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Motivation

• Canonical framework to study aggregate fluctuations

• aggregate shocks + incomplete markets + het. agents (HA)

• Challenge: equilibria are difficult to compute

• distribution of individual characteristics is a state variable

• distribution follows complicated LoM with agg shocks

• Existing methods often rely on 1st order appr. and MIT shocks

• cannot study stabilization policies, risk, asset prices, portfolio choice

• This paper: proposes a novel method to approx HA economies

• fast, efficient, and easy to implement

• scalable to higher-order approximations
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What is novel?

• Standard approach (Reiter, Mitman, Auclert...)

• discretize distribution and its LoM (e.g., “histogram method”)

• obtain 1st order approx via Taylor expansions (MIT shocks)

• Our approach

• derive exact theoretical responses for any given order of appr.

• compute those expressions numerically via discretization

• 1st order:

• two approaches agree as grid size → 0

• ours is faster since we can utilize exact analytical expressions

• higher orders:

• naive extensions of existing methods to higher order miss terms

• MIT shocks do not recover effects of risk 3



Canonical HA representation

Eqm condititions in HA models:

F (zi,t−1, xi,t ,Ei,txi,t+1,Xt , θi,t) = 0 for all i , t (1)

G

(∫
xi,tdi ,Xt ,Θt

)
= 0 for all t (2)

where

• θi,t , Θt : indiv and agg exogenous shocks, AR(1)

θi,t = ρθθi,t−1 + εi,t

Θt = ρΘΘt−1 + Et

• xi,t , Xt : are indiv and agg endogenous variables

• zi,t−1 ∈ xi,t−1 predetermined in t − 1

• Initial conditions: Θ−1 and distribution Ω−1 over (zi−1, θi,−1)

• Eqm given initial conditions is given by: {Xt (E t) , xt (ε
t
i , E t)}
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Recursive representation

Let Z = [Θ,Ω]T : aggregate state

• x̃ (z , θ,Z ), X̃ (Z ), Ω̃ (Z ) are indiv and agg policy functions

• z̃ (z , θ,Z ) = Px̃ (z , θ,Z )

Recursive representation

F
(
z , x̃ ,Ex̃ , X̃ , θ

)
= 0 for all z , θ,Z

G

(∫
x̃dΩ, X̃ ,Θ

)
= 0 for all Z

Ω̃ ⟨z ′, θ′⟩ =
∫∫

ι (z̃(z , θ,Z ) ≤ z ′) ι(ρθθ + ϵ ≤ θ′)d Pr (ϵ) dΩ for all Z
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Example: Krusell-Smith

• Households

max
{ci,t ,ki,t}t≥0

E0

∞∑
t=0

βtU(ci,t)

ci,t + ki,t = Rtki,t−1 +Wt exp (θi,t)

ki,t ≥ 0

• Firms

max
Nt ,Kt

exp (Θt)K
α
t N

1−α
t + (1− δ)Kt −WtNt − RtKt

• Market clearings

Kt =

∫
ki,tdi , Nt =

∫
exp (θi,t) di
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Mapping of KS economy

• Variables:

Xt = (Kt ,Wt ,Rt), xi,t = (ki,t , ci,t , λi,t , ζi,t), zi,t = ki,t

• Mapping F :

ci,t + ki,t − Rtki,t−1 −Wt exp(θi,t) = 0

λi,t − Rtuc(ci,t) = 0

uc(ci,t) + ζi,t − βEtλi,t+1 = 0

ki,tζi,t = 0

• Mapping G :

Kt −
∫

ki,t−1di = 0

Rt + δ − 1− α exp (Θt)K
α−1
t = 0

Wt − (1− α) exp (Θt)K
α
t = 0
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Standard perturbational approach

1. Scale aggregate shocks by σ ≥ 0

• shock process: Θt = ρΘΘt−1 + σEt

• policy functions: X̃ (Z ;σ), Ω̃ (Z ;σ), ...

