The International Monetary Transmission Mechanism Santiago Camara (McGill), Lawrence Christiano (Northwestern) Husnu C. Dalgic (Mannheim)

CIGS Conference on Macroeconomic Theory and Policy, June 15-16, 2025, Tokyo

• Work on the dynamic effects of US monetary policy shocks, ε_t^m , on the US economy has had a major impact on the design of closed economy models.

- Work on the dynamic effects of US monetary policy shocks, ε_t^m , on the US economy has had a major impact on the design of closed economy models.
- ullet This work has accelerated in recent years with development of 'high frequency' measures of $arepsilon_t^m$

- Work on the dynamic effects of US monetary policy shocks, ε_t^m , on the US economy has had a major impact on the design of closed economy models.
- ullet This work has accelerated in recent years with development of 'high frequency' measures of $arepsilon_t^m$
 - ▶ Most work studies dynamic effects of ε_t^m on US economy.

- Work on the dynamic effects of US monetary policy shocks, ε_t^m , on the US economy has had a major impact on the design of closed economy models.
- ullet This work has accelerated in recent years with development of 'high frequency' measures of $arepsilon_t^m$
 - ▶ Most work studies dynamic effects of ε_t^m on US economy.
- More recently, ask 'How Does the US and World Economy Respond to a US Monetary Policy Shock?'

• Want (relatively) theory-free information about the world economy to construct models useful for policy analysis.

- Want (relatively) theory-free information about the world economy to construct models useful for policy analysis.
- Model construction and estimation based on two types of information:

- Want (relatively) theory-free information about the world economy to construct models useful for policy analysis.
- Model construction and estimation based on two types of information:
 - High frequency Information can be obtained from data on impulse responses to identified monetary policy shocks
 - * Want a sense about the difference between short run and medium run elasticities of substitution across countries and factor inputs.

- Want (relatively) theory-free information about the world economy to construct models useful for policy analysis.
- Model construction and estimation based on two types of information:
 - High frequency Information can be obtained from data on impulse responses to identified monetary policy shocks
 - * Want a sense about the difference between short run and medium run elasticities of substitution across countries and factor inputs.
 - Low frequency Information about direction and volume of trade across countries.

- Want (relatively) theory-free information about the world economy to construct models useful for policy analysis.
- Model construction and estimation based on two types of information:
 - High frequency Information can be obtained from data on impulse responses to identified monetary policy shocks
 - * Want a sense about the difference between short run and medium run elasticities of substitution across countries and factor inputs.
 - Low frequency Information about direction and volume of trade across countries.
- Can ask questions like:

- Want (relatively) theory-free information about the world economy to construct models useful for policy analysis.
- Model construction and estimation based on two types of information:
 - High frequency Information can be obtained from data on impulse responses to identified monetary policy shocks
 - * Want a sense about the difference between short run and medium run elasticities of substitution across countries and factor inputs.
 - Low frequency Information about direction and volume of trade across countries.
- Can ask questions like:
 - ▶ What are the forces driving the dynamics of US trade deficit ('demand for goods/services' versus financial factors like 'demand for safe assets')?

- Want (relatively) theory-free information about the world economy to construct models useful for policy analysis.
- Model construction and estimation based on two types of information:
 - High frequency Information can be obtained from data on impulse responses to identified monetary policy shocks
 - * Want a sense about the difference between short run and medium run elasticities of substitution across countries and factor inputs.
 - Low frequency Information about direction and volume of trade across countries.
- Can ask questions like:
 - ▶ What are the forces driving the dynamics of US trade deficit ('demand for goods/services' versus financial factors like 'demand for safe assets')?
 - What are the short and longer-run effects of tariffs?

• Classic, Mundell-Fleming answer: dollar appreciation induces expenditure switching, and production moves from US to rest of the world (ROW).

• Classic, Mundell-Fleming answer: dollar appreciation induces expenditure switching, and production moves from US to rest of the world (ROW). ROW booms!

- Classic, Mundell-Fleming answer: dollar appreciation induces expenditure switching, and production moves from US to rest of the world (ROW). ROW booms!
- Emerging consensus: US tightening makes ROW contract.

