Asset Price Booms, Debt Overhang and Debt Disorganization

Keiichiro Kobayashi

Keio University, CIGS, RIETI

July 2025

*Motivations

- Simplified explanation for empirical regularities of financial crises
 - Credit-fueled asset price booms followed by busts, and deep and persistent productivity declines
- New perspectives on inefficiency and policy
 - Inefficiency: Corporate debt overhang that discourages firms' activities
 - Why debt overhang?
 - Observation: Shortage of demand (for credit) in the aftermath of financial crisis
 - Literature: Credit supply frictions (borrowing constraint, credit crunch, ...)
 - Policy: Ex-post debt reduction can mitigate output externality
 - Zombie firms can restore productivity if debt is (partially) forgiven
 (\$\to\$ Literature: Zombie firms are intrinsically inefficient and should be eliminated)
 - Time inconsistency may not be dominant

* What we do: Ingredients

- Two-period model
- Risk-shifting asset boom (Allen and Gale 2000; Allen, Barlevy and Gale 2022)
 - Firms buy the risky asset by borrowed money and can default on the debt
 - Borrowers bid up the ex-ante asset price by shifting the risk to banks
- Debt overhang (Sachs 1988; Krugman 1988; Kobayashi, Nakajima and Takahashi 2022)
 - Firms can produce output from the risky asset
 - When the lenders take all, borrowers do not expend efforts ⇒ Zombie firms
- Aggregate output externality (Lamont 1995; Blanchard and Kiyotaki 1987)
 - Firms operate in monopolistic competition
 - · Zombie firms exit due to debt overhang
 - Exit of one firm reduces productivity of all the other firms (love for variety)
 - ≈ disorganization of supply network (**Debt Disorganization**)

$$Y = \left(\int_0^{n} (Ak_i)^{\frac{\sigma - 1}{\sigma}} di \right)^{\frac{\sigma}{\sigma - 1}} = n^{\frac{\sigma}{\sigma - 1}} Ak \quad \Rightarrow \quad n \text{ decreases due to exits}$$

*What we show: Results

- Ex-ante optimism ↑
 - ⇒ Asset price ↑ (Risk-shifting boom) [Period 1]
 - \Rightarrow Debt overhang \uparrow if optimism turned out to be false [Period 2]
 - ⇒ Negative externality and TFP declines (Debt disorganization)
 - ⇒ Fewer new entry: Persistent recession
- Knowing debt Laffer curve, lenders reduce debt voluntarily
- However, debt reduction is insufficient due to externality
 - For small debt, voluntary debt reduction achieves social optimum
 - For large debt, insufficient debt reduction produces inefficiency
- Ex-post subsidy to lenders for debt reduction improve social welfare by restoring aggregate productivity
- Ex-post subsidy may not induce ex-ante distortion

- Introduction
 - Motivations and summary
- Literature
- Model
 - Overview
 - Model setup
- 4 Equilibrium
- Policy responses
- Secular stagnation
- Conclusion

- Introduction
 - Motivations and summary
- 2 Literature
- Model
 - Overview
 - Model setup
- Equilibrium
- Policy responses
- Secular stagnation
- Conclusion

* Literature: Empirical regularities

- Credit-fueled asset price booms may lead to financial crises followed by deep and persistent recessions:
 - Jordà, Schularick, and Taylor (2015), Greenwood, Hanson, Shleifer and Sørensen (2022)
- Financial crisis followed by persistent productivity slowdown
 - Duval et al. (2020), Hayashi and Prescott (2002), Kehoe and Prescott (2002)
 - Zombie lending: Caballero, Hoshi and Kasyap (2008)
- Corporate-credit booms have a significant effect in persistent recessions
 - Greenwood et al. (2022), Jordà et al. (2022), Ivashina et al. (2024), Kornejew et al. (2024).