2. Find steady state (SS) for σ = 0 economy

3. Use Taylor expansions w.r.t. σ to approximate stochastic economy

around that SS

• Quick, standard way to solve RA-DSGE models

• runs into trouble when Z is high-dimensional
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0th order economy



0th Order

• Notation for σ = 0 economy

• X (Z) := X̃ (Z ; 0), x (z , θ,Z) := x̃ (z , θ,Z ; 0), etc

• Z (Z) :=
[
ρΘΘ, Ω(Z)

]
• Steady state: Z∗ = [0, Ω∗]

• Ω∗ : invariant distribution without agg. shocks

• Λ (z ′, θ′, z , θ): transition probability density

• X := X (Z∗), x (z , θ) := x (z , θ,Z∗), etc

• by definition, Z = Z∗
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Solving 0th Order

• Ω∗, X , x (z , θ) can be found with standard methods

• appr. policy rules with quadratic splines (basis functions)

• solve for optimal policy with endog. grid method

• Basis functions also give xz (z , θ), xzz (z , θ), etc

• Automatic differentiation gives all derivatives of F and G

• denote Gx , GX , GΘ, etc.

• Treat all of these objects as known
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Assumptions

• Stability and smoothness assumptions:

1. limt→∞ Z t(Z0) = Z∗ for all Z0 in a neighborhood of Z∗;

2. X̃ (Z ;σ) is sufficiently differentiable at (Z , σ)=(Z∗, 0)

3. x̃ (z , θ,Z ;σ) is continuous and piecewise sufficiently differentiable at

(Z , σ)=(Z∗, 0) for all (z , θ)

4. Ω∗ has a finite number of mass-points {z∗n }n

• Remarks

• 1. and 2. are standard (Blanchard-Kahn)

• 3 is analogue of 2 for individual policy functions with kinks.

• 4. allow for mass-points in Ω and kinks in x̃
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Notation

• XZ is the Frechet derivative of X̃ evaluated at (Z∗, 0) review

• XZ · Ẑ is the value of derivative in direction Ẑ

• i.e. how much X changes if state changes to Z∗ + Ẑ

• Similarly for x̄Z (z , θ) and Ω̄Z

• Extends to higher orders, i.e. XZZ ·
(
Ẑ1, Ẑ2

)
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Computing Taylor Expansions

• Solving brute force (Dynare) is impractical

• Ω̄Z is approximately N × N

• Ω̄ZZ is approximately N × N × N

• Idea: only evaluate in direction needed for expansion

• X Z is large

• X Z · Ẑ is not

• Use analytical expressions

• constructed with Frechet derivatives and linear operators

• extends to higher order Taylor expansion
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1st order expansions



Directions of interest

• Define sequence of directions {Ẑt}t recursively

Ẑ0 := [1, 0]T ,

Ẑ1 := ZZ · Ẑ0 =
[
ρΘ, ΩZ · Ẑ0

]T
Ẑt := ZZ · Ẑt−1 =

[
ρtΘ, ΩZ · Ẑt−1

]T
• Let

XZ ,t := XZ · Ẑt

• Intuition:

• {Ẑt}t traces changes of agg state due to shock to Θ in pd 0

• {X Z ,t}t is the IR to an “MIT shock”
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1st Order Approximation

Lemma
To the first order approximation Xt satisfies

Xt

(
E t
)
=X +

t∑
s=0

XZ ,t−sEs + O
(
∥E∥2

)
.

• Solving 1st order approximation = finding response to MIT shock

(Boppart et al, 2018)

• Same information contained in impulse responses

E [Xt |E0]− E [Xt |E0 = 0] = XZ ,tE0 + O
(
E2
)

• Need to find {XZ ,t}t
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Finding
{
X Z ,t

}
• Recall

G

(∫
xdΩ,X ,Θ

)
= 0 for all Z

• Differentiate at Z = Z∗ in direction Ẑt :

Gx

[∫
xZ ,tdΩ

∗ +

∫
xdΩ̂t

]
+ GXXZ ,t + GΘρ

t
Θ = 0

• Step 1: characterize xZ ,t and then
∫
xZ ,tdΩ

∗

• Step 2: characterize dΩ̂t and then
∫
xdΩ̂t

• Step 3: plug in the eqn above to find {XZ ,t}t
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Step 1

