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Abstract

This paper examines the growth effects of R&D subsidies and public-funded basic

research in an R&D-based endogenous growth model under circumstances where the

government cannot raise taxes. We show that when individuals have enough life-cycle

saving motives and R&D productivity is sufficiently high, g > r holds in equilibrium

and the government can finance the required expenses while perpetually rolling over

the debt. Whenever possible, debt-financed R&D subsidies always enhance short-run

growth. However, long-term growth is promoted only when the initial g−r gap is wide

enough. Even when the long-term effect is negative, the economy may benefit from

the increased GDP during a long transition to the new BGP. We confirmed that the

social return to R&D is always higher than the growth rate even though g > r. In an

extended model, we examine the effect of enhancing public-funded basic research and

find that it is particularly effective for low-growth economies.
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1 Introduction

Once one starts to think about [growth], it is hard to think about anything else

— Robert Lucas Jr. (1988)

As Lucas (1988) mentioned, economic growth is one of the most important objectives

in economics. How can we achieve faster economic growth? Modern theories of endoge-

nous growth provide a surprisingly simple answer. Economic growth, in the long run, is

determined by technological change. Technological change is realized by R&D. Therefore,

by promoting R&D, e.g., through government subsidies for R&D, economic growth can

be accelerated. Nevertheless, many economies are struggling with slower economic growth

than they desire. Even when they know that R&D promotion policies enhance growth,

there are often insufficient funds with which to implement those policies. Governments

typically have a limited ability to raise taxes, which constrains their ability to promote

R&D and, therefore, economic growth.

Recent studies on the political economy suggest that it is difficult for the government to

raise tax rates for various political reasons. For example, Jiang, Sargent, Wang and Yang

(2022) assumed that there is an upper bound for the tax rate on the basis of the political

considerations of Keynes (1923).1 However, existing studies of R&D-based growth typically

disregard such constraints by implicitly assuming that the government can levy lump-sum

taxes to implement policies. (e.g. Grossman and Helpman, 1991a,b; Jones and Williams,

2000). Some studies include distortions caused by factor-income taxation but still assume

that the government can set any tax rate (e.g., Grossmann, Steger and Trimborn, 2013).

In contrast, this paper considers an extreme situation where the government cannot

raise (extra) taxes at all. If the government wants to support R&D, it must be financed

entirely by public debt. It also does not have the ability to raise taxes in the future to repay

the debt. Therefore, the debt must be rolled over infinitely. In other words, we consider the

environment in which any growth promotion policies must be financed by a Ponzi scheme.

While common sense suggests that such policies would not be sustainable, O’Connell and

Zeldes (1988) showed that the government can run a “rational” Ponzi scheme if the rate

of economic growth is higher than the interest rate on governmental debt, i.e., g > r for

short.

Mehrotra and Sergeyev (2021) reported that in the 1946–2006 period, the median value

1In an overlapping generations political economy model, Song, Storesletten and Zilibotti (2012) showed
the possibility that intergenerational conflict causes the government to raise no tax if the political power of
the old is stronger than that of the young. See also Alesina and Passalacqua (2016) and Yared (2019) for
the literature review.
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of g− r was 1.0% for the United States and 0.8% for the average of 17 advanced countries.

Blanchard (2019) also mentioned that g > r has been more historical than the exception in

the U.S. since 1950. Mauro and Zhou (2021) analyzed data on average effective borrowing

costs for 55 countries over a span of up to 200 years and reported that g > r prevails for

both advanced and emerging economies.

Given these findings, our main model examines whether the growth rate can be en-

hanced when the government finances R&D subsidies entirely by perpetually rolled-over

debt. The result is not obvious because such policies affect both g and r. The direct effect

of R&D subsidies is to induce private firms to engage in more R&D, which will speed up

technological progress. However, the government’s debt may crowd out private R&D in-

vestments by increasing the equilibrium interest rate in financial markets. More precisely,

a higher interest rate implies that the present value of future profits realized by R&D is

lower, thereby discouraging R&D.

