A Macroeconomic Model with Rational Exuberance: Temporarily Explosive Land Price Dynamics

Tomohiro Hirano Shunsuke Hori

@CIGS Conference 2025/6/16

Motivation

- P-D ratio in the US housing sector
 - Mostly stationary, but explosive dynamics in the 2000s

Motivation

- P-D ratio in Japan land sector
 - Mostly stationary, but explosive dynamics in the 1980s

This Paper (1)

- 1. Develop a macro-finance model with rational exuberance
 - rational exuberance: temporarily explosive land price followed by a large reduction
 - probability of the large reduction is correctly taken into account
- 2. Explosive dynamics arise only in a certain environment
 - Strong spillover of capital + high leverages
 - so that the model generates growth
 - When this condition is met, the model generates qualitatively different dynamics

This Paper (2)

- 3. Analyze condition for the existence of bubbles
 - Bubbles arise during the temporarily explosive land price if followed by a larger land price reduction when explosive dynamics last longer
 - Connects macro-finance theory of bubbles and literature on bubble detection
- 4. Make a case for the cost of rational exuberance
 - Add downward wage rigidity
 - Show "higher you climb, harder you fall"

A Model of Rational Exuberance

Model Overview

- Agents: Entrepreneurs or savers with i.i.d. probability
 - Entrepreneurs: invest in capital and land, and borrow from savers
 - Savers: lend to entrepreneurs
- Production: normally decreasing in capital, but spillover of capital makes linear in capital
- Standard macro-finance model except
 - Stochastic spillover of capital that occasionally makes production linear in capital
 - Positive dividend from land

Agents

Life time utility of agent i

$$\mathbb{E}\left[\sum_{t=0}^{\infty}\beta^{t}\log(c_{i,t})\right]$$

- Budget constraint (given states $k_{i,t}$, $x_{i,t}$, and $b_{i,t}$)
 - For entrepreneurs (with probability π)

$$c_{i,t} + k_{i,t+1} + P_{X,t}x_{i,t+1} - b_{i,t+1} = R_t^K k_{i,t} + (P_{X,t} + D)x_{i,t} - (1+r_t)b_{i,t}$$

– For savers (with probability $1-\pi$)

$$c_{i,t} - b_{i,t+1} = R_t^K k_{i,t} + (P_{X,t} + D) x_{i,t} - (1 + r_t) b_{i,t}$$

Borrowing Constraint

Borrowing constraint

$$b_{i,t+1} \leq \theta k_{i,t+1} + \theta^X P_{X,t} x_{i,t+1}$$

- $-\theta$ and θ^X represent leverages
 - e.g.: to purchase $k_{i,t+1}$, only $(1-\theta)k_{i,t+1}$ needs to be self financed

Optimality condition

Consumption function

$$c_{i,t} = (1-\beta) \left[R_t^K k_{i,t} + (P_{X,t} + D) x_{i,t} - (1+r_t) b_{i,t} \right],$$

 Non-arbitrage condition (under the timing assumption we will make in the coming slides)

$$\frac{\frac{P_{X,t+1}+D}{P_{X,t}} - (1 + r_{t+1}) \theta^{X}}{1 - \theta^{X}} = \frac{R_{t+1}^{K} - (1 + r_{t+1}) \theta}{1 - \theta}$$

Leveraged return must be equated

Production

- Perfect competition
- Production function for firm *j*

$$Y_{j,t} = AK_{j,t}^{\alpha} \left(K_t^{\phi_t}\right)^{1-\alpha}$$

- K_t: aggregate capital
- ϕ_t : degree of spillover
- If $\phi_t = 1$,
 - $-\phi_{t+1}=1$ with probability λ (*H*-state)
 - $\phi_{t+1} = \phi$ with probability 1λ (*L*-state)
- If $\phi_t = \underline{\phi}$, $\phi_{t+1} = \underline{\phi}$ with probability 1 (absorbing state)

