A Perturbational Approach for Approximating Heterogeneous-Agent Models

Anmol Bhandari Thomas Bourany David Evans Mikhail Golosov

Motivation

- Canonical framework to study aggregate fluctuations
 - aggregate shocks + incomplete markets + het. agents (HA)
- Challenge: equilibria are difficult to compute
 - distribution of individual characteristics is a state variable
 - distribution follows complicated LoM with agg shocks
- Existing methods often rely on 1st order appr. and MIT shocks
 - · cannot study stabilization policies, risk, asset prices, portfolio choice
- This paper: proposes a novel method to approx HA economies
 - fast, efficient, and easy to implement
 - scalable to higher-order approximations

What is novel?

- Standard approach (Reiter, Mitman, Auclert...)
 - discretize distribution and its LoM (e.g., "histogram method")
 - obtain 1st order approx via Taylor expansions (MIT shocks)
- Our approach
 - derive exact theoretical responses for any given order of appr.
 - compute those expressions numerically via discretization
- 1st order:
 - \bullet two approaches agree as grid size $\to 0$
 - · ours is faster since we can utilize exact analytical expressions
- higher orders:
 - naive extensions of existing methods to higher order miss terms
 - MIT shocks do not recover effects of risk

Canonical HA representation

Eqm condititions in HA models:

$$F(z_{i,t-1}, x_{i,t}, \mathbb{E}_{i,t} x_{i,t+1}, X_t, \theta_{i,t}) = 0 \text{ for all } i, t$$
 (1)

$$G\left(\int x_{i,t}di, X_t, \Theta_t\right) = 0 \text{ for all } t$$
 (2)

where

• $\theta_{i,t}$, Θ_t : indiv and agg exogenous shocks, AR(1)

$$\theta_{i,t} = \rho_{\theta} \theta_{i,t-1} + \varepsilon_{i,t}$$
$$\Theta_t = \rho_{\Theta} \Theta_{t-1} + \mathcal{E}_t$$

- $x_{i,t}$, X_t : are indiv and agg endogenous variables
 - $z_{i,t-1} \in x_{i,t-1}$ predetermined in t-1
- Initial conditions: Θ_{-1} and distribution Ω_{-1} over $(z_{i-1}, \theta_{i,-1})$
- Eqm given initial conditions is given by: $\{X_t(\mathcal{E}^t), x_t(\varepsilon_i^t, \mathcal{E}^t)\}$

Recursive representation

Let $Z = [\Theta, \Omega]^T$: aggregate state

- $\widetilde{x}(z,\theta,Z)$, $\widetilde{X}(Z)$, $\widetilde{\Omega}(Z)$ are indiv and agg policy functions
- $\widetilde{z}(z, \theta, Z) = P\widetilde{x}(z, \theta, Z)$

Recursive representation

$$F\left(z,\widetilde{x},\mathbb{E}\widetilde{x},\widetilde{X},\theta\right)=0 \text{ for all } z,\theta,Z$$

$$G\left(\int\widetilde{x}d\Omega,\widetilde{X},\Theta\right)=0 \text{ for all } Z$$

$$\widetilde{\Omega}\left\langle z',\theta'\right\rangle =\iint\iota\left(\widetilde{z}(z,\theta,Z)\leq z'\right)\iota(\rho_{\theta}\theta+\epsilon\leq\theta')d\Pr\left(\epsilon\right)d\Omega \text{ for all } Z$$

Example: Krusell-Smith

Households

$$\max_{\{c_{i,t}, k_{i,t}\}_{t \ge 0}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U(c_{i,t})$$

$$c_{i,t} + k_{i,t} = R_t k_{i,t-1} + W_t \exp(\theta_{i,t})$$

$$k_{i,t} \ge 0$$

Firms

$$\max_{N_t,K_t} \exp\left(\Theta_t\right) K_t^{\alpha} N_t^{1-\alpha} + (1-\delta)K_t - W_t N_t - R_t K_t$$

Market clearings

$$K_t = \int k_{i,t} di, \qquad N_t = \int \exp(\theta_{i,t}) di$$

Mapping of KS economy

• Variables:

$$X_t = (K_t, W_t, R_t), \ x_{i,t} = (k_{i,t}, c_{i,t}, \lambda_{i,t}, \zeta_{i,t}), \ z_{i,t} = k_{i,t}$$

• Mapping *F*:

$$\begin{aligned} c_{i,t} + k_{i,t} - R_t k_{i,t-1} - W_t \exp(\theta_{i,t}) &= 0 \\ \lambda_{i,t} - R_t u_c(c_{i,t}) &= 0 \\ u_c(c_{i,t}) + \zeta_{i,t} - \beta \mathbb{E}_t \lambda_{i,t+1} &= 0 \\ k_{i,t} \zeta_{i,t} &= 0 \end{aligned}$$

• Mapping *G*:

$$\begin{aligned} K_t - \int k_{i,t-1} di &= 0 \\ R_t + \delta - 1 - \alpha \exp\left(\Theta_t\right) K_t^{\alpha - 1} &= 0 \\ W_t - \left(1 - \alpha\right) \exp\left(\Theta_t\right) K_t^{\alpha} &= 0 \end{aligned}$$