- Classic, Mundell-Fleming answer: dollar appreciation induces expenditure switching, and production moves from US to rest of the world (ROW). ROW booms!
- Emerging consensus: US tightening makes ROW contract.
 - Conventional interpretation:
 - * a variety of financial frictions, including sticky-pricing in dollars, balance sheet effects, shocks to risk appetite is what undoes M-F prediction for ROW boom (Rey (2015), Miranda-Agrippino and Rey (2020), Gopinath et al (2020)).

- Classic, Mundell-Fleming answer: dollar appreciation induces expenditure switching, and production moves from US to rest of the world (ROW). ROW booms!
- Emerging consensus: US tightening makes ROW contract.
 - Conventional interpretation:
 - * a variety of financial frictions, including sticky-pricing in dollars, balance sheet effects, shocks to risk appetite is what undoes M-F prediction for ROW boom (Rey (2015), Miranda-Agrippino and Rey (2020), Gopinath et al (2020)).
- Our conclusion:

- Classic, Mundell-Fleming answer: dollar appreciation induces expenditure switching, and production moves from US to rest of the world (ROW). ROW booms!
- Emerging consensus: US tightening makes ROW contract.
 - Conventional interpretation:
 - * a variety of financial frictions, including sticky-pricing in dollars, balance sheet effects, shocks to risk appetite is what undoes M-F prediction for ROW boom (Rey (2015), Miranda-Agrippino and Rey (2020), Gopinath et al (2020)).
- Our conclusion:
 - Yes, financial frictions play a major role.

- Classic, Mundell-Fleming answer: dollar appreciation induces expenditure switching, and production moves from US to rest of the world (ROW). ROW booms!
- Emerging consensus: US tightening makes ROW contract.
 - Conventional interpretation:
 - * a variety of financial frictions, including sticky-pricing in dollars, balance sheet effects, shocks to risk appetite is what undoes M-F prediction for ROW boom (Rey (2015), Miranda-Agrippino and Rey (2020), Gopinath et al (2020)).
- Our conclusion:
 - Yes, financial frictions play a major role.
 - But, the primary effect of a US monetary tightening seems to make ROW contract, primarily by triggering a reduction in US import demand.

• The US contraction caused by a US policy tightening leads to a large decline in US demand for imports.

- The US contraction caused by a US policy tightening leads to a large decline in US demand for imports.
 - substantial drop in investment; car and petroleum imports; industrial supplies & materials; not consumption goods.

- The US contraction caused by a US policy tightening leads to a large decline in US demand for imports.
 - substantial drop in investment; car and petroleum imports; industrial supplies & materials; not consumption goods.
- The large decline in US demand for imports leads to a decline in foreign exports and is the main reason that non-US countries contract after a US monetary tightening.

- The US contraction caused by a US policy tightening leads to a large decline in US demand for imports.
 - substantial drop in investment; car and petroleum imports; industrial supplies & materials; not consumption goods.
- The large decline in US demand for imports leads to a decline in foreign exports and is the main reason that non-US countries contract after a US monetary tightening.
- Decline in Emerging Market Economies (EME) is greater than decline in Advanced Economies (AE).

- The US contraction caused by a US policy tightening leads to a large decline in US demand for imports.
 - substantial drop in investment; car and petroleum imports; industrial supplies & materials; not consumption goods.
- The large decline in US demand for imports leads to a decline in foreign exports and is the main reason that non-US countries contract after a US monetary tightening.
- Decline in Emerging Market Economies (EME) is greater than decline in Advanced Economies (AE).
 - ▶ We attribute this to greater exposure by firms to dollar debt in EMEs.

- The US contraction caused by a US policy tightening leads to a large decline in US demand for imports.
 - substantial drop in investment; car and petroleum imports; industrial supplies & materials; not consumption goods.
- The large decline in US demand for imports leads to a decline in foreign exports and is the main reason that non-US countries contract after a US monetary tightening.
- Decline in Emerging Market Economies (EME) is greater than decline in Advanced Economies (AE).
 - ▶ We attribute this to greater exposure by firms to dollar debt in EMEs.
- We reach these conclusions by:
 - estimating impulse responses (IRFs) to US monetary policy shocks.