Our model: Integrated account for asset price, credit and productivity

Literature: Theoretical ingredients

- Risk shifting booms of asset prices
 - Allen and Gale (2000), Allen, Barlevy and Gale (2022)
- Debt overhang
 - Lack of lenders' commitment
 - Sachs (1988), Krugman (1988), Occhino and Pescatori (2015), Kobayashi, Nakajima Takahashi (2022)
 - Empirics: Honda, Ono, Uesugi and Yasuda (2024)
 - Lack of borrowers' commitment
 - Albuquerque and Hopenhayn (2004), Kovrijnykh and Szentes (2007), Aguiar, Amador and Gopinath (2009)
- Aggregate output externality (≈ Debt disorganization)
 - Exit of one firm reduces revenues of the other firms in monopolistic competition
 - Related to the spillover effect in Lamont (1995) and Blanchard and Kiyotaki (1987)

Our model: New attempt to combine these theories

* Literature: Financial crisis

- Source of inefficiency ⇒ Our model: Debt overhang
 - Pecuniary externality due to borrowing constraint: Aguiar and Amador (2011);
 Benigno et al. (2023); Bianchi (2011, 2016); Bianchi and Mendoza (2010); Farhi,
 Golosov, and Tsyvinski (2009); Gertler, Kiyotaki, and Queralto (2012); Lorenzoni (2008); Lorenzoni and Werning (2019)
 - Coordination failure: Diamond and Dybvig (1983); Gertler and Kiyotaki (2015);
 Keister (2016)
- Propagation ⇒ Our model: Lower productivity due to output externality
 (= debt disorganization)
 - Inefficient consumption allocation: Bianchi (2011); Chari and Kehoe (2016);
 Farhi, Golosov, and Tsyvinski (2009); Jeanne and Korinek (2020); Keister (2016)
 - Lower output due to shortage of credit supply (i.e., credit crunch): Bianchi (2016); Bianchi and Mendoza (2010); Gertler, Kiyotaki, and Queralto (2012); Lorenzoni (2008).
- Time inconsistency in bailout policy
 - Bianchi (2016); Chari and Kehoe (2016); Green (2010); Keister (2016)

* Literature: Zombie lending

- Zombie lending: Bank loans with distorted incentives to non-viable firms
 - Japan: Peek and Rosengren (2005), Caballero, Hoshi and Kashyap (2008)
 - Acharya, Lenzu and Wang (2024) and references therein
- Zombie firms are intrinsically unproductive and exert negative congestion externalities. Should be eliminated. (CHK 2008)
- Becker and Ivashina (2022): Inefficient bankruptcy procedures amplify zombie lending

Our model: Debt reduction restores the efficiency of zombie firms

Nakamura and Fukuda (2013): Zombie firms in the 1990s revived in the 2000s

- Introduction
 - Motivations and summary
- 2 Literature
- Model
 - Overview
 - Model setup
- Equilibrium
- Policy responses
- Secular stagnation
- Conclusion

* Model overview

- Two-period model: period 1, period 2.
 - Unit mass of firms (= borrowers) and households (= lenders)
 - Production and consumption take place only in period 2.
- In period 1, firms buy capital K on credit (promising to pay D = QK in period 2). They produce $y = A_s K$ in period 2, where $A_s \in \{A_M, A_H\}, A_M < A_H$.
- A_s is **aggregate shock**, revealed in period 2: A_H with p_H , A_M with $1 p_H$.
- Risk-shifting boom: Q (in period 1) is higher than the fundamental price.
- Then, if $A_s = A_M$ in period 2, debt D may not be repayable (Debt overhang)
- Lender i has three options about debt D under agency friction
 - **Debt restructuring** (to reduce D to \hat{D});
 - **Liquidation** (to operate *K* on her own);
 - Zombie lending (to keep D unchanged)
- n firms stay in **S-sector**, and 1-n firms exit and go to **C-sector**

```
A_H \uparrow \Rightarrow D \uparrow \Rightarrow (A_M \text{ revealed}) \Rightarrow n \downarrow \text{(Debt disorganization)} \Rightarrow \text{TFP and } Y \downarrow
```

Model setup

- Two-period closed economy: period 1, period 2
 - The productivity is uncertain in period 1, and is revealed in period 2
- Unit mass of households (HH) and firms: one HH owns one firm.
- Firm i has to buy $k (\leq K)$ units of capital at price Q in period 1 from other HH
- Social welfare = Total consumption = Total output

*Two production technologies

- Specialized production sector (S-sector)
 - Firms are in S-sector initially in period 1
 - Special goods produced in period 2: $y_i = A_s k_i$, where $A_s \in \{A_M, A_H\}$
 - v_i aggregated to consumer goods by Dixit-Stiglitz aggregator
- Common production sector (C-sector)
 - Firms can move to C-sector any time
 - C-production in period 2: $v = A_I k$ (consumer goods)
- Productivity parameters:

$$0 < A_L < A_M < A_H$$

• Utility cost ε_i for S-production: Firm i needs to expend utility cost ε_i in period 2 to produce output in S-sector. (No need in C-sector) The cost ε_i is an idiosyncratic shock, where

$$\varepsilon_i \sim F(\varepsilon)$$
 and $0 \le \varepsilon_i \le \varepsilon_{\max}$

*Production technology: Specialized production (S-sector)

- Firm i needs to install ki in Period 1
- In **Period 2**, Firm i expends ε_i and produces

$$y_i = A_s k_i$$

where $A_s \in \{A_M, A_H\}$ and $0 < A_M < A_H$.