We find that the overall effects of R&D subsidies crucially depend on the productivity

of R&D, which is defined by how many innovations can be realized per unit of R&D labor.

We show that g > r holds in equilibrium if individuals have enough life-cycle saving motives

and the productivity of R&D is high enough. However, this does not always mean that the

growth rate can be enhanced by debt-financed R&D promotion policies. For these policies

to increase the long-term growth rate, the productivity of R&D must be even greater. In

other words, the g − r gap needs to be not only positive but also greater than a positive

threshold value. If this condition is not met, R&D subsidies enhance the growth rate only

temporarily, although the boost to economic growth may continue for several hundred years

in the transition.

In an extended model, we introduce public-financed basic research that enhances the

productivity of private R&D. The government now chooses the pair of the research subsidy

and the addition to basic research while both must be financed by perpetually rolled-over

debts. We find that, while R&D subsidy enhances long-term growth only when the initial

productivity of private R&D is high enough, putting more resources into basic research is

conducive to long-term growth regardless of the initial productivity, unless the effectiveness

of basic research on private R&D is very low. This result suggests that enhancing basic

research is preferable to R&D subsidies in low-growth economies.

We also find that there are limits to the debt-financed growth promotion policies even

when g > r. There are threshold levels for research subsidy and basic research above which

no balanced growth exists; i.e., the Ponzi scheme becomes unsustainable. We also calculate

the maximal debt-to-GDP ratio that can be supported without raising taxes. We find that
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while debt-financed R&D subsidies may increase the long-run growth rate, they reduce the

fiscal space in the sense that the highest level of the debt-to-GDP ratio from which the

economy can return to a steady state is now lower.

There is a strand of literature that examines the sustainability of government debt in

an environment where g > r holds in equilibrium (e.g. Blanchard, 2019; Reis, 2021; Ball

and Mankiw, 2023; Barro, 2023). Similar to some of those studies, we use a continuous-

time overlapping generations model to explain why the interest rate can be lower than

the growth rate in the long run. However, in most studies, the long-term growth rate is

exogenous, and the focus is on the effect of policies on the safe interest rate. Exceptions

are Saint-Paul (1992) and King and Ferguson (1993), who developed AK-type endogenous

growth models in which g > r holds in equilibrium. These authors showed that the economy

is dynamically efficient even when g > r because in endogenous growth models, the social

return on investment is higher than the interest rate. We also show that the social return

to R&D investment in our model, including the benefits from intertemporal knowledge

spillovers, is always higher than the growth rate. The most important difference from

those studies is that we consider an R&D-based variety-expansion growth model rather

than an AK model, where long-term growth is determined solely by capital accumulation.

By explicitly modeling the R&D process, we are able to examine the effect of debt-financed

R&D promotion policies on incentives for technological innovations, which unarguably

serve as an important source of economic growth. This paper is also related to Angeletos,

Lian and Wolf (2024) in that both show that future tax increases are not necessary after

debt-financed policies are implemented. While the abovementioned authors consider a

short-term stimulus policy in a new Keynesian setting, we consider a long-term growth

promotion policy in an R&D-based endogenous growth model.

The rest of this paper is organized as follows. Section 2 presents the model environment.

Section 3 explains the equilibrium dynamics of this economy, including the relationship

between g and r. In Section 4, we examine the growth effects of R&D subsidies, assuming

that they are financed by perpetually rolled-over debts. Both long-term and transitional

results are presented. In Section 5, we investigate the social return of R&D and the

dynamic efficiency of the economy. Section 6 examines the extended model where public-

funded basic research is introduced. Section 7 concludes the paper.
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2 Model

2.1 Individuals

We consider a continuous-time overlapping generations model. In the economy, N new

individuals are born per unit of time, and they face a constant Poisson death rate of µ > 0.

