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Canonical framework to study aggregate fluctuations

e aggregate shocks + incomplete markets + het. agents (HA)

Challenge: equilibria are difficult to compute
e distribution of individual characteristics is a state variable

e distribution follows complicated LoM with agg shocks

Existing methods often rely on 1st order appr. and MIT shocks

e cannot study stabilization policies, risk, asset prices, portfolio choice

This paper: proposes a novel method to approx HA economies

e fast, efficient, and easy to implement

e scalable to higher-order approximations



What is novel?

Standard approach (Reiter, Mitman, Auclert...)

e discretize distribution and its LoM (e.g., “histogram method”)
e obtain 1st order approx via Taylor expansions (MIT shocks)

e Qur approach
e derive exact theoretical responses for any given order of appr.
e compute those expressions numerically via discretization

1st order:

e two approaches agree as grid size — 0
e ours is faster since we can utilize exact analytical expressions
e higher orders:
e naive extensions of existing methods to higher order miss terms

e MIT shocks do not recover effects of risk



Canonical HA representation

Egm condititions in HA models:

F (zi,t—1, Xi,t, Ej eXi,t41, Xe, 0i) = 0 for all i, t (1)

G (/xhtdi,Xt,@t) =0forall t (2)
where

e i+, ©;: indiv and agg exogenous shocks, AR(1)
Oit = poblit—1+€is
O = peOi1+ &
® X, X;: are indiv and agg endogenous variables
® 7t 1 € Xj 1 predetermined in t — 1
e Initial conditions: ©_; and distribution Q_; over (zj_1,6; _1)

e Egm given initial conditions is given by: {X;: (), x: (e}, E")} .



Recursive representation

Let Z =[O, Q]T: aggregate state
e X(2,0,2), X(Z), Q(Z) are indiv and agg policy functions
e 7(z,0,7) =Px(z,0,2)

Recursive representation

F <z>~< E;,)?je) —0forall 2,0,Z

G (/}dQ,)?,@) —0 forall Z

(7,0 = // L(3(2,0,2) < 2') e(pef + € < 8)d Pr (€) d for all Z



Example: Krusell-Smith

e Households

max EoZﬁtU(C;)t)
t=0

{cie;ki e}
Cit + kit = Rekie—1 + Wiexp (0 )
kit >0

e Firms

m%amegmwﬁ“+uf®mfmmwf&m

e Market clearings

m:/nm, M:/wwhﬂf



Mapping of KS economy

e Variables:

Xe = (Kta W, Rt)> Xit = (k/yn Ci7t7/\i,t7gi,t)7 Zit = kiﬁt

e Mapping F:
Cit + kit — Rekie—1 — Weexp(0;:) =0
Ait — Reuc(cie) =0
uc(cie) +Gie — BEAi 41 =0
ki Gt =0
e Mapping G:

K: —/k,,t_ldi =0

Ri4+6—1—aexp(©,) K t=0
Wi — (1 - a)exp (©1) K =0



Standard perturbational approach

1. Scale aggregate shocks by o > 0

e shock process: ©; = pe®;_1 + d&;

e policy functions: X (Z;0), Q(Z;0), ...
2. Find steady state (SS) for o = 0 economy

3. Use Taylor expansions w.r.t. ¢ to approximate stochastic economy
around that SS

e Quick, standard way to solve RA-DSGE models

e runs into trouble when Z is high-dimensional



Oth order economyj|




Oth Order

e Notation for 0 = 0 economy
e X(2):=X(Z;0),x(2,0,2) :=X(z,0, Z; 0), etc
« 2(2) = [pe0, Q(2)]
e Steady state: Z* = [0, Q¥
e Q" :invariant distribution without agg. shocks
o A(Z',0',z,0): transition probability density
o X :=X(Z%),%(z,0) :=%(z,0,Z%), etc

e by definition, Z = Z*



Solving 0th Order

e Q*, X, X(z,0) can be found with standard methods

e appr. policy rules with quadratic splines (basis functions)

e solve for optimal policy with endog. grid method

Basis functions also give X, (z,0), X, (z,6), etc
e Automatic differentiation gives all derivatives of F and G

e denote Gy, Gx, Go, etc.

