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Abstract

We develop a new perturbational technique to approximate equilibria of a broad class of
stochastic heterogeneous-agent models with complex state spaces, such as multi-dimensional
distributions of endogenous variables. A key insight of our approach is that it is possible
to analytically characterize first, second, and higher-order approximations of the stochastic
process that governs this distributional state. These characterizations have linear recursive
structures, and we derive exact expressions for approximating coefficients as solutions to a
small-dimensional linear system of equations. To the first order of approximation, our method
is as fast and precise as existing state-of-the-art techniques that linearize heterogeneous agent
models using so-called “MIT shocks,” but the ability to quickly scale to higher orders enables
us to study a broader set of questions, such as the impact of risks, endogenous household
portfolio formation, and welfare implications of macroeconomic stabilization policies.
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1 Introduction

A significant body of empirical research highlights that macroeconomic fluctuations affect
households differently. Business cycle models with heterogeneous-agent (HA), with their abil-
ity to utilize rich micro-level data sets, are quickly becoming the canonical framework for
macroeconomic analysis. However, solving these models can be challenging due to their com-
plex state variables, which are high- or even infinite-dimensional objects such as distributions
of agents’ endogenous choices and exogenous characteristics. These variables are endogenous
and can change stochastically over time, making it difficult to find solutions. As a result,
researchers often resort to simplified models with limited heterogeneity or use linearization
techniques that do not fully account for considerations related to risk, insurance or portfolio
choice.

This paper aims to create a numerical method that can manage high-dimensional state
variables and is easily scalable for second and higher-order approximations. The focus on
scalability is crucial as higher-order approximations are necessary to examine nonlinearities
and interaction effects of macroeconomic shocks. Additionally, they are unavoidable when
assessing the consequences of risks and asset pricing, household portfolios, and evaluating the
welfare effects of macroeconomic stabilization policies.

Our proposed method utilizes a "small-noise" perturbation approach for approximating HA
models that have distributional and time-varying state variables. While small-noise expansions
have long been used for approximating representative-agent (RA) macroeconomic models1,
such as in Schmitt-Grohé and Uribe (2004), they face challenges when applied to HA models.
In RA economies, these expansions approximate equilibrium policy functions around a non-
stochastic steady state using various orders of Taylor expansions with respect to a scalar
that multiplies all aggregate shocks. The reason for its wide use in RA settings is because
of its applicability to a broad class of economies, scalability to any order of approximation,
and fast computational speed. However, when applied to HA models, this approach breaks
down quickly as the dimension of the state in the recursive representation increases, since its
computational complexity grows exponentially. Additionally, this approach struggles to handle
kinks in policy functions, which is a natural feature of HA models with occasionally binding
borrowing constraints.

A common technique since Reiter (2009) is to use a discrete representation of the equilib-
1This approach was developed to solve quantitative macroeconomic models, which originally were based

almost exclusively on the representative agent assumption. The same techniques work well if agents are non-
identical but heterogeneity is small. For simplicity, we refer to all such environments as RA models.
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rium conditions (for instance, using the popular “histogram method”, see Young (2010)) and
construct a linearization using a variety of numerical methods around the economy without
aggregate shocks. Our approach follows Reiter (2009) by utilizing the invariant distribution
in the economy without aggregate shocks as the "point-of-approximation." However, then we
proceed differently. Rather than differentiating the finite-dimensional system of equations,
we approximate the infinite-dimensional derivatives. We demonstrate that changing the or-
der of differentiation and discretization is conceptually similar only to the first order. At
higher orders, extensions of the histogram method fail to capture the true derivatives and can
give misleading answers. The second difference is that we represent the approximations using
derivatives only in a small set of directions—ones in which the endogenous state moves along
an equilibrium path— and not all directions as standard implementations of Reiter (2009) do.
This matters because calculating and storing derivatives in all directions, especially at higher
order, is extremely costly when the state space is large.

Our approach relies on linear operator techniques to derive results. In standard heteroge-
neous agent (HA) economies, the dependence of any policy function on distributions is captured
by Fréchet derivatives. While these derivatives are typically infinite-dimensional objects, they
are linear or multi-linear operators, which can be characterized analytically. These properties,
combined with the linearity of the operator, enable us to describe any order of approximation
of the law of motion of the aggregate distribution through a linear recursive structure that
can be explicitly characterized. As a result, we can derive exact analytical characterizations of
various orders of approximation of HA models.

Our method has several advantages. Because we rely on exact analytical derivatives, our
approach is faster and more stable relative to alternatives, even at first order. The tractable
linear recursive structure allows us to collapse the problem of finding any order of approxi-
mations into solving small-dimensional linear systems of equations. We show that matrices
involved in this linear system can be efficiently constructed by exploiting the sparseness in
the pre-computed basis matrices used to store policy functions at the point-of-approximation,
i.e., the economy without aggregate shocks. Furthermore, with simple extensions, our method
can handle time-varying aggregate risk, portfolio choice, and deterministic transitions across
different steady states.

We apply our algorithm to calibrated versions of the canonical real business cycle model
with heterogeneity, namely the Krusell and Smith (1998) model. We report diagnostic mea-
sures such as accuracy and speed and compare them to alternative methods. For example, we
can fully solve for the first-order approximation of a high-dimensional version of the Krusell-
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Smith economy in about 0.5 seconds and the second-order approximation within 2-3 seconds
on a standard desktop computer. Furthermore, we use extensions of the basic model to analyze
several applications designed to illustrate the usefulness of going beyond first-order approxima-
tions. These applications include the analysis of fiscal stabilization policies, the aggregate and
distributional effects of macroeconomic uncertainty fluctuations, and properties of household
portfolios across the asset distribution.

1.1 Related literature

Several recent papers have developed alternative methods to compute equilibria of HA economies.
When the underlying state in the HA model can be summarized by sufficiently simple func-
tions, the original approach of Krusell and Smith (1998) works well.2 Boppart et al. (2018) ob-
served that first-order approximations of the stochastic economy can be fully constructed from
first-order approximations of the deterministic response to a one-time unexpected “MIT-style”
shock, and study the stochastic properties of HA economies using responses from sequences of
MIT shocks.

In an important recent contribution, Auclert et al. (2021), or ABRS for short, developed
a fast and efficient sequence-space method to solve a broad class of HA economies to the
first-order approximation. There is a close connection between our approach and theirs and
we explain that connection in greater detail in Section 3.4; here we quickly summarize main
similarities and differences.

ABRS build on the result of Boppart et al. (2018) that knowing responses to MIT shocks
allows one to construct first-order approximations to stochastic economies. The key insight of
ABRS is that the response of the distribution to an MIT shock can be described as a recursive
linear system, which allows one quickly linearize the ‘MIT’ shock. ABRS use this insight to
computationally construct the key object in their analysis (that they call “the Jacobian”) and
convert the approximation problem into a small-dimensional linear system of equations.

Our method is related to ABRS, and in fact directly builds on their insights, as we also
exploit the recursively linear structure of Fréchet derivatives to simplify the analysis and col-
lapse our approximation problem to small-dimensional linear systems of equations. When we
restrict attention only to the first-order approximation, there is equivalence between the two
approaches. While their linear recursive system is different from ours as we use two different
representations of the equilibrium conditions, it is possible to prove that as the grid size in
their approximation procedure converges to zero their first order approximating coefficients

2Some recent work extends global solution methods to more complex environments using machine learning
techniques. See Maliar et al. (2021), Kahou et al. (2021), Childers et al. (2022), and Han et al. (2021) for details.
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would coincide with ours. Moreover, it takes approximately the same time to compute first-
order responses under their method and ours as both techniques ultimately use linear recursive
properties of key objects to construct closely related linear systems of equations.

There are two key differences between our approach and theirs that enable us to obtain
higher-order approximations. Firstly, we use recursive state space representation of equilib-
rium conditions, while ABRS use sequence-space formulation. For orders of approximation
that are higher than the first, knowing responses to MIT shocks is insufficient to recover all
approximation coefficients. Secondly, and perhaps even more importantly, ABRS follow most
of the literature and start by approximating the distribution and its law of motion using “his-
togram method” before taking any derivatives. We instead derive exact analytical expressions
for the derivatives first before using any numerical approximations. This distinction is im-
portant. In the paper we show that even in the limit, as the grid size used in the histogram
method becomes arbitrarily small, constructed approximations do not converge to their exact
theoretical counterparts, and that some of the second-order terms get lost. In our applications,
we show that this can significantly affect the conclusions one obtains.

The class of economies that we consider in this paper are discrete-time infinite horizon
versions of heterogeneous agent models with distributional states. There is a parallel literature
that studies continuous-time versions of these economies. See, for instance, Kaplan et al.
(2018), Achdou et al. (2020), Ahn et al. (2018) in the context of consumption-savings models;
Alvarez and Lippi (2022) and Alvarez et al. (2023a) in the context of price-setting models; and
Bigio et al. (2023) for an application to public debt maturity. In related work, Bilal (2023) and
Alvarez et al. (2023b) use mean field game techniques to construct approximations in these
class of models with aggregate shocks. The approaches share the use of linear operators over
infinite-dimensional spaces to characterize the exact derivatives analytically.

Our paper is also related to the approximation method used by Bhandari et al. (2021).
Like us, they used a state-space variational approach and Fréchet derivatives to obtain various
orders of approximations of HA economies. Their approach does not extend to economies
with occasionally binding borrowing constraints. It also changes the point-of-approximation
at each node of the aggregate history, which requires many re-computations of the point-of-
approximation. Our method instead computes the point-of-approximation only once and can
handle kinks in policy functions that emerge due to borrowing constraints. The analytical char-
acterization of the law of motion of the aggregate distribution, which is the central theoretical
result that simplifies our approach, is new to our paper.

The rest of the paper is organized as follows. Section 2 presents our baseline environment,
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Section 3 describes our approximation techniques in that environment, Section 4 show how
these techniques can be extended to models of transition dynamics, stochastic volatility, and
portfolio problems. Section 5 provides numerical illustration of our techniques. Section 6
concludes.

2 Environment

Many infinite-period heterogeneous agents (HA) models have a representation that is recursive
in a vector of exogenous disturbances and a distribution of endogenous state variables chosen
by individual agents in previous periods. In this section we describe a broad class of such
economies.

Consider an infinite period economy with a unit measure of agents. Let xi,t denote a vector
of endogenous variables that are chosen by agent i in period t, and Xt denote a vector of aggre-
gate variables that all individuals take as given. Let θi,t and Θt denote vectors of idiosyncratic
and aggregate exogenous shocks. In a typical application, the optimality conditions describing
optimal choice of xi,t depend on a subset of individual choices made in the previous period,
zi,t−1 ∈ xi,t−1, aggregate variables Xt, idiosyncratic shocks θi,t, as well as the expectations
Ei,txi,t+1. These optimality conditions can be summarized by some mapping F of the form

F (zi,t−1, xi,t,Ei,txi,t+1, Xt, θi,t) = 0 for all i, t, (1)

where initial (zi,−1, θi,0) are given. Aggregated variables Xt are determined by some market
clearing conditions that depend on aggregate shocks Θt and aggregations of individual choices,∫
xi,tdi. We represent these conditions by some mapping G of the form

G

(∫
xi,tdi,Xt,Θt

)
= 0 for all t. (2)

The initial conditions of the system are given by Θ−1 and Ω−1 where Ω−1 is the joint distri-
bution over (z, θ). By the equilibrium of the system we mean the solution

{
Xt

(
E t
)}

t,Et to
(1) and (2) given the initial conditions. We mainly focus on finding equilibrium values of the
aggregates Xt, since those are the main focus in many applications, but while doing so we also
describe a procedure to recover equilibrium values of xi,t. We refer to equations (1) and (2) as
the sequence-space representation of equilibrium.

To simplify the exposition, in the body of the paper we treat both θi,t and Θt as scalars
that follow AR(1) processes

Θt = ρΘΘt−1 + Et, (3)

θi,t = ρθθi,t−1 + εi,t, (4)
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but show in the appendix how our approach extends to the case when θi,t and Θt are multi-
dimensional. Et and εi,t are mean zero stochastic processes independent across time and agents,
coefficients ρΘ and ρθ satisfy |ρΘ|, |ρθ| < 1, and Et is bounded. For now, we assume that
stochastic processes for Et and εi,t are time invariant, but we drop this assumption in Section
4. We use µ to denote the probability distribution of εi,t.

Equations (1) and (2) allow us to have a representation of HA environments that is both
parsimonious in terms of notation and general in terms of economic features that it captures.
By appropriately defining xi,t and Xt, it includes models in which aggregate shocks affect
individual optimality conditions directly (let some subset X ′

t of Xt be defined via X ′
t − Θt =

0 as a part of G), individual choices of agents depend on their expectations of aggregate
variables in the future (let a subset of x′i,t of xi,t be defined by x′i,t = X ′

t as part of F, then
Etx

′
i,t+1 = EtX

′
t+1)3, and variance or other higher moments of {xi,t}i affect aggregate variables

(for example, if variance of some x′i,t ∈ xi,t is relevant for equilibrium determination, include
additional variables x′′i,t as a part of vector xi,t and variables X ′

t and X ′′
t as parts of vector Xt,

and add equation x′′i,t−(x′i,t−X ′
t)
2 = 0 to F and equations X ′

t−
∫
x′i,tdi = 0 and X ′′

t −
∫
x′′i,tdi = 0

to G).

2.1 Example using the Krusell-Smith economy

We illustrate how specific economic environments maps into our representation using a simple
version of the economy studied by Krusell and Smith (1998). All agents supply inelastically
one unit of labor that is subject to idiosyncratic efficiency shocks θi,t. Agents receive wage Wt

and save capital ki,t that earns gross return Rt. Agent’s optimization problem is

max
{ci,t,ki,t}t

E0

∞∑
t=0

βtU(ci,t)

subject to
ci,t + ki,t −Rtki,t−1 −Wt exp(θi,t) = 0, (5)

ki,t ≥ 0, (6)

where initial ki,−1 and θi,0 are given. Efficiency θi,t follows exogenous stochastic process.
We assume that the initial distribution of efficiencies among agents is stationary, so that the
aggregate efficiency level is constant, and normalize

∫
exp(θi,0)di = 1.

3It is also straightforward to allow expectations of future aggregates to enter in G, i.e.
G
(∫

xi,tdi,Xt,EtXt+1,Θt

)
. We opted to present our approach without this term to maintain parsimony without

losing any generality.
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Agents rent capital and supply efficiency-adjusted labor to firms each period. Firms are
competitive and produce output using Cobb-Douglas technology with aggregate productivity
exp(Θt) and capital share of α. Wages Wt and rental rates are determined by the market
clearing conditions so that supply of labor and capital by consumers is equal to the demand
for those factors by firms. The gross return Rt includes the rental rate and the un-depreciated
fraction of capital stock, 1− δ.

Let ζi,t be the Lagrange multipliers on borrowing constraint (6). Agent i optimality condi-
tions can be summarized by stochastic sequences {ki,t, ci,t, ui,t, ζi,t, λi,t}i,t that satisfy equations
(5) and

RtUc(ci,t)− λi,t = 0, Uc(ci,t) + ζi,t − βEtλi,t+1 = 0, ki,tζi,t = 0, ui,t − ki,t−1 = 0, (7)

where Uc is the derivative of U . The aggregate capital stock Kt, wages Wt and gross returns
Rt are pinned down by

Wt − (1− α) exp (Θt)K
α
t = 0, Kt −

∫
ui,tdi = 0, (8)

Rt + δ − α exp (Θt)K
α−1
t − 1 = 0. (9)

Equations (5), (7), (8) and (9) fully summarize the equilibrium dynamics of this economy.4

It is easy to see how these equations map into our sequence-space representation. In
particular, let xi,t = [ki,t, ci,t, ui,t, λi,t, ζi,t]

T, zi,t = ki,t, and Xt = [Kt,Wt, Rt]
T. Given this

definition, equations (5) and (7) define mapping F , and equations (8) and (9) define mapping
G.

2.2 The state-space representation

We assume that system (1) and (2) can be written recursively, with shock Θt and the joint
distribution of {(zi,t−1, θi,t)}i forming the aggregate state variable.5 We use Ωt−1 to denote
this distribution, with Ωt−1 ⟨z, θ⟩ being the mass of agents with zi,t−1 ≤ z and θi,t ≤ θ.
Let Zt = [Θt,Ωt−1]

T be the aggregate state. We use tildes to denote policy functions in
the recursive representation. Thus, X̃ (Z) denotes policy functions for aggregate variables

4It is easy to see that some variables, such as ui,t or λi,t are redundant and the sequence problem can
be specified without them. We chose this specification to minimize the number of arguments that appear in
F and G mappings, which makes our formulas more transparent. Alternative descriptions of the optimality
conditions would result in slightly different forms for F and G but all other results would extend directly to
those specifications.

