1)$.

Origin: Avalanches 00000000000000

- Investment avalanche: best response dynamics
 - 1. $s_i(0) \sim U[0,1)$
 - 2. $s_i(1) = s_i(0) + \frac{\log(1-\delta)-\Delta\log\tilde{a}_i}{\log\lambda}$
 - 3. $\mathcal{Z}_0 = \{i : s_i(1) < 0\}.$ $s_i(1) \mapsto s_i(1) + 1$ for $i \in \mathcal{Z}_0$
 - 4. K(0) is updated to K(1). Stop if $K(1) = \Xi(K(0))$.
 - 5. For u > 0, $s_i(u+1) = s_i(u) \frac{\tilde{\theta}(\log K(u) \log K(u-1))}{\log \lambda}$
 - 6. $\mathcal{Z}_{u} = \{i : s_{i}(u+1) < 0\}.$ $s_{i}(u+1) \mapsto s_{i}(u+1) + 1$ for $i \in \mathcal{Z}_{u}$
 - 7. K(u) is updated to K(u+1). Stop if K(u+1) = K(u) and set U=u. Otherwise, $u\mapsto u+1$ and go to 5.

Branching process and avalanche distribution

- An avalanche size follows a Generalized Poisson distribution
 - Power-law tail with exponential truncation
 - Nirei 2015; Nirei and Scheinkman 2024
- The probability of the avalanche size being infinite is 0 if and only if the mean number of children (ϑ) is less than or equal to 1

Fat tail of multiplier effects

- Analytical results
 - Let $z_u = |\mathcal{Z}_u|$ and $L = \sum_{u=1}^U z_u$: avalanche size
 - As $n \to \infty$, L converges in total variation to a sum of the Poisson branching process
 - $\Pr(L=\ell\mid z_1=1)\sim e^{-(\vartheta-1-\log\vartheta)\ell}\ell^{-1.5}$
 - $\mathbb{E}[(L/n)^2 \mid z_1 = 1] \propto \int^n (L/n)^2 L^{-1.5} dM \sim 1/\sqrt{n}$, for $\vartheta = 1$
 - $\mathbb{E}[z_1] \propto \sqrt{n}$
- Criticality at $\vartheta = 1$
 - Power-law tail of L if $\vartheta = 1$
 - ullet Exponential tail if artheta < 1
 - Explosive if $\vartheta > 1$
- Constant returns to scale, indivisible capital, and business cycles

Origin: Avalanches 0000000000000

- Idiosyncratic productivity follows an AR(1): $\log a_{i,t} = 0.9 \log a_{i,t-1} + 0.03\epsilon_{i,t}$
- Number of firms n = 30000
- 6 quarters of time-to-build

Distribution of the avalanche size

• Negative values are "retracted" investment decisions.

Simulated time-series of aggregate investments

Cost of rule-of-thumb

• Optimal rule: $k_{i,t+1}^* = \tilde{a}_{i,t+1} \Phi_t K_{t+1}$ and

$$\Phi_t = \left(rac{\kappa(\lambda^
ho-1)}{\lambda-1}\mathbb{E}_t\left[rac{\Lambda_{t+1}}{\Lambda_t}\left(rac{m_{t+1}}{w_{t+1}^{1-lpha}}
ight)^{rac{1}{lpha}}
ight]\mathbb{E}_t\left[1-rac{\Lambda_{t+1}}{\Lambda_t}(1-\delta)
ight]^{-1}
ight)^{rac{1}{1-
ho}}$$

- Cost of not updating Φ_t is 0.12% of operating surplus for the firm at the extensive margin.
- In aggregation, households lose 0.84% of dividend revenues.
- Deviations from F(a, s) are small
 - $\mathbb{E}[s_{it}^k]$ for k = 1, 2, 3, 4 and $t = 1, \dots, 1000$
 - Average deviations are less than 0.02% of population moments
 - Maximum deviations are less than 2.5% of population moments
 - Correlation coefficient of (a_{it}, s_{it}) is 0.14%