Treat all of these objects as known
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e Stability and smoothness assumptions:
1. limisoo 7t(Zo) = Z" for all Zy in a neighborhood of Z*;

2. X(Z;0) is sufficiently differentiable at (Z,0)=(Z",0)

3. X(z,0,Z;0) is continuous and piecewise sufficiently differentiable at
(Z,0)=(Z",0) for all (z,0)

4. Q has a finite number of mass-points {z, },

e Remarks

e 1. and 2. are standard (Blanchard-Kahn)
e 3 is analogue of 2 for individual policy functions with kinks.

e 4. allow for mass-points in ©Q and kinks in X
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X7 is the Frechet derivative of X evaluated at (Z*,0) -‘

A

e X7 - Z is the value of derivative in direction Z

e i.e. how much X changes if state changes to Z* + z

Similarly for Xz(z,0) and Q7

Extends to higher orders, i.e. Xz7- (21, 22>
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Computing Taylor Expansions

e Solving brute force (Dynare) is impractical
o Q7 is approximately N x N

o Q7 is approximately N x N x N

e |dea: only evaluate in direction needed for expansion
e Xz is large

o Xz-Zis not

e Use analytical expressions
e constructed with Frechet derivatives and linear operators

e extends to higher order Taylor expansion
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'1st order expansions




Directions of interest

e Define sequence of directions {Z}t recursively
Zo:=1[1, 0],

_ AT
=272 =pe, 0z-2]

o ~ T
Ly =27 L 1= [pév Qz- Zf—l}

o Let
Xz =Xz-2Z;

e Intuition:

° {Z}t traces changes of agg state due to shock to © in pd 0

o {Xz.+}¢is the IR to an “MIT shock”
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1st Order Approximation

Lemma
To the first order approximation X; satisfies

t
Xe (€) =X+ 3. Xz, + 0 (I€IF).

s=0

e Solving 1st order approximation = finding response to MIT shock
(Boppart et al, 2018)

e Same information contained in impulse responses

E [Xt|50] - E [Xt|g() - 0] - Yz,tg() + O (§2)

e Need to find {Xz:}:
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Finding {YZ.I}

e Recall

G (/de,X, 6) =0 forall Z
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Finding {Yzﬁt}

e Recall

G (/de,X, 6) =0 forall Z

e Differentiate at Z = Z* in direction Z:

Gx {/ Xz,:dQ2" + /delt} +GxXz.: + Gopg =0
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Finding {Yzﬁt}

Recall

G (/de,X, 6) =0 forall Z

Differentiate at Z = Z* in direction Z:

Gx {/ Xz,:dQ2" + /delt} +GxXz.: + Gopg =0

Step 1: characterize Xz ; and then [ Xz.:d2*

Step 2: characterize d{); and then f?d@t

Step 3: plug in the eqn above to find {Xz;};
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Lemma

Xzt (z,0) Z s (2,0) Xz.t1s
s=0 _aX:/6Xr+s

where xs (z, 0)are known from zeroth order
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Lemma

Xzt (z,0) Z s (2,0) Xz.t1s
s=0 _aX:/6Xr+s

where xs (z, 0)are known from zeroth order

xo(z,0) = — (Fx(2,0) + Fx(z,0)x; (2,0) P)
xs+1(z,0) = — (FX(Z, 0) + Fu (z,0)x;

where xJ (z,0) = E[xs(,)|z, 0] and X} (z,0) = E[x.(-,")|z,0] .
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Lemma

Xzt (z,0) Z s (2,0) Xz.t1s
s=0 _aX:/6Xr+s

where xs (z,0)are known from zeroth orde
e Intuition: individuals only care about effect on prices { Xz}
e We now can replace {Yz,t(z,é)}(zﬂ) with {Yz,s}si
o0

/YZ,tdQ* => (/ xsdQ*> Xz t4s

s=0
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Step 2: M and L

e Now we want to characterize

/?dﬁt

e Linear operators M and £ help to characterize €,

e For any y : (z,0) — R they return

(M -y)(Z,0) = /K(z’,@’,z,@)y (2,0)dQ* (z,0)

(L-y)(Z,0) = /K(z’, 0',z,0)z,(z,0)y (z,0) dzdd

Intuition: suppose indiv. policy functions are perturbed by 2, (z,0)

e effect on agg. distribution in pd 1: difll =M 2%
o effect on agg. distribution in pd 2: 4 =L
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Step 2: recursive LoM

Lemma
%Qt satisfies a recursion

d a d A = -
@Qt = /e @Qtfl - ;M : ZSXZ,t+sa

dd
where 25$ = 0.