Lemma

x̄Z ,t (z , θ) =
∞∑
s=0

xs (z , θ)︸ ︷︷ ︸
=∂xt/∂Xt+s

X̄Z ,t+s

where xs (z , θ)are known from zeroth order

x0(z , θ) =−
(
Fx(z , θ) + Fx′(z , θ)x+z (z , θ) P

)−1
FX (z , θ)

xs+1(z , θ) =−
(
Fx(z , θ) + Fx′(z , θ)x+z (z , θ) P

)−1
Fx′(z , θ)x+s (z , θ)

where x+s (z , θ) = E [xs(, )|z , θ] and x+z (z , θ) = E [x̄z(·, ·)|z , θ] .
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Step 1

Lemma

x̄Z ,t (z , θ) =
∞∑
s=0

xs (z , θ)︸ ︷︷ ︸
=∂xt/∂Xt+s

X̄Z ,t+s

where xs (z , θ)are known from zeroth orde

• Intuition: individuals only care about effect on prices
{
X̄Z ,s

}
s

• We now can replace {xZ ,t(z , θ)}(z,θ) with
{
XZ ,s

}
s
:

∫
xZ ,tdΩ

∗ =
∞∑
s=0

(∫
xsdΩ

∗
)
XZ ,t+s
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Step 2: M and L

• Now we want to characterize ∫
xdΩ̂t

• Linear operators M and L help to characterize Ω̂t

• For any y : (z , θ) → R they return

(M · y) ⟨z ′, θ′⟩ :=
∫

Λ(z ′, θ′, z , θ)y (z , θ) dΩ∗ (z , θ)

(L · y) ⟨z ′, θ′⟩ :=
∫

Λ(z ′, θ′, z , θ)zz(z , θ)y (z , θ) dzdθ

• Intuition: suppose indiv. policy functions are perturbed by ẑ0 (z , θ)

• effect on agg. distribution in pd 1: d
dθ
Ω̂1 = M · ẑ0

• effect on agg. distribution in pd 2: d
dθ
Ω̂2 = L · d

dθ
Ω̂1
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Step 2: recursive LoM

Lemma
d
dθ Ω̂t satisfies a recursion

d

dθ
Ω̂t = L · d

dθ
Ω̂t−1 −

∞∑
s=0

M · zsXZ ,t+s ,

where d
dθ Ω̂0 = 0.

• Intuition:

• operator L captures first-order effect of past changes agg dist

• M· zs captures first-order effect of ind. policy functions to change in

aggregates s periods ahead
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Step 2: characterize
∫
xdΩ̂t

• We have ∫
xdΩ̂t = −

∫
xz

d

dθ
Ω̂tdzdθ := −I · d

dθ
Ω̂t

• Together with previous results this implies that∫
xdΩ̂t =

∞∑
s=0

(I · At,s)XZ ,s ,

where {At,s}t,s follow a recursion A0,s = 0 and

At,s = L · At−1,s +M · zs−t−1
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Step 3: solve 1st order appr

Proposition{
XZ ,t

}
t
is the solution to

Gx

∞∑
s=0

Jt,sXZ ,s + GXXZ ,t + GΘρ
t
Θ = 0,

where {Jt,s}t,s satisfies

Jt,s =

∫
xs−tdΩ

∗ + I · At,s

• Linear system of equations that determines {XZ ,t}t
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2nd order expansions



Higher-order approximations

• Same approach extends with minimal changes to higher orders

• exactly the same steps to derive approx terms

• almost the same mathematical form of equations

• many 1st order terms get recycled for higher-order computations

• I will illustrate intuition for this using a simple example
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Super simple example

• In RCE policy functions depend on other policy functions, e.g.

f (g (a))

• First order expansion:

fa = fgga

• Second order expansion:

faa = fggaa + fgggaga

• Note the general structure of second order terms

• will be useful to think about directions
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Super simple example

• Our procedure for 1st order approximation:

• we know fg from 0th order

• we developed a way to find fa and ga with

fa = fgga (3)

• Our procedure for 2nd order approximation:

• know fg , fgg from 0th order, ga from 1st order

• need to develop a way to find faa and gaa with

faa = fggaa + c (4)

where c = fgggaga is known

• (1) and (2) have almost identical structure!
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2nd order directions