Return on Capital

- Rate of return on capital

$$R_t^K = lpha A K_t^{lpha + \phi_t (1 - lpha) - 1} = egin{cases} lpha A & ext{when } \phi_t = 1 & ext{(H-state)} \ lpha A K_t^{ig(1 - \underline{\phi}ig) (lpha - 1)} & ext{when } \phi_t = \underline{\phi} & ext{(L-state)} \end{cases}.$$

– Timing assumtion: ϕ_{t+1} is realized at the beginning of period t

Equilibrium

- Agents and firms optimally make their decisions
- Following the equilibrium conditions are satisfied

$$\int_{0}^{1} x_{i,t} di = \overline{X}$$

$$\int_{0}^{1} k_{i,t} di = K_{t}$$

$$\int_{0}^{1} b_{i,t} di = 0$$

 Focus on an equilibrium where the borrowing constraint binds and the linear consumption function holds

System of Equations

- Investment-Saving equation

$$K_{t+1} + P_{X,t}\overline{X} = \beta \left[R_t^K K_t + (P_{X,t} + D) \overline{X} \right]$$

- Capital accumulation

$$K_{t+1} = rac{1}{1- heta} \Big[eta \pi \Big(R_t^K K_t + (P_{X,t} + D) \overline{X} \Big) - \Big(1 - heta^X \Big) P_{X,t} \overline{X} \Big]$$

- Non-arbitrage condition

$$\frac{\frac{P_{X,t+1}+D}{P_{X,t}} - (1 + r_{t+1}) \theta^X}{1 - \theta^X} = \frac{R_{t+1}^K - (1 + r_{t+1}) \theta}{1 - \theta}$$

Recursive Formulation

– Land price (for $t \ge 1$)

$$P_{X,t+1} = C_K R_{t+1}^K P_{X,t} + C_P D$$

- Capital

$$K_{t+1} = C_K R_t^K K_t + C_K D \overline{X}$$

- with
$$\mathcal{C}_{\mathcal{K}} := \frac{\theta^X - (1-\pi)}{\frac{1}{\beta}(\theta^X - \theta) - (1-\pi - \theta)}$$
 and $\mathcal{C}_{\mathcal{P}} := \frac{1-\pi - \theta}{\frac{1}{\beta}(\theta^X - \theta) - (1-\pi - \theta)}$

About the Parameters

- Focus on $\theta < 1 \pi < \theta^X$ and $0 < \frac{1}{\beta} (\theta^X \theta) (1 \pi \theta)$ \Rightarrow then, $\mathcal{C}_K > 0$ and $\mathcal{C}_P > 0$
 - In reality, θ^X tends to be high, θ tends to be low
- C_P is decreasing in θ^X and θ
- \mathcal{C}_K is increasing in θ^X and θ

Macroeconomic Dynamics

Uniqueness of Equilibrium

Proposition

In this economy, the equilibrium we focus on is unique.

 - "the equilibrium we focus on": the borrowing constraint binds and the linear consumption function holds

Explosive Dynamics

Proposition

The land price and the P-D ratio shows explosive dynamics in the H-state if $\mathcal{C}_K \alpha A > 1$. If $\mathcal{C}_K \alpha A < 1$, they are stationary in the H-state. In the L-state, they are stationary too.

- Growth is required for explosive dynamics
 - H-state ($\phi_t=1$) corresponds to very high spillover
- \mathcal{C}_K and A need to be high enough to generate explosive dynamics
 - Recall: C_K is increasing in θ^X and θ
- High leverages and high spillover → rational exuberance

Sample paths

– IRF of $\phi = 1$ for 10 periods

– A rise in ϕ_t leads to an explosive boom

Sample paths

– IRF of a rise in A in the L-state for 10 periods

– Qualitatively different dynamics from ϕ_t shock

Sample paths

– IRF of a rise in θ^X in the *L*-state for 10 periods

– Qualitatively different dynamics from ϕ_t shock

Matching with Data

– Calibrate A=3.198 to match the growth with $\phi_t=1$ from 1999/3 to 2006/5 and $\underline{\phi}=0.95$ for other periods