- $A_s = A_H$ with prob p_H and $A_s = A_M$ with prob $p_M = 1 p_H$.
- Symmetric equilibrium: The total output Y_S is given by

$$Y_S = \left(\int_0^n y_i^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}} = n^{\frac{\sigma}{\sigma-1}} A_s k$$

- $TFP = n^{\frac{\sigma}{\sigma-1}}A_s$: $n \uparrow \Rightarrow TFP \uparrow$ $(n \in [0, 1] \text{ is endogenous})$
- S-firms choose price p to maximize earnings $\pi = py$:

$$p = p(y) \equiv Y_S^{\frac{1}{\sigma}} y^{-\frac{1}{\sigma}},$$

$$\pi = p(y)y = n^{\frac{1}{\sigma-1}} A_S \bar{k}^{\frac{1}{\sigma}} k^{\frac{\sigma-1}{\sigma}}$$

Production technology: Common production (C-sector)

- No need to install capital in Period 1
- A firm with k can exit S-sector and go to C-sector anytime to produce A_Lk
 units of consumption good
- Total amount produced in C-sector Y_C is

$$Y_C = A_L(K - nk),$$

where $0 < A_L < A_M \ll A_H$.

*Debt overhang effect

- Suppose lenders reduce D to \hat{D} under agency frictions (next page)
- Borrower's action:
 - If $\hat{D} \leq \pi \varepsilon_i \Rightarrow$ no default and repay \hat{D}
 - Borrower chooses to earn $\pi = n^{\frac{1}{\sigma-1}} A_M K$ and repay \hat{D} in S-sector

If $\hat{D} > \pi - \varepsilon_i \Rightarrow$ exit S-sector, and go to C-sector with **default**

- Borrower's payoff in S-sector: $\max\{\pi \hat{D}, 0\} \varepsilon_i < 0$.
- Borrower's payoff in C-sector: $\max\{A_LK \hat{D}, 0\} = 0$.
- Borrower chooses to **produce and repay** A_LK in **C-sector**

- Debt overhang: Larger debt makes output lower
 - Produce $\pi = n^{\frac{1}{\sigma-1}} A_M K$

if
$$\hat{D}_i \leq \pi - \varepsilon_i$$

Produce A_LK

if
$$\hat{D}_i > \pi - \varepsilon_i$$

*Debt-restructuring technology (1/3)

- Lenders have incentive to reduce debt to mitigate debt overhang effect
- Lenders have three options about debt D:
 - Liquidation: To seize *K* and operate on her own
 - **Debt restructuring**: To reduce *D* to $\hat{D} = \pi \varepsilon_i$ (< *D*)
 - Zombie lending: To keep D unchanged

Liquidation

- To reduce D to 0
- seize K and operate it on her own in S-sector
- spend utility cost ε_h in production, where $\varepsilon_h \sim F(\varepsilon)$
- Liquidation decision is made before lender picks ε_h
- Expected value of liquidation (endogenous): $R_L \equiv \pi E[\varepsilon]$

*Debt-restructuring technology (2/3) Agency Problem

- In period 2, after A_s is revealed and before production, Lender i can choose
 - Liquidation
 - **2 Debt restructuring** to reduce debt from D = Qk to \hat{D}
 - 3 Zombie lending to keep D unchanged
- They choose under agency friction:
 - Lender i consists of bank manager i (BM i) and unit mass of depositors
 (BM i is one of the depositors)
 - Depositors: principal
 - BM *i*: agent whose reward = $\phi \times$ [Depositors payoff (subjective expectation)]
 - Information asymmetry
 - ① Liquidation or Debt restructuring makes depositors know the true value of payoff $\max\{R_I, R(\hat{D})\}$
 - 2 If D unchanged, depositors believe the payoff is D with prob. z where z is probability of misperception
- Zombie lending \Rightarrow Expected value of depositors' belief: $zD + (1-z)A_LK$
- If D large, BM i earns higher rewards by misleading depositors