5In particularly, the Krusell and Smith economy is recursive in aggregate productivity and the joint distri-
bution of individual capital holdings and labor efficiency.
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and x̃ (z, θ, Z) denotes policy functions for individual variables. Naturally, z̃ denotes policy
functions corresponding to zi,t. Since z̃ is a subject of vector x̃, we can write

z̃ = Px̃

for some selection matrix P.
The state-space representation of (1) and (2) is given by equations

F
(
z, x̃,Ex̃, X̃, θ

)
= 0 for all (z, θ, Z) , (10)

G

(∫
x̃dΩ, X̃, Θ̃

)
= 0 for all Z, (11)

and

Ω̃ (Z)
〈
z′, θ′

〉
=

∫ ∫
ι
(
z̃(z, θ, Z) ≤ z′

)
ι(ρθθ + ϵ ≤ θ′)µ (ϵ) dϵdΩ ⟨z, θ⟩ for all (Θ,Ω) , (12)

where in equation (10) we use Ex̃ to denote conditional expectation of x̃ with respect to (ϵ, E):

Ex̃ = E
[
x̃
(
z̃(z, θ, Z), ρθθ + ϵ, ρΘΘ+ E , Ω̃ (Z)

)∣∣∣ z, θ, Z] .
This recursive system is initialized by some Z0, corresponding to the initial joint distribution
and aggregate shock. We refer to Ω̃ (Z) in described in equation (12) as the Law of Motion
(LoM) for the aggregate distribution.

3 The perturbational approach

One of the most common methods to solve representative agents (RA) macroeconomic models
is to use a perturbational approach.6 Under this approach, one perturbs the aggregate shock
process as

Θt = ρΘΘt−1 + σEt, (13)

where σ ≥ 0 is a scalar and considers sequences of economies parameterized by σ. The original
economy corresponds to σ = 1. Policy functions must satisfy recursive state-space represen-
tation for all σ, and one then uses Taylor expansions of the state-state representation with
respect to σ, evaluated as σ = 0, to recover approximation coefficients of various orders.

This approach is very popular for solving and estimating DSGE models, and it lies in
the heart of a commonly used approximation software package DYNARE. In standard RA
economies, all computations can be done very quickly, and this approach extends naturally to
second- and higher-order approximations.

6See Schmitt-Grohé and Uribe (2004) or Judd (1998) for overview
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Using the perturbational approach for HA economies faces at least two difficulties. First,
the endogenous state Ω is a high- (typically, infinitely-) dimensional object. Brute force ap-
plication of perturbational techniques requires computing derivatives of policy functions with
respect to each of the dimensions of the state variable, which quickly becomes impractical with
even moderate amount of heterogeneity. Second, borrowing constraints and other frictions in
HA economy introduce kinks in policy functions, which makes them non-differentiable.

In this section, we show that these difficulties can be overcome in a large class of HA
economies. In particular, using linear operator techniques, one can sidestep the difficult task
of computing all derivatives of policy functions and instead derive analytically exact expressions
for all coefficients in the first-, second- and, in principle, higher-order expansions of the state-
space representation. These analytical expressions then can then be calculated on the computer
using sparse matrices. This allows us to find approximate equilibrium dynamics quickly and
easily even in cases when heterogeneity is very large.

3.1 The zeroths order approximation

Policy functions must satisfy (10), (11) and (12) for all σ, and so in the perturbed economy
they take the form X̃ (Z;σ), x̃ (z, θ, Z;σ), Ω̃ (Z;σ). To simplify our exposition, we treat z as
a scalar in the body of the paper; in the appendix we give extension to the case when z is a
vector.

Let X (Z), x (z, θ, Z), Ω(Z) be policy functions in the economy corresponding to σ = 0,
and let Z (Z) =

[
ρΘΘ,Ω(Z)

]
T. Standard applications of perturbation approach consider

approximations around a deterministic steady state. The analogue of that steady-state in our
HA economy is Z∗ = [0,Ω∗]T, where Ω∗ is the invariant distribution of the HA economy in
which Θt = 0 for all t. We call this economy the zeroth order approximation. Throughout, we
assume that the initial condition of our system is given by Θ−1 = 0 and Ω−1 = Ω∗.

Let Zt := Z(Z(....Z︸ ︷︷ ︸
t times

(Z0)) be the value of Zt in the σ = 0 economy. Throughout this section,

we maintain the following assumptions.

Assumption 1. (a). limt→∞ Zt(Z0) = Z∗ for all Z0 in a neighborhood of Z∗;
(b). X̃, Ω̃ are smooth with respect to (Z, σ) in neighborhood of (Z∗, 0) and uniquely

determined;
(c). Ω∗ has a finite number of mass-points;
(d). x continuous and piecewise smooth and Ω∗-a.e. smooth;
(e). x̃ are Ω∗-a.e. smooth with respect to (Z, σ) in neighborhood of (Z∗, 0) and uniquely

determined;.
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Parts (a) and (b) are direct generalization of stability conditions that are required for
perturbational method in RA settings (Blanchard and Kahn (1980), Schmitt-Grohé and Uribe
(2004)). Conditions (c) and (d) are new ones and allows us to incorporate occasionally binding
borrowing constraints and the resulting distributions with mass points. We allow the stationary
distribution to have a finite number of of mass points. We also allow for individual policy
functions to have a finite number of kinks but assume that the kinks and mass points do not
align so the kinks are of Ω∗-measure zero. Condition (e) is just the analogue of condition (b)
for individual policy functions with kinks.

To understand our new conditions (c) and (d), consider again our example of the Krusell-
Smith economy. In that application, Ω∗ corresponds to the invariant distribution of capital
in the economy without aggregate shocks. With continuous shocks Ω∗ has one unique mass
point at the borrowing constraint. Individual policy functions for capital k (θ, k) are non-
differentiable at the level of θ at which the borrowing constraint starts to bind, but for each
k there is at most one θk when this occurs. Since θi,t = ρθθi,t−1 + εi,t and any realization
of εi,t is of µ-measure of zero, there must be Ω∗-measure of points (θk, k) must be zero as
well, satisfying the smoothness requirement in (d). This holds irrespective of whether in the
invariant distribution there is a mass of agents with capital holdings at the borrowing constraint
or not.

In many applications it is easy to compute the invariant distribution of HA economy when
there are no aggregate shocks. Thus, for the purposes of this paper, we treat Ω∗, X (Z∗)

and x (z, θ, Z∗) as known objects. Since our expansions are around Z = Z∗, we drop explicit
references to aggregate state and use X and x (z, θ) to refer to these policy functions when
Z = Z∗. We use Λ(z′, θ′, z, θ) to denote transition probability from (z, θ) to (z′, θ′) under Ω∗.

Our analytical derivations exploit properties of various linear operators. One of the most
important operators for us will be Fréchet derivatives. We use XZ , xZ (z, θ) and ΩZ to denote
the Fréchet derivative of X (Z), x (z, θ, Z) and Ω(Z) with respect to Z, evaluated at Z = Z∗.
We denote the value of that derivative in direction Ẑ by XZ · Ẑ, etc.7 Similar notation applies
to higher orders, e.g., XZZ denotes the second-order Fréchet derivative and XZ ·

(
Ẑ ′, Ẑ ′′

)
denotes its value in directions Ẑ ′, Ẑ ′′. The Fréchet derivative of Z satisfies ZZ =

[
ρΘ
ΩZ

0

]
.

Economically, XZ captures collection of marginal effects of changes of every dimension of
Z, and XZ · Ẑ is the first order effect of perturbing the aggregate state from Z∗ to Z∗ + Ẑ on

7Our terminology is slightly different from the one used by Luenberger (1997) and is meant to highlight the
economic meaning of these objects. Luenberger (Chapter 7) would refer to XZ · Ẑ as the “Fréchet differential
of X (at Z∗) with increment Ẑ”.
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X. In HA economies, Fréchet derivatives are high-dimensional objects and computing them is
impractical. This, turns out, to be also not necessary. Fréchet derivatives are linear (or multi-
linear for higher orders of derivatives) operators and can be easily manipulated analytically
without knowing their specific values. In order to find the approximations, we need to find
note the whole Fréchet derivative but only its values in specific directions, and those values
always remain small-dimensional objects even if the derivative itself is infinite-dimensional.

We use Fx(z, θ), Fxe(z, θ), FX(z, θ) to denote derivatives of F in (10) with respect to
x̃,Ex̃, X̃, all evaluated at (z, θ, Z∗). Similarly, Gx, GX , GΘ denote derivatives of G in (11)
with respect to its three arguments evaluated at Z∗. Their higher order analogues are denoted
by Fxx(z, θ), GxX , etc. We use subscripts xz(z, θ), xzz (z, θ), xθ (z, θ), etc to denote various
derivatives of x (z, θ). All these derivatives can be constructed from the zeroths order economy
and we treat them as known for the purposes of our approximations. Finally, Xσ, Xσσ,
xσ (z, θ), etc denote various orders of derivatives of policy functions X̃ (Z;σ) and x̃ (z, θ, Z;σ)

with respect to σ, evaluated at (Z, σ) = (Z∗, 0) . We refer to these terms as precautionary
motives.

3.1.1 Remark on numerical implementation of zeroth order terms

The optimal decision rules, x̄(z, θ), are approximated using a finite number of basis functions.8

The coefficients of these basis functions that solve the households optimality conditions F ,
given a candidate X, at finite set of interpolation gridpoints are found using the endogenous
grid method of Carroll (2006). The stationary distribution Ω∗ is approximated with a grid
over income and assets that is finer than the one used for the policy functions. Given policy
rules z(z, θ) and the process for θ the stationary transition density, Λ, for the individual states
is approximated using the method of Young (2010) as a large sparse matrix. Ω∗ is recovered
by finding the eigenvector associated with the unit eigenvalue of Λ. Finally, X is found such
that at the induced Ω∗ and x(z, θ) to satisfy G.

At the stationary equilibrium (x,X,Ω∗) the derivatives of F (i.e., Fx(z, θ), FX(z, θ), etc)
can be computed at any point using automatic differentiation by evaluating the F function
with the steady state policy rules. In the same manner, the derivatives of G (i.e. Gx,GX ,

and GΘ) can also be evaluated using automatic differentiation. Finally, derivatives of x (i.e.
xz(z, θ), xθ(z, θ), etc. ) can be evaluated by weighting the appropriate derivatives of the basis
functions by the coefficients that approximate x(z, θ).

8For our numerical work we use quadratic spline basis functions
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3.2 First-order approximations

We now show how linear operator techniques can be used to obtain the first order equilibrium
approximation. Define a sequence of directions {Ẑt}t recursively as follows: Ẑ0 = [1,0]T and
Ẑt := ZZ · Ẑt−1. Let XZ,t be the value of the Fréchet derivative of X evaluated in direction
Ẑt, i.e. XZ,t := XZ · Ẑt. We use similar notation for all other policy functions that depend on
Z, e.g., xZ,t (z, θ) := xZ (z, θ) · Ẑt.

To understand the economic intuition behind this expression, consider the effect of an
aggregate shock E0 in period 0. On the impact, this shock does not affect the aggregate
distribution Ω0 but it changes the aggregate productivity Θ0 by E0. Thus, to the first (in fact,
any) order of approximation, state Z0 changes by Ẑ0 · E0. This, in turn, induces changes in the
aggregate states in the future. The first order response of the LoM to changes in the aggregate
state is captured by ΩZ . Therefore, Ω̂1 = ΩZ · Ẑ0 is the first order effect on the aggregate
distribution next period and Ẑ1 · E0 =

[
ρΘ, Ω̂1

]T
· E0 is the first order change in the aggregate

state induced by E0. By induction, Ẑt =
[
ρtΘ, Ω̂t

]T
is the first order change in the aggregate

state t period after shock E0. XZ,t captures the response of policy functions to this change in
the aggregate state. The sequence {XZ,t}t represents what is often referred to colloquially in
the literature as the impulse response to an “MIT shock”.

With this notation in place, we now describe how to recover the first order equilibrium
approximation using this constructed values of the Fréchet derivatives.

Lemma 1(FO). To the first order approximation, satisfies

Xt

(
E t
)
=X +

t∑
s=0

XZ,t−sEs +O
(
∥E∥2

)
.

This lemma re-formulates in the state-space representation a well-known insight (see, e.g.,
Boppart et al. (2018) or Auclert et al. (2021)) that one can construct first-order approximations
to stochastic economies using impulse responses to MIT shocks. The main take away for our
purposes is that finding the first order equilibrium approximation is equivalent to finding values
of the Fréchet derivative XZ in a sequence of directions {Ẑt}t. In order to find these values,
we take a Fréchet derivative of (11) and evaluate it in some direction Ẑt.

Lemma 2(FO). For any t,

Gx

(∫
xZ,tdΩ

∗ +

∫
xdΩ̂t

)
+ GXXZ,t + GΘρ

t
Θ = 0. (14)

In equation (14) terms Gx, GX , GΘρ
t
Θ are all known from the zeroth order approximation.

The expression in the brackets is the Fréchet derivative
(∫

xdΩ
)
Z,t

written explicitly. This
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derivative decomposes the first order changes in this integral into two components: the effect
from changes in individual policy functions, the term

∫
xZ,tdΩ

∗, and the effect from changes
in distribution, the term

∫
xdΩ̂t. We want to characterize each of these two integrals.

We start
∫
xZ,tdΩ

∗. It depends on the Fréchet derivatives of the individual policy functions,
xZ,t (z, θ), which at this stage are unknown. It turns out that those derivatives can be replaced
with {XZ,s}s weighted with coefficients known from the zero order:

Lemma 3(FO). For any t,

xZ,t (z, θ) =

∞∑
s=0

xs (z, θ)︸ ︷︷ ︸
=∂xt/∂Xt+s

XZ,t+s, (15)

where matrices xs (z, θ) are given by

x0 (z, θ) =− (Fx(z, θ) + Fxe(z, θ)E [xz|z, θ]P)−1 FX(z, θ), (16)

xs+1 (z, θ) =− (Fx(z, θ) + Fxe(z, θ)E [xz|z, θ]P)−1 Fxe(z, θ)E [xs|z, θ] . (17)

Matrix xs (z, θ) captures first order responses of agent (z, θ) to changes in aggregate vari-
ables s periods in the future, ∂xt/∂Xt+s, so individual response xZ,t (z, θ) depends on expected
future path of aggregate variables {XZ,t+s}s weighted with xs (z, θ). Importantly, coefficients
{xs (z, θ)}s are known explicitly in closed form. This significantly simplifies their calculation as
we describe in more details in Section 3.2.1. Using Lemma 3(FO) we can express the integral∫
xZ,tdΩ

∗ as a sum of {XZ,s}s weighted with coefficients known from the zeroth order:

Corollary 1(FO). For any t, ∫
xZ,tdΩ

∗ =
∞∑
s=0

(∫
xsdΩ

∗
)
XZ,t+s.

We now turn to characterizing integral
∫
xdΩ̂t. This requires us to describe the LoM of the

aggregate distribution Ω̂t which is a high-dimensional object. Two linear operators, M and L,
greatly simplify this description. For any integrable functions y : z × θ → R, these operators
return M · y and L · Y defined as follows:9

(M · y)
〈
z′, θ′

〉
:=

∫
Λ(z′, θ′, z, θ)y (z, θ) dΩ∗ (z, θ) ,

(L · y)
〈
z′, θ′

〉
:=

∫
Λ(z′, θ′, z, θ)zz(z, θ)y (z, θ) dzdθ.

9In the general case, when z can be multi-dimensional vector, M is defined for a space of integrable functions
Y : z × θ → Rdim z. See appendix for details.
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Operators M and L describe how changes in policy functions and distributions propagate
over time to the first order of approximation. To get intuition for what they represent consider
the following thought experiment. Suppose that for some reason individual policy functions
change in period 0 by some ẑ0 (z, θ). How does this change affect the aggregate distribution
over time? To answer this question, differentiate equation (12) to show that, the first order,
the change in the distribution next period, Ω̂1, must satisfy

Ω̂1

〈
z′, θ′

〉
= −

∫∫
δ(z̄(z, θ)− z′)ι(ρθθ + ϵ ≤ θ′)µ(ϵ)ẑ0 (z, θ) dϵdΩ

∗.

Differentiate both sides of this expression with respect to θ′ to obtain

d

dθ
Ω̂1

〈
z′, θ′

〉
= −

∫ ∫
δ(z̄(z, θ)− z′)δ(ρθθ + ϵ− θ′)µ(ϵ)dϵ︸ ︷︷ ︸

=Λ(z′,θ′,z,θ)

ẑ0 (z, θ) dΩ
∗,

or simply
d

dθ
Ω̂1 = −M · ẑ0.

Thus, operator M captures the first order effect of changes in individual policy functions on
the aggregate distribution next period, holding the aggregate distribution fixed at Ω∗.

How does this change in the distribution percolates over time? One the one hand, changes
in aggregate state induce changes in individual policy functions next period, ẑ1, that has the
distributional consequences captured by the M operator as discussed above. On the other
hand, changes in the aggregate distribution Ω̂1 would induce changes in this distribution in
the future even if individual policy functions remained unchanged. Let Ω̂2 be this latter
component, that can be formally written as

Ω̂2

〈
z′, θ′

〉
=

∫∫
ι
(
z̄(z, θ)− z′

)
ι(ρθθ + ϵ ≤ θ′)µ (ϵ) dϵdΩ̂1.