- The US contraction caused by a US policy tightening leads to a large decline in US demand for imports.
 - substantial drop in investment; car and petroleum imports; industrial supplies & materials; not consumption goods.
- The large decline in US demand for imports leads to a decline in foreign exports and is the main reason that non-US countries contract after a US monetary tightening.
- Decline in Emerging Market Economies (EME) is greater than decline in Advanced Economies (AE).
 - ▶ We attribute this to greater exposure by firms to dollar debt in EMEs.
- We reach these conclusions by:
 - estimating impulse responses (IRFs) to US monetary policy shocks.
 - fitting representative EME and AE small open economy models to the IRFs.

- The US contraction caused by a US policy tightening leads to a large decline in US demand for imports.
 - substantial drop in investment; car and petroleum imports; industrial supplies & materials; not consumption goods.
- The large decline in US demand for imports leads to a decline in foreign exports and is the main reason that non-US countries contract after a US monetary tightening.
- Decline in Emerging Market Economies (EME) is greater than decline in Advanced Economies (AE).
 - ▶ We attribute this to greater exposure by firms to dollar debt in EMEs.
- We reach these conclusions by:
 - estimating impulse responses (IRFs) to US monetary policy shocks.
 - fitting representative EME and AE small open economy models to the IRFs.
 - doing counterfactual simulations on estimated small open economy models.

Estimated Impulse Response Functions

- Monthly data, 2006-2019
 - ▶ Data availability & 2000s different regime for EMEs
 - ► US Monetary policy shocks: Bauer & Swanson (2023) Details
 - Bayesian estimation: Minnesota priors.

Estimated Impulse Response Functions

- Monthly data, 2006-2019
 - ▶ Data availability & 2000s different regime for EMEs
 - ► US Monetary policy shocks: Bauer & Swanson (2023) Details
 - Bayesian estimation: Minnesota priors.
- 8 variables in Y_t :
 - ► GDP, PCE, Exports, Imports, trade-weighted nominal exchange rate, S&P 500,
 - Excess Bond Premium (EBP, from Gilchrist-Zakrajsek (2012)),
 - ► R* 2-year default-free interest rate for business (G-Z, 2012)

Estimated Impulse Response Functions

- Monthly data, 2006-2019
 - ▶ Data availability & 2000s different regime for EMEs
 - ► US Monetary policy shocks: Bauer & Swanson (2023) Details
 - Bayesian estimation: Minnesota priors.
- 8 variables in Y_t :
 - ► GDP, PCE, Exports, Imports, trade-weighted nominal exchange rate, S&P 500,
 - Excess Bond Premium (EBP, from Gilchrist-Zakrajsek (2012)),
 - ► R* 2-year default-free interest rate for business (G-Z, 2012)
- Quantity and Price Variables are in Log-Levels.

Figure 1: Response to Contractionary US Monetary Policy Shock, United States

Figure 1: Response to Contractionary US Monetary Policy Shock, United States

Figure 1: Response to Contractionary US Monetary Policy Shock, United States

Key US Results

- Generally, results for US in line with what others get.
 - R* rises.
 - US currency appreciates,
 - ► *S&P* 500 goes down,
 - Price level goes down.

- Generally, results for US in line with what others get.
 - R* rises.
 - US currency appreciates,
 - ► *S&P* 500 goes down,
 - Price level goes down.
- US imports go down a lot more than GDP in percent terms (see also Ozhan (2020), Miranda-Agrippino and Ricco (2021), Müller and Verner (2023)).

- Generally, results for US in line with what others get.
 - R* rises.
 - US currency appreciates,
 - ► *S&P* 500 goes down,
 - Price level goes down.
- US imports go down a lot more than GDP in percent terms (see also Ozhan (2020), Miranda-Agrippino and Ricco (2021), Müller and Verner (2023)).
 - ▶ Fall in import price index suggests that decline is due to fall in demand from US (due to fall in GDP).

- Generally, results for US in line with what others get.
 - R* rises.
 - US currency appreciates,
 - ► *S&P* 500 goes down,
 - Price level goes down.
- US imports go down a lot more than GDP in percent terms (see also Ozhan (2020), Miranda-Agrippino and Ricco (2021), Müller and Verner (2023)).
 - ▶ Fall in import price index suggests that decline is due to fall in demand from US (due to fall in GDP).
 - What component of US demand accounts for the decline in imports?