*Debt-restructuring technology (3/3)

• Given (A_M, ε_i) revealed, BM i chooses to maximize the reward

$$\max\{\underbrace{\phi R_L}, \underbrace{\max_{\hat{D} \leq D} \phi R(\hat{D})}, \underbrace{\phi[zD + (1-z)A_LK]}\}$$
 Zombie lending

• BM i choose liquidation or debt restructuring iff the utility cost ε_i is small, such that

$$\max\{R_L, \max_{\hat{D} < D} R(\hat{D})\} \ge zD + (1 - z)A_L K$$

- Lenders choose liquidation or debt restructuring if $\min\{\varepsilon_i, E[\varepsilon]\} \leq \varepsilon^e$, where ε^e is an endogenous threshold
- Larger $D \Rightarrow$ Lower threshold $\varepsilon^e \Rightarrow$ Fewer firms in S-sector: $n^e = F(\varepsilon^e)$

- Introduction
 - Motivations and summary
- 2 Literature
- Mode
 - Overview
 - Model setup
- 4 Equilibrium
- Policy responses
- Secular stagnation
- Conclusion

* Equilibrium determination in period 1

- **Period 1**: Equilibrium variables are (Q, k)
 - Borrower's profit max: Revenue $\pi \equiv p(y)y = n^{\frac{1}{\sigma-1}}A_s\bar{k}^{\frac{1}{\sigma}}k^{\frac{\sigma-1}{\sigma}}$, debt D=Qk

$$\max_{k} E[\max\{\pi - \varepsilon - D, 0\}],$$

- Why D, not \hat{D} ?: " $\pi \varepsilon D \le 0$ " \leftrightarrow " $\pi \varepsilon \hat{D} = 0$ " (page 24)
- FOC wrt k decides

$$Q = E[n^{\frac{1}{\sigma-1}}A_s \mid \pi - \varepsilon - D \ge 0] \left(\frac{\sigma - 1}{\sigma}\right)$$

Lender's participation decision:

Participation condition for HHs who sell *k* in exchange for risky debt in period 1

$$\rho Q > A_L \implies k = K,$$

where ρ is the recovery rate of debt (endogenous).

* Equilibrium determination in period 2

- **Period 2**: Equilibrium variables are (n, \hat{D})
 - Lender's debt restructuring decision \hat{D} (when $\pi \varepsilon_i D < 0$):

$$\max\{\underbrace{R_L}, \underbrace{\max_{\hat{D} \leq D} R(\hat{D})}, \underbrace{zD + (1-z)A_LK}\}, \text{ where } R(\hat{D}) = \left\{ \begin{array}{ll} \hat{D} & \text{if } \pi - \varepsilon_i \geq \hat{D}, \\ A_LK & \text{if } \pi - \varepsilon_i < \hat{D}. \end{array} \right.$$

- \Rightarrow Restructure D to $\hat{D}_i = \pi \varepsilon_i = \arg \max_{\hat{D}} R(\hat{D})$, if $\varepsilon_i \leq \varepsilon^e$
- Borrower's exit decision:

$$\max\{\underbrace{\max\{\pi-\hat{D},\ 0\}-\varepsilon_i}_{\text{Stay in S-sector}}, \underbrace{\max\{A_LK-\hat{D},\ 0\}}_{\text{Exit and go to C-sector}}\}$$

Free Entry Condition (FEC) for firms

- $\pi \varepsilon_i \hat{D} \ge 0$: Firms stay in S-sector
- $\pi \varepsilon_i \hat{D} < 0$: Firms exit and go to C-sector

Debt restructuring decision in period 2

• Lender chooses Zombie lending iff $\min\{\varepsilon_i, H(n)\} > G(n)$, where

$$\begin{split} G(n) &= n^{\frac{1}{\sigma-1}} A_M K - z D - (1-z) A_L K, \\ H(n) &= \int_0^{\varepsilon(n)} \varepsilon dF(\varepsilon) + (n^{\frac{1}{\sigma-1}} A_M K - A_L K) \int_{\varepsilon(n)}^{\varepsilon_{\text{max}}} dF(\varepsilon), \\ \varepsilon(n) &= \max\{0, n^{\frac{1}{\sigma-1}} A_M K - A_L K\}. \end{split}$$