Apply the integration by parts to the integral on the right hand side and then differentiate
both sides of this equation with respect to θ′ to obtain

d

dθ
Ω̂2

〈
z′, θ′

〉
=

∫ ∫
δ(z̄(z, θ)− z′)δ(ρθθ + ϵ− θ′)µ(ϵ)dϵ︸ ︷︷ ︸

=Λ(z′,θ′,z,θ)

zz (z, θ)
d

dθ
Ω̂1 ⟨z, θ⟩ dzdθ,

or simply
d

dθ
Ω̂2 = L · d

dθ
Ω̂1.

Thus, operator L captures the effect of the first order change in the aggregate distribution in
period t on the aggregate distribution in period t+ 1, holding policy rules fixed.

14



With these operators, we can succinctly describe the LoM for Ω̂t. We use notation zs to
refer to the part of vector xs that corresponds to individual state variables, i.e., zs = Pxs. We
will maintain this convention also when we describe higher order analogues of xs.

Lemma 4(FO). For any t, d
dθ Ω̂t satisfies a recursion

d

dθ
Ω̂t+1 = L · d

dθ
Ω̂t −

∞∑
s=0

asXZ,t+s, (18)

where as = M · zs and d
dθ Ω̂0 = 0.

Equation (18) shows that the LoM for d
dθ Ω̂t+1 be can separated into two components: the

backward-looking component that captures how changes in the distribution last period per-
colates over time, L · d

dθ Ω̂t, and the forward-looking component that captures how expected
changes in aggregate variables in the future affect individual policy functions today and, there-
fore, the distribution tomorrow, M ·

∑∞
s=0 zsXZ,t+s.

The recursive structure derived in Lemma 4(FO) allows us to simplify
∫
xdΩ̂t. Observe

that, due to integration by parts, this integral can be written as∫
xdΩ̂t = −

∫
xz

d

dθ
Ω̂tdzdθ := −I · d

dθ
Ω̂t,

with operator I providing a convenient shorthand for the last integral. This immediately gives
the following corollary.

Corollary 2(FO). For any t, ∫
xdΩ̂t =

∞∑
s=0

(I · At,s)XZ,s,

where {At,s}t,s follow a recursion A0,s = 0, as = M · zs, and At,s = L · At−1,s + as−t−1.

Combine Corollaries 1(FO) and 2(FO) with Lemma 2(FO) to obtain the main result of this
section:

Proposition 1(FO).
{
XZ,t

}
t

is the solution to

Gx

∞∑
s=0

Jt,sXZ,s + GXXZ,t + GΘρ
t
Θ = 0, (19)

where {Jt,s}t,s satisfies Jt,s =
∫
xs−tdΩ

∗ + I · At,s.

This proposition provides the exact analytical expressions for the linear system of equation
solution to which determines {XZ,t}t. Since {At,s}t,s has a simple linear recursive structure,
Jacobian {Jt,s}t,s it can be quickly constructed numerically and the system (19) inverted to
find

{
XZ,t

}
t
.
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3.2.1 Remark on numerical implementation of first order terms

We provide an overview of the numerical implementation of the first order algorithm. For
details see appendix. The derivatives of the decisions rules, xs, are approximated using the
collocation method with the same basis functions and interpolation gridpoints as x. At every
gridpoint, xs can be found directly using small dimensional matrix operations since the linear
expectation operators in (16) and (17) can be represented using a matrix by pre-evaluating
the basis functions at appropriate points.

The functions as are approximated by column vectors with length equal to the distribution
gridpoints. They are constructed by weighting the density of stationary distribution, Ω∗,
with the policy rules zs evaluated at the distribution gridpoints and then multiplying by the
stationary transition matrix Λ. The operator L is approximated by a large sparse matrix and
is constructed by weighting the columns of the stationary transition matrix Λ with the policy
rules zz evaluated at the distribution gridpoints. Finally the operator I is then approximated
by a row-vector constructed by evaluating xz at the distribution gridpoints. The components
of Jt,s, i.e. I ·At,s, can then be constructed using simple matrix operations. By truncating at a
horizon T , (19) can be represented in matrix form as constant vector plus a matrix multiplying
the stacked vector {XZ,s}. Once the equilibrium {XZ,s} are found the derivatives xZ,t and d

dθ Ω̂t

can constructed from (15) and (18) and stored as coefficients of the basis functions.

3.3 Second order approximations

Our approach has a key property where the steps used to obtain the first order approximations
can be applied to second-order and higher-order approximations with only small adjustments.
To better understand why this is the case, it is helpful to provide a simple example before
diving into the detailed explanations.

In the recursive representation policy functions (e.g, x) depend on other policy functions
(e.g., z) that, in turn, depend on aggregate shocks and states. To see implications of this fact
for second order expansions, consider an example of mapping f (g (a)), where a is a scalar and
f and g are uni-dimensional functions. Let ga, gaa and fg, fgg be derivatives of g (·) and f (·).
The first order expansion of f with respect to a is

∂

∂a
f = fgga. (20)

This equation can be interpreted as saying that the first order change in f , captured by ∂
∂af ,

is equal to the first order response of f , captured by fg, to the first order change in g, captured
by ga. The first order approximations that we developed in Section 3.2 can be described as
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finding ∂
∂af and ga. The functional form for f was often explicitly known from the F and G

mappings and we obtained the analogue of fg from the zeroths order economy.
The second order expansion of f (g (a)) satisfies

∂2

∂a2
f = fggaa︸ ︷︷ ︸

first order response to second order change

+ fgggaga︸ ︷︷ ︸
second order response to first order change

. (21)

Thus, the second order change in f can be separated into two terms: the first order response
of f to the second order change of g and the second order response of f to the first order
change in g. This separation will be useful since the two responses will play different roles in
approximations. The second order response to the first order change will often be known from
the first and zeroth order economies, so that the second term on the right hand side of (21)
can be treated as a known constant. The first order response to the second order change is
yet unknown but it has the same structure as the first order equation (20), except that the
first order change ga is replaced by the second order change gaa. But this observation implies
that essentially the entire procedure we developed for the first order approximations can be
recycled for finding second order approximations, modulo adding constants known from the
lower-order approximations.

Keeping this insight in mind, we now turn to our general economy and start by constructing
directions pertinent for second order approximations. We need two sets of directions, {Ẑt,s}t,s
and {Ẑσσ,t}t, that we define recursively as follows:

Ẑt,k = ZZ · Ẑt−1,k−1 + ZZZ ·
(
Ẑt−1, Ẑk−1

)
for all t, k > 0,

Ẑσσ,t =
[
0,Ωσσ

]T
+ ZZ · Ẑσσ,t−1 for all t > 0,

with Ẑ0,s = Ẑt,0 = Ẑσσ,0 = 0. Direction Ẑt,s captures the second order change in the aggregate
state in response to aggregate shocks that occurred t and k periods ago. Similarly to (21),
it consists of two terms: the first order response of the LoM to the second order change in
the aggregate state last period, ZZ · Ẑt−1,k−1, and the second order response of the LoM to
the first order changes in the aggregate states, ZZZ ·

(
Ẑt−1, Ẑk−1

)
. Direction Ẑσσ,t captures

precautionary motives, i.e. how variables change due to risk. These objections did not appear
in the first order approximations as they were all identically equal to zero. Term

[
0,Ωσσ

]T
captures how risk affects the LoM in the current period, term ZZ · Ẑσσ,t−1 captures how the
LoM responds, to the first order, to the changes in the aggregate distribution induced by
precautionary motives in the past.
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We define {XZZ,t,k}t,k and {Xσσ,t}t as XZZ,t,k = XZ · Ẑt,k +XZZ ·
(
Ẑt, Ẑk

)
and Xσσ,t =

Xσσ + XZ · Ẑσσ,t. They play the same role in the second order approximations as {XZ,t}t
played in the first order.

Lemma 1(SO). To the second order approximation, Xt satisfies

Xt

(
E t
)
= ...+

1

2

(
t∑

s=0

t∑
m=0

XZZ,t−s,t−mEsEm +Xσσ,t

)
+O

(
∥E∥3

)
,

where ... are the first-order terms.

XZZ,t−s,t−mEsEm is the second-order response in period t to shocks that occurred s and m

periods ago and Xσσ,t is the effect of precautionary motives on aggregate variables. In order to
find {XZZ,t,k}t,k and {Xσσ,t}t we take the second order Fréchet derivative of (11) and evaluate
it in the appropriate directions.

Lemma 2(SO). For any t,k

Gx

(∫
xσσ,tdΩ

∗ +

∫
xdΩ̂σσ,t

)
+ GXXσσ,t = 0, (22)

Gx

(∫
xZZ,t,kdΩ

∗ +

∫
xdΩ̂t,k + Dt,k

)
+ GXXZZ,t,s + GΘΘ,t,k = 0, (23)

where explicit expression for GΘΘ,t,k is given in the appendix and Dt,k =
∫
x̄Z,tdΩ̂k+

∫
x̄Z,kdΩ̂t.

Equation (22) has structure identical to equation (14), except that first order derivatives
are replaced with the second order one. This could have been easily anticipated from our simple
example (see equation (21)) by setting the first order changes ga (i.e., terms corresponding to
the first order precautionary motive) to zero. Equation (23) has an additional term GΘΘ,t,k

that captures second order response of the G mapping to the first order changes in aggregate
variables. We provide the explicit expression for this term in the appendix. That expression
is lengthy but very intuitive, as it depends on the second-order derivatives of G, such as GXX ,
and the first order changes in equilibrium variables such as XZ,t. Importantly, since both GXX

and XZ,t are known from zeroth and first order approximations, GΘΘ,t,k can be calculated
explicitly and we treat it as known for the purpose of this section. Term Dt,k can be written
in terms of objects constructed in Section 3.2 using the intergration by parts:

Dt,k = −
∫

xzZ,t
d

dθ
Ω̂kdzdθ −

∫
xzZ,k

d

dθ
Ω̂tdzdθ.

Thus, it remains to understand the terms
∫
xσσ,tdΩ

∗ and
∫
xdΩ̂σσ,t to solve for the response

of the economy with respect to risk, Xσσ,t, and we must also characterize
∫
xZZ,t,kdΩ

∗ and∫
xdΩ̂t,k to find the curvature terms, XZZ,t,k.
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To characterize
∫
xσσ,tdΩ

∗ and
∫
xZZ,t,kdΩ

∗ we first extend Lemma 3(SO) to the second
order.

Lemma 3(SO). For any t,

xσσ,t(z, θ) =

∞∑
s=0

xs(z, θ)Xσσ,t+s + xσσ(z, θ), (24)

xZZ,t,k(z, θ) =

∞∑
s=0

xs(z, θ)XZZ,t+s,k+s + xt,k(z, θ), (25)

where explicit expressions for xσσ and xt,k are provided in the appendix.

Expressions (24) and (25) have similar structure to (15). The second order changes in
individual policy functions xσσ,t and xZZ,t,k depend on the first order responses xs on the
second order changes in the aggregates, Xσσ,t+s and XZZ,t+s,k+s. In addition, xZZ,t,k depends
on the second order response to the first order changes in the aggregates, and it is captured by
xt,k. Similarly to the term GΘΘ,t,k in equation (23), it depends on the second order derivatives
of F mapping and first order terms {XZ,t}t. Its derivation is lengthy but straightforward.
The only new element is adjustments for kinks in policy functions which are captured by a δ-
function component of xt,k at the kinks. These adjustments were not necessary in the first order
approximations since policy functions z (z, θ) were continuous, but they are needed at higher
orders due to discontinuities of zz (z, θ) at kinks. These adjustments can be constructed from
the zeroth order terms and are described in the appendix. Term xσσ captures precautionary
effect of risk and it is proportional to var (E).10

Using Lemma 3(SO) we obtain the second order analogue of Corollary 1(FO):

Corollary 1(SO). For any t,∫
xσσ,tdΩ

∗ =

∞∑
s=0

(∫
xsdΩ

∗
)
Xσσ,t+s +

∫
xσσdΩ

∗,

∫
xZZ,t,kdΩ

∗ =
∞∑
s=0

(∫
xsdΩ

∗
)
XZZ,t+s,k+s +

∫
xt,kdΩ

∗.

In order to characterize integrals
∫
xdΩ̂σσ,t and

∫
xdΩ̂t,k in equations (24) and (25) we need

to describe the LoM. The easiest way to understand the intuition for what is to come is to
10Explicit formulas show that, in addition to objects known from the zeroths and first order approximations,

xσσ also depend on xZZ,0,0, so in practice one needs first to find
{
XZZ,t,k

}
t,k

and hence xZZ,0,0 before finding{
Xσσ,t

}
t
.
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consider the simple example that we gave in the beginning of this section but allow f to also
depend on a independently of g (a), i.e. f (g (a) , a). Equation (21) then becomes

∂2

∂a2
f = fggaa + faa︸ ︷︷ ︸

first order response to second order change

+ fgggaga + 2fgaga︸ ︷︷ ︸
second order response to first order change

. (26)

The key observation is that, for non-linear functions, the second order response to first order
changes consists of two terms: the second order response to the interaction of first order changes
(fgggaga in equation (26)) and the change in the first order response to the first order change
(2fgaga in equation (26)).

When taking the second derivative of the LoM, the operators capturing the first order
responses to second order changes fg are the L and M present in Lemma 4(FO). In addition,
we have new operators representing the second order response to first order changes (the fgg

and fga terms of equation (26)). Recall that operator L depends on policy functions zz and,
therefore, it is a function of Z. Let LZ be the Fréchet derivative of L and let LZ,t denote
LZ,t = LZ · Ẑt so

(LZ,t · y)
〈
z′, θ′

〉
:=

∫
Λ(z′, θ′, z, θ)zzZ,t(z, θ)y (z, θ) dzdθ,

which is the counterpart of the fga term. Next, operators d
dzM and d

dzL will capture the
second order response to the interaction of first order changes (fgg term) where we use the
notation M· (y1, y2) and L · (y1, y2) to denote M· y and L · y where y is a point-wise products
of functions y1 and y2, i.e. y (z, θ) = y1 (z, θ) y2 (z, θ) for all (z, θ). The second order expansion
of the LoM can then be written recursively as

Lemma 4(SO). For all t,

d

dθ
Ω̂σσ,t+1 = L · d

dθ
Ω̂σσ,t −

∞∑
s=0

asXσσ,t+s −M · zσσ, (27)

and

d

dθ
Ω̂t+1,k+1 = L · d

dθ
Ω̂t,k −

∞∑
s=0

asXZZ,t+s,k+s −M · zt,k

+
d

dz
M · (zZ,t+1, zZ,k+1)−

d

dz
L ·
(

d

dθ
Ω̂t+1, zZ,k+1

)
− d

dz
L ·
(

d

dθ
Ω̂k+1, zZ,t+1

)
(28)

+ LZ,t ·
d

dθ
Ω̂k + LZ,k ·

d

dθ
Ω̂t.

To understand intuition for these expressions, consider first equation (27). As the pre-
cautionary savings motive is zero to first order, equation (27) doesn’t rely on any of the new
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operators, using only L and M. The first two terms on the right hand side of (27) have exactly
the same interpretation as equation (18), just applied to the second-order terms that arise due
to the precautionary motive: L · d

dθ Ω̂σσ,t is the first order response of the LoM to the second
order changes in distribution Ω̂σσ,t, and asXσσ,t+s is the first order response of the LoM to the
expected second order changes in aggregate prices, with all changes driven by precautionary
motives. The precautionary motive also affects policy functions in period t, and M · zσσ cap-
tures the first order response of the LoM of the aggregate distribution to this adjustments in
policy functions.

Equation (28) captures the second order changes in the aggregate distribution due to ag-
gregate shocks. The first line of this equation is the exact parallel of equation (27) and it shows
first order responses of the LoM to the second order changes in various policy functions. The
second and third lines of equation (28) capture the second order responses of the LoM to the
first order changes in the policies as captured in equation (26). The second line of (27) consists
of the second order response to the interaction of first order changes (fgggaga in equation (26)),
while the third line is the change in the first order response to the first order change (2fgaga
in equation (26)).