Standard perturbational approach

- 1. Scale aggregate shocks by $\sigma \geq 0$
 - shock process: $\Theta_t = \rho_{\Theta}\Theta_{t-1} + \sigma \mathcal{E}_t$
 - policy functions: $\widetilde{X}(Z; \sigma)$, $\widetilde{\Omega}(Z; \sigma)$, ...
- 2. Find steady state (SS) for $\sigma = 0$ economy
- 3. Use Taylor expansions w.r.t. σ to approximate stochastic economy around that SS
 - Quick, standard way to solve RA-DSGE models
 - runs into trouble when Z is high-dimensional

Oth order economy

0th Order

- Notation for $\sigma = 0$ economy
 - $\overline{X}(Z) := \widetilde{X}(Z;0)$, $\overline{x}(z,\theta,Z) := \widetilde{x}(z,\theta,Z;0)$, etc
 - $\overline{Z}(Z) := [\rho_{\Theta}\Theta, \overline{\Omega}(Z)]$
- Steady state: $Z^* = [0, \Omega^*]$
 - Ω^* : invariant distribution without agg. shocks
 - $\Lambda(z', \theta', z, \theta)$: transition probability density
 - $\overline{X} := \overline{X}(Z^*), \ \overline{x}(z,\theta) := \overline{x}(z,\theta,Z^*), \ \text{etc}$
 - by definition, $\overline{Z} = Z^*$

Solving 0th Order

- Ω^* , \overline{X} , $\overline{x}(z,\theta)$ can be found with standard methods
 - appr. policy rules with quadratic splines (basis functions)
 - solve for optimal policy with endog. grid method
- Basis functions also give $\overline{x}_z(z,\theta)$, $\overline{x}_{zz}(z,\theta)$, etc
- ullet Automatic differentiation gives all derivatives of \overline{F} and \overline{G}
 - denote G_X , G_X , G_{Θ} , etc.
- Treat all of these objects as known

Assumptions

- Stability and smoothness assumptions:
 - 1. $\lim_{t\to\infty} \overline{Z}_t(Z_0) = Z^*$ for all Z_0 in a neighborhood of Z^* ;
 - 2. $\widetilde{X}(Z; \sigma)$ is sufficiently differentiable at $(Z, \sigma) = (Z^*, 0)$
 - 3. $\widetilde{x}(z,\theta,Z;\sigma)$ is continuous and piecewise sufficiently differentiable at $(Z,\sigma)=(Z^*,0)$ for all (z,θ)
 - 4. Ω^* has a finite number of mass-points $\{z_n^*\}_n$

Remarks

- 1. and 2. are standard (Blanchard-Kahn)
- 3 is analogue of 2 for individual policy functions with kinks.
- 4. allow for mass-points in Ω and kinks in \tilde{x}

Notation

ullet \overline{X}_Z is the Frechet derivative of \tilde{X} evaluated at $(Z^*,0)$

- $\overline{X}_Z \cdot \hat{Z}$ is the value of derivative in direction \hat{Z}
 - ullet i.e. how much X changes if state changes to $Z^*+\hat{Z}$

• Similarly for $\bar{x}_Z(z,\theta)$ and $\bar{\Omega}_Z$

ullet Extends to higher orders, i.e. $\overline{X}_{ZZ} \cdot \left(\hat{Z}_1, \hat{Z}_2\right)$

Computing Taylor Expansions

- Solving brute force (Dynare) is impractical
 - $\bar{\Omega}_Z$ is approximately $N \times N$
 - $\bar{\Omega}_{ZZ}$ is approximately $N \times N \times N$
- Idea: only evaluate in direction needed for expansion
 - \overline{X}_Z is large
 - $\overline{X}_Z \cdot \hat{Z}$ is not
- Use analytical expressions
 - constructed with Frechet derivatives and linear operators
 - extends to higher order Taylor expansion

1st order expansions

Directions of interest

• Define sequence of directions $\{\hat{Z}_t\}_t$ recursively

$$\begin{split} \hat{Z}_0 := \begin{bmatrix} 1, & \mathbf{0} \end{bmatrix}^T, \\ \hat{Z}_1 := \overline{Z}_Z \cdot \hat{Z}_0 = \begin{bmatrix} \rho_{\Theta}, & \overline{\Omega}_Z \cdot \hat{Z}_0 \end{bmatrix}^T \\ \hat{Z}_t := \overline{Z}_Z \cdot \hat{Z}_{t-1} = \begin{bmatrix} \rho_{\Theta}^t, & \overline{\Omega}_Z \cdot \hat{Z}_{t-1} \end{bmatrix}^T \end{split}$$

Let

$$\overline{X}_{Z,t} := \overline{X}_Z \cdot \hat{Z}_t$$

- Intuition:
 - $\{\hat{Z}_t\}_t$ traces changes of agg state due to shock to Θ in pd 0
 - $\{\overline{X}_{Z,t}\}_t$ is the IR to an "MIT shock"

1st Order Approximation

Lemma

To the first order approximation X_t satisfies

$$X_{t}\left(\mathcal{E}^{t}\right) = \overline{X} + \sum_{s=0}^{t} \overline{X}_{Z,t-s}\mathcal{E}_{s} + O\left(\left\|\mathcal{E}\right\|^{2}\right).$$