• Non-linearities from shocks

Ẑt,s = ZZ · Ẑt−1,s−1 + ZZZ ·
(
Ẑt−1, Ẑs−1

)
XZZ ,t,k := XZ · Ẑt,k + XZZ ·

(
Ẑt , Ẑk

)
• Precautionary motives:

Ẑσσ,t =
[
0,Ωσσ

]T
+ ZZ · Ẑσσ,t−1

Xσσ,t := Xσσ + XZ · Ẑσσ,t

where Xσσ := ∂2

∂σ2 X̃ (Z∗;σ)
∣∣∣
σ=0

, etc
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Recycle 1st order for 2nd order

• {XZZ ,t,k}t,k and {Xσσ,t}t recover second-order approximation:

Xt

(
E t
)
= ...+

1

2

(
t∑

s=0

t∑
m=0

XZZ ,t−s,t−mEsEm + Xσσ,t

)
+ O

(
∥E∥3

)

• Finding components of XZZ ,t,k and Xσσ,t

• X ZZ ·
(
Ẑt , Ẑk

)
: explicit formula in terms of 1st and 0th order

• X Z · Ẑt,k and X Z · Ẑσσ,t : determined almost identically to X Z · Ẑt

• Impulse responses are insufficient

E [Xt |E0]− E [Xt |E0 = 0] = ...+ X ZZ ,t,tE2
0 + O

(
E3

)
,
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Linear system for
{
X̄ZZ ,t,k

}
t,k

and
{
X̄σσ,t

}
t

Gx

∞∑
s=0

Jt,sXσσ,s + GxHσσ,t + GXXσσ,t = 0, (5)

and

Gx

∞∑
s=0

Jt,sXZZ ,t−k+s,s + GxHt,k + GXXZZ ,t,k + GΘ,t,k = 0. (6)

the expressions for GΘ,t,kand Ht,k ,Hσσ,t are in the paper
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Comparison to existing approaches

• State of the art: Auclert et al. (ABRS 2021)

• first order expansions of similar class of economies

• MIT shocks, histogram method, numerical derivatives

• 1st order: we are theoretically equivalent to ABRS

• their computations converge to our formulas as grid size → 0

• our method faster because we can use exact formulas

• 2nd and higher orders: ABRS doesn’t work

• MIT shocks do not capture effects of risk

• histogram method fails (misses fgggaga terms)

lim
num grid points→∞

X
HIST
ZZ ,t,s ̸= X ZZ ,t,s
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Histogram method (Review)

• Histogram (bins,mass points) to approximate Ω

• grid {zi}Ni=0 represent midpoints of bins

• {ωz
i } mass at points {zi}Ni=0

• Functions
{
P i (·)

}
so for z ∈ [zi , zi+1] only non-zero values

P i (z) =
zi+1 − z

zi+1 − zi
, P i+1 (z) =

z − zi
zi+1 − zi

.

• P i (z) : the probability z is assigned to bin with midpoint zi .

• Applications: Linear approximates for aggregates and LOM

•
∫
x (z , θ) dΩ ≈

∫ ∑
i x (zi , θ)ω

z
i dF (θ)

• ω̃z
j (Θ, ω) ≈

∑
i ω

z
i

∫
P j (z̃ (zi , θ,Θ, ωz)) dF (θ)

• Standard approach: Differentiate after applying discretizing using

histogram method
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Why does Histogram method fail? Simple Example

Histogram method approximates f (z) ≈
∑N

i=0 P i (z) f (zi ). Now...