e Intuition:

e operator L captures first-order effect of past changes agg dist

e M -z, captures first-order effect of ind. policy functions to change in
aggregates s periods ahead
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Step 2: characterize f?dﬁt

e We have

A d a d A
/Yth = - /YZ@Qfdde =-T7- %Qt

e Together with previous results this implies that

where {A¢s}es follow a recursion Ag s = 0 and

At,s =/l Atfl,s +M-zs_
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Step 3: solve 1st order appr

Proposition
{Yz,r}t is the solution to
Gx Z Jt’,sYZ.s + GXYZ,t + G@Pé =0,
s=0

where {J; s}, ; satisfies

Jos= /xs_tdQ* +7-As

e Linear system of equations that determines {yz,t}t
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2nd order expansions




her-order approximations

e Same approach extends with minimal changes to higher orders

e exactly the same steps to derive approx terms
e almost the same mathematical form of equations

e many lst order terms get recycled for higher-order computations

e | will illustrate intuition for this using a simple example
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Super simple example

e In RCE policy functions depend on other policy functions, e.g.

f(g(a))

e First order expansion:

e Second order expansion:

e = fggaa + fgggaga
e Note the general structure of second order terms

e will be useful to think about directions

24



Super simple example

e Our procedure for 1st order approximation:
e we know f; from Oth order

e we developed a way to find £, and g, with

fa = fs8a (3)
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Super simple example

e Our procedure for 1st order approximation:
e we know f; from Oth order

e we developed a way to find £, and g, with

fa - fgga (3)

e Our procedure for 2nd order approximation:

e know fg, fze from Oth order, g, from 1st order

e need to develop a way to find f,, and g, with
f:aa = Ig8aa G (4)

where ¢ = fggaga is known
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Super simple example

e Our procedure for 1st order approximation:
e we know f; from Oth order

e we developed a way to find £, and g, with

fa - fgga (3)

e Our procedure for 2nd order approximation:

e know fg, fze from Oth order, g, from 1st order

e need to develop a way to find f,, and g, with
foa = f28aa + C (4)
where ¢ = fggaga is known
e (1) and (2) have almost identical structure!
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2nd order directions

e Non-linearities from shocks
2t,s =27z 27?71,571 +Zz27- (2t71a 2571)
YZZ,t,k =Xz 2t,k +Xzz- (27 2k)

e Precautionary motives:

A A

Zarr.t = [07 ﬁo‘ﬂ] ! + 72 : Zo‘d,t—l

where X oo = -2 X (Z*;0)
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Recycle 1st order for 2nd order

o {Xzz.tx}ek and {X s+ }+ recover second-order approximation:

t t
Xt (Et) = ...+ % (Z Z YZZ.t—s,t—mgsgm + Xm‘f.t) + o (||g||3>

s=0 m=0

e Finding components of X7z and X,

o Xzz- (Z, Z): explicit formula in terms of 1st and Oth order

e Xz Z,k and X7 - Zm,t: determined almost identically to Xz - Z

e Impulse responses are insufficient

E [X:/€o] — E[X,[éo = 0] = ... + Xzz,0:6 + O (£7),
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Linear system for {)_(ZZ~f-k}t.k and {f(ag‘t}t

Gx Z Jt,SYC"G‘,S + GXHUJ,t + GXYJO'.I = 07 (5)
s=0

and

Gy Z JesX 2z t—ktss + GxHek + GxXzz ek + Goee = 0. (6)
s=0

the expressions for Gg ¢ xand H; x, Hso,+ are in the paper
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Comparison to existing approaches

e State of the art: Auclert et al. (ABRS 2021)

e first order expansions of similar class of economies
e MIT shocks, histogram method, numerical derivatives

e 1st order: we are theoretically equivalent to ABRS

e their computations converge to our formulas as grid size — 0
e our method faster because we can use exact formulas

e 2nd and higher orders: ABRS doesn’t work

e MIT shocks do not capture effects of risk
e histogram method fails (misses fyzg.g terms)