- Generally, results for US in line with what others get.
 - R* rises.
 - US currency appreciates,
 - ► *S&P* 500 goes down,
 - Price level goes down.
- US imports go down a lot more than GDP in percent terms (see also Ozhan (2020), Miranda-Agrippino and Ricco (2021), Müller and Verner (2023)).
 - ▶ Fall in import price index suggests that decline is due to fall in demand from US (due to fall in GDP).
 - What component of US demand accounts for the decline in imports?
 - * US investment falls substantially after a US monetary contraction.

- Generally, results for US in line with what others get.
 - R* rises.
 - US currency appreciates,
 - ► *S&P* 500 goes down,
 - Price level goes down.
- US imports go down a lot more than GDP in percent terms (see also Ozhan (2020), Miranda-Agrippino and Ricco (2021), Müller and Verner (2023)).
 - ▶ Fall in import price index suggests that decline is due to fall in demand from US (due to fall in GDP).
 - What component of US demand accounts for the decline in imports?
 - US investment falls substantially after a US monetary contraction.
 - Relatedly, imports of cars & petroleum & materials falls a lot.

• Baseline: use panel data VAR methods to compute the dynamic effects of a US monetary tightening on non-US countries.

- Baseline: use panel data VAR methods to compute the dynamic effects of a US monetary tightening on non-US countries.
 - Check for robustness: country by country VARs, local projections, and Jarocinski-Karadi high frequency shocks.

- Baseline: use panel data VAR methods to compute the dynamic effects of a US monetary tightening on non-US countries.
 - Check for robustness: country by country VARs, local projections, and Jarocinski-Karadi high frequency shocks.
- Divide economies into two sets:
 - AE (advanced economies): N = 10 Australia, Canada, UK, Germany, Israel, Japan, Korea, Norway, Switzerland, and Sweden.

- Baseline: use panel data VAR methods to compute the dynamic effects of a US monetary tightening on non-US countries.
 - Check for robustness: country by country VARs, local projections, and Jarocinski-Karadi high frequency shocks.
- Divide economies into two sets:
 - AE (advanced economies): N = 10 Australia, Canada, UK, Germany, Israel, Japan, Korea, Norway, Switzerland, and Sweden.
 - EME (emerging market economies): N = 14 Brazil, Chile, Colombia, Hungary, India, Indonesia, Mexico, Peru, Philippines, Poland, Russia, South Africa, Thailand, Turkey.

Advanced Economies

Advanced Economies

Emerging Market Economies

Emerging Market Economies

20

Uncovered Interest Parity (UIP):

expected return on dollar asset in LCU units

$$R_{d,t} = \overbrace{\left[R_{d,t}^* + E_t \log(S_{t+1}) - \log(S_t)\right]},$$

Uncovered Interest Parity (UIP):

$$R_{d,t} = \overbrace{\left[R_{d,t}^* + E_t \log(S_{t+1}) - \log(S_t)\right]}^{\text{expected return on dollar asset in LCU units}}, \quad \rightarrow \log(S_t) = \overbrace{R_{d,t}^* - R_{d,t}}^{\text{expected return on dollar asset in LCU units}} + E_t \log(S_{t+1})$$

Uncovered Interest Parity (UIP):

$$R_{d,t} = \overbrace{\left[R_{d,t}^* + E_t \log(S_{t+1}) - \log(S_t)\right]}^{\text{expected return on dollar asset in LCU units}}, \ \rightarrow \log(S_t) = \overbrace{R_{d,t}^* - R_{d,t}}^{\text{expected return on dollar asset in LCU units}} + E_t \log(S_{t+1})$$

ullet Let Δ_ℓ and $\log S_\ell$ denote the ℓ -period impulse response to $arepsilon_t^m$

$$\log(S_\ell) = \varDelta_\ell + \log(S_{\ell+1})$$

•

Uncovered Interest Parity (UIP):

expected return on dollar asset in LCU units
$$R_{d,t} = \overbrace{\left[R_{d,t}^* + E_t \log(S_{t+1}) - \log(S_t)\right]}^{\text{expected return on dollar asset in LCU units}}, \ \rightarrow \log(S_t) = \overbrace{R_{d,t}^* - R_{d,t}}^{*} + E_t \log(S_{t+1})$$