• Expand LHS f (z + ẑ)

f (z) + f ′ (z) ẑ +
1

2
f ′′ (z) ẑ2 + o

(
ẑ2
)

• Expand RHS
∑N

i=0 P i (z + ẑ) f (zi )

N∑
i=0

P i (z) f (zi ) +
N∑
i=0

P i
z (z) f (zi ) ẑ +

1

2

N∑
i=0

P i
zz (z) f (zi ) ẑ

2 + o
(
ẑ2
)

• Now take limits as N → ∞
• zeroth order

∑N
i=0 P

i (z) f (zi ) → f (z)
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(
ẑ2
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i=0

P i (z) f (zi ) +
N∑
i=0

P i
z (z) f (zi ) ẑ +

1

2

N∑
i=0

P i
zz (z) f (zi ) ẑ

2 + o
(
ẑ2
)

• Now take limits as N → ∞
• first order

∑N
i=0 P

i
z (z) f (zi ) ẑ =

f (zi+1)−f (zi )

zi+1−zi
→ f ′ (z) ẑ
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Why does Histogram method fail? Simple Example

Histogram method approximates f (z) ≈
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(
ẑ2
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2

N∑
i=0

P i
zz (z) f (zi ) ẑ

2 + o
(
ẑ2
)

• Now take limits as N → ∞
• second order

∑N
i=0 P

i
zz (z) f (zi ) ẑ

2 = 0 ↛ f ′′ (z) ẑ2
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Why does Histogram method fail?

• Tractability of histogram methods come from “uniform” lotteries

• preserves mass and conditional means∑
i

P i (z) = 1

∑
i

P i (z) zi = z

• which works for first-order but not higher in presence of curvature

• Our approach discretizes after differentiating

• approximates f ′′ (z) ẑ instead of
∑N

i=0 P
i
zz (z) f (zi ) ẑ

2

• works for all orders

• Show later in the application than the missing terms can affect

conclusions
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Applications



Goals

• Use a calibrated version of the basic model to assess the method

• speed, accuracy comparisons,role of nonlinearities

• Applications to illustrate usefulness

1. welfare from stabilization policies

2. impact of uncertainty

3. household portfolios

4. transitions
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Comparisons

First Order Second Order

Step Time Step Time (ZZ) Time(σσ)

Additional 1st order terms 0.70s

Compute {xs} 0.07s Compute {xt,k} and {xσσ} 0.64s 0.05s

Compute L and {at}t 0.13s Compute {bt,k , ct,k} and {bσσ} 0.21s 0.45s

Compute {Jt,s}t,s 0.17s Compute Ht,k and Hσσ,t 0.07s 0.05s

Compute {XZ,t}t 0.13s Compute {XZZ,t,k}t,k , {Xσσ,t}t 0.19s 0.28s

Total 0.5s 1.81s 0.83s

ABRS 1.51s
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Stabilization Policy

• Simple model of stabilization policy: choose optimal τΘ in

τt = τ + τΘΘt

• Stabilization policy is a second order question

• τΘ has no effect on welfare to the first order

• Add extra equation W (Ω,Θ; τθ) =
∫
V (k , θ; τθ) dΩ to G and use

E [W] = W̄ +
1

2

( ∞∑
s=0

WZZ ,s,sσ
2
E +Wσσ,∞

)
+ O

(
E3
)

• Compare answers if we tried to track distribution using the histogram

method
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Stabilization Policy: Results

• Optimal policy: Countercyclical fiscal policy

• Raise taxes by 300 basis points for a 1% fall in TFP

risk aversion τ∗Θ
Whist(τ∗

Θ)

W(τ∗
Θ)

τ∗,hist
Θ

τ∗
Θ

2 -3.10 -348% 161%

3 -1.90 -230% 209%

4 -1.03 -226% 167%

5 -0.69 -217% 125%

7 -0.52 -187% 67%

The Whist (τ∗
Θ) uses the histogram method to compute the welfare and τ∗,hist

Θ is

the optimal policy using Whist (τΘ) as the measure of welfare
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Effects on Uncertainty

• Large empirical literature about macroeconomic uncertainty

• What are the aggregate and distributional effects of uncertainty?