Equations (27) and (28) have a recursive structure that is very similar to that of (18). Now
we use that recursive structure like we did in Corollary 2(FO) to get an expression

∫
x̄dΩ̂σσ,t

and
∫
xdΩ̂t,k. To see how this can be done, define

bσσ := M · zσσ,

bt,k := M · zt+1,k+1 − LZ,t ·
d

dθ
Ω̂k − LZ,k ·

d

dθ
Ω̂t,

ct,k = M · (zZ,t+1, zZ,k+1)− L ·
(

d

dθ
Ω̂t+1, zZ,k+1

)
− L ·

(
d

dθ
Ω̂k+1, zZ,t+1

)
,

then the recursive LoMs, (27) and (28), can be written more succinctly as

d

dθ
Ω̂σσ,t+1 = L · d

dθ
Ω̂σσ,t −

∞∑
s=0

asXσσ,t+s − bσσ (29)

d

dθ
Ω̂t+1,k+1 = L · d

dθ
Ω̂t,k −

∞∑
s=0

asXZZ,t+s,k+s − bt,k +
d

dz
ct,k. (30)

Equation (29) follows the same recursive structure as (18) with only the addition of the bσσ

term. As such, one would expect it to aggregate in the same way using integration by parts:∫
x̄dΩ̂σσ,t = −I · d

dθ Ω̂σσ,t.

Equation (30) has the same structure as (29) with the addition of a new term d
dz ct,k. To

get intuition for how the presence of d
dz ct,k alters

∫
xdΩ̂t,k assume that all terms except for c0,0

21



are zero. Under this assumption d
dθ Ω̂1,1 =

d
dz c0,0, which implies that∫

x̄dΩ̂σσ,1 = −
∫

xz
d

dz
c0,0dzdθ =

∫
xzzc0,0dzdθ := I(zz) · c0,0,

where the second equality was achieved by an additional application integration by parts. This
insight carries over to future periods as d

dθ Ω̂2,2 = L · d
dz c0,0. Using integration by parts we get

L · d

dz
c0,0 = −L(zz) · c0,0 +

d

dz
L(z,z) · c0,0

where L(zz) and L(z,z) are defined as L with zz being replaced by zzz and zzzz respectively.
We then observe that the aggregated decisions,

∫
x̄dΩ̂σσ,2, simplify to

−
∫

xz

(
−L(zz) · c0,0 +

d

dz
L(z,z) · c0,0

)
dzdθ = I · L(zz) · c0,0 + I(zz) · L(z,z) · c0,0.

Applying these insights to the full LoMs gives the following corollary

Corollary 2(SO). For all t,∫
x̄dΩ̂σσ,t =

∞∑
s=0

(I · At,s)Xσσ,s + I · Bσσ,t,

where {Bσσ,t}t follows a recursion Bσσ,t+1 = bσσ + L · Bσσ,t; and∫
xdΩ̂t,k =

∞∑
s=0

(I · At,s)Xt−k+s,s + I · Bt,k + I(zz) · Ct,k,

where {Bt,k,Ct,k}t,k follow recursions

Ct+1,k+1 = ct+1,k+1 + L(z,z) · Ct,k,

Bt+1,k+1 = bt+1,k+1 + L · Bt,k + L(zz) · Ct,k.

This recursive structure allows us simplify (22) and (23) and construct linear systems of
equations that can be inverted to obtain the second order approximation:

Proposition 1(SO).
{
XZZ,t,k

}
t,k

and
{
Xσσ,t

}
t

are the solutions to linear systems

Gx

∞∑
s=0

Jt,sXσσ,s + GxHσσ,t + GXXσσ,t = 0, (31)

and
Gx

∞∑
s=0

Jt,sXZZ,t−k+s,s + GxHt,k + GXXZZ,t,k + GΘ,t,k = 0. (32)

where Hσσ,t =
∫
xσσdΩ

∗ + I · Bσσ,t and Ht,k =
∫
xt,kdΩ

∗ + Dt,k + I · Bt,k + I(zz) · Ct,k.
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3.3.1 Remarks on numerical implementation

The approximated objects are similar to those in section (3.2.1) with the details being left to
appendix. The derivatives of the decisions rules, xt,k and xσσ,t, are approximated using the
collocation method with the same basis functions and gridpoints as x. The operator LZ,t is
approximated by a sparse matrix which is constructed by weighting the columns of Λ with
the derivatives zZ,t(z, θ) evaluated at the distribution gridpoints. Similarly the operators L(zz)

and L(z,z) are sparse matrices constructed by weighting the columns of Λ with the derivatives
z̄zz(z, θ) and zz(z, θ)zz(z, θ), respectively, all evaluated at the gridpoints of Ω∗. Finally, I(zz)

is a row vector constructed by evaluating xzz(z, θ) at the gridpoints of Ω∗. All the components
of Ht,k and Hσσ,t can then be constructed via simple matrix operations.

3.4 Comparison to literature

Our approach builds on the variational techniques such as Schmitt-Grohé and Uribe (2004).
Those techniques were originally developed to study representative agent models. When ap-
plied to heterogeneous agent economies, such an approach would seek to solve directly for
derivatives XZ , XZZ , which quickly becomes impractical as the dimensionality of Z grows.
Our approach shows that this problem can be side-stepped by solving for the values of those
derivatives in appropriately chosen directions. These values remain small-dimensional objects
even when Z and hence XZ are are large, as in most canonical HA economies.

Our first-order approximation is closely related to the method developed in an important
paper by Auclert et al. (2021), or ABRS for short. ABRS focus only on the first order approx-
imations and they work directly with the sequence-space representation (1) and (2). Similarly
to us, they also consider approximation around point Z∗ and exploit the insight of Boppart
et al. (2018) that the first-order approximation of a stochastic economy can be constructed from
impulse responses to MIT shocks in deterministic economy. We can describe key ideas behind
ABRS method using our notation. ABRS first numerically differentiate (1) to approximate
derivatives ∂x0(z,θ)

∂Xs
in the first order representation

x̂0 (z, θ) =
∞∑
s=0

∂x0 (z, θ)

∂Xs
X̂s, (33)

where {X̂s}s are changes in the aggregate variables induced by an MIT shock. ABRS then
assume that the LoM for the aggregate distribution, equation (12), can be approximated by
the histogram method (see Young (2010)) and under that assumption show that together with
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(33) the first order approximation of (2) can be written as

Gx

∞∑
s=0

Jt,sX̂s + GXX̂t + GΘρ
t
Θ = 0, (34)

where Jt,s has a recursive linear structure that is easy to compute. Economically, Jt,s captures
derivatives ∂

(∫
xi,tdi

)
/∂Xs and thus represents a Jacobian in the sequence-space representa-

tion.
There are obvious parallels between equations (33) and (34) in the ABRS approach and

equations (15) and (19) in ours. One difference between the two is that all expressions in
our equations are exact while ∂x0(z,θ)

∂Xs
and Jt,s in (33) and (34) are obtained numerically.

Mathematically, this difference is non-essential. In particular, it can be shown that if the
approximation error in the derivative ∂x0(z,θ)

∂Xs
and the grid side in the histogram method go to

zero, then the solution to (34) converges to the exact solution, given by equation (19). Despite
this equivalence, we found certain advantages in our approach even at the first order. It is easy
to compute derivatives of the state-space representation of F using automatic differentiation
and, therefore, {xs}s can be constructed computationally quickly and reliably. In contrast,
differentiating numerically the infinite (or, at least, large) sequence of F to find ∂x0(z,θ)

∂Xs
is more

time consuming and less computationally stable. As a result, we found in our experimentation
that our first order approximation is somewhat faster that ABRS (we discuss this point in
more details in Section 5).

The key difference between our approach and that of ABRS lies in the ability to handle
higher order approximations. There are two reasons for why extending ABRS approach to
higher order approximations is difficult. First, higher order of approximations of MIT shocks
do not allow one to recover terms related to the precautionary motive, i.e. {Xσσ,t}t terms, and
thus obtain full second-order approximation. Second, while the histogram method correctly
approximate the LoM to the first order, it fails at higher orders in the sense that it does not
converge to the correct expressions even as the grid size goes to zero. We prove it formally in
the appendix but the intuition for this result can be easily seen from equation (28) or (26).
The histogram method locally linearizes the LoM for the aggregate distribution, and thus it
misses terms that capture second order responses of the LoM to the first order changes in
policy functions.11

To derive analytically properties of the LoM, we used linear operator techniques that were
first developed in Bhandari et al. (2021). Approximations considered in that paper scaled

11This follows from the fact that the projection functions which assign households to appropriate bins of the
histogram are linear in household endogenous states.
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both aggregate and idiosyncratic shocks and are not applicable to economies in which pol-
icy functions have kinks, e.g., due to the occasionally binding borrowing constraints. Their
environment also lacked dynamics in the aggregate distribution, which is one of the key compli-
cations that our method is developed to overcome using recursive characterization in Lemmas
4(FO) and 4(SO).

4 Extensions

We now discuss how our approach described in Section 3 can be extended to three classes of
problems: models with transition dynamics from some initial distribution to a steady state (as
occurs, for examples, in models in which a permanent policy change induces transition from
the steady state under one set of policies to a different steady state under a different set of
policies), models with stochastic volatility, and portfolio problems.

4.1 Transition dynamics

In this section, we relax assumption of Section 3 that the initial distribution Ω0 coincides
with Ω∗. Instead, we assume that initial state is given by (0,Ω0) for some Ω0 and describe
how to characterize the transition dynamics of this economy. We focus on the first order
approximations and show that they follow the same structure as Section 3.2.

Let Ω̂0 = Ω∗ − Ω0 and consider a sequence of directions {ẐΩ,t}t defined recursively by
ẐΩ,0 = [0, Ω̂0]

T and ẐΩ,t = ZZ · ẐΩ,t−1. Similarly, define {XΩ,t}t as XΩ,t := XZ · ẐΩ,t. This
sequence of values of the Fréchet derivatives characterizes transition dynamics to the first order.

Lemma 1(TD). To the first order approximation, Xt satisfies

E0Xt =X +XΩ,t +O

(∥∥∥E , Ω̂0

∥∥∥2) .

The derivations of Section 3.2 apply with minimal changes and they show that a simple
extension of Proposition 1(FO) characterizes {XΩ,t}t:

Proposition 1(TD).
{
XΩ,t

}
t

is the solution to

Gx

∞∑
s=0

Jt,sXΩ,s + GXXΩ,t + GxJΩ,t = 0, (35)

where JΩ,t = I · Lt · d
dθ Ω̂0.

The main difference between Proposition 1(TD) and Proposition 1(FO) is the last term in
equation (35). This term generalizes equation (19) to account for Ω0 ̸= Ω, which means that
the initial direction is now non-trivial and d

dθ Ω̂0 ̸= 0.
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4.2 Stochastic volatility

For many applications that require realistic modeling of financial markets or uncertainty about
government policies it is important to allow for variation in volatility of aggregate shocks. A
standard way to approximate such problems is to consider third-order expansions (see, e.g.,
discussion in Fernández-Villaverde et al. (2011)). While it is possible to use a third-order
extension of our approximation for this purposes, in this section we present a much simpler
second-order approximation that attains the same objective.

We extend our model in Section 2 so that aggregate shock Et follows process

Et =
√

1 + Υt−1EΘ,t, (36)

Υt = ρΥΥt−1 + EΥ,t, (37)

where |ρΥ| < 1 and EΘ,t and EΥ,t are mean-zero i.i.d. variables with support of EΥ,t bounded
so that Υt always remains greater than −1. We assume that initial conditions are such that
Υ−1 = 0. This stochastic process provides a simple way to capture shocks to volatility of
aggregate variables. When stochastic process for EΥ,t is degenerate, i.e., EΥ,t = 0, then this
process collapses to our baseline environment and conditional volatility of aggregate shocks
vart−1(Et) is constant and given by var(EΘ,t). When EΥ,t is non-degenerate then vart−1(Et) is
time-varying and satisfies (1 + Υt−1)var(EΘ,t).

The state in the recursive representation now consists of a triplet (Υ,Θ,Ω). One way to
approximate this economy is to scale both shocks EΘ,t and EΥ,t with σ and approximate equi-
librium around the deterministic point (0, 0,Ω∗). In order to capture time-varying volatility,
this approach would indeed require using third-order approximations. Instead, a much faster
and simpler method is to proceed as in Section 2 and scale only the combined shock Et with
σ, just as we did in equation (13). Since shocks EΥ,t and EΘ,t are not scaled with σ, volatility
1+Υt follows a non-trivial stochastic process even when σ = 0. Thus, our approximations are
around (Υ, 0,Ω∗), where Υ is a non-trivial random variable.

Observe that when σ = 0, volatility Υ has no effect on any endogenous variable. Therefore,
the invariant distribution Ω∗ is independent of Υ and coincides with the one we considered
before. Similarly, the derivatives of policy functions X̃ (Υ, Z; 0) and x̃ (z, θ,Υ, Z; 0) with re-
spect to Z = (Θ,Ω) are also independent of Υ and, in fact, coincide with their values in the
baseline economy. Similarly, derivatives Xσ, xσ is equal to zero for any Υ, but the second-
order derivative, Xσσ (Υ) and xσσ (Υ) are non-trivial functions of Υ. This dependence of these
derivatives on Υ allows us to compute effects of stochastic volatility using second-order ap-
proximations.These observations imply that the only modification that our approach requires
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is in devising a method that generalizes
{
Xσσ,t

}
t

and find its values in stochastic volatility
settings.

We proceed as follows. Take any history E t
Υ, with its implied history of volatilities (Υ0, ...,Υt)

and construct the sequence of directions {Ẑσσ,t(E t
Υ)}t,Et

Υ
as follows

Ẑσσ,t

(
E t
Υ

)
=
[
0,Ωσσ(Υt−1)

]T
+ ZZ · Ẑσσ,t−1

(
E t−1
Υ

)
with Ẑσσ,−1 = 0 and Υt−1 = Υt−1(E t−1

Υ ) defined via (37). Similarly, {Xσσ,t(E t
Υ)}t,Et

Υ
are

defined by
Xσσ,t

(
E t
Υ

)
:= Xσσ(Υt) +XZ · Ẑσσ,t

(
E t
Υ

)
.

This definition is the same as that of
{
Xσσ,t

}
t

in Section 3.3 except that it explicitly recognizes
the fact that Xσσ and Ωσσ depend on Υ. The definition of xσσ,t(E t

Υ) is modified analogously.
The next result extends Lemmas 1(FO) and 1(SO) to the settings with stochastic volatility.

Lemma 1(SV). To the second order approximation, Xt satisfies

Xt

(
Et
)
= X+

t∑
s=0

XZ,t−sEs+
1

2

(
t∑

s=0

t∑
m=0

XZZ,t−s,t−mEsEm +Xσσ,t

(
E t
Υ

))
+O

(
∥E∥3

)
, (38)

where sequences
{
XZ,t

}
t
,
{
XZZ,t,k

}
t,k

are the same as in Sections 3.2 and 3.3.

To find {Xσσ,t(E t
Υ)}t,Et

Υ
, the analysis proceeds along the same lines as in Section 3.3. The

key potential complication is that Xσσ,t is a non-linear function of E t
Υ, which would make

characterization difficult. Stochastic process (36) simplifies this problem as it implies that
Xσσ,t is a linear function of E t

Υ with a simple characterization of this dependence. The key
step towards deriving it is to observe that the analogue of equation (24) in our stochastic
volatility economy becomes

Lemma 3(SV). For any t,

xσσ,t(z, θ, E t
Υ) =

∞∑
s=0

xs(z, θ)E
[
Xσσ,t+s|E t

Υ

]
+ xσσ(z, θ) + xΥ(z, θ)Υt, (39)

where xs, xσσ are the same as in Lemma 3(SO) and the explicit equation for xΥ is provided in
the appendix.

Equation (39) shows that the direct effect of stochastic volatility shocks on xσσ,t(z, θ, E t
Υ)

is captured entirely by the term xΥ(z, θ)Υt that is linear in Υt (and hence, E t
Υ) and conditional

expectations of E[Xσσ,t+s|E t
Υ] that is a linear operator as well. Equation G, that describes the

relationship between xt and Xt, then implies that Xt must be linear in E t
Υ as well. Moreover,

this dependence has a very simple characterization.
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Proposition 1(SV). The stochastic process Xσσ,t

(
E t
Υ

)
satisfies

Xσσ,t

(
E t
Υ

)
= Xσσ,t +

t∑
s=0

XΥ,t−sEΥ,s,

where {Xσσ,t}t is the same as in Section 3.3 and {XΥ,t}t satisfies

Gx

∞∑
j=0

Jk,jXΥ,j +
k∑

j=0

GxHΥ,k−jρ
j
Υ + GXXΥ,k = 0 (40)

and HΥ,t = I · Lk · M · zΥ.

Thus, the proposition shows that in order to extend our approach to the models of stochastic
volatility, it is sufficient to solve that one more system of linear equations (40) that has a
structure very similar to other second-order terms, equations (31) and (32).

4.3 Portfolio problems

Portfolio problems, in which agents allocate their wealth to multiple assets with stochastic
returns that depend on aggregate shocks, do not fit into our framework in Section 3. In such
problems, assets become indistinguishable in the economy without aggregate shocks. As a
result, each agent’s portfolio allocation is indeterminate in the zeroth order economy, which
violates the assumption we used in Section 3.1. We now describe how our approach can be
modified to overcome this difficulty.