This means that the number of individuals who are born at time s and are still alive at

time t is

Ns,t = Ne−µ(t−s). (1)

Total population is stationary at N = N/µ, which is obtained by integrating Ns,t over s

from −∞ to t. Each individual supplies inelastically e−δ(t−s) units of effective labor, where

t − s is their age.2 Effective labor supply decreases with age at the rate of δ > 0 both

because of the deterioration of productivity and the declining ability to work longer hours

as they age. Because of this aging effect, individuals have an incentive to make lifecycle

savings. In this sense, parameter δ represents the strength of individuals’ saving motives.

Then, the aggregate labor supply is

L =

∫ t

−∞
Ns,te

−δ(t−s)ds =
1

µ+ δ
N. (2)

The expected utility of a generation s individual, accounting for their mortality, is given

by

Us =

∫ ∞

s
(ln cs,t)e

−(ρ+µ)(t−s)dt, (3)

where cs,t is the amount of consumption by a generation-s individual at time t and where

ρ > 0 is the discount rate. Observe that they further discount the future by their survival

probability, e−µ(t−s). We assume that the discount rate is not too high. In particular, we

assume that ρ < δ so that individuals have enough incentives to save for their later age.

(See, Rachel and Summers, 2019).

Let ks,t be the real asset holding by a generation s and rt be the real interest rate on

bonds. Following Blanchard (1985), we assume that there is a perfect market for annuities.

Thus, the rate of return from the annuities is rt + µ for survivors. Since rt + µ > rt,

individuals hold all their assets in the form of annuities. We also normalize the price of

the final goods to be one. Then, the budget constraint is given by

k̇s,t = (rt + µ) ks,t + e−δ(t−s)wt − cs,t, (4)

2More precisely, t − s is the period after each individual starts their economic activity. If the starting
age is 20, the actual age of an individual is 20 + (t− s).
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where wt is the real wage per unit of effective labor. The newborn generation has zero

financial assets, which means that kt,t = 0. To summarize, each individual maximizes

the expedited utility (3) subject to the budget constraint (4), initial condition kt,t = 0,

and the usual non-Ponzi game condition. In this standard setting, the Euler equation for

individuals is ċt = (rt − ρ)ct.

Let us define aggregate consumption and aggregate asset holding by

Ct =

∫ t

−∞
cs,tNs,tds, Kt =

∫ t

−∞
ks,tNs,tds. (5)

In the following, we derive the dynamics for the aggregate consumption, in terms of Ct and

Kt. Using the Leibniz integral rule, we can differentiate Ct in (5) as below.

Ċt =

∫ t

−∞
ċs,tNs,tds+

∫ t

−∞
cs,tṄs,tds+Nt,tct,t. (6)

In the right-hand side (RHS), the first term represents the sum of changes in consumption

by existing individuals. Using the Euler equation of individuals, ċt = (rt − ρ)ct, this term

can be written as (rt − ρ)Ct. In the second term, the change in the cohort size Ṅs,t can

be written −µNs,t from (1). Therefore this term becomes −µCt. This value represents

the decline in the aggregate consumption due to the dying of portion µ of individuals per

unit time. The last term is the sum of the consumption by newly-born individuals. In

Appendix A.1, we show that the consumption of a newborn is

ct,t =
µ+ δ

µ

(
ct − (ρ+ µ)kt

)
, (7)

where ct = Ct/N is average consumption and kt = Kt/N , is average asset holding. Equa-

tion (7) can be interpreted as follows. Recall that newborns do not have any financial

assets (kt,t = 0). Given the log utility, the consumption propensity out of assets is ρ + µ.

Therefore, the lack of financial assets induces a newborn to consume (ρ+µ)kt less than the

average consumption, ct. However, newborns have a higher ability to work than average

individuals. A newborn’s working ability (labor supply) is 1, while that of an average

individual is L/N = µ/(µ+ δ). Therefore, the RHS of (7) is multiplied by (µ+ δ)/µ. By

substituting (7) into (6) and using Nt,t = N = µN , we obtain the Euler equation for the

aggregate consumption.