ullet Let Δ_ℓ and $\log S_\ell$ denote the ℓ -period impulse response to $arepsilon_t^m$

$$\log(S_\ell) = \Delta_\ell + \log(S_{\ell+1})$$

• Our EME VARs are consistent with $\lim_{\ell\to\infty}\Delta_\ell=\lim_{\ell\to\infty}\log S_\ell=0$ and, after recursive substitution:

$$\log S_{\ell}^{UIP} = \sum_{i=0}^{\infty} \Delta_{\ell+j}$$

Two Uncovered Interest Rate Parity Puzzles

Two Uncovered Interest Rate Parity Puzzles

Two Uncovered Interest Rate Parity Puzzles

- When US raises rates:
 - ► US import demand declines
 - ► Rest of world contracts

- When US raises rates:
 - ► US import demand declines
 - Rest of world contracts
- Contractions in Foreign Economies
 - Larger output fall in EMEs relative to AEs
 - ► Large drop in exports in EMEs and AEs

- When US raises rates:
 - US import demand declines
 - Rest of world contracts
- Contractions in Foreign Economies
 - Larger output fall in EMEs relative to AEs
 - Large drop in exports in EMEs and AEs
- Uncovered Interest Rate Parity Puzzles:
 - ightharpoonup Expect much bigger capital outflows from AEs and EMEs in the three months after positive R^* shock

- When US raises rates:
 - ► US import demand declines
 - Rest of world contracts
- Contractions in Foreign Economies
 - Larger output fall in EMEs relative to AEs
 - Large drop in exports in EMEs and AEs
- Uncovered Interest Rate Parity Puzzles:
 - ightharpoonup Expect much bigger capital outflows from AEs and EMEs in the three months after positive R^* shock
 - Expect huge capital outflows into AEs and EMEs afterward.

- When US raises rates:
 - US import demand declines
 - Rest of world contracts
- Contractions in Foreign Economies
 - Larger output fall in EMEs relative to AEs
 - Large drop in exports in EMEs and AEs
- Uncovered Interest Rate Parity Puzzles:
 - ▶ Expect much bigger capital outflows from AEs and EMEs in the three months after positive R* shock
 - Expect huge capital outflows into AEs and EMEs afterward.
 - ▶ 'Resolve' the two puzzles with (a) adjustment cost on changing dollar share in portfolios, and (b) non-pecuniary preference for dollars ('reduced risk appetite') when R* is high.

- When US raises rates:
 - US import demand declines
 - Rest of world contracts
- Contractions in Foreign Economies
 - Larger output fall in EMEs relative to AEs
 - ► Large drop in exports in EMEs and AEs
- Uncovered Interest Rate Parity Puzzles:
 - ightharpoonup Expect much bigger capital outflows from AEs and EMEs in the three months after positive R^* shock
 - Expect huge capital outflows into AEs and EMEs afterward.
 - ▶ 'Resolve' the two puzzles with (a) adjustment cost on changing dollar share in portfolios, and (b) non-pecuniary preference for dollars ('reduced risk appetite') when R* is high.
 - * We take the reduced form approach in Schmitt-Grohe and Uribe (2003), Christiano, et al. (2011), Eichenbaum, et al. (2021).

• What is the role, in the transmission of monetary policy shocks, of the decline in US imports?

- What is the role, in the transmission of monetary policy shocks, of the decline in US imports?
 - ▶ We approach this question by constructing small open economy models for AEs and EMEs (also, Peru).

- What is the role, in the transmission of monetary policy shocks, of the decline in US imports?
 - We approach this question by constructing small open economy models for AEs and EMEs (also, Peru).
- How do frictions that help resolve the UIP puzzles affect monetary policy?

- What is the role, in the transmission of monetary policy shocks, of the decline in US imports?
 - ► We approach this question by constructing small open economy models for AEs and EMEs (also, Peru).
- How do frictions that help resolve the UIP puzzles affect monetary policy?
 - ► How do frictions affect transmission of US monetary policy shocks?

