Fiscal-Monetary Interactions: RANK vs HANK

HANK meets FTPL (Angeletos, Lian & Wolf) plus ongoing work (ALW, ALW+Dalton Rongxuan Zhang)

June 15, 2025

Fiscal-Monetary Interactions in NK framework

■ Two related questions:

Q1 How do fiscal deficits influence AD, y, and π ?

Q2 How does FP affect what MP can achieve?

■ RANK: equilibrium selection

■ HANK: non-Ricardian consumers

Fiscal-Monetary Interactions in NK framework

- Two related questions:
 - Q1 How do fiscal deficits influence aggregate demand and inflation?
 - Q2 How does FP affect what MP can achieve?

- RANK: equilibrium selection → "crazy" (fragile + no empirical foundations)
- HANK: non-Ricardian consumers → "sensible" (robust + strong empirical foundations)

RANK

- Multiple Equil due to Keynesian Cross (spending-income feedback)
- Active fiscal policy (or FTPL) = select a particular self-fulfilling prophesy
 - no wealth effect; spend more merely because others spend more
- Fragile, unravels with
 - · economy returning to steady state in finite time
 - tax adjustment in long horizons
 - small noise as in global-games literature

RANK

- Multiple Equil due to Keynesian Cross (spending-income feedback)
- Active fiscal policy (or FTPL) = select a particular self-fulfilling prophesy
 - no wealth effect; spend more merely because others spend more
- Fragile, unravels with
 - economy returning to steady state in finite time
 - tax adjustment in long horizons
 - small noise as in global-games literature
- Bottom line: in (refined) RANK,
 - FP is entirely irrelevant
 - MP is "dominant" even if Taylor principle violated
 - traditional approach to F-M interactions is out

HANK

- Self-fulfilling prophesies still possible but can again be refined away
- FP now matters because HHs are non-Ricardian
- A robust and empirically founded way to model M-F interactions

HANK

- Self-fulfilling prophesies still possible but can again be refined away
- FP now matters because HHs are non-Ricardian
- A robust and empirically founded way to model M-F interactions
- **Lesson 1:** inflationary effects of fiscal deficits?
 - FTPL-like predictions even if Taylor principle satisfied
 - Mechanism behind FTPL is "crazy", but its empirical lessons could still apply!
- Lesson 2: how does FP affect what MP can achieve?
 - CB prefers slow fiscal adjustment in the presence of demand shocks
 - ... fast fiscal adjustment in the presence of cost-push shocks

Framework

AS, AD, and MP

■ AS: standard, summarized in NKPC

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t \pi_{t+1} = \kappa \sum_{k=0}^{\infty} \beta^k \mathbb{E}_t y_{t+k}$$

AS, AD, and MP

AS: standard, summarized in NKPC

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t \pi_{t+1} = \kappa \sum_{k=0}^{\infty} \beta^k \mathbb{E}_t y_{t+k}$$

■ AD: perpetual youth OLG with survival rate $\omega \in (0,1]$

$$\omega = 1$$
 nests PIH/RANK \Rightarrow $y_t = -\sigma r_t + \mathbb{E}_t y_{t+1}$

 ω < 1 mimics liquidity frictions/HANK

AS, AD, and MP

AS: standard, summarized in NKPC

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t \pi_{t+1} = \kappa \sum_{k=0}^{\infty} \beta^k \mathbb{E}_t y_{t+k}$$

AD: perpetual youth OLG with survival rate $\omega \in (0,1]$

$$\omega = 1 \; \mathsf{nests} \; \mathsf{PIH/RANK} \qquad \Rightarrow \qquad y_t = -\sigma r_t + \mathbb{E}_t y_{t+1}$$

- ω < 1 mimics liquidity frictions/HANK
- MP: interest rates set according to

$$r_t \equiv i_t - \mathbb{E}_t \pi_{t+1} = \phi y_t$$

active MP when $\phi > 0$, passive when $\phi \leq 0$

Fiscal Block

■ Flow budget plus no-Ponzi (or HH transversality) ⇒

$$d_{t} = \mathbb{E}_{t} \left[\sum_{k=0}^{\infty} \beta^{k} \left(t_{t+k} - \beta \frac{D^{ss}}{Y^{ss}} r_{t+k} \right) \right]$$

lacktriangle Debt structure: one-period bonds; fraction ζ nominal, $1-\zeta$ real \Rightarrow

$$d_t - \mathbb{E}_{t-1}\left[d_t
ight] = \ -\zeta rac{D^{ss}}{Y^{ss}}\left(\pi_t - \mathbb{E}_{t-1}\left[\pi_t
ight]
ight)$$