Example of Failed Matching with Data

– Shock to A (from 3.198 to 3.248) with always $\underline{\phi}=0.95$ cannot generate the explosive dynamics

Bubbles

Defining Bubbles

- From the non-arbitrage condition, can derive

$$P_{(H),X,0} = \underbrace{\sum_{T=1}^{\infty} \lambda^{T-1} \frac{(1-\lambda)P_{(L,T-1),X,T} + D}{\prod_{t=1}^{T} \mathcal{R}_{(H),t-1,t}}}_{\text{Fundamental term } (F_t)} + \underbrace{\lim_{T \to \infty} \frac{\lambda^{T}P_{(H),X,T}}{\prod_{t=1}^{T} \mathcal{R}_{(H),t-1,t}}}_{\text{Bubble term } (B_t)}.$$

where $\mathcal{R}_{(H),t-1,t}$ is the expected rate of return on land

- When the bubble term> 0, the land price contains a bubble

Bubble term =
$$\lim_{T \to \infty} \frac{\lambda^T P_{(H),X,T}}{\prod_{t=1}^T \mathcal{R}_{(H),t-1,t}}$$
$$\mathcal{R}_{(H),t-1,t} = \lambda \frac{P_{(H),X,t}}{P_{(H),X,t-1}} + (1-\lambda) \frac{P_{(L,t-1),X,t}}{P_{(H),X,t-1}} + \frac{D}{P_{(H),X,t-1}}$$

$$\begin{aligned} \text{Bubble term} &= \lim_{T \to \infty} \frac{\lambda^T P_{(H),X,T}}{\prod_{t=1}^T \mathcal{R}_{(H),t-1,t}} \\ \mathcal{R}_{(H),t-1,t} &= \lambda \frac{P_{(H),X,t}}{P_{(H),X,t-1}} + (1-\lambda) \frac{P_{(L,t-1),X,t}}{P_{(H),X,t-1}} + \frac{D}{P_{(H),X,t-1}} \end{aligned}$$

- 1st term: growth rate of the numerator
 - the rest of the terms must converge to zero for the bubble term to be positive

Bubble term =
$$\lim_{T \to \infty} \frac{\lambda^T P_{(H),X,T}}{\prod_{t=1}^T \mathcal{R}_{(H),t-1,t}}$$
$$\mathcal{R}_{(H),t-1,t} = \lambda \frac{P_{(H),X,t}}{P_{(H),X,t-1}} + (1-\lambda) \frac{P_{(L,t-1),X,t}}{P_{(H),X,t-1}} + \frac{D}{P_{(H),X,t-1}}$$

- 1st term: growth rate of the numerator
 - the rest of the terms must converge to zero for the bubble term to be positive
- 2nd term excl. $1-\lambda$: goes to zero if the growth rate of the land price at the timing of the state change goes to zero

$$\begin{aligned} \text{Bubble term} &= \lim_{T \to \infty} \frac{\lambda^T P_{(H),X,T}}{\prod_{t=1}^T \mathcal{R}_{(H),t-1,t}} \\ \mathcal{R}_{(H),t-1,t} &= \lambda \frac{P_{(H),X,t}}{P_{(H),X,t-1}} + (1-\lambda) \frac{P_{(L,t-1),X,t}}{P_{(H),X,t-1}} + \frac{D}{P_{(H),X,t-1}} \end{aligned}$$

- 1st term: growth rate of the numerator
 - the rest of the terms must converge to zero for the bubble term to be positive
- 2nd term excl. $1-\lambda$: goes to zero if the growth rate of the land price at the timing of the state change goes to zero
- 3rd term: goes to zero if the land price diverges

- $P_{(H),X,t}$: The path of the land price when the H-state continues

- $P_{(L,t_1),X,t_1+1}$: The land price when the state changed from H to the L between t_1 and t_1+1

- $P_{(L,t_2),X,t_2+1}$: The land price when the state changed from H to the L between t_2 and t_2+1

- In this figure, the state change doesn't reduce the land price so much even when the H-state lasts long
 - Corresponds to the explosive fundamental = No bubble

- In this figure, the state change reduces the land price more when the H-state lasts longer
 - Corresponds to the non-explosive fundamentalBubble

Existence of Bubbles

Proposition

Suppose $\phi_0 = \phi_1 = 1$. When $\mathcal{C}_K \alpha A > 1$, the equilibrium land price contains a bubble. When $\mathcal{C}_K \alpha A < 1$, the equilibrium land price does not contain a bubble.