- If $\varepsilon_i \leq H(n)$ and $\varepsilon_i \leq G(n)$, then **Debt restructuring**: $\hat{D} = \pi \varepsilon_i$ and firm i stays in S-sector.
- if $\varepsilon_i > H(n)$ and $H(n) \le G(n)$, then **Liquidation**: $\hat{D} = 0$ and capital of firm i stays in S-sector,
- if $\min\{\varepsilon_i, H(n)\} > G(n)$ then **Zombie lending**: $\hat{D} = D$ and firm i goes to C-sector.
- Lender takes all for any \hat{D} , if $\pi \varepsilon_i D \le 0$
- Borrower obtains nothing, if $\pi \varepsilon_i D \le 0$

*Equilibrium

- For smaller A_H , No default
 - No default in any state, A_M or A_H

•
$$Q^N = \left(\frac{\sigma-1}{\sigma}\right)[p_H A_H + (1-p_H)A_M]$$
, and $D^N = Q^N K$

- n = 1 (social optimum)
- For larger A_H , **Default** \rightarrow **Debt Overhang**
 - No default if A_H , and **default if** A_M is realized
 - $Q^B = \left(\frac{\sigma-1}{\sigma}\right) A_H$, and $D^B = Q^B K \Rightarrow$

$$\pi(n) = n^{\frac{1}{\sigma - 1}} A_M K,$$

$$P = P^B \qquad (1 - e^{-1}) A_M K$$

$$D=D^B=(1-\sigma^{-1})A_HK$$

- A_H larger \Rightarrow if A_M realized \Rightarrow n smaller \Rightarrow TFP and output smaller
- \bullet For A_H relatively small, **liquidation** and **debt restructuring** \rightarrow Social optimum
- For A_H relatively large, Zombie lending → Inefficiency

Appendix: Equilibrium

- For smaller A_H , no default in any state, A_M or A_H
 - k = K, $Q^N = \left(\frac{\sigma 1}{\sigma}\right) \{p_H A_H + (1 p_H) A_M\} \approx \left(\frac{\sigma 1}{\sigma}\right) A_M$, and $D^N = Q^N k$
 - n = 1. Output is $Y = A_s K$, where $A_s = A_M$ or A_H .
 - Social welfare: $W^N = p_H A_H K + (1 p_H) A_M K E[\varepsilon]$. (Socially optimal)
- For larger A_H, no default if A_H, and default if A_M
 - k = K, $Q^B = \left(\frac{\sigma 1}{\sigma}\right) A_H$, and $D^B = Q^B k$
 - If $A_s = A_H$, then n = 1 and $Y = A_H K$.
 - If $A_s = A_M$, then ε^e and n^e are given by $\varepsilon = G(n)$ and $n = F(\varepsilon)$.
 - n is smaller for a larger boom (A_H) \Rightarrow See next slide
 - Firms with ε_i ≤ ε^e stay in S-sector, and those with ε_i > ε^e default and go to C-sector.
 Y(n) = Y_S(n) + (1 − n)A_LK < A_MK
 - Social welfare: $W^B = p_H A_H K + (1 p_H) Y(n) n\varepsilon$, where $Y(n) < A_M K$.

*Equilibrium value of *n*

- Can show: when ex-ante optimism is larger (A_H larger), ex-post recession is deeper (n smaller)
- There exist thresholds A' and A''. Focus on the case A' < A''.
- **Proposition 5** When A_M is realized:
 - For $A_H \leq A'$, all firms stay in S-sector $(n^e = 1)$
 - Lenders with $\varepsilon_i \in [0, E[\varepsilon]]$ choose **Debt Restructuring**
 - Lenders with $\varepsilon_i \in (E[\varepsilon], \varepsilon_{\text{max}}]$ choose **Liquidation**
 - For $A_H \in (A', A'']$, (n^e, ε^e) is given by $n = F(\varepsilon)$ and $\varepsilon = G(n)$.
 - Lenders with $\varepsilon_i \in [0, \varepsilon^e]$ choose **Debt restructuring**. n^e firms stay in S-sector.
 - Lenders with $\varepsilon_i \in (\varepsilon^e, \varepsilon_{\max}]$ choose **Zombie lending**. $1 n^e$ firms go to C-sector.
 - For A_H ∈ (A", +∞), all lenders choose Zombie lending and all firms go to C-sector (n^e = 0)