It will be easiest to motivate our approach by using a simple example that allows us to
introduce all the key portfolio features that are present in a broad class of portfolio problems.
Consider the same Krusell and Smith economy as in Section 2.1 but allow agents to trade, in
addition to capital, a risk-free bond that is available in zero net supply. Let Rf

t be the interest
rate on risk-free bond between periods t− 1 and t, and Rx

t = Rt −Rf
t be the excess return of

capital.
We use ai,t to denote wealth of agent i at the end of period t. This wealth is allocated

between investment in capital ki,t and bonds ai,t − ki,t. Assuming for concreteness that the
borrowing constraint is on total assets holdings, agents’ optimality conditions can be written
as the choice over {ci,t, ai,t, ki,t}t to maximize their utility subject to the borrowing constraint
ai,t ≥ 0 and the budget constraint

ci,t + ai,t −Wt exp(θi,t)−Rf
t ai,t−1 −Rx

t ki,t−1 = 0. (41)

Market clearing conditions now include the condition that the aggregate demand for bonds is
equal to their aggregate supply, which in our example is zero:

∫
(ai,t − ki,t)di = 0. Agents’
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optimality conditions are represented by stochastic sequences {ai,t, ci,t, ki,t, ui,t, ζi,t, λi,t}i,t that
satisfy (41) and

Rf
t Uc(ci,t)− λi,t = 0, Uc(ci,t) + ζi,t − βEtλi,t+1 = 0, ai,tζi,t = 0, ui,t − ai,t−1 = 0, (42)

Et−1 [λi,tR
x
t ] = 0. (43)

Market clearing conditions for aggregate variables
{
Kt,Wt, R

f
t , R

x
t

}
t

are given by (8) and

Rf
t +Rx

t + δ − α exp (Θt)K
α−1
t − 1 = 0, Kt −

∫
ki,tdi = 0. (44)

The reader can immediately recognize close parallels between this specification and that in
Section 2.1, with wealth ai,t−1 rather than capital ki,t−1 acting as the individual endogenous
state variable.

The direct application of the perturbational approach is difficult because some variables
are indeterminate in the zeroth order economy. This can be easily seen in our example. In the
absence of aggregate shock, excess returns on capital are zero and capital and bonds are perfect
substitutes. This implies that while aggregate capital and bonds are determined in the zeroth
order economy (and equal to Kt and 0 respectively), each individual optimal portfolio alloca-
tion of wealth between capital and bonds is not determined. As is well know from portfolio
theory (see, e.g., Devereux and Sutherland (2011)), the perturbational approach extends if one
approximates around portfolios that are the limits, as σ → 0, of optimal portfolios problem in
stochastic economy for σ > 0. Finding these portfolios and their limits requires second order
approximations.

A small extension of our approach from Section 3.2 allows one to simultaneously find these
limiting portfolios and the first order equilibrium responses without having to solve the full
second order approximation. We show how this extension works for a broad class of portfolio
problems. Let xi,t and ki,t be vectors of individual variables that are and are not determined in
the zeroth order economy. For the ease of the exposition we assume ki,t to be uni-dimensional
but we show in the appendix that all results extend directly when ki,t is an arbitrary vector.
We can write individual optimality conditions as

F (zi,t−1, xi,t,Ei,txi,t+1, Xt, θi,t, R
x
t ki,t) = 0 for all i, t, (45)

and
Et−1 [mi,tR

x
t ] = 0 for all i, t, (46)
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where mi,t is an some element of xi,t. We can write it as mi,t = Sxi,t and Rx
t = RXt for some

selection matrices S and R. Aggregate feasibility conditions are given by

G

(∫
xi,tdi,Xt,Θt

)
= 0 for all t (47)

and ∫
ki,t−1di−Kt = 0 for all t.

This representation naturally nests our motivational example of the Krusell and Smith
economy, where assets ai,t−1 serve as the individual endogenous state variable zi,t−1, and vector
xi,t includes all individual choices and appropriate Lagrange multipliers except for ki,t. It also
includes a broad class of portfolio problems. In the appendix we show how to map small open
economy models and models with different types of risky technologies into this representation.

We now write this system recursively. As the examination of the Krusell and Smith example
shows, we need to be careful about measurability of different variables. Note, in particular,
that ai,t−1, ki,t−1 and Rf

t in that example are all measurable with respect to period t − 1

information set, while other variables are measurable with respect to period t information.
To capture these different measurability conditions, we include both “previous period” and
“current period” realization of shocks in individual and aggregate states. Thus, our distribution
Ω will be a measure over a triple (z, θ, θ−), or (z, θ) for short, where θ− and θ correspond to
the “previous” and “current” period respectively. The aggregate state is Z = [Θ,Θ−,Ω]

T. The
recursive representation consists of policy functions x̃ (z, θ, Z), k̃ (z,θ, Z), X̃ (Z) that satisfy

F
(
z, x̃,Ex̃, X̃, R̃xk̃, θ

)
= 0 for all (z,θ, Z) , (48)

E
[
Sx̃R̃x|θ_,Θ_,Ω

]
= 0 for all (z, θ_, Z) , (49)

G

(∫
x̃dΩ, X̃, Θ̃

)
= 0 for all Z, (50)

R̃x (Z) = RX̃ (Z) ,

∫
k̃dΩ = KX̃ for all Z, (51)

TX̃ (Z) and k̃ (z, θ, Z) are independent of Θ and (θ,Θ) for all Z, (52)

and the LoM for the distribution,

Ω̃ (Z)
〈
z′,θ′〉 = ∫ ∫ ι

(
z̃(z, θ, Z) ≤ z′

)
ι(ρθθ + ϵ ≤ θ′)ι

(
θ ≤ θ′−

)
µ (ϵ) dϵdΩ ⟨z,θ⟩ for all Z,

(53)

Equations (48), (50) and (53) as the exact analogue of (10), (11) and (12) from Section
3. Equation (49) is the state-space representation of (46). It will be convenient to keep it
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separately from the rest of the optimality conditions in F as this is the equation that will be
used to pin down limiting portfolios of agents and the only equation that will require a second
order expansion. Equations (51) and (52) are various selections and measurability conditions
and R, K and T are some selection matrices.

Much of our analysis from Section 3.2 proceeds with minimal changes. The sequence
of directions {Ẑt}t is defined as in that section but now it is initialized by Ẑ0 = [1, 0,0]T.
Construction of {XZ,t}t and Lemma 1(FO) are unchanged. Similarly, integrals in definition of
operators L and I are now with respect to dθ rather than dθ. Portfolio problems introduce
changes in the analogues of Lemmas 3(FO) and 4(FO) that we discuss in more details next.

Let RZ,0 = RXZ,0 and Rσσ,0 = RXσσ,0. Note that Rσσ,0 is a second order order term but,
fortunately, it can be found without having to solve for the whole second order approximation.
Economically, RZ,0 is the response of the excess returns of risky assets to aggregate shocks,
while Rσσ,0 are asset risk premia. Let S(RZ,0) be a mapping defined as

S
(
RZ,0

)
=

1

(RZ,0)2var (E)
.

When the portfolio of risky assets is uni-dimensional, as the convention that we use in body
of this section, (RZ,0)

2var (E) is the conditional variance of the returns of the risky assets and
S(RZ,0) is the reciprocal of this variance. When k is multi-dimensional, mapping S(RZ,0)

becomes the inverse of the covariance matrix of returns of risky assets, which is one of the
central objects in the classical portfolio theory.

We can now state the analogue of Lemmas 3(FO) for portfolio problems:

Lemma 3(PF). For t > 0, xZ,t (z, θ) satisfies (15). xZ,0 (z, θ) satisfies

xZ,0 (z,θ) =

∞∑
s=0

xs (z, θ)XZ,s + xk(z, θ)k (z, θ_)RZ,0,

where
xk(z, θ) = − (Fx(z, θ) + Fxe(z, θ)E [xz|z, θ]P)−1 Fk(z, θ)

k(z, θ_) = kσσ(z, θ_)S
(
RZ,0

)
Rσσ,0 +S

(
RZ,0

)
var (E)

∞∑
s=0

ks(z, θ_)XZ,sRZ,0 (54)

and explicit expressions for kσσ and ks are given in the appendix.

Lemma 3(PF) shows that the relationship between xZ,t and {XZ,s}s is the same as in
our baseline case in all periods except t = 0. In period t = 0, portfolio choices introduce an
additional term, xk(z, θ)k(z, θ_)RZ,0, in the equation describing individual responses xZ,0. This
term has a natural economic interpretation. k(z, θ_) is the optimal limiting portfolio of agent
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(z, θ_) and, thus, k(z, θ_)RZ,0 is the realized return to that portfolio due to aggregate shocks.
Multiplying by xb(z, θ) which has the same structure as equation (16) adjusts the presence of
portfolio to all individual choice variables. Equation (54) provides a formula for the optimal
limiting portfolio k(z, θ_). A reader familiar with portfolio theory can easily recognize many
elements in this formula.12 Term S

(
RZ,0

)
Rσσ,0 is asset risk premia multiplied by the inverse

of the convariance matrix. This term captures the classical risk-return trade-off in portfolio
theory. XZ,sRZ,0 captures how excess returns co-vary with aggregate variables at different
time horizons s, and ks(z, θ_)XZ,sRZ,0 captures how that aggregate covariance translates into
individual-level covariances. Thus, S

(
RZ,0

)
ks(z, θ_)XZ,sRZ,0var (E) captures how portfolios

hedge individual risks. As Lemma 3(PF) shows, weights kσσ and ks in formula (54) are known
from the zeroth order.

We now turn to the portfolio version of Lemma 4(FO). Since θ is now bi-dimensional, the
analogue of d

dθ Ω̂t becomes d
dθ Ω̂t :=

d
dθ

d
dθ−

Ω̂t.

Lemma 4(PF). For t > 1, d
dθ Ω̂t satisfies (18). d

dθ Ω̂1 satisfies

d

dθ
Ω̂1 = −

∞∑
s=0

asXZ,s − wσσS
(
RZ,0

)
Rσσ,0 −S

(
RZ,0

)
var (E)

∞∑
s=0

wsXZ,sRZ,0,

where explicit expressions for ws and wσσ are given in the appendix. d
dθ Ω̂0 = 0.

As with Lemma 3(PF), portfolio problem introduces additional adjustment terms only in
one period. These adjustment terms aggregates portfolios of individual agents and has the
same structure and intuition as expression for k(z, θ_) in equation (54).

We can use these results to characterize the first order approximation of our economy.
Differentiate equations (50), (51) and (52) in direction Ẑt and simplify those derivative using
Lemmas 3(PF) and 4(PF) to obtain

Proposition 1(PF).
{
XZ,t

}
t

and Rσσ,0 are the solution to

0 =Gx

∞∑
s=0

Jt,sXZ,s + GXXZ,t + GΘρ
t
Θ (55)

+ Gx

( ∞∑
s=0

Jwt,sS
(
RZ,0

)
RZ,0XZ,svar (E) + Jwσσ,tS

(
RZ,0

)
Rσσ,0

)
,

WσσS
(
RZ,0

)
Rσσ,0 +S

(
RZ,0

) ∞∑
s=0

WsRZ,0XZ,svar (E) = KX, (56)

12See, e.g., Viceira (2001) who derives similar equation using different techniques. Aparisi de Lannoy et al.
(2022) derive optimal portfolio formulas like (54) using perturbational techniques.
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TXZ,0 = 0, RXZ,t = 0 for t ≥ 1, (57)

RZ,0 = RXZ,0, (58)

with Jwσσ,t = I · Lt−1 · wσσ, Jwt,s = I · Lt−1 · ws.

The first line of equation (55) has exactly the same form as equation (19), which character-
ized the first order approximation to our baseline economy. The second line in (55) captures
additional effects from portfolio choices. These portfolio choices must, in turn, also satisfy the
asset market clearing condition, equation (56), which also allows us to pin down risk premia
Rσσ,0 without doing the full second order expansion.

The system of equations (55), (56), (57) and (58) is non-linear in {XZ,t}t and Rσσ,0 due to
the nonlinear operator S(RZ,0). It has, however, a mathematical structure that can be utilized
to solve it quickly numerically: holding RZ,0 fixed, (55), (56) and (57) form a linear system
in {XZ,t}t and Rσσ,0. This observation provides a natural algorithm for solving the system of
equations in Proposition 1(PF): guess RZ,0 and solve the linear system (55) - (57) for {XZ,t}t
and Rσσ,0; verify if the initial guess satisfies equation (58); if necessary, adjust the guess for
RZ,0 and iterate until the fixed point is found. This simple iterative procedure allows one to
simultaneously solve for the limiting portfolios of all agents, the first order approximations,
and the second order risk premium.

5 Numerical Results

In this section, we apply our algorithm to calibrated versions of the Krusell and Smith (1998)
model. First, we use the calibrated model to report diagnostics such as accuracy and speed
and compare them to alternative methods. Second, we use extensions of the Krussel-Smith
model to study several applications that illustrate the usefulness of going beyond first-order
approximations. These applications include analysis of stabilization policies, aggregate and
distributional effects of fluctuations in macroeconomic uncertainty, and properties of household
portfolios.

5.1 Baseline Model and Calibration

Our baseline model extends the Krusell-Smith framework of Section 2 to include capital ad-
justment costs. Investment in capital is subject to convex adjustment, which are assumed to
take the form:

ϕ(It,Kt−1) =
ϕ

2

(
It

Kt−1
− δ

)2

Kt−1.
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We assume that capital is held by a continuum of perfectly competitive mutual funds with a
price per unit capital given by Pt. This intermediary mutual funds holds the individual saving
ai,t as deposit, representing the market value. The aggregate saving is invested in capital by
the fund:

PtKt =

∫
ai,tdi

The shares held in the mutual funds have a financial return, which is the sum of (i) capital
gains net of depreciation and investment and (i) dividends given by the marginal product of
capital rk = ∂Y/∂K, net of capital adjustment costs:

Rt =
Pt (1− δ + It) + rkt − ϕ(It,Kt−1)

Pt−1

The optimal investment choice of the mutual funds implies that the price per unit capital is
exactly equal to the marginal cost of investment, namely

Pt = 1 + ϕ
It

Kt−1
.

Note that Pt also represents the marginal gain of capital inside in the firm, i.e. the Q-ratio as
in the Tobin’s Q theory, c.f. Hayashi (1982).

Calibration To calibrate our model, we set the period length to one quarter. The parameter
α is set to 0.36 to target the capital share of income. We use an isoelastic period utility
U (c) = c1−γ

1−γ and vary the risk aversion parameter γ between 2 and 7. For each choice for
risk aversion, we set adjustment cost parameter ϕ to match a 3% standard deviation of un-
leveraged quarterly returns to equity. Unless otherwise specified the plots in this section are
for risk aversion set to 5. For the parameters governing the aggregate and idiosyncratic labor
productivity in (3) and (4), we choose values used by Auclert et al. (2021). We discretize
the idiosyncratic labor productivity process using the Rouwenhorst method with a grid of
Nϵ = 7 grid points. Regarding the discretization of the policy functions, we use a set of
Nz = 60 quadratic spline basis function to approximate the policy x̄(z) with unequally spaced
knot points. The distribution over states ω̄ is approximated with unequally spaced grid with
Iz = 1000 points along the asset dimension. The performance of our algorithm is not sensitive
to variations in these two values Nz and Iz. The calibration parameters are summarized in
Table 1.

Simulations We begin by applying Lemma 1(SO) and simulate Xt

(
E t
)

for different paths
of E t. The first path is E t = (1, 0, 0, . . .) that captures a one-time, one standard deviation

34



Table 1: CALIBRATION OF THE KRUSELL-SMITH ECONOMY

Parameter Description Value
α Capital share 0.36
β Discount factor 0.983
γ Risk aversion [2, 7]
δ Depreciation rate of capital 1.77%
ϕ Adjustment cost of capital [32, 125]
ρϵ Idiosyncratic mean reversion 0.966
σϵ/

√
1− ρ2

ϵ Cross-sectional std of log earnings 0.503
ρΘ Aggregate mean reversion 0.80
σΘ Std of Aggregate TFP shocks 0.014
Nϵ Points in Markov chain for ϵ 7
Nz Grid points for the policy rule x̄i(z) 60
Iz Grid points for the distribution ω̄i 1000
T Time horizon (in quarters) for IRF 400

positive shock to TFP. In the left panel of Figure 1, we plot response of aggregate capital and
decompose the response to show the contributions from the zeroth X; first X+

∑t
s=0XZ,t−sEs;

second-order interaction terms X +
∑t

s=0XZ,t−sEs + 1
2

(∑t
s=0

∑t
m=0XZZ,t−s,t−mEsEm

)
; and

the second-order risk term X +
∑t

s=0XZ,t−sEs + 1
2

(∑t
s=0

∑t
m=0XZZ,t−s,t−mEsEm +Xσσ,t

)
.

Not surprisingly, we see in the figure that the entire second-order response to the one-time,
one standard deviation positive shock to TFP this path is due to the risk Xσσ,t term. To
activate the second-order interaction terms, we simulate E t = (1, 1, 0, . . .), which contains two
consecutive one standard deviation shocks to TFP. In right panel of Figure 1, we see that the
interaction terms (green line) now capture a non-trivial part of the second order response.