- Solving 1st order approximation = finding response to MIT shock (Boppart et al, 2018)
- Same information contained in impulse responses

$$\mathbb{E}\left[X_{t}|\mathcal{E}_{0}\right] - \mathbb{E}\left[X_{t}|\mathcal{E}_{0}=0\right] = \overline{X}_{Z,t}\mathcal{E}_{0} + O\left(\underline{\mathcal{E}}^{2}\right)$$

• Need to find $\{\overline{X}_{Z,t}\}_t$

Finding $\overline{\{\overline{X}_{Z,t}\}}$

Recall

$$G\left(\int \overline{x}d\Omega, \overline{X}, \Theta\right) = 0 \text{ for all } Z$$

Finding $\{\overline{X}_{Z,t}\}$

Recall

$$G\left(\int \overline{x}d\Omega, \overline{X}, \Theta\right) = 0 \text{ for all } Z$$

• Differentiate at $Z = Z^*$ in direction \hat{Z}_t :

$$\mathsf{G}_{\mathsf{x}}\left[\int \overline{\mathsf{x}}_{\mathsf{Z},t} d\Omega^* + \int \overline{\mathsf{x}} d\hat{\Omega}_t\right] + \mathsf{G}_{\mathsf{X}} \overline{\mathsf{X}}_{\mathsf{Z},t} + \mathsf{G}_{\Theta} \rho_{\Theta}^t = 0$$

Finding $\{\overline{X}_{Z,t}\}$

Recall

$$G\left(\int \overline{x}d\Omega, \overline{X}, \Theta\right) = 0$$
 for all Z

• Differentiate at $Z = Z^*$ in direction \hat{Z}_t :

$$\mathsf{G}_{\mathsf{X}}\left[\int \overline{\mathsf{x}}_{\mathsf{Z},t} d\Omega^* + \int \overline{\mathsf{x}} d\hat{\Omega}_t\right] + \mathsf{G}_{\mathsf{X}} \overline{\mathsf{X}}_{\mathsf{Z},t} + \mathsf{G}_{\Theta} \rho_{\Theta}^t = 0$$

- Step 1: characterize $\overline{\mathbf{x}}_{\mathbf{Z},t}$ and then $\int \overline{\mathbf{x}}_{\mathbf{Z},t} d\Omega^*$
- Step 2: characterize $d\hat{\Omega}_t$ and then $\int \overline{x} d\hat{\Omega}_t$
- Step 3: plug in the eqn above to find $\{\overline{X}_{Z,t}\}_t$

Step 1

Lemma

$$\bar{x}_{Z,t}(z,\theta) = \sum_{s=0}^{\infty} \underbrace{x_s(z,\theta)}_{=\partial x_t/\partial X_{t+s}} \bar{X}_{Z,t+s}$$

where $x_s(z, \theta)$ are known from zeroth order

Step 1

Lemma

$$\bar{\mathbf{x}}_{\mathbf{Z},t}\left(\mathbf{z},\theta\right) = \sum_{s=0}^{\infty} \underbrace{\mathbf{x}_{s}\left(\mathbf{z},\theta\right)}_{=\partial \mathbf{x}_{t}/\partial \mathbf{X}_{t+s}} \underbrace{\bar{\mathbf{X}}_{\mathbf{Z},t+s}}$$

where $x_s(z, \theta)$ are known from zeroth order

$$\mathbf{x}_{0}(z,\theta) = -\left(\mathsf{F}_{x}(z,\theta) + \mathsf{F}_{x'}(z,\theta)\overline{\mathsf{x}}_{z}^{+}(z,\theta)\,\mathsf{P}\right)^{-1}\mathsf{F}_{X}(z,\theta)$$
$$\mathbf{x}_{s+1}(z,\theta) = -\left(\mathsf{F}_{x}(z,\theta) + \mathsf{F}_{x'}(z,\theta)\overline{\mathsf{x}}_{z}^{+}(z,\theta)\,\mathsf{P}\right)^{-1}\mathsf{F}_{x'}(z,\theta)\mathbf{x}_{s}^{+}(z,\theta)$$

where
$$\mathsf{x}_{\mathsf{s}}^{+}\left(\mathsf{z},\theta\right) = \mathbb{E}\left[\mathsf{x}_{\mathsf{s}}(,)|\mathsf{z},\theta\right]$$
 and $\overline{\mathsf{x}}_{\mathsf{z}}^{+}\left(\mathsf{z},\theta\right) = \mathbb{E}\left[\overline{\mathsf{x}}_{\mathsf{z}}(\cdot,\cdot)|\mathsf{z},\theta\right]$.

Step 1

Lemma

$$\bar{\mathbf{x}}_{\mathbf{Z},t}(\mathbf{z},\theta) = \sum_{s=0}^{\infty} \underbrace{\mathbf{x}_{s}(\mathbf{z},\theta)}_{=\partial \mathbf{x}_{t}/\partial \mathbf{X}_{t+s}} \bar{\mathbf{X}}_{\mathbf{Z},t+s}$$

where $x_s(z,\theta)$ are known from zeroth orde

- Intuition: individuals only care about effect on prices $\{\bar{X}_{Z,s}\}_s$
- We now can replace $\{\overline{\mathbf{X}}_{Z,t}(z,\theta)\}_{(z,\theta)}$ with $\{\overline{\mathbf{X}}_{Z,s}\}_s$:

$$\int \overline{\mathbf{x}}_{\mathbf{Z},t} d\Omega^* = \sum_{s=0}^{\infty} \left(\int \mathsf{x}_s d\Omega^* \right) \overline{\mathbf{X}}_{\mathbf{Z},t+s}$$