*Larger boom ⇒ Deeper recession: Graphical explanation

$$\varepsilon = G(n) = n^{\frac{1}{\sigma - 1}} A_M K - z \left(\frac{\sigma - 1}{\sigma}\right) A_H K - (1 - z) A_L K, \qquad n = F(\varepsilon).$$

* Larger boom ⇒ Deeper recessions: Intuition

- State *M* in the equilibrium with default
- Larger $A_H \Rightarrow \text{Larger } D = (1 \sigma^{-1})A_H K$
 - \Rightarrow Larger payoff of Zombie lending: $zD + (1-z)A_LK$
 - \Rightarrow Fewer firms choose debt restructuring or liquidation \Rightarrow Lower n^e and ε^e .
- A larger boom (larger A_H) leads to lower n

$$Y_S(n) = n^{\frac{\sigma}{\sigma - 1}} A_M K$$

• Productivity $n^{\frac{\sigma}{\sigma-1}}A_M$ in the state M is lower, as the asset boom (A_H) is larger

*Ex-ante social welfare is lower when the boom is larger

- Introduction
 - Motivations and summary
- Literature
- Model
 - Overview
 - Model setup
- Equilibrium
- Policy responses
- Secular stagnation
- Conclusion

* Ex-post subsidy to debt restructuring

- Policy intervention is welfare improving due to aggregate output externality
- Social planner maximizes the total output

$$\max_{n} n^{\frac{\sigma}{\sigma-1}} A_{M} K - \int_{0}^{\bar{\varepsilon}(n)} \varepsilon dF(\varepsilon) + (1-n) A_{L} K, \quad \text{s.t. } n = F(\varepsilon)$$

$$\Rightarrow \text{Social optimum: } (\varepsilon^{o}, n^{o}) = (\varepsilon_{\text{max}}, 1)$$

- Social optimum can be attained by subsidy S to lenders who implement debt restructuring or liquidation:
 - For $A_H \leq A'$, no policy is necessary. S = 0 and $n^e = 1$.
 - For $A_H > A'$, the optimal policy to achieve $n^e = 1$ is S = H(1) G(1), where $H(1) = E[\varepsilon]$, and $G(1) = A_M K z(1 \sigma^{-1})A_H K (1 z)A_L K$.
 - Lender i with $\varepsilon_i \in [0, E[\varepsilon]]$ chooses debt restructuring.
 - Lender i with $\varepsilon_i \in (E[\varepsilon], \varepsilon_{\max}]$ chooses **liquidation**.

* What if ex-post subsidy is anticipated?

- Ex-post policy intervention is subsidy to banks, not firms.
- Firms get nothing in the default state $(\pi \varepsilon D < 0)$, with or without subsidy to lenders.

$$\max\{ \ \ \underbrace{\max\{\pi-\hat{D},\ 0\}-\varepsilon,}_{\text{S-sector}} \ \ \underbrace{\max\{A_Lk-\hat{D},\ 0\}}_{\text{C-sector}} \ \ \} = 0.$$

- Firms in period 1 decide the equilibrium allocation
- Even if ex-post policy is anticipated, equilibria do not change, because policy affects only the default state
 - Equilibrium variables in period 1, $\{k, Q, D\}$, are not altered by anticipation
- Time inconsistency does not arise.

* Ex-ante macroprudential policy

• Policy that imposes the borrowing constraint \bar{D} s.t.

$$A_L K < \bar{D} \le A_M K - \varepsilon_{\max}.$$

• As $Q = \frac{\bar{D}}{K} \le A_M$ and k = K, there is no default when $A_s = A_M$

$$QK \leq A_M K - \varepsilon_{\text{max}}$$

- Then, n = 1 and k = K for any state (First best)
- Difficult to find optimal values of \bar{D} for individual firms
- First best is attained only if A_s is a binary variable

Appendix: Borrower subsidy

• Fixed amount of subsidy S to borrowers in period 2 such that

$$\pi - \varepsilon - D + S > 0$$

where $\pi = A_s K$ for any $A_s \in \{A_M, A_H\}$. \Rightarrow No default in any state

- Risk-shifting asset boom disappears (Allen and Gale 2000, ...)
- All inefficiencies of this model disappear
- Borrower subsidy to avoid all default may be unrealistic
 - Serious moral hazard can arise (Time inconsistency)