Ċt = (rt − ρ+ δ)Ct − (ρ+ µ)(δ + µ)Kt. (8)
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2.2 Supply Side

The supply side of this economy is purposefully close to that of the standard variety-

expansion model by Grossman and Helpman (1991a). It consists of three sectors, namely,

the final goods sector, the intermediate goods sector, and the R&D sector. In the final

goods sector, a representative firm competitively produces final goods Xt from a continuum

of varieties of intermediate goods xt(i), where i is the index of the intermediate goods. The

production function is given by

Xt =

[∫ nt

0
xt(i)

αdi

]1/α
, (9)

where nt is the number of intermediate goods available at time t and where α ∈ (0, 1) is

a production parameter. Let pt(i) be the price of intermediate good i. The representative

final goods firm maximizes its profit,

Xt −
∫ nt

0
pt(i)xt(i)di. (10)

The first-order condition for profit maximization implies that the demand function of the

intermediate goods is

xt(i) = pt(i)
− 1

1−αXt. (11)

In the intermediate goods sector, there are nt intermediate goods firms, each of which

produces its own variety of goods, xt(i). The production of one unit of xt(i) requires one

unit of labor; therefore, its profit is given by πt(i) = (pt(i) − wt)xt(i). Given that xt(i) is

determined by the demand function (11), profit-maximizing pricing implies

pt(i) =
wt

α
, xt(i) =

(
α

wt

) 1
1−α

Xt, (12)

πt(i) = (1− α)

(
α

wt

) α
1−α

Xt. (13)

The above result shows that all intermediate goods firms produce the same amount of out-

put. Therefore, the output of each intermediate goods firm can be written as xt(i) = LP
t /nt

for all i, where LP
t is the total amount of labor employed in this sector. By substituting it

into the final goods production function (9), we obtain

Xt = n
1−α
α

t LP
t . (14)

The R&D sector has a representative R&D firm, which competitively creates new goods
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according to

ṅt = antL
R
t , (15)

where LR
t is the amount of labor used for R&D and where a > 0 is a parameter that

specifies the efficiency of R&D. We follow the standard setting in the variety-expansion

model and assume that there is an externality from the past R&D to the current R&D.

The term nt in the RHS of (15) reflects this externality.

Equation (15) implies that the creation of a new intermediate good requires 1/ant units

of labor. We assume that the government subsidizes a fraction θ ∈ [0, 1) of the R&D cost.

Then, the private cost of developing a new intermediate good is (1 − θ)wt/ant. Let vt be

the value of an intermediate goods firm. Then, the free entry condition for R&D is

vt ≤ (1− θ)
wt

ant
with equality if ṅt > 0. (16)

2.3 Government

As explained above, the government subsidizes a fraction θ of the cost of R&D. Since

the presubsidy aggregate cost of R&D is wtL
R
t , the amount of government expenditure is

θwtL
R
t . We assume that the government cannot collect taxes and that all expenditures are

financed by government debt. Then, the amount of government debt, Bt, evolves according

to

Ḃt = rtBt + θwtL
R
t . (17)

Since the government bond is never repaid (or repaid entirely by issuing new bonds), the

government is running a Ponzi scheme.3 We investigate the possibility that the government

can run a rational Ponzi game, similar to the one examined by O’Connell and Zeldes (1988),

and use revenue to promote economic growth.