Fiscal Block

■ Flow budget plus no-Ponzi (or HH transversality) ⇒

$$d_{t} = \mathbb{E}_{t} \left[\sum_{k=0}^{\infty} \beta^{k} \left(t_{t+k} - \beta \frac{D^{ss}}{Y^{ss}} r_{t+k} \right) \right]$$

lacksquare Debt structure: one-period bonds; fraction ζ nominal, $1-\zeta$ real \Rightarrow

$$d_t - \mathbb{E}_{t-1}[d_t] = -\zeta \frac{D^{ss}}{Y^{ss}} (\pi_t - \mathbb{E}_{t-1}[\pi_t])$$

FP: taxes set according to

$$t_t = \underbrace{-\varepsilon_t}_{\text{i.i.d. deficit shock}} + \underbrace{\tau_y y_t}_{\text{tax base channel}} + \underbrace{\tau_d (d_t + \varepsilon_t)}_{\text{fiscal adjustment}}$$

passive FP when $\tau_d > 0$, active when $\tau_d = 0$

Equilibrium Definition

Definition. A stochastic path for y_t, π_t, d_t, r_t , etc such that

- \blacksquare π_t obeys NKPC (firm and worker optimality)
- lacktriangledown consumption function (consumer optimality)
- $y_t = c_t$ and $a_t = d_t$ (goods and asset market clearing)
- $lacktriangleq d_t$ obeys gov's flow budget and no-Ponzi
- lacktriangledown t_t and r_t obey assumed policy rules

(and y_t bounded)

RANK ($\omega = 1$)

RANK $(\omega = 1)$

$$y_t = -\sigma r_t + \mathbb{E}_t y_{t+1}$$
 $\pi_t = \kappa y_t + \beta \mathbb{E}_t \pi_{t+1}$ $r_t = \phi y_t$ (+fiscal block)

Proposition

1. Conventional equil: If $\phi > 0$ & $\tau_d > 0$ (active M, passive F), \exists a unique equil and is s.t.

$$y_t=\pi_t=0.$$

RANK ($\omega = 1$)

$$y_t = -\sigma r_t + \mathbb{E}_t y_{t+1}$$
 $\pi_t = \kappa y_t + \beta \mathbb{E}_t \pi_{t+1}$ $r_t = \phi y_t$ (+fiscal block)

Proposition

1. Conventional equil: If $\phi > 0 \& \tau_d > 0$ (active M, passive F), \exists a unique equil and is s.t.

$$y_t = \pi_t = 0.$$

2. FTPL equil: If $\phi \leq 0 \& \tau_d = 0$ (active F, passive M), \exists a different unique equil and is s.t.

$$\frac{\partial \pi_t}{\partial \varepsilon_t} = \frac{\kappa}{\tau_y + (\kappa \zeta - \beta \phi) \frac{D^{ss}}{Y^{ss}}} \qquad \underbrace{= \left(\zeta \frac{D_{ss}}{Y_{ss}}\right)^{-1} \text{ when } \phi = \tau_y = \tau_d = 0}_{\text{simple FTPL arithmetic}}$$

How Can Deficits Matter?

- The tension: Ricardian equiv fails despite Ricardian households
 - deficits can be inflationary iff they trigger a boom in c, y
 - but why do Ricardian household spend more?

How Can Deficits Matter?

- The tension: Ricardian equiv fails despite Ricardian households
 - deficits can be inflationary iff they trigger a boom in c, y
 - but why do Ricardian household spend more?
- Because of a purely self-fulfilling loop
 - PIH:

$$c_t = (1 - \beta) \sum_{k=0}^{\infty} \beta^k \mathbb{E}_t y_{t+k} + (1 - \beta) \frac{\mathbf{z}_t}{\mathbf{z}_t}$$
 with $\frac{\mathbf{z}_t}{\mathbf{z}_t} \equiv \mathbf{a}_t - \sum_{k=0}^{\infty} \beta^k \mathbb{E}_t t_{t+k}$

• In any equilibrium, no wealth effects:

$$a_t = d_t = \sum_{k=0}^{\infty} \beta^k \mathbb{E}_t t_{t+k} \quad \Rightarrow \quad \mathbf{z}_t = \mathbf{0} \quad \Rightarrow \quad c_t = \underbrace{(1-\beta)\sum_{k=0}^{\infty} \beta^k \mathbb{E}_t \mathbf{y}_{t+k}}_{ ext{permanent income}}$$

But: if others spend more ⇒ my permanent income increases ⇒ I spend more!