Step 2: \mathcal{M} and \mathcal{L}

Now we want to characterize

$$\int \overline{x} d\hat{\Omega}_t$$

- Linear operators $\mathcal M$ and $\mathcal L$ help to characterize $\hat{\Omega}_t$
- For any $y:(z,\theta)\to\mathbb{R}$ they return

$$(\mathcal{M} \cdot \mathbf{y}) \langle z', \theta' \rangle := \int \overline{\Lambda}(z', \theta', z, \theta) \mathbf{y}(z, \theta) d\Omega^*(z, \theta)$$

$$(\mathcal{L} \cdot \mathbf{y}) \langle \mathbf{z}', \theta' \rangle := \int \overline{\Lambda}(\mathbf{z}', \theta', \mathbf{z}, \theta) \overline{\mathbf{z}}_{\mathbf{z}}(\mathbf{z}, \theta) \mathbf{y}(\mathbf{z}, \theta) d\mathbf{z} d\theta$$

- Intuition: suppose indiv. policy functions are perturbed by $\hat{z}_{0}\left(z,\theta\right)$
 - effect on agg. distribution in pd 1: $\frac{d}{d\theta} \hat{\Omega}_1 = \mathcal{M} \cdot \hat{z}_0$
 - effect on agg. distribution in pd 2: $\frac{d}{d\theta}\hat{\Omega}_2 = \mathcal{L} \cdot \frac{d}{d\theta}\hat{\Omega}_1$

Step 2: recursive LoM

Lemma

 $\frac{d}{d\theta}\hat{\Omega}_t$ satisfies a recursion

$$\frac{d}{d\theta}\hat{\Omega}_t = \mathcal{L} \cdot \frac{d}{d\theta}\hat{\Omega}_{t-1} - \sum_{s=0}^{\infty} \mathcal{M} \cdot z_s \overline{X}_{Z,t+s},$$

where $\frac{d}{d\theta}\hat{\Omega}_0 = \mathbf{0}$.

- Intuition:
 - \bullet operator ${\mathcal L}$ captures first-order effect of past changes agg dist
 - $\mathcal{M} \cdot z_s$ captures first-order effect of ind. policy functions to change in aggregates s periods ahead

Step 2: characterize $\int \overline{x} d\hat{\Omega}_t$

We have

$$\int \overline{x} d\hat{\Omega}_t = -\int \overline{x}_z \frac{d}{d\theta} \hat{\Omega}_t dz d\theta := -\mathcal{I} \cdot \frac{d}{d\theta} \hat{\Omega}_t$$

Together with previous results this implies that

$$\int \overline{x} \frac{d\hat{\Omega}_t}{d\hat{\Omega}_t} = \sum_{s=0}^{\infty} (\mathcal{I} \cdot \mathsf{A}_{t,s}) \overline{X}_{\mathcal{Z},s},$$

where $\{A_{t,s}\}_{t,s}$ follow a recursion $A_{0,s}=0$ and

$$\mathsf{A}_{t,s} = \mathcal{L} \cdot \mathsf{A}_{t-1,s} + \mathcal{M} \cdot \mathsf{z}_{s-t-1}$$

Step 3: solve 1st order appr

Proposition

 $\left\{\overline{X}_{Z,t}\right\}_{t}$ is the solution to

$$\mathsf{G}_{x}\sum_{s=0}^{\infty}\mathsf{J}_{t,s}\overline{\boldsymbol{X}}_{\boldsymbol{Z},s}+\mathsf{G}_{X}\overline{\boldsymbol{X}}_{\boldsymbol{Z},t}+\mathsf{G}_{\Theta}\rho_{\Theta}^{t}=0,$$

where $\{J_{t,s}\}_{t,s}$ satisfies

$$\mathsf{J}_{t,s} = \int \mathsf{x}_{s-t} d\Omega^* + \mathcal{I} \cdot \mathsf{A}_{t,s}$$

• Linear system of equations that determines $\{\overline{X}_{Z,t}\}_t$

2nd order expansions

Higher-order approximations

- Same approach extends with minimal changes to higher orders
 - exactly the same steps to derive approx terms
 - almost the same mathematical form of equations
 - · many 1st order terms get recycled for higher-order computations
- I will illustrate intuition for this using a simple example

• In RCE policy functions depend on other policy functions, e.g.

• First order expansion:

$$f_a = f_g g_a$$

• Second order expansion:

$$f_{aa} = f_g g_{aa} + f_{gg} g_a g_a$$

- Note the general structure of second order terms
 - will be useful to think about directions

- Our procedure for 1st order approximation:
 - we know f_g from 0th order
 - we developed a way to find f_a and g_a with

$$f_a = f_g g_a \tag{3}$$

- Our procedure for 1st order approximation:
 - we know f_g from 0th order
 - we developed a way to find f_a and g_a with

$$f_a = f_g g_a \tag{3}$$

- Our procedure for 2nd order approximation:
 - ullet know f_g , f_{gg} from 0th order, g_a from 1st order
 - need to develop a way to find f_{aa} and g_{aa} with

$$\mathbf{f}_{aa} = f_g \mathbf{g}_{aa} + c \tag{4}$$

where $c = f_{gg}g_ag_a$ is known

- Our procedure for 1st order approximation:
 - we know f_g from 0th order
 - we developed a way to find f_a and g_a with

$$f_a = f_g g_a \tag{3}$$

- Our procedure for 2nd order approximation:
 - ullet know f_g , f_{gg} from 0th order, g_a from 1st order
 - need to develop a way to find faa and gaa with

$$\mathbf{f}_{aa} = f_g \mathbf{g}_{aa} + c \tag{4}$$

where $c = f_{gg}g_ag_a$ is known

• (1) and (2) have almost identical structure!