3 Equilibrium

3.1 The g − r Gap

A necessary condition to run a rational Ponzi scheme is that the growth rate is higher than

the interest rate. Given the economy described in the previous section, here, we examine

3Note that this is in contrast to individuals, who maximize their lifetime utility subject to the no-Ponzi-
game condition. The difference in the ability to borrow between the government and individuals reflects
reality. Without collateral, individuals usually cannot borrow large amounts of money for various reasons
(e.g., the risk of running away). We can rewrite the model with a borrowing constraint for individuals,
which yields the same result as the present setting in the steady state.
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the gap between the growth rate and the interest rate in equilibrium. First, we derive the

real interest rate. The consumers hold all their assets in the form of annuities, and the

annuity company invests the assets in government bonds and the shares of intermediate

goods firms. Therefore, the equilibrium in the asset market is

Kt = Bt + ntvt. (18)

Since risks are fully diversified, the expected return on holding the shares of an intermediate

goods firm should be equal to the interest rate on bonds. This no-arbitrage condition can

be written as

rt =
πt + v̇t

vt
, (19)

where πt is given by (13). In the main text, we focus on the case where the amount of

R&D is positive, leaving the discussion of the case of ṅt = 0 for Appendix A.3. Then, vt is

given by (16) with equality. Both πt and vt depend on the wage level, which we now derive.

Since the final goods sector is competitive, the maximized profit of the final goods firm

in Equation (10) should be zero. By substituting xt(i) and pt(i) into (10), this condition

determines the market wage as

wt = αn
1−α
α

t . (20)

Substituting the values of πt and vt into (19) yields the real interest rate in equilibrium.4

rt =
a

α

(
1− α

1− θ
LP
t − (2α− 1)LR

t

)
. (21)

Next, we turn to the growth rate. The GDP of this economy is defined as the sum of

consumption expenditures Ct, private investment expenditures for R&D, (1− θ)wtL
R
t , and

government expenditures, θwtL
R
t . Note that the final output is used only for consumption;

therefore, the equilibrium in the goods market means Ct = Xt. Then, using (14), and (20),

the GDP can be written as

GDPt = n
1−α
α

t (LP
t + αLR

t ). (22)

Since α < 1, the GDP is greater when more labor is used for production, given the value

of nt. This is because there is a positive markup in the intermediate goods sector, whereas

4Using (20), the values of πt and vt can be obtained as follows: From (14) and (20), Equation (13) gives

πt = (1 − α)n
(1−2α)/α
t LP

t . From (16) with equality and (20), the value of a firm is vt = (1 − θ)wt/ant =

((1 − θ)α/a)n
(1−2α)/α
t . Using (15), its derivative is v̇t = −((2α − 1)/α)aLR

t vt. Substituting these results
into (19) yields (21).
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rt = gt gt

gt − rt

g

1− θ′

ĝ(θ′)
g

1− θ

ĝ(θ)

g

a

(θ′ > θ)

Figure 1: Relationship between the gt − rt gap and the growth rate.

there is no markup in the R&D sector. Let us also define the potential GDP, Yt, as the

level of GDP when all labor is used for production, given the number of intermediate goods

developed by that time, nt. With LP
t = L and LR

t = 0, (22) reduces to

Yt = n
1−α
α

t L. (23)

This is the upper bound for GDPt given the state of technology at time t. Yt can also be

viewed as the supply capacity of the economy. From (15), the growth rate of the potential

GDP in (23) is given by

gt ≡
Ẏt
Yt

= g
LR
t

L
, where (24)

g ≡ 1− α

α
aL (25)

is the maximum growth rate of the potential GDP that is realized when all labor is used

for R&D. Note that on any balanced growth path (BGP), gt is constant. Then, (24) means

that LR
t is constant and the same for LP

t = L− LR
t . In this case, from (22) and (23), the

growth rate of GDPt coincides with Ẏt/Yt. Therefore, gt also represents the growth rate of

GDP in the long run. Below, we simply call gt the growth rate unless otherwise noted.

Now, we are ready to derive the gap between the growth rate and the interest rate.

The labor market equilibrium condition is

LP
t + LR

t = L. (26)
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By eliminating LP
t and LR

t from (21) using (24) and (26), we can represent the g − r gap

as in terms of gt:

gt − rt = s(θ)(gt − ĝ(θ)), where (27)

s(θ) =
1− αθ

(1− α)(1− θ)
> 1, ĝ(θ) =

1− α

1− αθ
g ∈ (0, g].