) —HIST -
lim Xzz.s # Xzzt,s

num grid points— co
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Histogram method (Review)

e Histogram (bins,mass points) to approximate Q
e grid {z,-},’.\’:0 represent midpoints of bins

e {wf} mass at points {z,-}fvzo

e Functions {P’(-)} so for z € [z,2i41] only non-zero values
- Zit1— Z - z— 7
Pi(z)="1—, PHl(z)="—"7"1.
Ziy1 — Zj Zi+1 — Zj
e P'(z) : the probability z is assigned to bin with midpoint z;.
e Applications: Linear approximates for aggregates and LOM

o [x(z,0)dQ~ le.x‘(z,-ﬂ) widF (0)
o D7 (O,w)~ > wi [P (2(zi,0,0,w"))dF (0)

J

e Standard approach: Differentiate after applying discretizing using
histogram method
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Why does Histogram method fail? Simple Example

Histogram method approximates f (z) ~ Z,,-V:O Pi(z) f (z;). Now...
e Expand LHS f (z + 2)

f(z)+f'(2)2+ %f’/ (2)2° + o (22)

e Expand RHS E,’-V:O Pi(z+2)f (z)

e Now take limits as N — oo
e zeroth order YN (P (2) f () — f (2)
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Why does Histogram method fail? Simple Example

Histogram method approximates f (z) ~ Z,,-V:O Pi(z) f (z;). Now...
e Expand LHS f (z + 2)

@)+ (2) 2+ 2" (2) 2 + 0 ()

e Expand RHS Z,’-V:O Pi(z+2)f (z)

Z z+o()

]
p
o
~-
S
=

]
N@
N>

N \

e Now take limits as N — oo
o first order S, P (2) F () 2 = T L g (o) 2

+1—
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Why does Histogram method fail? Simple Example

Histogram method approximates f (z) ~ Z,,-V:O Pi(z) f (z;). Now...
e Expand LHS f (z + 2)

f(z)+f'(2)2+ %f’/ (2)2° + o (22)

e Expand RHS E,’-V:O Pi(z+2)f (z)

e Now take limits as N — oo

e second order 5" o P (2)f(zi) 2
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Why does Histogram method fail?

e Tractability of histogram methods come from “uniform” lotteries

e preserves mass and conditional means

ZP"(Z):1
ZPi(z)z; =2

e which works for first-order but not higher in presence of curvature

e Our approach discretizes after differentiating
e approximates f” (z) 2 instead of SN PL, (2) f (2:) 22
e works for all orders

e Show later in the application than the missing terms can affect
conclusions
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\Applications|




Goals

e Use a calibrated version of the basic model to assess the method

e speed, accuracy comparisons,role of nonlinearities

e Applications to illustrate usefulness

1. welfare from stabilization policies

N

impact of uncertainty
3. household portfolios

4. transitions

36



Comparisons

First Order Second Order
Step Time Step Time (ZZ) Time(oo)
Additional 1st order terms 0.70s

Compute {xs} 0.07s Compute {x¢ x} and {xsc } 0.64s 0.05s
Compute £ and {a;}; 0.13s Compute {b; «, ¢tk } and {bso} 0.21s 0.45s
Compute {J; s}es 0.17s Compute H  and Hy o ¢ 0.07s 0.05s
Compute {X7 ;}+ 0.13s Compute {Xzz, ¢k e,k {Xoo,t}e 0.19s 0.28s
Total 0.5s 1.81s 0.83s
ABRS 1.51s
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Stabilization Policy

e Simple model of stabilization policy: choose optimal 7g in

Tt = T+ T@@t
e Stabilization policy is a second order question

e 7o has no effect on welfare to the first order

e Add extra equation W (Q,0;19) = [V (k,0;79) dQ to G and use

- 1[N _
E [W] =W+ 5 (Z WZZ,S,SO"% + Wo’o',:)o) + 0] <§3)

5=0

e Compare answers if we tried to track distribution using the histogram
method
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Stabilization Policy: Results

e Optimal policy: Countercyclical fiscal policy
e Raise taxes by 300 basis points for a 1% fall in TFP

* , hist
To

Whist(Té)
W) ™

risk aversion s

2 -3.10  -348%  161%
3 -1.90  -230%  209%
4 -1.03 -226%  167%
5 -0.69 -217%  125%
7 -0.52  -187% 67%

The W' (73) uses the histogram method to compute the welfare and Té’hiSt is

the optimal policy using W"* (7g) as the measure of welfare
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Effects on Uncertainty

e Large empirical literature about macroeconomic uncertainty
e What are the aggregate and distributional effects of uncertainty?