– For bubbles to exist, large \mathcal{C}_K , A, and $\phi_t = 1$ are required

Connection to the Literature on Bubble Detection

- Literature on bubble detections
 - focus on the case where fundamental term is not explosive
 - e.g. Phillips et al. (2015) assume F_t is at most I(1)
 - check the explosiveness of the P-D ratio to detect bubbles

$$P_t = F_t + B_t$$

- If P_t is explosive but F_t is not, then B_t is explosive, implying B_t is not zero
- Our theory: bubbles arise when
 - explosive land price
 - larger collapse for longer bubbles
 - = fundamental is not explosive
 - ⇒ Consistent with the empirical literature

Signal of Bubbles

Proposition

When the P-D ratio behaves explosively, we may be warned that the land price contains a bubble.

- Looking at the P-D ratio can be a signal of bubbles
 - Ideally, want to check if fundamental is explosive

Extension: Cost of Rational Exuberance

Downward Real Wage Rigidity (DRWR)

- Explicitly consider the hand-to-mouth workers
- Labor supply: $L_{t}^{S} = 1$

– Labor demand:
$$L_t^D = \left(\frac{A \mathcal{K}_t^{\alpha + \phi_t(1-\alpha)}}{w_t}\right)^{\frac{1}{\alpha}}$$

- w: the real wage
- DRWR: $w_t = \max\{\xi w_{t-1}, w_t^*\}$
 - w_t^* : the flexible wage determined by $L_t^S = L_t^D$
 - हः the degree of downward rigidity
 - (Evidence: Holden and Wulfsberg (2009); ?)
- When $w_t = \xi w_{t-1}$, equilibrium labor is less than 1
 - Unemployment: $1 L_t^D$

Graphical Exposition of DRWR

- When labor demand is low, rigid real wage cannot clear the market $(\xi w_{t-1} < w_t^*)$
- → Unemployment: $1 L_t > 0$

The Higher You Climb, the Harder You Fall

The Higher You Climb, the Harder You Fall

The Higher You Climb, the Harder You Fall

Financial Regulation Can Prevent Unemployment

Conclusion

- Construct a model of rational exuberance: temporarily explosive land price dynamics
- Explosive dynamics only when the spillover is strong and leverages are high, stationary otherwise
- Analyze the condition for the existence of bubbles and connects the theory of bubbles to empirical literature on bubble detection
- Make a case for the cost of rational exuberance

Appendix

Growth rate of output productivity and rent

Discounting

- Non-arbitrage condition that holds every period

$$\mathcal{R}_{(HH),t,t+1} = rac{P_{(H),X,t+1} + D}{P_{(H),X,t}}$$
 with probability λ

or

$$\mathcal{R}_{(HL),t,t+1} = \frac{P_{(L,t)X,t+1} + D}{P_{(H),X,t}}$$
 with probability $1 - \lambda$

Can obtain two relations

Discounting

First one is on slide

$$P_{(H),X,t} = \frac{\mathbb{E}\left[P_{X,t+1} + D|\phi_t = 1\right]}{\mathcal{R}_{(H),t,t+1}} = \frac{\lambda P_{(H),X,t+1} + (1-\lambda)P_{(L,t),X,t+1} + D}{\mathcal{R}_{(H),t,t+1}}$$