2nd order directions

Non-linearities from shocks

$$\begin{split} \hat{Z}_{t,s} &= \overline{Z}_{Z} \cdot \hat{Z}_{t-1,s-1} + \overline{Z}_{ZZ} \cdot \left(\hat{Z}_{t-1}, \hat{Z}_{s-1} \right) \\ \overline{X}_{ZZ,t,k} &:= \overline{X}_{Z} \cdot \hat{Z}_{t,k} + \overline{X}_{ZZ} \cdot \left(\hat{Z}_{t}, \hat{Z}_{k} \right) \end{split}$$

Precautionary motives:

$$\begin{split} \hat{Z}_{\sigma\sigma,t} &= \left[0,\overline{\Omega}_{\sigma\sigma}\right]^T + \overline{Z}_Z \cdot \hat{Z}_{\sigma\sigma,t-1} \\ \overline{X}_{\sigma\sigma,t} &:= \overline{X}_{\sigma\sigma} + \overline{X}_Z \cdot \hat{Z}_{\sigma\sigma,t} \end{split}$$
 where $\overline{X}_{\sigma\sigma} := \left. \frac{\partial^2}{\partial \sigma^2} \widetilde{X} \left(Z^* ; \sigma \right) \right|_{\sigma=0}$, etc

Recycle 1st order for 2nd order

• $\{\overline{X}_{ZZ,t,k}\}_{t,k}$ and $\{\overline{X}_{\sigma\sigma,t}\}_t$ recover second-order approximation:

$$X_{t}\left(\mathcal{E}^{t}\right) = ... + \frac{1}{2}\left(\sum_{s=0}^{t}\sum_{m=0}^{t}\overline{\boldsymbol{X}}_{\boldsymbol{Z}\boldsymbol{Z},t-s,t-m}\mathcal{E}_{s}\mathcal{E}_{m} + \overline{\boldsymbol{X}}_{\sigma\sigma,t}\right) + O\left(\left\|\mathcal{E}\right\|^{3}\right)$$

- ullet Finding components of $\overline{X}_{ZZ,t,k}$ and $\overline{X}_{\sigma\sigma,t}$
 - $\overline{X}_{ZZ} \cdot (\hat{Z}_t, \hat{Z}_k)$: explicit formula in terms of 1st and 0th order
 - $\overline{X}_Z \cdot \hat{Z}_{t,k}$ and $\overline{X}_Z \cdot \hat{Z}_{\sigma\sigma,t}$: determined almost identically to $\overline{X}_Z \cdot \hat{Z}_t$
 - Impulse responses are insufficient

$$\mathbb{E}\left[X_t|\mathcal{E}_0\right] - \mathbb{E}\left[X_t|\mathcal{E}_0 = 0\right] = ... + \overline{X}_{ZZ,t,t}\mathcal{E}_0^2 + O\left(\underline{\mathcal{E}}^3\right),$$

Linear system for $\left\{ ar{X}_{ZZ,t,k} \right\}_{t,k}$ and $\left\{ ar{X}_{\sigma\sigma,t} \right\}_{t}$

$$G_{x} \sum_{s=0}^{\infty} J_{t,s} \overline{X}_{\sigma\sigma,s} + G_{x} H_{\sigma\sigma,t} + G_{x} \overline{X}_{\sigma\sigma,t} = 0,$$
 (5)

and

$$G_{x}\sum_{s=0}^{\infty}J_{t,s}\overline{X}_{ZZ,t-k+s,s}+G_{x}H_{t,k}+G_{X}\overline{X}_{ZZ,t,k}+G_{\Theta,t,k}=0.$$
 (6)

the expressions for $\mathsf{G}_{\Theta,t,k} \mathsf{and}\ \mathsf{H}_{t,k}, \mathsf{H}_{\sigma\sigma,t}$ are in the paper

Comparison to existing approaches

- State of the art: Auclert et al. (ABRS 2021)
 - first order expansions of similar class of economies
 - MIT shocks, histogram method, numerical derivatives
- 1st order: we are theoretically equivalent to ABRS
 - ullet their computations converge to our formulas as grid size o 0
 - our method faster because we can use exact formulas
- 2nd and higher orders: ABRS doesn't work
 - MIT shocks do not capture effects of risk
 - histogram method fails (misses $f_{gg}g_ag_a$ terms)

$$\lim_{\substack{\text{num grid points} \to \infty}} \overline{X}_{ZZ,t,s}^{\textit{HIST}} \; \neq \overline{X}_{ZZ,t,s}$$

Histogram method (Review)