e Calibrate uncertainty shock to capture changes in VIX during Covid
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Effects on Uncertainty: Methodology

e Conventional wisdom: requires 3rd or higher order expansion

e In paper: slight modification to second order expansion is sufficient

e Extend shock process to allow for time varying volatility:

& =+/14+T:_18o., (7)

Te=prTic1+Evye, (8)
e Construct a few new terms

t
Yo'o',t (g’j%) = Y0‘/:)',15 I ZYT,t—ng,ﬁ
s=0
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Effects on Uncertainty: Results

e Average =~ %% of per-period consumption over their life

e larger losses for low net worth

IRF: agg. welfare welfare at date 0
0.0 0.0
“o1 b
-0.2 |
=
GJ
o -2
9] —0.4 H
£
4
2 -03
-0.6
-0.4 —SO
—FO0
—08 — ABRS|
0 100 200 300 400 0 2 4 6 8 10
a/GDP
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Household Portfolios

e Large empirical literature on household portfolios (Viceria, Campbell,
Yogo etc)

e What are the predictions from standard macro model?
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Household Portfolios: Methodology

e Key problem: HH portfolios not pinned down at 0 = 0

e Use second order expansions to solve the limiting (o — 0) portfolio

e HH portfolios linear equation given exposures of excess agg. returns
e boils down to one nonlinear equation in exposure of excess returns
e extends the Devereux Sutherland insight to HA economies

e Correct portfolio matters even for first order expansion
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Household Portfolios: Results

e Standard model predicts that stock share is increasing in wealth

Portfolio Shares

portfolio shares

0.40

assets/ per capita GDP

bonds capital
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Transitions

e Often interested in the entire transition path after reforms
(permanent changes)

e economy transitions to a new steady state
e welfare gains on transitions are large

e Same objects can be recycled to get approximations to transition
paths
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Transitions: Methodology

e Relax the assumption that the initial distribution Qo = Q*

e Directions
e Date 0 direction 29,0 =10, QO]T where Qo = Q* — Q

e Date t directions as before Zz,t =77 2Q7t71

e To first-order YQJ =Xz - 2Q,t

e {Xaq.}, is the solution to

G Y JesXas + GxXar+Gudar =0,
s=0

same as before

where Jo =7 L d%ﬁo-
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Transition: Results

Path of capital stock after one-time permanent 5% change in agg. TFP
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Conclusions

e Tool for higher order approximations of heterogeneous agent models
e with occasionally binding constraints
e Extends to

e time varying volatility
e portfolio problems

e transitions
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Frechet derivatives ( Review)

e Consider a function f : O — Y. The change of f from Q — Q + Q
is approximated as
f(sz+fz) - f(Q)+fQ(Q)-fz+o(fz)
e fa(Q) is a linear operator ( “huge matrix”) on directions
e Eg: Jacobian matrix [fé’_] ~or a kernel

isj

If(Q+aQ)—F(Q)

e Easily computed using Gateaux fq () - Q = limy_s0 -

e Extends naturally to higher orders
fo (Q + flz) =1 () + faa (Q) - (Ql, Qz) +o (62)
e faq () is a bilinear operator (“3d tensor”) on directions (fh,ﬁz)
e Eg, collection of Hessians {[féfﬂk}/k}
Y §

r al
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Appendix: Baseline Calibration

Parameter Description Value
« Capital share 0.36
B8 Discount factor 0.983
o Risk aversion 2
1) Depreciation rate of capital 1.77%
o} Adjustment cost of capital 125
Do Idiosyncratic mean reversion 0.966
Jg/m Cross-sectional std of log earnings 0.503
po Persistence of TFP shock 0.80
oo Std of Aggregate TFP growth rate 0.014
N Points in Markov chain for € 7
N, Grid points for the policy rule X'(z) 60
I, Grid points for the distribution @; 1000
T Time horizon (in quarters) for IRF 400
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Appendix: Accuracy

Check accuracy in approximated perfect foresight equilibrium

Let X; path of aggregates from approximation

Given X solve for agent behavior and resulting path of distribution

Aggregate to compute resulting path of aggregates X

o In equilibrium we should have X = X

e Measure accuracy by difference X-X
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Appendix: Accuracy Comparison

BBEG FO
BBEG FO Histogram
0.04 - ABRS
BBEG SO
BBEG SO Histogram
© 0.03 |
=
Q
©
O
%5 0.02 |
2
=
2 oo |
=
w
0.00 -

. I . .
0 100 200 300 400
Quarters
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