- What is the role, in the transmission of monetary policy shocks, of the decline in US imports?
 - ▶ We approach this question by constructing small open economy models for AEs and EMEs (also, Peru).
- How do frictions that help resolve the UIP puzzles affect monetary policy?
 - ► How do frictions affect transmission of US monetary policy shocks?
 - ► Can FX intervention help when there are noise shocks in exchange markets?

- What is the role, in the transmission of monetary policy shocks, of the decline in US imports?
 - ► We approach this question by constructing small open economy models for AEs and EMEs (also, Peru).
- How do frictions that help resolve the UIP puzzles affect monetary policy?
 - How do frictions affect transmission of US monetary policy shocks?
 - ► Can FX intervention help when there are noise shocks in exchange markets? (yes)

- What is the role, in the transmission of monetary policy shocks, of the decline in US imports?
 - ▶ We approach this question by constructing small open economy models for AEs and EMEs (also, Peru).
- How do frictions that help resolve the UIP puzzles affect monetary policy?
 - How do frictions affect transmission of US monetary policy shocks?
 - ► Can FX intervention help when there are noise shocks in exchange markets? (yes)
 - Can FX intervention insulate AEs and EMEs against foreign shocks? (not so much)

Small Open Economy Model

- We build two small open economy models, a representative AE and EME.
 - ▶ US is exogenous source of monetary tightening shock

Small Open Economy Model

- We build two small open economy models, a representative AE and EME.
 - US is exogenous source of monetary tightening shock
 - ▶ Balance sheet frictions (BGG (1999), Castillo and Medina (2021)): help explain why AEs react less to US monetary tightening than EMEs.

- We build two small open economy models, a representative AE and EME.
 - US is exogenous source of monetary tightening shock
 - ▶ Balance sheet frictions (BGG (1999), Castillo and Medina (2021)): help explain why AEs react less to US monetary tightening than EMEs.
 - UIP frictions.

- We build two small open economy models, a representative AE and EME.
 - ▶ US is exogenous source of monetary tightening shock
 - ▶ Balance sheet frictions (BGG (1999), Castillo and Medina (2021)): help explain why AEs react less to US monetary tightening than EMEs.
 - UIP frictions.
 - ► Sticky-in-dollar pricing (Gopinath et al. (2020)).

- We build two small open economy models, a representative AE and EME.
 - US is exogenous source of monetary tightening shock
 - ▶ Balance sheet frictions (BGG (1999), Castillo and Medina (2021)): help explain why AEs react less to US monetary tightening than EMEs.
 - UIP frictions.
 - Sticky-in-dollar pricing (Gopinath et al. (2020)).
- Estimate the model: Match Estimated Impulse Responses

- We build two small open economy models, a representative AE and EME.
 - US is exogenous source of monetary tightening shock
 - ▶ Balance sheet frictions (BGG (1999), Castillo and Medina (2021)): help explain why AEs react less to US monetary tightening than EMEs.
 - UIP frictions.
 - Sticky-in-dollar pricing (Gopinath et al. (2020)).
- Estimate the model: Match Estimated Impulse Responses
- Results suggest import demand channel is the main channel through which US MP shocks transmit to RoW

EME Model versus Empirical IRF

• A US Monetary Contraction Affects the World Economy (ROW) in two Ways:

- A US Monetary Contraction Affects the World Economy (ROW) in two Ways:
 - ► The rise in the interest rate, R*.

- A US Monetary Contraction Affects the World Economy (ROW) in two Ways:
 - ▶ The rise in the interest rate, R^* .
 - ▶ The impact on foreign countries' demand for exports.

- A US Monetary Contraction Affects the World Economy (ROW) in two Ways:
 - ▶ The rise in the interest rate, R^* .
 - ► The impact on foreign countries' demand for exports.
- In our (linear) analysis, the total impact of a US monetary policy contraction contraction is the sum of the two.

Blue Line: impulse response of model fit to the VAR impulse responses.

Red line: pure interest rate (trade turned off).

 A US monetary tightening appears to produce a small contraction in output and investment in AE's and a bigger contraction in EME's.

- A US monetary tightening appears to produce a small contraction in output and investment in AE's and a bigger contraction in EME's.
- Much recent analysis of monetary policy focuses on purely the effects of the rise in the US interest rate.