- ullet Histogram (bins,mass points) to approximate Ω
 - grid $\{z_i\}_{i=0}^N$ represent midpoints of bins
 - $\{\omega_i^z\}$ mass at points $\{z_i\}_{i=0}^N$
- Functions $\{\mathcal{P}^{i}\left(\cdot\right)\}$ so for $z\in\left[\mathbf{z}_{i},\mathbf{z}_{i+1}\right]$ only non-zero values

$$\mathcal{P}^{i}(z) = \frac{z_{i+1} - z}{z_{i+1} - z_{i}}, \quad \mathcal{P}^{i+1}(z) = \frac{z - z_{i}}{z_{i+1} - z_{i}}.$$

- $\mathcal{P}^{i}\left(z\right)$: the probability z is assigned to bin with midpoint z_{i} .
- Applications: Linear approximates for aggregates and LOM
 - $\int x(z,\theta) d\Omega \approx \int \sum_{i} x(z_{i},\theta) \omega_{i}^{z} dF(\theta)$
 - $\tilde{\omega}_{j}^{z}(\Theta,\omega) \approx \sum_{i} \omega_{i}^{z} \int \mathcal{P}^{j} \left(\tilde{z} \left(\mathbf{z}_{i},\theta,\Theta,\omega^{z} \right) \right) dF \left(\theta \right)$
- Standard approach: Differentiate after applying discretizing using histogram method

Why does Histogram method fail? Simple Example

Histogram method approximates $f(z) \approx \sum_{i=0}^{N} \mathcal{P}^{i}(z) f(z_{i})$. Now...

• Expand LHS $f(z + \hat{z})$

$$f(z) + f'(z)\hat{z} + \frac{1}{2}f''(z)\hat{z}^2 + o(\hat{z}^2)$$

• Expand RHS $\sum_{i=0}^{N} \mathcal{P}^{i}(z+\hat{z}) f(z_{i})$

$$\sum_{i=0}^{N} \mathcal{P}^{i}(z) f(z_{i}) + \sum_{i=0}^{N} \mathcal{P}^{i}_{z}(z) f(z_{i}) \hat{z} + \frac{1}{2} \sum_{i=0}^{N} \mathcal{P}^{i}_{zz}(z) f(z_{i}) \hat{z}^{2} + o(\hat{z}^{2})$$

- Now take limits as $N \to \infty$
 - zeroth order $\sum_{i=0}^{N} \mathcal{P}^{i}(z) f(z_{i}) \rightarrow f(z)$

Why does Histogram method fail? Simple Example

Histogram method approximates $f(z) \approx \sum_{i=0}^{N} \mathcal{P}^{i}(z) f(z_{i})$. Now...

• Expand LHS $f(z + \hat{z})$

$$f(z) + f'(z)\hat{z} + \frac{1}{2}f''(z)\hat{z}^2 + o(\hat{z}^2)$$

• Expand RHS $\sum_{i=0}^{N} \mathcal{P}^{i}(z+\hat{z}) f(z_{i})$

$$\sum_{i=0}^{N} \mathcal{P}^{i}(z) f(z_{i}) + \sum_{i=0}^{N} \mathcal{P}^{i}_{z}(z) f(z_{i}) \hat{z} + \frac{1}{2} \sum_{i=0}^{N} \mathcal{P}^{i}_{zz}(z) f(z_{i}) \hat{z}^{2} + o(\hat{z}^{2})$$

- Now take limits as $N \to \infty$
 - first order $\sum_{i=0}^{N} \mathcal{P}_{z}^{i}(z) f(z_{i}) \hat{z} = \frac{f(z_{i+1}) f(z_{i})}{z_{i+1} z_{i}} \to f'(z) \hat{z}$

Why does Histogram method fail? Simple Example

Histogram method approximates $f(z) \approx \sum_{i=0}^{N} \mathcal{P}^{i}(z) f(z_{i})$. Now...

• Expand LHS $f(z + \hat{z})$

$$f(z) + f'(z) \hat{z} + \frac{1}{2} f''(z) \hat{z}^2 + o(\hat{z}^2)$$

• Expand RHS $\sum_{i=0}^{N} \mathcal{P}^{i}(z+\hat{z}) f(z_{i})$

$$\sum_{i=0}^{N} \mathcal{P}^{i}(z) f(z_{i}) + \sum_{i=0}^{N} \mathcal{P}^{i}_{z}(z) f(z_{i}) \hat{z} + \frac{1}{2} \sum_{i=0}^{N} \mathcal{P}^{i}_{zz}(z) f(z_{i}) \hat{z}^{2} + o(\hat{z}^{2})$$

- Now take limits as $N \to \infty$
 - second order $\sum_{i=0}^{N} \mathcal{P}_{zz}^{i}(z) f(z_i) \hat{z}^2 = 0 \nrightarrow f''(z) \hat{z}^2$

Why does Histogram method fail?