• Calibrate uncertainty shock to capture changes in VIX during Covid
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Effects on Uncertainty: Methodology

• Conventional wisdom: requires 3rd or higher order expansion

• In paper: slight modification to second order expansion is sufficient

• Extend shock process to allow for time varying volatility:

Et =
√

1 + Υt−1EΘ,t , (7)

Υt = ρΥΥt−1 + EΥ,t , (8)

• Construct a few new terms

Xσσ,t

(
E t
Υ

)
= Xσσ,t +

t∑
s=0

XΥ,t−sEΥ,s ,
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Effects on Uncertainty: Results

• Average ≈ 1
2% of per-period consumption over their life

• larger losses for low net worth
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Household Portfolios

• Large empirical literature on household portfolios (Viceria, Campbell,

Yogo etc)

• What are the predictions from standard macro model?
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Household Portfolios: Methodology

• Key problem: HH portfolios not pinned down at σ = 0

• Use second order expansions to solve the limiting (σ → 0) portfolio

• HH portfolios linear equation given exposures of excess agg. returns

• boils down to one nonlinear equation in exposure of excess returns

• extends the Devereux Sutherland insight to HA economies

• Correct portfolio matters even for first order expansion

44



Household Portfolios: Results

• Standard model predicts that stock share is increasing in wealth
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Transitions

• Often interested in the entire transition path after reforms

(permanent changes)

• economy transitions to a new steady state

• welfare gains on transitions are large

• Same objects can be recycled to get approximations to transition

paths
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Transitions: Methodology

• Relax the assumption that the initial distribution Ω0 = Ω∗

• Directions

• Date 0 direction ẐΩ,0 = [0, Ω̂0]
T where Ω̂0 = Ω∗ − Ω0

• Date t directions as before ẐΩ,t = ZZ · ẐΩ,t−1

• To first-order XΩ,t := X Z · ẐΩ,t

•
{
XΩ,t

}
t
is the solution to

Gx

∞∑
s=0

Jt,sXΩ,s + GXXΩ,t︸ ︷︷ ︸
same as before

+GxJΩ,t = 0,

where JΩ,t = I · Lt · d
dθ Ω̂0.
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Transition: Results

Path of capital stock after one-time permanent 5% change in agg. TFP
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Conclusions

• Tool for higher order approximations of heterogeneous agent models

• with occasionally binding constraints

• Extends to

• time varying volatility

• portfolio problems

• transitions
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Frechet derivatives ( Review)

• Consider a function f : O → Y . The change of f from Ω → Ω+ Ω̂

is approximated as

f
(
Ω+ Ω̂

)
= f (Ω) + fΩ (Ω) · Ω̂ + o

(
Ω̂
)

• fΩ (Ω) is a linear operator (“huge matrix”) on directions Ω̂

• Eg: Jacobian matrix
[
f jΩi

]
i,j

or a kernel

• Easily computed using Gateaux fΩ (Ω) · Ω̂ = limα→0
∥f (Ω+αΩ̂)−f (Ω)∥

α

• Extends naturally to higher orders

fΩ
(
Ω+ Ω̂2

)
· Ω̂1 = fΩ (Ω) · Ω̂1 + fΩΩ (Ω) ·

(
Ω̂1, Ω̂2

)
+ o

(
Ω̂2

)
• fΩΩ (Ω) is a bilinear operator (“3d tensor”) on directions

(
Ω̂1, Ω̂2

)
• Eg, collection of Hessians

{[
f jΩiΩk

]
i,k

}
j

back
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Appendix: Baseline Calibration

Parameter Description Value

α Capital share 0.36

β Discount factor 0.983

σ Risk aversion 2

δ Depreciation rate of capital 1.77%

ϕ Adjustment cost of capital 125

ρθ Idiosyncratic mean reversion 0.966

σθ/
√

1− ρ2
θ Cross-sectional std of log earnings 0.503

ρΘ Persistence of TFP shock 0.80

σΘ Std of Aggregate TFP growth rate 0.014

Nϵ Points in Markov chain for ϵ 7

Nz Grid points for the policy rule x̄ i (z) 60

Iz Grid points for the distribution ω̄i 1000

T Time horizon (in quarters) for IRF 400
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Appendix: Accuracy

• Check accuracy in approximated perfect foresight equilibrium

• Let X̂t path of aggregates from approximation

• Given X̂ solve for agent behavior and resulting path of distribution

• Aggregate to compute resulting path of aggregates X̃

• In equilibrium we should have X̃ = X̂

• Measure accuracy by difference X̃ − X̂
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Appendix: Accuracy Comparison

back
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