More generally nonlinearities in the model manifest by making impulse responses history
dependent. In particular, a response of aggregates at date t + k to a TFP shock that occurs
at date t depends on the history of shocks {Ej}tj=0 . To see how much previous shocks matter,
to second order, we can compute

E [Xt+k|Et, Et−j ]− E [Xt+k|Et, Et−j = 0]

which is the change in the impulse response resulting from a shock j periods in the past. Apply-
ing Lemma 1(SO) it is straightforward to see that this term is exactly given by X̄ZZ,k,k+jEtEt−j.

In Figure 2 we plot these changes in the impulse responses for various values of j for aggregate
capital. In the figure we normalize by a 1 s.d. impulse response so these should be interpreted
as the percentage change in the impulse response induced by a shock in the previous period.
A sequence of recent positive TFP shocks will result in amplified business cycles: the increase
(fall) in output will be larger for a positive (negative) TFP shock. For example, if the economy
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Figure 1: Simulated for Kt. The line labeled “ZO” is the zeroth order approximation; labeled “FO” includes
first order terms; labeled “SO interaction” adds the interaction EsEm terms, and and labeled “SO” is full sec-
ond order response. The left panel are simulations for Et = (1, 0, 0, . . .) and right panel are simulations for
Et = (1, 1, 0, . . .) .

Figure 2: Non-linearities in Impulse Responses. The two lines plot the sequences
{
X̄ZZ,k,k+jEtEt−j.

}
t
for two

values of j ∈ {1, 100}
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had received a positive TFP shock in the previous period the response of capital could be up
to 30% large in initial periods. This analysis shows that nonlinearities ignored by first-order
approximations are salient in the basic Krusell-Smith economy.

5.2 Diagnostics

Accuracy In this section, we study diagnostics related to accuracy and speed. Measuring
the numerical errors made in the simulation of heterogeneous agents models with aggregate
shocks is notoriously difficult since there are no “reference point” to compare with. As such,
we test the accuracy of our method by studying the response to a one-time, one standard
deviation positive shock to TFP. All approaches give an approximation X̂t to the path of all
aggregates in response to this shock. Given these approximations, these sequences of aggregate
variables are the only thing needed to compute the dynamics of the rest of the model in a fully
non-linear way: first using the sequence of prices, the optimal policies x̃t(z) of households are
computed using standard methods. Second, given these policies, we compute the law of motion
of the distribution ω̃t(z), and, third, aggregating up, we compute the law of motion X̃t. We
can then measure the accuracy by comparing X̂t with the non-linear counterpart X̃t.

In Figure 3, we plot the % error in the capital stock K̂t−K̃t

K̃t
. For comparison purposes

we show errors using 3 different methodologies: our benchmark approach described in Section
3.2, a modification of our approach which approximates the law of motion of the distribution
with a histogram as described in Section 3.4, and the Sequence Space Jacobian approach of
ABRS As would be anticipated by Figure 3 all three approaches have roughly the same error
to first order, with the maximal error being on the order of 0.04% of the capital stock. At
higher orders, our baseline approach has errors which remain very small over time, while the
histogram approach generates errors which become the same order of magnitude as those of
the first order approximation.

Speed Next, we turn to the computational speed of our approach which we break down in
Table 2 by each stage of the algorithm. The timings for the first order approximation are
reported in the first two columns of the table.13 All told, once the steady state has been
computed, our algorithm takes 0.5 seconds to solve for the XZ,t terms with roughly equal time
spent in all 4 of the main steps. As Lemma 1(FO) highlights, XZ,t are all that is needed
to simulate the path of aggregates and to compute ergodic moments from the first order
approximation. The other first order terms, x̄Z,t and Ω̄Z,t, are required for the second order

13All numbers are reported using a 20 core M1 ultra mac studio.
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Figure 3: Nonlinear error K̂t−K̃t

K̃t
for the three first order approximations and the second order approxima-

tions.

Table 2: COMPUTATIONAL SPEED: FIRST AND SECOND ORDER

First Order Second Order
Step Time Step Time (ZZ) Time(σσ)

Additional First Order Terms 0.70s
Lemma 3(FO) Terms 0.07s Lemma 3(SO) Terms 0.64s 0.05s
Lemma 4(FO) Terms 0.13s Lemma 4(SO) Terms 0.21s 0.45s
Corollary 2(FO) Terms 0.17s Corollary 2(SO) Terms 0.07s 0.05s
Proposition 1(FO) Terms 0.13s Proposition 1(SO) Terms 0.19s 0.28s

Total 0.5s 1.81s 0.83s

ABRS 1.51s
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approximation and take an additional 0.7 seconds to compute.
We compare this to our own implementation of the Sequence Space Jacobian of ABRS

which takes approximately 1.5 seconds to compute the equivalent on the XZ,t. Of that time,
approximately 1.35 seconds are spent on the backward and forwards iteration steps which are
the equivalent of the terms computed in Lemma 3(FO) and 4(FO). As we detailed in Section
3.2.1, once the steady state is solved for our implementation of the algorithm requires only
sparse linear operations which can be done quickly and efficiently independently of how the
steady state is solved for. The methodology of ABRS generally relies on numerical differenti-
ation of global transition code, and is therefore limited by the efficiency of that global code.
Moreover, very careful attention has to be paid to those numeric derivatives in order to ensure
that they are accurate, see appendix C.1 of Auclert et al. for details. These numerical issues
would be amplified with a second order approximation as numerical second derivatives are
more prone to numerical error. By giving explicit expressions for these second derivatives in
terms of derivatives of F and G we sidestep these issues. The addition time to compute the
second order approximation is broken out in the last two columns of Table 2. As highlighted
in Section 3.3 there are two additional types of terms in the second order approximation: the
curvature terms, X̄ZZ,t,k, and risk correction terms X̄σσ,t. As they follow the same mathemat-
ical structure, we break out the computational time separately for both types. The curvature
terms take 1.11 seconds to compute14 while the risk adjustment terms take 0.83 seconds. The
vast majority of the computational time for the curvature terms is spent on Lemma 3(SO)
and Proposition 1(SO) which is a result of a large number of quadratic forms required to com-
pute the xt,k(z, θ) and GΘ,t,k terms. All combined, computing the second order approximation
requires an additional 2 to 3 seconds relative to the first order approximation.

5.3 Applications

In this section we study three applications that highlight the usefulness of higher order ap-
proximations in heterogeneous agent models.

5.3.1 Welfare from stabilization policy

In addition to studying non-linearities, second order approximations can be used to evaluate
the welfare effects of fiscal stabilization policies. We extend the model to include fiscal policies

14Here we report only the time required to compute that X̄ZZ,t,t terms. We do this for two reasons. Firstly,
for most ergodic moments only the X̄ZZ,t,t are required. Secondly, computing the addition X̄ZZ,t,t+i terms are
trivially parallelizable for each i so, with enough processors, computing all the X̄ZZ,t,k terms would not require
any additional time.

39



that vary over the business cycle in form of a time varying labor-tax

τt = τ + τΘΘt,

which is returned lump-sum to the households. Households with labor productivity θi,t will
receive transfers Tt and (1− τt)Wt exp(θi,t) in after-tax labor income in the current period.

In the baseline, we assumed exogenous labor; therefore, the optimal choice of the intercept τ
is not interesting. However, a planner who cares about redistribution has a non-trivial tradeoff
with the choice of τΘ. We are interested in calculating welfare measures for a given tax policy
and the optimal tax cyclicality.

The question of optimal cyclicality is non-trivial with incomplete markets and can be
meaningfully answered only with a minimum of second-order expansion. With complete mar-
kets (representative agent), Ricardian equivalence holds and allocations do not depend on
τΘ. With incomplete markets and borrowing constraints, Ricardian equivalence fails, and a
planner would face a tradeoff between redistribution across agents and insurance across states.
However, to the first-order approximation, certainty equivalence holds, and insurance concerns
are absent, so there is no meaningful answer to optimal τΘ. We therefore use second-order
expansions from Section 3.3 to find the optimal cyclicality.

For a given τΘ, define utilitarian welfare as W (Ω,Θ; τΘ) =
∫
V (θ, k,Θ,Ω; τΘ) dΩ where V

is the value of an individual with who starts with idiosyncratic states (θ, k) when the aggregate
state is (Θ,Ω) under policy indexed by τΘ. Observe that if we extend x and X to include V

and W, respectively, and add the Bellman equation that solves the value function V to the
mapping F and the definition of welfare W to the mapping G, our framework computes welfare
autmatically. To find the τΘ that maximizes ergodic welfare, we can use Lemma 1(SO) and
take the expectation conditional on time 0 information to find

E0 [Xt] = X̄ +
1

2

(
t∑

s=0

XZZ,t−s,t−sσ
2
E +Xσσ,t

)
+O

(
E3
)
,

where σE standard deviation of the exogenous shock Et. Taking the limit as t → ∞ gives the
long run ergodic means of the aggregate variables X as

E [X] = X̄ +
1

2

( ∞∑
s=0

XZZ,s,sσ
2
E +Xσσ,∞

)
+O

(
E3
)

whereXσσ,∞ = limt→∞Xσσ,t. As mentioned before X contains a measure of welfare, this gives
a quick and efficient algorithm for computing ergodic welfare as a function of a policy parameter
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since for given value of the policy parameter it is straightforward to compute the second-order
derivatives X̄ZZ,t,t and X̄σσ,t.

15

We illustrate this approach by computing optimal ergodic welfare as a function of the tax
parameter τΘ and plotting ergodic welfare (computed as consumption equivalent relative to
steady state) in Figure 4. For risk aversion set to 2, we see that relative to a laissez-faire
policy, τΘ = 0, making the tax policy more countercyclical initially raises welfare with a
distinct maximum achieved at τΘ = −3.1 which amounts to raising taxes by 3.1 percentage
points for every percentage point decrease in TFP. In fact, roughly 22% of the welfare losses
from business cycles in this model can be ameliorated by this tax policy. In Table 3, column
τ∗Θ, we report the optimal cyclicalty for other values of risk aversion. We find that higher the
risk aversion, lower the cyclicality. Because gains costs of insurance increase with risk aversion,
higher values of risk aversion are associated with lower values for tax cyclicality.

‘
Figure 4: Welfare for various values of τΘ when risk aversion is set to 2.

This application also serves as a valuable tool for illustrating the shortcomings associated
with employing the histogram technique. In Section 3.4, we emphasized the consequences of
naively extending the histogram approach, which may overlook specific second-order terms.

15In principle ergodic welfare will also depend on the change in the steady state X̄, in our example the steady
state will not depend on the policy parameter.
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These second-order terms become particularly crucial when calculating welfare derived from
stabilization policy, which is inherently a second-order object. In columns Whist(τ∗Θ)

W(τ∗Θ)
and τ∗,hist

Θ
τ∗Θ

of
Table 3, the ergodic welfare and optimal cyclicality under the histogram method are presented.
It is evident that both the magnitude of welfare corresponding to a particular τΘ and the
gradient of welfare in relation to τΘ are inaccurate when utilizing the histogram approach. As
previously mentioned, the histogram method leads to discrepancies in the second derivatives
that influence the welfare criterion. Furthermore, this analysis accentuates the significance of
our method for accurately capturing the law of motion of the distribution.

Table 3: OPTIMAL CYLICALITY τ∗
Θ

risk aversion τ∗Θ
Whist(τ∗Θ)
W(τ∗Θ)

τ∗,hist
Θ
τ∗Θ

2 -3.10 -348% 161%
3 -1.90 -230% 209%
4 -1.03 -226% 167%
5 -0.69 -217% 125%
7 -0.52 -187% 67%

Notes: Optimal τΘ as we vary the risk aversion parameter. The Whist (τ∗Θ) uses the histogram method
to compute the welfare and τ∗,hist

Θ is the optimal policy using Whist (τΘ) as the measure of welfare

5.3.2 Stochastic Volatility

Figure 5 plots the time-series for the CBOE Volatility Index (VIX) over the last twenty years.
We observe large fluctuations, with rapid increases of about 4-5 times the average in 2008 and
during the COVID pandemic, which take a couple of years to mean revert. Interpreting the
VIX as a measure of macroeconomic risk, we are interested in understanding the aggregate and
distributional consequences of an increase in volatility. We will apply the techniques described
in Section 4.2, with the extension of the baseline model that uses equations (36)–(37) as the
new process for aggregate shocks.

Motivated by the VIX data, we focus on the impulse response to a one-time, large but
transitory shock to the uncertainty of the TFP process, similar to what we saw in the recent
crisis. The shock increases the standard deviation by a factor of 5 and mean reverts with a
persistence of 0.75. The impulse response to this shock is defined by

IRFΥ
k (EΥ,t) = Et

[
Xt+k

∣∣EΥ,t

]
− E [Xt+k|EΥ,t = 0] .
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Figure 5: Time series for the CBOE Volatility Index

Applying Lemma 1(SV) we find that

IRFΥ
k (EΥ,t) =

k−1∑
j=0

XZZ,j,jρ
k−1−j
Υ σ2

Θ +

k∑
j=0

X̄Υ,jρ
k−j
Υ

 EΥ,t. (59)

In Figure 6, we illustrate the cumulative response of investment following the shock. We
observe that the shock leads to a decrease in capital accumulation, resulting in a cumulative
loss of approximately 6% in investment over a 5-year period. Interestingly, the response in
the heterogeneous agent economy is about twice as large as that in the representative agent
counterpart.

1 3 5 7 9 11 13 15 17 19

−6
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−2

0

quarters

%

Figure 6: Cumulative change in investment after an uncertainty shock

In addition to the impact on aggregate variables, we investigate the effect of the shock on
individual welfare. As in Section 5.3.1, we compute the effect on welfare using the response of
individual value functions at the date of the shock and convert the magnitudes into certainty
equivalents. These equivalents are measured in terms of the per-period consumption households
would be willing to forgo to avoid the uncertainty shock’s path. In Figure 7, we plot the
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Figure 7: Distribution of per-period certainty equivalent that households forgo to avoid the one-time uncer-
tainty shock

welfare losses by assets, normalized by per capita GDP. The average welfare loss amounts
to approximately half a percentage point of per-period consumption, and these losses range
from 0.81% to 0.20% across the asset distribution. The most significant welfare losses are
experienced by asset-poor agents who are closer to the borrowing constraints.

5.3.3 Portfolio Choice

A prevalent empirical pattern emphasized in the literature studying household finance is the
observation that the share of risky assets increases with wealth. See Yogo and Wachter (2011)
who use data from the Survey of Consumer Finances. In this section, we explore the predictions
of the basic Krusell-Smith framework for this particular moment. To do so, we extend the
model, allowing agents to trade risk-free debt, b, which has a zero net supply, in addition to
claims on capital. We impose a constraint that prevents households from short-selling capital.
Subsequently, we apply the methods described in Section 4.3 to calculate the portfolio for all
households.

In Figure 8, we depict the distribution of household portfolios by assets normalized by
per capita GDP. The model qualitatively aligns with the observed pattern wherein poorer
households hold more bonds and wealthier households hold more stocks. Households closest
to the borrowing constraint are most exposed to aggregate shocks, and they optimally reduce
their exposure by adjusting their portfolios towards risk-free bonds.
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Figure 8: Distribution of household portfolios by assets

6 Conclusion

In this paper, we propose a novel perturbation technique to approximate a wide variety of
stochastic heterogeneous-agent (HA) models. Our methods goes beyond the MIT shock ap-
proach found in existing literature by employing higher-order approximations. Utilizing Fréchet
derivative techniques, we demonstrate that all-order approximations can be represented using
analytically derived coefficients that are straightforward to implement numerically. Our ap-
proach broadens the range of research questions that can be addressed within these model
classes. We showcase the practicality of our method by applying it to examine welfare impli-
cations of stabilization policies, portfolio choice, and time-varying uncertainty in a calibrated
economy.
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A Section 3.2 Proofs
A.1 Proof of Lemma 1(FO)

The path of aggregates, Xt(E t;σ), as a history of aggregate shocks, E t, can be constructed from
the recursive representation X̃(Z;σ) and Ω̃(Z;σ). Begin by defining Zt(E t, σ) =

[
Θt

(
E t;σ

)
,Ωt

(
E t;σ

)]T
recursively as follows: let

Zt

(
E t;σ

)
=
[
ρΘΘt−1

(
E t−1;σ

)
+ σEt, Ω̃

(
Zt−1

(
E t−1;σ

)
;σ
)]

, (60)

where Z−1 = Z∗. The path of aggregates can then be constructed as

Xt(E t;σ) = X̃
(
Zt

(
E t;σ

)
;σ
)
. (61)

A first order expansion of equations (60) and (61) around the σ = 0 steady state yields the
following recursive relationship

Xt

(
E t
)
= X +XZ

(
Zt

(
E t
)
− Z∗)+Xσ +O

(
E2
)

(62)

Zt

(
E t
)
= Z∗ + ZZ

(
Zt−1

(
E t−1

)
− Z∗)+ Ẑ0Et + Zσ +O

(
E2
)
. (63)

with Ẑ0 being the direction defined in the main text and Zσ =
[
0,Ωσ

]
. Our first step is to

show that Xσ and Zσ are both 0 which we codify in the following lemma
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Lemma 1. The first derivatives with respect to σ,
(
Xσ,Ωσ, xσ

)
, are all 0.