- Tractability of histogram methods come from "uniform" lotteries
 - preserves mass and conditional means

$$\sum_{i} \mathcal{P}^{i}(z) = 1$$

$$\sum_{i} \mathcal{P}^{i}(z) z_{i} = z$$

- which works for first-order but not higher in presence of curvature
- Our approach discretizes after differentiating
 - approximates $f''(z)\hat{z}$ instead of $\sum_{i=0}^{N} \mathcal{P}_{zz}^{i}(z) f(z_{i})\hat{z}^{2}$
 - · works for all orders
- Show later in the application than the missing terms can affect conclusions

Applications

Goals

- Use a calibrated version of the basic model to assess the method
 - speed, accuracy comparisons, role of nonlinearities
- Applications to illustrate usefulness
 - 1. welfare from stabilization policies
 - 2. impact of uncertainty
 - 3. household portfolios
 - 4. transitions

Comparisons

First Order		Second Order		
Step	Time	Step	Time (ZZ)	$Time(\sigma\sigma)$
		Additional 1st order terms	0.70s	
Compute $\{x_s\}$	0.07s	Compute $\{x_{t,k}\}$ and $\{x_{\sigma\sigma}\}$	0.64s	0.05s
Compute $\mathcal L$ and $\{\mathsf a_t\}_t$	0.13s	Compute $\{b_{t,k},c_{t,k}\}$ and $\{b_{\sigma\sigma}\}$	0.21s	0.45s
Compute $\{J_{t,s}\}_{t,s}$	0.17s	Compute $H_{t,k}$ and $H_{\sigma\sigma,t}$	0.07s	0.05s
Compute $\{\overline{X}_{Z,t}\}_t$	0.13s	Compute $\{\overline{X}_{ZZ,t,k}\}_{t,k}, \{\overline{X}_{\sigma\sigma,t}\}_{t}$	0.19s	0.28s
Total	0.5s		1.81s	0.83s
ABRS	1.51s			

Stabilization Policy

 \bullet Simple model of stabilization policy: choose optimal τ_Θ in

$$\tau_t = \overline{\tau} + \tau_{\Theta}\Theta_t$$

- Stabilization policy is a second order question
 - τ_{Θ} has no effect on welfare to the first order
- Add extra equation $W(\Omega, \Theta; \tau_{\theta}) = \int V(k, \theta; \tau_{\theta}) d\Omega$ to G and use

$$\mathbb{E}\left[\mathcal{W}\right] = \overline{\mathcal{W}} + \frac{1}{2} \left(\sum_{s=0}^{\infty} \overline{\mathcal{W}}_{ZZ,s,s} \sigma_{\mathcal{E}}^2 + \overline{\mathcal{W}}_{\sigma\sigma,\infty} \right) + O\left(\underline{\mathcal{E}}^3\right)$$

 Compare answers if we tried to track distribution using the histogram method

Stabilization Policy: Results

- Optimal policy: Countercyclical fiscal policy
 - Raise taxes by 300 basis points for a 1% fall in TFP

risk aversion	$ au_\Theta^*$	$rac{\mathcal{W}^{hist}(au_{\Theta}^*)}{\mathcal{W}ig(au_{\Theta}^*ig)}$	$rac{ au_{\Theta}^{*, ext{hist}}}{ au_{\Theta}^{*}}$
2	-3.10	-348%	161%
3	-1.90	-230%	209%
4	-1.03	-226%	167%
5	-0.69	-217%	125%
7	-0.52	-187%	67%

The $\mathcal{W}^{\text{hist}}(\tau_{\Theta}^*)$ uses the histogram method to compute the welfare and $\tau_{\Theta}^{*,\text{hist}}$ is the optimal policy using $\mathcal{W}^{\text{hist}}(\tau_{\Theta})$ as the measure of welfare

Effects on Uncertainty

- Large empirical literature about macroeconomic uncertainty
- What are the aggregate and distributional effects of uncertainty?
- Calibrate uncertainty shock to capture changes in VIX during Covid

Effects on Uncertainty: Methodology

- Conventional wisdom: requires 3rd or higher order expansion
- In paper: slight modification to second order expansion is sufficient
 - Extend shock process to allow for time varying volatility:

$$\mathcal{E}_t = \sqrt{1 + \Upsilon_{t-1}} \mathcal{E}_{\Theta,t},\tag{7}$$

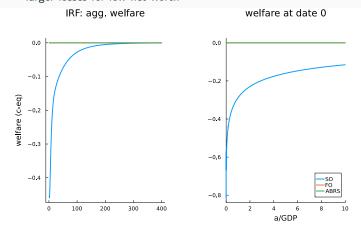
$$\Upsilon_t = \rho_{\Upsilon} \Upsilon_{t-1} + \mathcal{E}_{\Upsilon,t},\tag{8}$$

Construct a few new terms

$$\overline{X}_{\sigma\sigma,t}\left(\mathcal{E}_{\Upsilon}^{t}\right) = \overline{X}_{\sigma\sigma,t} + \sum_{s=0}^{t} \overline{X}_{\Upsilon,t-s} \mathcal{E}_{\Upsilon,s},$$

Effects on Uncertainty: Results

- Average $\approx \frac{1}{2}\%$ of per-period consumption over their life
 - larger losses for low net worth



Household Portfolios

- Large empirical literature on household portfolios (Viceria, Campbell, Yogo etc)
- What are the predictions from standard macro model?