Appendix: Monetary policy – Introducing nominal variables

- Period 1
 - Q': Asset price (nominal)
 - I: Nominal interest rate
 - Nominal debt D' = Q'K grows to (1 + I)D' = (1 + I)Q'K in period 2
- Period 2
 - P_H : Goods price in s = H (nominal)
 - P_M : Goods price in s = M (nominal)
- Debt Overhang Equilibrium

$$(1 + I)D' = (1 + I)Q'K = (1 - \sigma^{-1})A_HKP_H,$$

$$D_H = \frac{(1 + I)D'}{P_H} = (1 - \sigma^{-1})A_HK,$$

$$D_M = \frac{(1 + I)D'}{P_M} = (1 - \sigma^{-1})A_HK\frac{P_H}{P_M}.$$

Appendix: Monetary policy

- Ex-ante Monetary Policy: raising nominal loan rate // 1
 - No effect
 - A change in nominal loan rate is completely offset by the response of the asset price

$$(1 + I)D' = (1 + I)Q'K = (1 - \sigma^{-1})A_HKP_H$$

- Ex-post Monetary Policy: raising price level in M P_M ↑
 - Effective
 - Ex-post inflation decreases the real burden of debt overhang and improves the social welfare

$$D_M = \frac{(1+I)D'}{P_M} = (1-\sigma^{-1})A_H K \frac{P_H}{P_M}$$

- Introduction
 - Motivations and summary
- 2 Literature
- Mode
 - Overview
 - Model setup
- Equilibrium
- Policy responses
- Secular stagnation
- Conclusion

* Modified model for persistence

- Modified model to analyze persistence: Still two-period model . . .
 - λ new firms (0 < λ < 1) born in period 2
- If the new firms enter S-sector and produce output, we say recession is short-lived (cyclical downturn)
- If the new firms do not enter S-sector, we say recession is persistent (secular stagnation)

* Larger booms lead to persistent recessions

- **Equilibrium**: (n + e(n)) firms operate in S-sector
 - n incumbents stay in S-sector
 - e(n) **new firms** enter S-sector, where $e(n) \le \lambda$

Intuition:

- New firms' revenue $((n+e)^{\frac{1}{\sigma-1}}A_HK)$ is increasing in n
- New firms enter if payoff is larger than entry cost: $(n+e)^{\frac{1}{\sigma-1}}A_MK \varepsilon \gamma K \ge 0$.
- If A_H is small: D small $\Rightarrow n$ large \Rightarrow New firms enter
 - ⇒ Recession is short-lived
- If A_H is large: D large $\Rightarrow n$ small \Rightarrow New firms do not enter
 - ⇒ Recession is persistent

* Larger booms lead to persistent recessions

- **Proposition 12**: There exist \bar{A}' and \bar{A}'' s.t.
 - For $A_H \leq \bar{A}'$, short-term recession: $n^e = 1$ and $e(n) = \lambda$,
 - Debt restructuring or liquidation
 - ⇒ all incumbent firms operate in S-sector
 - all new firms enter S-sector.
 - For $A_H \ge \bar{A}''$, persistent recession: $n^e = 0$ and e(n) = 0,
 - Zombie lending
 - ⇒ all incumbent firms operate in C-sector
 - no new firms enter S-sector.
 - For $A_H \in (\bar{A}', \bar{A}'')$, medium-term recession: $n^e \in [0, 1]$ and $e(n) \in [0, \lambda]$,
 - Zombie lending and debt restructuring
 - ⇒ **incumbent firms** operate in both S- and C-sectors
 - some new firms enter S-sector.

- Introduction
 - Motivations and summary
- 2 Literature
- Mode
 - Overview
 - Model setup
- Equilibrium
- Policy responses
- Secular stagnation
- Conclusion

* Conclusion

- Risk shifting boom, ex-post debt overhang, and aggregate output externality can replicate empirical regularities, i.e., boom, bust and productivity declines.
- Larger asset boom may lead to deeper and more persistent recession
- Lenders know their payoff will increase if they restructure debt. They voluntarily reduce debt.
- Their debt restructuring can achieve social optimum when the debt is small.
 The debt reduction is insufficient due to externality when the debt is large.
- The ex-post subsidy to lenders that encourage debt restructuring can improve productivity and welfare. Time inconsistency may be minor.