- Aggregate shocks can be incorporated. They will shift X^e_t
- Rule-of-thumb
 - Constant returns to scale with $n \to \infty$ means constant Φ_t
 - Timing of investment decisions and purchases
- Do firms internalize shifts in SDF caused by avalanche shocks?
 - Financial imperfections
 - Interest-elasticity of investment
 - Dampened general equilibrium effects
- Investment avalanches via production networks

Network propagation of lumpy investments

Linear-probability model: lumpy investments regressed on lumpy investments of their trading partners give positive coefficient

	(1	l)	(2)	(3)		
Customer	.016***	(.0044)	.015***	(.0047)	.020***	(.0047)	
Customer (lag)			.006	(.0046)	.015***	(.0046)	
Supplier	.011**	(.0046)	.013***	(.0049)	.029***	(.0050)	
Supplier (lag)			.010**	(.0048)	.024***	(.0049)	
Profit (lag)	.0003	(.00018)	.0003	(.0002)	.0008***	(.0002)	
Liquidity (lag)	.0003***	(.00004)	.0002***	(.0000)	.0004***	(.0000)	
Year FE	✓		✓		✓		
Firm FE	✓		✓				
Industry FE					✓		
N firms	23,224		22,326		22,326		
N obs	205,052		194,	366	194,366		

Table 4: Estimates of the linear probability model of a firm's investment spike.

(BSJBSA; Nirei 2024)

Logit estimates with TSR sample

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Customer	1.190***	1.176***	1.190***	1.176***	1.191***	1.176***	1.194***
	(.0289)	(.0301)	(.0289)	(.0301)	(.0290)	(.0302)	(.0339)
Customer (lag)		1.074**		1.074**		1.074**	1.074*
		(.0278)		(.0278)		(.0278)	(.0308)
Supplier	1.162***	1.143***	1.162***	1.143***	1.161***	1.143***	1.148***
	(.0309)	(.0318)	(.0309)	(.0318)	(.0308)	(.0318)	(.0347)
Supplier (lag)		1.106***		1.106***		1.104***	1.100**
		(.0309)		(.0309)		(.0309)	(.0334)
Profit (lag)	1.000***	1.000***	1.000***	1.000***	1.000***	1.000***	1.000***
	(1.7e-5)	(1.7e-5)	(1.7e-5)	(1.7e-5)	(1.7e-5)	(1.7e-5)	(2.0e-5)
Asset (lag)	1.000***	1.000***	1.000***	1.000***	1.000***	1.000***	1.000***
	(1.3e-9)	(1.3e-9)	(1.3e-9)	(1.3e-9)	(1.4e-9)	(1.4e-9)	(2.0e-9)
Liquidity (lag)			1.000	1.000	1.000	1.000	
			(7.0e-5)	(7.3e-5)	(7.0e-5)	(7.3e-5)	
Liquidity (lag,							2.364***
censored)							(.0608)
N Suppliers					1.004***	1.004***	1.006***
					(6.1e-4)	(6.0e-4)	(8.5e-4)
N Customers					0.999	0.999	.999
					(4.9e-4)	(4.9e-4)	(5.9e-4)
Year FE	✓	✓	✓	✓	✓	✓	✓
Firm FE	✓	✓	1	✓	✓	✓	✓
N firms	23226	22440	23226	22440	23226	22440	20195
N obs	309477	294857	309477	294857	309477	294857	247155

Table 7: Logit estimates (odds ratio) of a firm's investment spike: Balanced TSR sample.

Discussions 0000

- Lumpy investments bring about investment avalanches under constant returns to scale production technology.
- This provides microfoundation for animal spirits, or aggregate investment demand shocks
- Investment demand shocks account for procyclical inflation under sticky price and real wages.
- Time-to-build generates autocorrelation in investments and consumption.
- Future research on investment propagations over production networks.