Second one is

$$P_{(H),X,t} = \lambda \frac{P_{(H),X,t+1} + D}{\mathcal{R}_{(HH),t,t+1}} + (1 - \lambda) \frac{P_{(L,t),X,t+1} + D}{\mathcal{R}_{(HL),t,t+1}}$$

- This second one means "discount by the realized return"
- $\mathcal{R}_{(HH),t,t+1}$ = growth rate of $P_{(H),X,t+1}$ in the long-lasting bubble, so bubble never exists

Bubble Detection Result: US

 Apply the bubble detection method of Phillips et al. (2015) to the US data

Bubble Detection Result: Japan

 Apply the bubble detection method of Phillips et al. (2015) to Japanese data

Changing Phase: L-state

- In L-state, the economy always has steady state
- In *H*-state, the economy has steady state if $C_K \alpha A < 1$
- In H-state, the economy has explosive dynamics if $\mathcal{C}_K \alpha A > 1$

Changing Phase: *H*-state with $C_K \alpha A < 1$

- In L-state, the economy always has steady state
- In *H*-state, the economy has steady state if $\mathcal{C}_K \alpha A < 1$
- In *H*-state, the economy has explosive dynamics if $C_K \alpha A > 1$

Changing Phase: H-state with $C_K \alpha A > 1$

- In L-state, the economy always has steady state
- In *H*-state, the economy has steady state if $C_K \alpha A < 1$
- In *H*-state, the economy has explosive dynamics if $C_K \alpha A > 1$

Discussion: Alternative Specification

- Our model: ϕ_t is stochastic
 - Reduction in ϕ_t in the *L*-state creates larger reduction for longer bubble
- Alternative: always $\phi_t = 1$, but stochastic θ and θ^X
 - also generate explosive dynamics when θ and θ^X are sufficiently high, and stationary dynamics otherwise
- ⇒ However; land price does not contain a bubble
 - explosive boom is not followed by a large reduction even after a long-lasting bubble
 - recall: $P_{(L,t),X,t+1} = \mathcal{C}_K R_{(L,t),t+1}^K P_{(H),X,t} + \mathcal{C}_P D$
 - (Alternative for a bubble: θ^X in L-state $\to 1 \pi$ as $t \to \infty$)

Alternative Model

- Consider a model where savers can also invest in land
- Focus on an equilibrium where the return from capital is higher than the return from land
- ⇒ Entrepreneurs invest in capital and borrow, savers invest in land and lend

Equilibrium Conditions

Investment-Saving equation

$$K_{t+1} + P_{X,t}\overline{X} = \beta \left[R_t^K K_t + (P_{X,t} + D)\overline{X} \right],$$

- Capital accumulation

$$K_{t+1} = rac{1}{1- heta}eta\pi\Big[R_t^KK_t + (P_{X,t}+D)\overline{X}\Big],$$

Non-arbitrage condition (of entreprenurs)

$$\frac{P_{X,t+1}+D}{P_{X,t}}=1+r_{t+1}.$$

Recursive Formulation

- Recursively,

$$P_{X,t+1} = \hat{\mathcal{C}}_K R_{t+1}^K P_{X,t} + \hat{\mathcal{C}}_P D.$$

$$K_{t+1} = \hat{\mathcal{C}}_K \left[R_t^K K_t + D \overline{X} \right],$$

- where
$$\hat{\mathcal{C}}_{\mathcal{K}}:=rac{eta\pi}{(1-eta)(1- heta)+eta\pi}$$
 and $\hat{\mathcal{C}}_{\mathcal{P}}:=rac{eta(1- heta-\pi)}{(1-eta)(1- heta)+eta\pi}.$

- Can show the existence of land price bubbles in this model too

Bibliography I

- Holden, S. and F. Wulfsberg (2009). How strong is the macroeconomic case for downward real wage rigidity? *Journal of monetary Economics* 56(4), 605–615.
- Phillips, P. C., S. Shi, and J. Yu (2015). Testing for multiple bubbles: Historical episodes of exuberance and collapse in the s&p 500. *International economic review 56*(4), 1043–1078.