Household Portfolios: Methodology

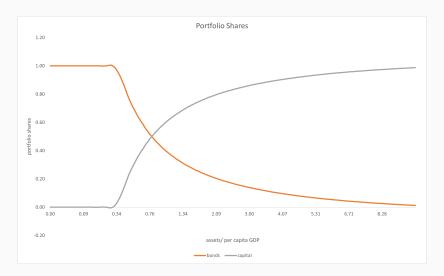
• Key problem: HH portfolios not pinned down at $\sigma = 0$

- ullet Use second order expansions to solve the limiting $(\sigma o 0)$ portfolio
 - HH portfolios linear equation given exposures of excess agg. returns
 - boils down to one nonlinear equation in exposure of excess returns
 - extends the Devereux Sutherland insight to HA economies

• Correct portfolio matters even for first order expansion

Household Portfolios: Results

• Standard model predicts that stock share is increasing in wealth



Transitions

- Often interested in the entire transition path after reforms (permanent changes)
 - economy transitions to a new steady state
 - welfare gains on transitions are large
- Same objects can be recycled to get approximations to transition paths

Transitions: Methodology

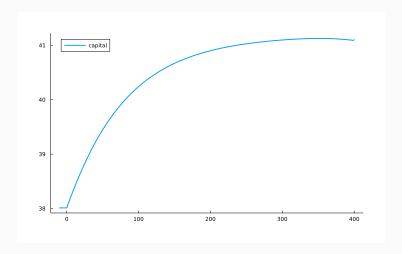
- ullet Relax the assumption that the initial distribution $\Omega_0=\Omega^*$
- Directions
 - Date 0 direction $\hat{Z}_{\Omega,0}=[0,\hat{\Omega}_0]^{\mathrm{T}}$ where $\hat{\Omega}_0=\Omega^*-\Omega_0$
 - Date t directions as before $\hat{Z}_{\Omega,t} = \overline{Z}_Z \cdot \hat{Z}_{\Omega,t-1}$
 - ullet To first-order $\overline{X}_{\Omega,t}:=\overline{X}_Z\cdot\hat{Z}_{\Omega,t}$
- $\{\overline{X}_{\Omega,t}\}_t$ is the solution to

$$\underbrace{\mathsf{G}_{x}\sum_{s=0}^{\infty}\mathsf{J}_{t,s}\overline{X}_{\Omega,s}+\mathsf{G}_{X}\overline{X}_{\Omega,t}}_{\text{same as before}}+\mathsf{G}_{x}\mathsf{J}_{\Omega,t}=0,$$

where
$$J_{\Omega,t} = \mathcal{I} \cdot \mathcal{L}^t \cdot \frac{d}{d\theta} \hat{\Omega}_0$$
.

Transition: Results

Path of capital stock after one-time permanent 5% change in agg. TFP



Conclusions

- Tool for higher order approximations of heterogeneous agent models
 - with occasionally binding constraints
- Extends to
 - time varying volatility
 - portfolio problems
 - transitions

Frechet derivatives (Review)

• Consider a function $f: O \to Y$. The change of f from $\Omega \to \Omega + \hat{\Omega}$ is approximated as

$$f\left(\Omega+\hat{\Omega}\right)=f(\Omega)+f_{\Omega}\left(\Omega\right)\cdot\hat{\Omega}+o\left(\hat{\Omega}\right)$$

- $f_{\Omega}(\Omega)$ is a linear operator ("huge matrix") on directions $\hat{\Omega}$
- ullet Eg: Jacobian matrix $\left[f_{\Omega_i}^j\right]_{i,j}$ or a kernel
- Easily computed using Gateaux $f_{\Omega}(\Omega) \cdot \hat{\Omega} = \lim_{\alpha \to 0} \frac{\|f(\Omega + \alpha \hat{\Omega}) f(\Omega)\|}{\alpha}$
- Extends naturally to higher orders

$$f_{\Omega}\left(\Omega+\hat{\Omega}_{2}\right)\cdot\hat{\Omega}_{1}=f_{\Omega}\left(\Omega\right)\cdot\hat{\Omega}_{1}+f_{\Omega\Omega}\left(\Omega\right)\cdot\left(\hat{\Omega}_{1},\hat{\Omega}_{2}\right)+o\left(\hat{\Omega}_{2}\right)$$

- $f_{\Omega\Omega}\left(\Omega\right)$ is a bilinear operator ("3d tensor") on directions $\left(\hat{\Omega}_{1},\hat{\Omega}_{2}\right)$
- ullet Eg, collection of Hessians $\left\{\left[f_{\Omega_{i}\Omega_{k}}^{j}\right]_{i,k}\right\}_{j}$

Appendix: Baseline Calibration

Parameter	Description	Value
α	Capital share	0.36
β	Discount factor	0.983
σ	Risk aversion	2
δ	Depreciation rate of capital	1.77%
ϕ	Adjustment cost of capital	125
$ ho_{ heta}$	Idiosyncratic mean reversion	0.966
$\sigma_{ heta}/\!\sqrt{1- ho_{ heta}^2}$	Cross-sectional std of log earnings	0.503
$ ho_\Theta$	Persistence of TFP shock	0.80
σ_Θ	Std of Aggregate TFP growth rate	0.014
\mathcal{N}_{ϵ}	Points in Markov chain for ϵ	7
N_z	Grid points for the policy rule $\bar{x}^i(z)$	60
I_z	Grid points for the distribution $\bar{\omega}_i$	1000
T	Time horizon (in quarters) for IRF	400

Appendix: Accuracy

Check accuracy in approximated perfect foresight equilibrium

• Let \hat{X}_t path of aggregates from approximation

 \bullet Given \hat{X} solve for agent behavior and resulting path of distribution

- \bullet Aggregate to compute resulting path of aggregates \tilde{X}
 - ullet In equilibrium we should have $ilde{X}=\hat{X}$

ullet Measure accuracy by difference $ilde{X} - \hat{X}$

Appendix: Accuracy Comparison