As shown in Figure 1, given parameters, gt − rt is positively and linearly related to gt,

with a slope of s(θ) > 1. In particular, gt is greater than rt when gt is greater than the

threshold at ĝ(θ). This means that keeping the growth rate high is crucial for maintaining

gt > rt and hence running the government’s Ponzi scheme.

When the rate of R&D subsidies, θ, is increased, the thick line in Figure 1 rotates

counterclockwise, which makes gt − rt lower for a given growth rate (as shown by the

dashed line). Accordingly, the threshold, ĝ(θ) in (27), increases with θ. While research

subsidies may increase the growth rate, gt needs to be even higher to maintain gt > rt.

Then, how is gt determined? In the following subsections, we characterize the equilibrium

path of gt by dynamic equations and phase diagrams, first without the research subsidy

and then with it.

3.2 Equilibrium Dynamics

The dynamics of this economy can be examined by focusing on two variables, namely, gt

and Dt ≡ Bt/Yt. Here, Dt is the ratio of government debt to potential GDP.5 We simply

call this the debt-to-GDP ratio. Using (17), (20), (24) and (27), its time derivative is given

by

Ḋt = −s(θ) (gt − ĝ(θ))Dt +
θα

g
gt. (28)

The first term of the RHS represents (rt − gt)Dt. With a balanced budget, the debt-to-

GDP ratio would expand or shrink at the rate of rt − gt. The second term is the ratio of

government spending on subsidies to potential GDP.6 This accelerates the increase in Dt.

Next, we derive the time evolution of gt. In this model, final goods are used only for

consumption. Therefore, Xt = Ct from the equilibrium of the goods market. Using (8),

5A benefit of focusing on Dt ≡ Bt/Yt rather than Bt/GDPt is that Yt depends only on the state variable
nt; therefore, Dt is predetermined. This means that we can use Dt as an initial condition for the equilibrium
dynamics. In contrast, since GDPt depends on jump variables LP

t and LR
t , it is not possible to use Bt/GDPt

as an initial condition. Note also that gt is a jump variable because gt = gLR
t from (24).

6The ratio of government spending on subsidies to potential GDP is θwtL
R
t /Yt. Note that wt = αYt/L

from (20) and (23), and that LR
t = Lgt/g from (24). Using these, θwtL

R
t /Yt = θαgt/g.
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(14), (16), (18), (20), (23), (24) and (27), we obtain7

ġt = (g − gt)
(
s(θ) (gt − ĝ(θ))− δ + ρ

)
+ g(ρ+ µ)(δ + µ)

(
Dt +

α(1− θ)

aL

)
. (29)

In the first term, s(θ) (gt − ĝ(θ)) − δ + ρ represents gt − (rt − ρ + δ). There is a positive

effect of gt on ġt because growth in Yt means that fewer production workers are required to

produce a given amount of Ct, and therefore more labor can be used for R&D, increasing

ġt. Additionally, as explained in Section 2.1, the Euler equation for aggregate consumption

(Equation 8) implies that an increase in rt − ρ+ δ raises Ċt, which reduces the labor used

for R&D, thereby decreasing ġt. In the second term, Dt +α(1− θ)/aL represents the sum

of government debt and the value of all firms, divided by the potential GDP (i.e., Kt/Yt).
8

A larger amount of the aggregate asset negatively affects Ċt since those who pass away, on

average, have assets of kt = Kt/N , and they are replaced by newborns who do not have

financial assets. Then, ġt increases since more labor will be allocated to R&D.

3.3 Dynamics without Research Subsidies

We start the analysis of the phase diagram with the case of no research subsidy (θ = 0)

because it clearly gives us the condition under which existing debts can be rolled over

perpetually and how much debts can be sustained. We first look at the Ḋt = 0 locus.