The Fiscal Theory of Y

- Wlog, let $\phi = 0 \Rightarrow$ HHs can coordinate on $y_t = y_0$ for arbitrary Y_0
- Next, consider an active FP: $t_0 = -\varepsilon_0$ $t_k = \tau_y t_k \ \forall k \geq 1$
- Can be supported in equil iff HHs coordinate on unique y₀ that satisfies gov's IBC
 - FTY w/ real debt ("cookies"),

$$\varepsilon_0 = rac{eta}{1-eta} \, au_y y_0$$
 and $\pi_0 = rac{\kappa}{1-eta} \, y_0$

The Fiscal Theory of Y

- Wlog, let $\phi = 0 \Rightarrow$ HHs can coordinate on $y_t = y_0$ for arbitrary Y_0
- Next, consider an active FP: $t_0 = -\varepsilon_0$ $t_k = \tau_y t_k \ \forall k \ge 1$
- Can be supported in equil iff HHs coordinate on unique y₀ that satisfies gov's IBC
 - FTY w/ real debt ("cookies"),

$$\varepsilon_0 = \frac{\beta}{1-\beta} \tau_y y_0$$
 and $\pi_0 = \frac{\kappa}{1-\beta} y_0$

• FTPL w/ nominal debt ("paper"):

$$\varepsilon_0 = \underbrace{\frac{D^{\text{ss}}}{V^{\text{ss}}}}_{\text{debt erosion}} \frac{\kappa}{1-\beta} y_0 + \tau_y y_0 \quad \text{and} \quad \pi_0 = \frac{\kappa}{1-\beta} y_0$$

In both cases, active FP sustained by a self-fulfilling boom

Fragilities

- Unravels if fiscal adjustment at any finite horizon
 - can support $y_t = \pi_t = 0$ for any MP, active or passive, if taxes adjust after 1000 periods

Fragilities

- Unravels if fiscal adjustment at any finite horizon
 - ullet can support $y_t=\pi_t=0$ for any MP, active or passive, if taxes adjust after 1000 periods
- Unravels if self-fulfilling boom cannot last literally for ever

Proposition

Suppose economy returns to steady state in finite time, instead of asymptotically. Then:

 $\forall \phi, \exists$ unique equil. and is s.t. $y_t = \pi_t = 0$ (i.e., invariant to FP)

Fragilities

- Unravels if fiscal adjustment at any finite horizon
 - can support $y_t = \pi_t = 0$ for any MP, active or passive, if taxes adjust after 1000 periods
- Unravels if self-fulfilling boom cannot last <u>literally</u> for ever

Proposition

Suppose economy returns to steady state in finite time, instead of asymptotically. Then:

 $\forall \phi, \exists$ unique equil. and is s.t. $y_t = \pi_t = 0$ (i.e., invariant to FP)

Unravels with appropriate noise or "bounded memory" (Angeletos & Lian '23)

Taking Stock

Within (refined) RANK:

- FP is entirely irrelevant
- MP is "dominant" even if Taylor principle fails
- traditional modeling of F-M interaction is out

How to make progress?

- Move from RANK to HANK (i.e., let HHs be non-Ricardian, as in the evidence)
 - ⇒ turn deficits from sunspots to payoff-relevant ⇒ avoid all the "bugs"

HANK (ω < 1)

Mechanism: classical non-Ricardian effects

■ Same optimal c_t , modulo $\beta \mapsto \beta \omega$:

$$c_{t} = \underbrace{(1 - \beta \omega) z_{t}}_{\text{wealth effect}} + \underbrace{(1 - \beta \omega) \sum_{k=0}^{\infty} (\beta \omega)^{k} \mathbb{E}_{t} [y_{t+k}]}_{\text{permament income}}.$$
 (1)

■ In equilibrium, $a_t = d_t = NPV$ (surpluses) but no more $z_t = 0$. Instead,

$$\mathbf{z_t} = \mathbb{E}_t \left[\sum_{k=0}^{\infty} \beta^k t_{t+k} - \sum_{k=0}^{\infty} (\beta \omega)^k t_{t+k} \right]$$

- **Essence**: FP stimulates c_t by shifting tax burden to future (or easing borrowing constraints)
- Key implication: Slower fiscal adjustment \Rightarrow higher z_t for same $\varepsilon_t \Rightarrow$ larger stimulus

What's Next?

- How inflationary are fiscal deficits?
 - fix MP response; study how $\frac{\partial \pi}{\partial \varepsilon}$ varies with au_d
- 2 When does the CB prefer slow/fast fiscal adjustment?
 - optimize MP response; study how CB objective varies with au_d

HANK meets FTPL

Theorem

Let $\omega < 1$, $\phi = 0$. Then, \exists unique equil and is such that:

- 1. Deficits are always expansionary/inflationary. For any τ_d , $\frac{\partial y_{t+k}}{\partial \varepsilon_t} > 0$ and $\frac{\partial \pi_{t+k}}{\partial \varepsilon_t} > 0$.
- 2. Monotonicity. Lower τ_d (slower fiscal adjustment) \Rightarrow bigger and more persistent boom
- **3. Limit.** As $\tau_d \downarrow 0$, inflation in HANK converges smoothly to FTPL counterpart:

$$\lim_{\tau_d \downarrow 0} \left. \frac{\partial \pi_t}{\partial \varepsilon_t} \right|_{HANK} = \left. \frac{\partial \pi_t}{\partial \varepsilon_t} \right|_{FTPL}$$

- Different mechanism, but similar predictions!
- Avoids the fragilities, moots the controversy

Understanding the Limit Result

Intuition (with $\tau_{v} = 0$):

$$\underbrace{\varepsilon_0}_{ ext{deficit}} = \underbrace{\underbrace{\mathcal{D}^{ss}}_{ ext{Yss}} \pi_0}_{ ext{debt errosion}} + \underbrace{\mathcal{T}}_{ ext{NPV(tax hikes)}}$$

- as long T>0, delaying tax hikes yields \uparrow AD, $\uparrow \pi_0$, and $\downarrow T$
- this keeps working till T o 0 and hence $\pi_0 o \left(rac{D^{ss}}{V^{ss}}
 ight)^{-1} arepsilon_0$
- i.e., same debt erosion and same inflation as in simple FTPL arithmetic!

Understanding the Limit Result

■ Intuition (with $\tau_y = 0$):

$$\underbrace{\mathcal{E}_0}_{\text{deficit}} \ = \ \underbrace{\underbrace{\mathcal{D}^{ss}}_{\text{Yss}} \pi_0}_{\text{debt errosion}} \ + \ \underbrace{\mathcal{T}}_{\text{NPV(tax hikes)}}$$

- as long T>0, delaying tax hikes yields \uparrow AD, $\uparrow \pi_0$, and $\downarrow T$
- this keeps working till T o 0 and hence $\pi_0 o \left(rac{D^{ss}}{Y^{ss}}
 ight)^{-1} \epsilon_0$
- i.e., same debt erosion and same inflation as in simple FTPL arithmetic!
- Generalizes to $\tau_y > 0$, albeit with a twist
 - less debt erosion needed because of automatic tax-base expansion
- Takeaway: deficits always inflationary, FTPL just a particular limit

Does the difference in mechanism matter?

Similar predictions about π and debt erosion, but two notable differences:

Robustness

- to active-monetary passive-fiscal ($\phi > 0, \tau_d > 0$)
- to fiscal adjustment in far-ahead future
- to refinements that rule out perpetual self-fulfilling booms (or "multiplicity bug")

Does the difference in mechanism matter?

Similar predictions about π and debt erosion, but two notable differences:

Robustness

- to active-monetary passive-fiscal ($\phi > 0, \tau_d > 0$)
- to fiscal adjustment in far-ahead future
- to refinements that rule out perpetual self-fulfilling booms (or "multiplicity bug")

2 Front-loading: HANK predicts less persistent fiscal booms

- because non-Ricardian households are relatively impatient (spend fast)
- important testable difference (although not the focus here)
- consistent with post-covid experience

Cumulative Inflation and Front-Loading

*Short-Run Share = cumulative π in year 1 relative to cumulative π in years 1-5

Taking Stock

Q1: inflationary effects of deficits?

- In RANK, robust answer is 0, regardless of MP
- \blacksquare In HANK, robust answer is < FTPL, but \approx FTPL if delayed hikes in taxes and real rates

Q2 (next): how does FP influences, constrains, or helps optimal MP?

Fiscal-Monetary Interactions in HANK

- Setting (so far):
 - triple-mandate CB:

$$\mathscr{L}^{CB} = \min_{\{r_t\}} \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \left\{ \lambda_y y_t^2 + \lambda_\pi \pi_t^2 + \lambda_r r_t^2 \right\} \right]$$

- subject to OLG/HANK for y_t , NKPC for π_t , and same FP rule as before
- question: how does \mathscr{L}^{CB} vary with τ_d ?
- Lesson (so far):
 - CB prefers fast fiscal adj w/ supply shocks
 - ... slow fiscal adj w/ demand shocks

Fiscal-Monetary Interactions in HANK

■ CB loss, at optimal MP, as a function of τ_d :

Contrast with RANK: there, τ_d is irrelevant, regardless of shock

Conclusion

- Fiscal-Monetary Interactions in New Keynesian Paradigm
 - not flexible-price models, not Sargent-Wallace
- Two methodological approaches:
 - [1] equilibrium selection in RANK
 - [2] payoff/liquidity effects in HANK
- My recommendation: abandon [1], focus on [2]
 - different, more palatable, mechanism
 - grounded on evidence about stimulus checks, MPCs, etc
 - robust to delicate assumptions about far-ahead beliefs

Thank You!