Proof. Differentiating the F , G, and LoM mappings with respect to σ yields the following
system of equations16

0 = Fx(z, θ)xσ(z, θ) + FX(z, θ)Xσ + Fx′(z, θ)
(
E [xz|z, θ] zσ(z, θ) + E [xσ|z, θ] + E

[
xZ · Zσ|z, θ

])
0 = Gx

∫
xσdΩ

∗ + GXXσ

Ωσ⟨z′, θ′⟩ = −
∫∫

δ
(
z(z, θ)− z′

)
ι(ρθθ + ϵ ≤ θ′)zσ(z, θ)µ(ϵ)dϵdΩ

∗.

This system of equations is homogeneous of degree 1 in
(
Xσ,Ωσ, xσ

)
and, therefore, is solved

by setting all terms to zero.

With the knowledge that Xσ and Zσ are both zero and Z−1 − Z∗ = 0 it’s possible to roll
forward equation (63) to find

Zt

(
E t
)
− Z∗ =

t∑
s=0

Z
t−s
Z · Ẑ0Es +O

(
E2
)

=
t∑

s=0

Ẑt−sEs +O
(
E2
)
, (64)

where Ẑt is defined in the main text. Plugging into equation (62) yields

Xt

(
E t
)
= X +

t∑
s=0

XZ · Ẑt−sEs +O
(
E2
)
= X +

t∑
s=0

XZ,t−sEs +O
(
E2
)

as desired.

A.2 Proof of Lemma 2(FO)

Differentiating the G mapping, equation (11), in direction Ẑt = [ρtΘ, Ω̂t]
⊺ is equivalent to

differentiating

G

(∫
x
(
z, θ, Z∗ + αẐt

)
d
(
Ω∗ + αΩ̂t

)
, X(Z∗ + αẐt), ρ

t
Θα

)
= 0

w.r.t. α. Doing so yields

Gx

(∫
xZ · ẐtdΩ

∗ +

∫
xdΩ̂t

)
+ GXXZ · Ẑt + GΘρ

t
Θ = 0

where these integrals are well defined from Assumption 1 (e). Replacing xZ · Ẑt = xZ,t and
XZ · Ẑt = XZ,t yields equation (14) in the text.

16Here we have exploited the knowledge that E [xΘ(z
′, θ′)E ′] = 0
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A.3 Proof of Lemma 3(FO)

We begin by differentiating the F mapping, equation (10), in direction Ẑt. Doing so yields

Fx(z, θ)xZ(z, θ)·Ẑt+FX(z, θ)XZ ·Ẑt+Fxe(z, θ)
(
E [xz|z, θ]PxZ(z, θ) · Ẑt + E

[
xZ · ZZ · Ẑt|z, θ

])
= 0

Replacing xZ · Ẑt = xZ,t, XZ · Ẑt = XZ,t and Ẑt+1 = ZZ · Ẑt we get the difference equation

Fx(z, θ)xZ,t(z, θ) + FX(z, θ)XZ,t + Fxe(z, θ) (E [xz|z, θ]PxZ,t(z, θ) + E [xZ,t+1|z, θ]) = 0. (65)

Our claim is that xZ,t =
∑∞

s=0 xsXZ,t+s solves this equation where xs are defined via (16) and
(17). To see this, note that

Fxe(z, θ)E [xZ,t+1|z, θ] =
∞∑
s=0

Fxe(z, θ)E [xs|z, θ]XZ,t+1+s

= − (Fx(z, θ) + Fxe(z, θ)E [xz|z, θ]P)
∞∑
s=0

xs+1(z, θ)XZ,t+1+s

= − (Fx(z, θ) + Fxe(z, θ)E [xz|z, θ]P)
∞∑
s=1

xs(z, θ)XZ,t+s

where the second line comes from applying equation (17). Combined with equation (16) we
have

FX(z, θ) + Fxe(z, θ)E [xZ,t+1|z, θ] = − (Fx(z, θ) + Fxe(z, θ)E [xz|z, θ]P)xZ,t(z, θ)

which guarantees (65) and completes the proof.

A.4 Assumptions

Before proceeding let’s layout the two assumptions I’ll be using throughout this. First we
assume that x̃(z, θ, Z) is continuous and piecewise smooth with kinks defined by the functions
z∨j (θ, Z).

Next we assume that the steady state density has a finite number of mass points

dΩ∗⟨z, θ⟩ =

(
ω∗(z, θ) +

∑
n

ω∗
δ,n(θ)δ(z − z∗n)

)
dzdθ (66)

with ω∗(z, θ) being smooth. We assume that the set of all kinks is measure 0 under this density.

A.5 Proof of Lemma 4(FO)

Differentiating the LoM, equation 12, in direction Ẑt is equivalent to differentiating

Ω(Z∗ + αẐt)⟨z′, θ′⟩ =
∫∫

ι
(
z̄(z, θ, Z∗ + αẐt) ≤ z′

)
ι
(
ρθθ + ϵ ≤ θ′

)
µ(ϵ)dϵd

(
Ω∗ + αΩ̂t

)
⟨z, θ⟩
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with respect to α. This yields

ΩZ · Ẑt⟨z′, θ′⟩ = −
∫∫

δ
(
z(z, θ)− z′

)
ι
(
ρθθ + ϵ ≤ θ′

)
µ(ϵ)dϵzZ(z, θ) · ẐtdΩ

∗⟨z, θ⟩

+

∫∫
ι
(
z̄(z, θ) ≤ z′

)
ι
(
ρθθ + ϵ ≤ θ′

)
µ(ϵ)dϵdΩ̂t⟨z, θ⟩.

Applying d
dθ′

to both sides and substituting for zZ,t yields

d

dθ′ Ω̂t+1⟨z′, θ′⟩ = −
∞∑
s=0

∫ Λ(z
′
,θ

′
,z,θ)︷ ︸︸ ︷

δ
(
z(z, θ)− z′

)
µ(θ

′ − ρθθ) zs(z, θ)dΩ
∗⟨z, θ⟩XZ,t+s

+

∫
ι
(
z̄(z, θ) ≤ z′

)
µ(θ

′ − ρθθ)µ(ϵ)dϵdΩ̂t⟨z, θ⟩.

= −
∞∑
s=0

(M · zs) ⟨z′, θ′⟩XZ,t+s

+

∫ Λ(z
′
,θ

′
,z,θ)︷ ︸︸ ︷

δ
(
z(z, θ)− z′

)
µ(θ

′ − ρθθ) z̄z(z, θ)
d

dθ
Ω̂t⟨z, θ⟩dzdθ

= −
∞∑
s=0

(M · zs) ⟨z′, θ′⟩XZ,t+s +

(
L · d

dθ
Ω̂t

)
⟨z′, θ′⟩

Where the second and third lines are achieved via integration by parts. To conclude, we need
to show that all the integrals are well defined. We start with the following Claim

Claim 1. If y is a piecewise smooth with kinks at z∨j (θ) then M · y is a density with a finite
number of mass points z∗n.

Proof. We will show that (M · y) ⟨z′, θ′⟩ is of the form

m(z′, θ′) +
∑
n

mδ,n(θ
′)δ(z − z∗n).

Define the function θ(z, z′) as the implicit function

(M · y) ⟨z′, θ′⟩ =
∫∫

Λ(z′, θ′, z, θ)y(z, θ)

(
ω∗(z, θ) +

∑
n

ω∗
δ,n(θ)δ(z − z∗n)

)
dzdθ

=

∫∫
Λ(z′, θ′, z, θ)y(z, θ)ω∗(z, θ)dzdθ

+
∑
n

∫
Λ(z′, θ′, z∗n, θ)y(z

∗
n, θ)ω

∗
δ,n(θ)dθ

For points z
′ ̸= z∗n we have

ω∗(z′, θ′) =

∫∫
Λ(z′, θ′, z, θ)ω∗(z, θ)dzdθ +

∑
n

∫
Λ(z′, θ′, z∗n, θ)ω

∗
δ,n(θ)dθ,
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and since y is piecewise smooth with discontinuities that don’t align with the mass-points z∗n

we conclude that

m(z′, θ′) =

∫∫
Λ(z′, θ′, z, θ)y(z, θ)ω∗(z, θ)dzdθ

+
∑
n

∫
Λ(z′, θ′, z∗n, θ)y(z

∗
n, θ)ω

∗
δ,n(θ)dθ

exists and is continuous for all z′ ̸= z∗n At the mass points we have∫∫
Λ(z∗n, θ

′, z, θ)ω∗(z, θ)dzdθ +
∑
m

∫
Λ(z∗n, θ

′, z∗m, θ)ω∗
δ,m(θ)dθ = ω∗

n(θ
′)δ(z − z∗n)

where

ω∗
n(θ

′) =

∫ ∫
θ(z,z∗n)

µ
(
θ′ − ρθθ

)
ω∗(z, θ)dθdz +

∑
m

∫
θ(z∗m,z∗n)

µ(θ′ − ρθθ)ω
∗
δ,m(θ)dθ

with θ(z, z′) = {θ : z(z, θ) = z′}. As y is piecewise smooth with discontinuities that don’t align
with the mass-points z∗n

mδ,n(θ
′) =

∫ ∫
θ(z,z∗n)

µ
(
θ′ − ρθθ

)
ω∗(z, θ(z, z∗n))y (z, θ) dθdz

+
∑
m

∫
θ(z∗m,z∗n)

µ(θ′ − ρθθ)ω
∗
δ,m(θ)y (z∗m, θ) dθ.

This claim implies that M · zs is a density with a finite number of mass-points as z∗n. As
Ω̂0 = 0 we conclude that

d

dθ
Ω̂1 = −

∞∑
s=0

(M · zs)XZ,s

is a density with a finite number of mass-points. Our next claim allows us to extend this to
all d

dθ Ω̂t via induction

Claim 2. If d
dθ Ω̂ is a density with a finite number of mass points z∗n then L · d

dθ Ω̂ is a density
with a finite number of mass points z∗n.

Proof. Repeat the steps of the Claim 1 replacing y with zz and

ω∗(z, θ) +
∑
n

ω∗
δ,n(θ)δ(z − z∗n)

with d
dθ Ω̂.
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A.6 Proof of Corollary 2(FO)

We start with our first claim

Claim 3. d
dθ Ω̂t is given by

d

dθ
Ω̂t = −

∑
s=0

At,sXZ,s

where At,s is as defined in Corollary 2(FO).

Proof. We proceed by induction. It’s trivially true from t = 0 as A0,s = 0 and d
dθ Ω̂0. We then

proceed by induction

d

dθ
Ω̂t+1 = L · d

dθ
Ω̂t −

∞∑
j=0

ajXZ,t+j

= L ·

(
−

∞∑
s=0

At,sXZ,s

)
−

∞∑
s=0

as−tXZ,s

=
∞∑
s=0

− (L · At,s + as−t)XZ,s

≡
∞∑
s=0

At+1,sXZ,s

where the second equality is achieved by letting s = t + j and WLOG setting ak = 0 for
k < 0.

Applying integration by parts we have∫
xdΩ̂t = −

∫
xz

d

dθ
Ω̂tdzdθ := −I · d

dθ
Ω̂t.

From the proof of Lemma 4(FO) we know that d
dθ Ω̂t is a density with mass points at a finite

number of points z∗n which implies that the set of points where xz is not defined is measure
zero under d

dθ Ω̂tdzdθ so I · d
dθ Ω̂t is well defined. Therefore∫

xdΩ̂t = −I ·

(
−
∑
s=0

At,sXZ,s

)
=
∑
s

(I · At,s)XZ,s

as desired.

A.7 Proof Of Proposition 1(FO)

Combining 1(FO) and 2(FO) we have
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∫
xZ,tdΩ

∗ +

∫
xdΩ̂t =

∞∑
j=0

(∫
xjdΩ

∗
)
XZ,t+j +

∑
s

(I · At,s)XZ,s

=

∞∑
s=0


∫

xt−sdΩ
∗ + I · At,s︸ ︷︷ ︸

Jt,s

XZ,s.

Combined with Lemma 2(FO) immediately yields equation (19).

A.8 Proof of Lemma 1(SO)

We proceed by taking a second order expansion of (60) and (61) to find17

Xt

(
E t
)
= X +XZ

(
Zt

(
E t
)
− Z∗)

+
1

2

(
XZZ ·

(
Zt−1

(
E t−1

)
− Z∗, Zt−1

(
E t−1

)
− Z∗)+Xσσ

)
+O

(
E3
)

(67)

Zt

(
E t
)
= Z∗ + ZZ

(
Zt−1

(
E t−1

)
− Z∗)+ Ẑ0Et

+
1

2

(
ZZZ ·

(
Zt−1

(
E t−1

)
− Z∗, Zt−1

(
E t−1

)
− Z∗)+ Zσσ

)
+O

(
E3
)
, (68)

where ZZZ is defined in the main text and Zσσ =
[
0,Ωσσ

]T . As Zt−1

(
E t−1

)
−Z∗ satisfies (64)

and both XZZ and ZZZ are quadratic forms we can conclude that

XZZ ·
(
Zt

(
E t
)
− Z∗, Zt

(
E t
)
− Z∗) = t∑

s=0

t∑
m=0

XZZ ·
(
Ẑt−s, Ẑt−m

)
EsEm +O

(
E3
)

ZZZ ·
(
Zt

(
E t
)
− Z∗, Zt

(
E t
)
− Z∗) = t∑

s=0

t∑
m=0

ZZZ ·
(
Ẑt−s, Ẑt−m

)
EsEm +O

(
E3
)
.

Therefore if we define the direction Ẑ
(2)
t

(
E t
)

recursively via Ẑ
(2)
0

(
E0
)
= 0 and

Ẑ
(2)
t

(
E t
)
= ZZẐ

(2)
t−1

(
E t−1

)
+

t−1∑
s=0

t−1∑
m=0

ZZZ ·
(
Ẑt−1−s, Ẑt−1−m

)
EsEm + Zσσ (69)

then we can conclude that

Zt

(
E t
)
− Z∗ =

t∑
s=0

Ẑt−sEs +
1

2
Ẑ

(2)
t

(
E t
)
+O

(
E3
)

and

Xt

(
E t
)
−X =

t∑
s=0

XZ,t−sEs+
1

2

(
t∑

s=0

t∑
m=0

XZZ ·
(
Ẑt−s, Ẑt−m

)
EsEm +XZ · Ẑ(2)

t

(
E t
))

+O
(
E2
)
.

(70)
17There are also XσZ and ZσZ terms but they are 0 following the same logic as Xσ and Zσ being 0 in the

proof of Lemma 1
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By construction it is straightforward to use show that (69) implies that

Ẑ
(2)
t

(
E t
)
= Ẑσσ,t +

t∑
s=0

t∑
m=0

Ẑt−s,t−mEsEm

where both Ẑt,s and Ẑσσ,t are as defined in the main text. Substituting for Ẑ
(2)
t

(
E t
)

in (70)
and applying the definitions of Xσσ,t and XZZ,t,s immediately yields

Xt

(
E t
)
= ...+

1

2

(
t∑

s=0

t∑
m=0

XZZ,t−s,t−mEsEm +Xσσ,t

)
+O

(
E2
)

where . . . are the first-order terms, as desired.