- A US monetary tightening appears to produce a small contraction in output and investment in AE's and a bigger contraction in EME's.
- Much recent analysis of monetary policy focuses on purely the effects of the rise in the US interest rate.
 - balance sheet effects, impact on risk appetite, sticky-in-dollar export prices, ...

- A US monetary tightening appears to produce a small contraction in output and investment in AE's and a bigger contraction in EME's.
- Much recent analysis of monetary policy focuses on purely the effects of the rise in the US interest rate.
 - ▶ balance sheet effects, impact on risk appetite, sticky-in-dollar export prices, ...
 - we have all these frictions in our model.

- A US monetary tightening appears to produce a small contraction in output and investment in AE's and a bigger contraction in EME's.
- Much recent analysis of monetary policy focuses on purely the effects of the rise in the US interest rate.
 - balance sheet effects, impact on risk appetite, sticky-in-dollar export prices, ...
 - we have all these frictions in our model.
- But, an analysis that focuses only on the US interest rate has difficulty explaining the sharp drop in AE and EME exports.

- A US monetary tightening appears to produce a small contraction in output and investment in AE's and a bigger contraction in EME's.
- Much recent analysis of monetary policy focuses on purely the effects of the rise in the US interest rate.
 - balance sheet effects, impact on risk appetite, sticky-in-dollar export prices, ...
 - we have all these frictions in our model.
- But, an analysis that focuses only on the US interest rate has difficulty explaining the sharp drop in AE and EME exports.
 - Our analysis suggests that the main channel by which a US monetary tightening affects ROW is via a reduction in US imports.

- A US monetary tightening appears to produce a small contraction in output and investment in AE's and a bigger contraction in EME's.
- Much recent analysis of monetary policy focuses on purely the effects of the rise in the US interest rate.
 - balance sheet effects, impact on risk appetite, sticky-in-dollar export prices, ...
 - we have all these frictions in our model.
- But, an analysis that focuses only on the US interest rate has difficulty explaining the sharp drop in AE and EME exports.
 - Our analysis suggests that the main channel by which a US monetary tightening affects ROW is via a reduction in US imports.
- Next: build multi-country world general equilibrium model.

- A US monetary tightening appears to produce a small contraction in output and investment in AE's and a bigger contraction in EME's.
- Much recent analysis of monetary policy focuses on purely the effects of the rise in the US interest rate.
 - balance sheet effects, impact on risk appetite, sticky-in-dollar export prices, ...
 - we have all these frictions in our model.
- But, an analysis that focuses only on the US interest rate has difficulty explaining the sharp drop in AE and EME exports.
 - Our analysis suggests that the main channel by which a US monetary tightening affects ROW is via a reduction in US imports.
- Next: build multi-country world general equilibrium model.
 - ▶ Want the model to match high frequency facts like the ones reported here.

- A US monetary tightening appears to produce a small contraction in output and investment in AE's and a bigger contraction in EME's.
- Much recent analysis of monetary policy focuses on purely the effects of the rise in the US interest rate.
 - balance sheet effects, impact on risk appetite, sticky-in-dollar export prices, ...
 - we have all these frictions in our model.
- But, an analysis that focuses only on the US interest rate has difficulty explaining the sharp drop in AE and EME exports.
 - Our analysis suggests that the main channel by which a US monetary tightening affects ROW is via a reduction in US imports.
- Next: build multi-country world general equilibrium model.
 - ▶ Want the model to match high frequency facts like the ones reported here.
 - Do experiments (tariffs) in the model.

- High frequency identification:
 - Based on FOMC meetings that occur 8 times a year (on average in the middle of the month).
 - Compute changes (10 minutes before FOMC announcement to 20 minutes after) on four Eurodollar futures rates, ED1,..., ED4.
 - ▶ Compute first principle component, \tilde{x} , of ED1, ..., ED4.
 - ***** Loosely, \tilde{x} is the time series that best captures the variation in ED1,...,ED4.

- High frequency identification:
 - Based on FOMC meetings that occur 8 times a year (on average in the middle of the month).
 - Compute changes (10 minutes before FOMC announcement to 20 minutes after) on four Eurodollar futures rates, ED1,..., ED4.
 - ▶ Compute first principle component, \tilde{x} , of ED1, ..., ED4.
 - ***** Loosely, \tilde{x} is the time series that best captures the variation in ED1,...,ED4.
- Regress \tilde{x}_t on data publicly known at t:

- High frequency identification:
 - Based on FOMC meetings that occur 8 times a year (on average in the middle of the month).
 - Compute changes (10 minutes before FOMC announcement to 20 minutes after) on four Eurodollar futures rates, ED1,..., ED4.
 - ▶ Compute first principle component, \tilde{x} , of ED1, ..., ED4.
 - ★ Loosely, \tilde{x} is the time series that best captures the variation in ED1,...,ED4.
- Regress \tilde{x}_t on data publicly known at t:
 - surprise in most recent release of nonfarm payrolls prior to FOMC meeting, relative to median expectation for that release.

- High frequency identification:
 - Based on FOMC meetings that occur 8 times a year (on average in the middle of the month).
 - Compute changes (10 minutes before FOMC announcement to 20 minutes after) on four Eurodollar futures rates, ED1,..., ED4.
 - ▶ Compute first principle component, \tilde{x} , of ED1, ..., ED4.
 - ***** Loosely, \tilde{x} is the time series that best captures the variation in ED1,...,ED4.
- Regress \tilde{x}_t on data publicly known at t:
 - surprise in most recent release of nonfarm payrolls prior to FOMC meeting, relative to median expectation for that release.
 - employment growth, commodity price...

- High frequency identification:
 - Based on FOMC meetings that occur 8 times a year (on average in the middle of the month).
 - Compute changes (10 minutes before FOMC announcement to 20 minutes after) on four Eurodollar futures rates, ED1,..., ED4.
 - ▶ Compute first principle component, \tilde{x} , of ED1, ..., ED4.
 - ***** Loosely, \tilde{x} is the time series that best captures the variation in ED1,...,ED4.
- Regress \tilde{x}_t on data publicly known at t:
 - surprise in most recent release of nonfarm payrolls prior to FOMC meeting, relative to median expectation for that release.
 - employment growth, commodity price...
 - ▶ Residual is ε_t^m , the estimate of *pure* monetary policy shock (higher ε_t^m means tighter policy).

- High frequency identification:
 - Based on FOMC meetings that occur 8 times a year (on average in the middle of the month).
 - ► Compute changes (10 minutes before FOMC announcement to 20 minutes after) on four Eurodollar futures rates, *ED*1, ..., *ED*4.
 - ▶ Compute first principle component, \tilde{x} , of ED1, ..., ED4.
 - ***** Loosely, \tilde{x} is the time series that best captures the variation in ED1,...,ED4.
- Regress \tilde{x}_t on data publicly known at t:
 - surprise in most recent release of nonfarm payrolls prior to FOMC meeting, relative to median expectation for that release.
 - employment growth, commodity price...
 - Residual is ε_t^m , the estimate of *pure* monetary policy shock (higher ε_t^m means tighter policy).
- Interpret correlation of \tilde{x}_t with information at time t as reflecting error in private sector's expectation of how the Fed reacts to publicly available news.

- High frequency identification:
 - Based on FOMC meetings that occur 8 times a year (on average in the middle of the month).
 - ► Compute changes (10 minutes before FOMC announcement to 20 minutes after) on four Eurodollar futures rates, *ED*1,..., *ED*4.
 - ▶ Compute first principle component, \tilde{x} , of ED1, ..., ED4.
 - ***** Loosely, \tilde{x} is the time series that best captures the variation in ED1,...,ED4.
- Regress \tilde{x}_t on data publicly known at t:
 - surprise in most recent release of nonfarm payrolls prior to FOMC meeting, relative to median expectation for that release.
 - employment growth, commodity price...
 - Residual is ε_t^m , the estimate of *pure* monetary policy shock (higher ε_t^m means tighter policy).
- Interpret correlation of \tilde{x}_t with information at time t as reflecting error in private sector's expectation of how the Fed reacts to publicly available news.
 - ▶ They want to remove the latter, so ε_t^m is a 'pure' monetary policy shock. ▶ back