A.9 Proof of Lemma 3(SO)

Assumption 1 states that the functions x̃(z, θ, Z;σ) are continuous and piece-wise smooth in
some neighborhood Z∗ and σ = 0. We’ll start by assuming a single point where the functions
are joined defined by z∗(θ, Z;σ). We’ll let x̃p and x̃m denote the functions on either side of
that point thus

x̃(z, θ, Z;σ) =

{
x̃1(z, θ, Z;σ) z ≥ z∗(θ, Z;σ)

x̃0(z, θ, Z;σ) z ≤ z∗(θ, Z;σ)
,

or
x̃(z, θ, Z;σ) = x̃0(z, θ, Z;σ)ι (z ≤ z∗(θ, Z;σ)) + x̃1(z, θ, Z;σ)ι (z ≥ z∗(θ, Z;σ)) ,

where z∗(θ, Z;σ) is determined by the agent being on the budget constraint while uncon-
strained, i.e.

z̃1 (z∗(θ, Z;σ), θ, Z;σ) = z

If we differentiate x̃(z, θ, Z;σ) with respect to Z in direction Ẑi we get

xZ(z, θ) · Ẑi = x0Z(z, θ) · Ẑiι (z ≤ z∗(θ)) + x1Z(z, θ) · Ẑiι (z ≥ z∗(θ)) +
(
x1(z, θ)− x0(z, θ)

)
z∗Z(θ) · Ẑiδ(z − z∗(θ))

= x◦Z(z, θ) · Ẑi +
(
x1(z, θ)− x0(z, θ)

)
z∗Z(θ) · Ẑiδ(z − z∗(θ))

= x◦Z(z, θ) · Ẑi

where x◦Z(z, θ)·Ẑi is the piece-wise smooth component of xZ(z, θ)·Ẑi. Continuity of x̃(z, θ, Z;σ)

implies that
(
x1(z∗(θ), θ)− x0(z∗(θ), θ)

)
= 0 which give the third equality. Therefore, all the

proofs in the main text can proceed as they do.
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Differentiating twice with respect to Z implies that

xZZ(z, θ) ·
(
Ẑi, Ẑj

)
=x◦ZZ(z, θ) ·

(
Ẑi, Ẑj

)
+
(
x1Z(z, θ) · Ẑj − x0Z(z, θ) · Ẑj

)
z∗Z(θ) · Ẑiδ(z − z∗(θ))

+
(
x1Z(z, θ) · Ẑj − x0Z(z, θ) · Ẑj

)
z∗Z(θ) · Ẑjδ(z − z∗(θ))

−
(
x1(z, θ)− x0(z, θ)

) (
z∗Z(θ) · Ẑi

)(
z∗Z(θ) · Ẑj

)
δ′(z − z∗(θ))

=x◦ZZ(z, θ) ·
(
Ẑi, Ẑj

)
+ xδZZ,i,j(θ)δ(z − z∗(θ))

where x◦ZZ(z, θ) ·
(
Ẑi, Ẑj

)
is the piece-wise smooth component of xZZ(z, θ) ·

(
Ẑi, Ẑj

)
and

xδZZ,i,j(θ) is given by

xδZZ,i,j(θ) = x∆Z (θ) · Ẑjz
∗
Z(θ) · Ẑi + x∆Z (θ) · Ẑiz

∗
Z(θ) · Ẑj + x∆z (θ)

(
z∗Z(θ) · Ẑi

)(
z∗Z(θ) · Ẑj

)
with x∆Z (θ) · Ẑi ≡ x1Z(z

∗(θ), θ) · Ẑj −x0Z(z
∗(θ), θ) · Ẑj and x∆z (θ) ≡

(
x1z(z

∗(θ), θ)− x0(z∗(θ), θ)
)
.

Finally, we note that z∗Z(θ) · Ẑi is determined by

z∗Z(θ) · Ẑi = −z1z (z
∗(θ), θ)−1 z1Z (z∗(θ), θ) · Ẑi.

Note that all of the terms of xδZZ(θ) are known to first order. Combining all of these facts
together we have that

xZZ,i,j(z, θ) = xZ(z, θ) · Ẑi,j + xZZ(z, θ) ·
(
Ẑi, Ẑj

)
= x◦ZZ,i,j(z, θ) + xδZZ,i,j(θ)δ(z − z∗(θ))

where x◦ZZ,i,j(z, θ) is the piece-wise smooth component of xZZ,i,j(z, θ).

To determine x◦ZZ,i,j(z, θ) we differentiate the F mapping twice in direction Ẑi and Ẑj at
any point (z, θ) ̸= (z∗(θ), θ) and add to it the derivative of F in direction Ẑi,j to get

0 = Fx(z, θ)x
◦
ZZ,i,j(z, θ)+FX(z, θ)XZZ,ij+Fx′(z, θ)E

[
x◦ZZ,i+1,j+1(, ) + xz(, )px

◦
ZZ,i,j(z, θ)

]
+Fi,j(z, θ)

(71)
where Fi,j(z, θ) contains all the interaction terms known to first order

Fi,j(z, θ) =Fx′(z, θ)E
[
x◦
zz()zZ,i(z, θ)zZ,j(z, θ) + x◦

zZ,j+1()zZ,i(z, θ) + x◦
zZ,i+1()zZ,j(z, θ)

]
+ Fxx(z, θ) · (xZ,i(z, θ), xZ,j(z, θ)) + FxX(z, θ) ·

(
xZ,i(z, θ), XZ,j

)
+ Fxx′(z, θ) ·

(
xZ,i(z, θ), x

+
Z,j(z, θ)

)
+ FXx(z, θ) ·

(
XZ,i, xZ,j(z, θ)

)
+ FXX(z, θ) ·

(
XZ,i, XZ,j

)
+ FXx′(z, θ) ·

(
XZ,i, x

+
Z,j(z, θ)

)
+ Fx′x(z, θ) ·

(
x+
Z,i(z, θ), xZ,j(z, θ)

)
+ Fx′X(z, θ) ·

(
x+
Z,i(z, θ), XZ,j

)
+ Fx′x′(z, θ) ·

(
x+
Z,i(z, θ), x

+
Z,j(z, θ)

)
+ Fx′(z, θ)

µ(θ
∗
(z(z, θ))− ρθθ)

z∗θ(θ)

(
xδ
zz(θ

∗
(z(z, θ)), z(z, θ))zZ,i(z, θ)zZ,j(z, θ) + xδ

zZ,j+1(θ
∗
(z(z, θ)), z(z, θ))zZ,i(z, θ)

+ xδ
zZ,i+1(θ

∗
(z(z, θ)), z(z, θ))zZ,j(z, θ) + xδ

ZZ,i+1,j+1(θ
∗
(z(z, θ)), z(z, θ))

)
.
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where x+
Z,i(z, θ) = E [xz(, )xZ,i(z, θ) + xZ,i+1(, )|z, θ] . It is straightforward to verify that (71) is

solved by

x◦ZZ,i,j(z, θ) =
∞∑
s=0

xs(z, θ)XZZ,i+s,j+s + y◦i,j(z, θ)

where x◦i,j(z, θ) solves the recursive equation

x◦i,j(z, θ) = (Fx(z, θ) + Fx′(z, θ)E [xz(, )|z, θ] p)−1 (Fi,j(z, θ) + Fx′(z, θ)E
[
y◦i+1,j+1(, )|z, θ

])
.

The first equation of the Lemma is therefore satisfied by

xt,k(z, θ) = x◦t,k(z, θ) + xδZZ,t,k(θ)δ(z − z∗(θ))

with all terms known to first order or lower.
Finally, we move on to the second half of Lemma. Assuming knowledge of XZZ,t,t we can

construct xΘΘ(z, θ) = xZZ,0,0(z, θ). To find xσσ(z, θ) differentiate the F mapping twice with
respect to σ and add to it the derivative of F in direction Ẑσσ,t

0 = Fx(z, θ)xσσ,t(z, θ)+ FX(z, θ)Xσσ,t + Fx′(z, θ)E
[
xΘΘ(, )σ

2
E + xσσ,t+1(, ) + xz(, )pxσσ,t(z, θ)

]
.

We begin by letting xσσ(z, θ) be the function that solves the following linear functional equation

0 = Fx(z, θ)xσσ(z, θ) + Fx′(z, θ)E
[
xΘΘ(, )σ

2
E + xσσ(z, θ)(, ) + xz(, )pz(z, θ)

]
.

Subtracting these two equations and defining x̂σσ,t(z, θ) = xσσ,t(z, θ)− xσσ(z, θ) we see that

0 = Fx(z, θ)x̂σσ,t(z, θ) + FX(z, θ)Xσσ,t + Fx′(z, θ)E [x̂σσ,t+1(, ) + xz(, )px̂σσ,t(z, θ)] .

This is identical to system of equations solved by xZ,t which allows us to conclude that

x̂σσ,t(z, θ) =
∞∑
s=0

xs(z, θ)Xσσ,t+s

and hence
xσσ,t(z, θ) =

∞∑
s=0

xs(z, θ)Xσσ,t+s + xσσ(z, θ).
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A.10 Proof of Lemma 4(SO)

Differentiating the law of motion of Ω twice in direction Ẑt and Ẑk and adding to it the
derivative in direction Ẑt,k gives

Dθ · Ω̂t+1,k+1⟨z′, θ′⟩ =

−
∫

Λ(z′, θ′, z, θ)zZZ,t,k(z, θ)dΩ
∗ +

∫
Λz′(z

′, θ′, z, θ)zZ,t(z, θ)zZ,k(z, θ)dΩ
∗

+

∫
Λ(z′, θ′, z, θ)zzZ,k(z, θ)Dθ · Ω̂t⟨z, θ⟩dθdz +

∫
Λ(z′, θ′, z, θ)zzZ,t(z, θ)Dθ · Ω̂k⟨z, θ⟩dθdz

−
∫

Λz′(z
′, θ′, z, θ)zZ,k(z, θ)zz(z, θ)Dθ · Ω̂t⟨z, θ⟩dθdz −

∫
Λz′(z

′, θ′, z, θ)zZ,k(z, θ)zz(z, θ)Dθ · Ω̂t⟨z, θ⟩dθdz

+

∫
Λ(z′, θ′, z, θ)z̄z(z, θ)Dθ · Ω̂t,k⟨z, θ⟩dθdz

where Λz′(z
′, θ′, z, θ) = −

∫
δ′(z(z, θ) − z′)δ(ρθθ + ϵ − θ′)µ(ϵ)dϵ. Substituting for zZZ,t,k(z, θ)

using Lemma 3(SO) we have the first equation in Corollary 2(SO) with

bt+1,k+1⟨z′, θ′⟩ =
∫

Λ(z′, θ′, z, θ)yt,k(z, θ)dΩ
∗ −

∫
Λ(z′, θ′, z, θ)zzZ,k(z, θ)Dθ · Ω̂t⟨z, θ⟩dθdz

−
∫

Λ(z′, θ′, z, θ)zzZ,t(z, θ)Dθ · Ω̂k⟨z, θ⟩dθdz

and

ct+1,k+1⟨z′, θ′⟩ =
∫

Λ(z′, θ′, z, θ)zZ,t(z, θ)zZ,k(z, θ)dΩ
∗ −

∫
Λ(z′, θ′, z, θ)zZ,k(z, θ)zz(z, θ)Dθ · Ω̂t⟨z, θ⟩dθdz

−
∫

Λ(z′, θ′, z, θ)zZ,k(z, θ)zz(z, θ)Dθ · Ω̂t⟨z, θ⟩dθdz.

Next, differentiating the LOM of Ω twice with respect to σ and adding to it the derivative
of the LOM in direction Ẑσσ,t yields

Dθ · Ω̂σσ,t+1⟨z′, θ′⟩ =−
∫

Λ(z′, θ′, z, θ)zσσ,t(z, θ)dΩ
∗ +

∫
Λ(z′, θ′, z, θ)z̄z(z, θ)Dθ · Ω̂σσ,t⟨z, θ⟩dθdz.

Substituting for zσσ,t using Lemma 3(SO) immediately obtains the second equation of the
Lemma with

aσσ⟨z′, θ′⟩ =
∫

Λ(z′, θ′, z, θ)xσσ(z, θ)dΩ
∗.
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A.11 Proof of Corollary 2(SO)

We begin with a expression for the operator L · Dz. We note that

L · Dz · Ω̂⟨z′, θ′⟩ =
∫

Λ(z′, θ′, z, θ)zz(z, θ)Dz · Ω̂⟨z, θ⟩dzdθ

= −
∫

Λz(z
′, θ′, z, θ)zz(z, θ)Ω̂⟨z, θ⟩dzdθ −

∫
Λ(z′, θ′, z, θ)zzz(z, θ)Ω̂⟨z, θ⟩dzdθ

=

∫
Λz′(z

′, θ′, z, θ)zz(z, θ)zz(z, θ)Ω̂⟨z, θ⟩dzdθ −
∫

Λ(z′, θ′, z, θ)zzz(z, θ)Ω̂⟨z, θ⟩dzdθ

= Dz · L(z,z) · Ω̂⟨z′, θ′⟩ − L(zz) · Ω̂⟨z′, θ′⟩

where L·Ω̂⟨z′, θ′⟩ ≡
∫
Λ(z′, θ′, z, θ)zz(z, θ)zz(z, θ)Ω̂⟨z, θ⟩dzdθ and L(zz)·Ω̂⟨z′, θ′⟩ ≡

∫
Λ(z′, θ′, z, θ)zzz(z, θ)Ω̂⟨z, θ⟩dzdθ.

From the definition of
(∫

xdΩ
)
ZZ,t,k

we have(∫
xdΩ

)
ZZ,t,k

=

∫
xZZ,t,kdΩ

∗ +

∫
xZ,tdΩ̂k +

∫
xZ,kdΩ̂t +

∫
xdΩ̂t,k.

=

∫
xZZ,t,kdΩ

∗ −
∫

xzZ,tDθ · Ω̂kdzdθ −
∫

xzZ,kDθ · Ω̂tdzdθ −
∫

xzDθ · Ω̂t,kdzdθ

(72)

We’ll proceed under the assumption that k ≥ t, the case where t > k is symmetric. Our first
claim is that

Dθ · Ω̂t,k =
t−1∑
j=0

∞∑
s=0

Lt−1−j · as−jXZZ,s,k−t+s − Bt,k +Dz · Ct,k

Proof is via induction starting with our knowledge that Dθ · Ω̂0,k−t = 0. Applying the LOM
for Dθ · Ω̂t,k we have

Dθ · Ω̂t+1,k+1 =L ·

 t−1∑
j=0

∞∑
s=0

Lt−1−j · as−jXZZ,s,k−t+s − Bt,k +Dz · Ct,k

−
∞∑
s=0

as−tXZZ,s,k−t+s

− bt+1,k+1 +Dzct+1,k+1

=
t∑

j=0

∞∑
s=0

Lt−j · as−jXZZ,s,k−t+s − L · Bt,k − bt+1,k+1 + L · Dz · Ct,k +Dz · ct+1,k+1

=

t∑
j=0

∞∑
s=0

Lt−j · as−jXZZ,s,k−t+s − L · Bt,k − bt+1,k+1 − L(zz) · Ct,k +Dz · L(z,z) · Ct,k +Dz · ct+1,k+1

We conclude that
Bt+1,k+1 = L · Bt,k + bt+1,k+1 + L(zz) · Ct,k

and
Ct+1,k+1 = L(z,z) · Ct,k + ct+1,k+1.
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with the initial conditions B0,k−t = C0,k−t = 0. Substituting for Dθ · Ω̂t,k and xZZ,t,k in (72)
yields the first equation in Corollary 1(SO) with

Ht,k =

∫
yt,kdΩ

∗ −
∫

xzZ,tDθ · Ω̂kdzdθ−
∫

xzZ,kDθ · Ω̂tdzdθ+

∫
xzBt,kdzdθ+

∫
xzzCt,kdzdθ.

For the second half of the corollary we note that we can iterate the LOM for Dθ · Ω̂σσ,t

forward starting from the initial condition Dθ · Ω̂σσ,0 = 0 to get

Dθ · Ω̂σσ,t = −
t−1∑
k=0

∞∑
s=0

Lt−1−k · as−kXσσ,s −
t−1∑
k=0

Lt−1−k · aσσ.

By construction and applying integration by parts yields(∫
xdΩ

)
σσ,t

=

∫
xσσdΩ

∗ −
∫

xzDθ · Ω̂σσ,tdzdθ

substituting for Dθ · Ω̂σσ,t and xσσ using Lemma 3(SO) we have equation the second equation
in Corollary 1(SO) with

Jσσ,t =

∫
xσσdΩ

∗ +
t−1∑
k=0

I · Lt−1−k · aσσ

which conveniently satisfies the recursion Jσσ,t = Jσσ,t−1 + I · Lt−1 · aσσ.

A.12 Proof of Proposition 1(SO)

To show equation (32) we differentiate the G mapping twice with respect to Ẑt and Ẑk and
add to it the derivative of the G mapping in direction Ẑt,k to get

Gx

(∫
xdΩ

)
ZZ,t,k

+ GXXZZ,t,k + GΘ,t,k = 0

where

GΘ,t,k =Gxx ·

((∫
xdΩ

)
Z,t

,

(∫
xdΩ

)
Z,k

)
+ GxX ·

((∫
xdΩ

)
Z,t

, XZ,k

)
+ GxΘ ·

((∫
xdΩ

)
Z,t

, ρkΘ

)

+ GXx ·

(
XZ,t,

(∫
xdΩ

)
Z,k

)
+ GxX ·

(
XZ,t, XZ,k

)
+ GxΘ ·

(
XZ,t, ρ

k
Θ

)
+ GΘx ·

(
ρtΘ,

(∫
xdΩ

)
Z,k

)
+ GΘX ·

(
ρtΘ, XZ,k

)
+ GΘΘ ·

(
ρtΘ, ρ

k
Θ

)
.

Substituting for
(∫

xdΩ
)
ZZ,t,k

using Corollary 1(SO) yields the desired expression.
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To show equation (32) we differentiate the G mapping twice with respect to σ and add to
it the derivative of the G mapping in direction Ẑσσ,t to find

Gx

(∫
xdΩ

)
σσ,t

+ GXXσσ,t = 0.

The desired expression is then obtained by substituting for
(∫

xdΩ
)
σσ,t

again by using Corol-
lary 1(SO).
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