With θ = 0, Ḋt in (28) becomes zero when either gt = ĝ(0) or Dt = 0 holds. On the

gt = ĝ(0) line, rt = gt holds, which means that government debt is growing at the same

rate as potential GDP; therefore, the debt-to-GDP ratio is stationary. Dt is also stationary

on the Dt = 0 line because there is no income or expenditure by the government. These

lines are drawn in red in Figure 2(a)-(c).

Next, we turn to the ġt = 0 locus. With θ = 0, ġt in (29) becomes zero when

Dt =
g − gt

g(ρ+ µ)(δ + µ)

(
δ − ρ− s(0) (gt − ĝ(0))

)
− α

aL
. (30)

As depicted by the blue curve, the ġ = 0 locus is a parabola that opens towards the right.

Recall that gt can only take the values between [0, g], where g ≡ (1−α)aL/α is the growth

rate of potential GDP when all labor is used for R&D. Therefore, we limit the attention

7From (24) and (26), ġt = −g(L̇P
t /L). Additionally, from (14), (23) and Xt = Ct, we have LP

t =
LXt/Yt = LCt/Yt. Since L is constant, the rate of change of this equation is L̇P

t /L
P
t = Ċt/Ct − Ẏt/Yt.

Therefore, ġt = −g(LP
t /L)(L̇

P
t /L

P
t ) = −g(LP

t /L)(Ċt/Ct− Ẏt/Yt). In the RHS, Ċt/Ct is given by the Euler
equation (8), and Ẏt/Yt = gt. The Euler equation depends on aggregate assets Kt. From (16), (20), and
(23), ntvt = α(1 − θ)Yt/aL. Substituting this into (18) yields Kt/Yt = Dt + α(1 − θ)/aL. Finally, we
substitute these results and (27) into ġt = −g(LP

t /L)((Ċt/Ct − gt) and obtain (29).

8See footnote 7.
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Figure 2: Phase diagram when there is no government expenditure (θ = 0).

to the area of gt ∈ [0, g].

At the upper end of gt = g, the ġ = 0 parabola starts from Dt = −α/aL, as shown

in Figure 2(a)-(c). Since this value is negative, the parabola intersects with the Dt = 0

line at most once. When the intersection exists (as in Figure 2(a)-(b)), it is a steady state

with Ḋt = ġt = 0, which we label S1 and denote its coordinates as D∗
1 = 0 and g∗1 ∈ [0, g).

Additionally, the parabola crosses the gt = ĝ(0) line exactly once before reaching the lower

end of 0. We call this crossing point S2. The coordinates of S2 are D∗
2 = D and g∗2 = ĝ(0),

where

D ≡ α(δ − ρ)

(ρ+ µ)(δ + µ)
− α

aL
. (31)

The pattern of the dynamics changes depending on whether D is positive or negative and

whether S1 exists. We explain three cases in turn.

Case 1: Saddle-stable steady state with gt > rt (a > a)

Since we assume that δ > ρ, D∗
2 = D is positive if and only if the research productivity

parameter a is higher than

a ≡ (ρ+ µ)(δ + µ)

(δ − ρ)L
> 0. (32)
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When a > a, as shown in Panel (a) of Figure 2, the steady state S1 is above the gt = ĝ(0)

line (i.e., g∗1 ∈ (ĝ(0), g)). From (27), this implies that the growth rate in the steady state is

higher than the interest rate. In Appendix A.2, we show that S1 is saddle stable, whereas

S2 is totally unstable (a source). Therefore, there is a stable arm that originates from

S2 and converges to S1. This means that, whenever the initial value of the debt-to-GDP

ratio D0 is less than D∗
2, there is an equilibrium path that converges to S1, where the

debt-to-GDP ratio is zero in the long run.9 Even when the government has no revenue, its

debt-to-GDP ratio can be stabilized as long as the ratio is not too large, given that a > a.

Case 2: Saddle-stable steady state with gt = rt (a < a)

When a < a, the steady state S2 is located in the Dt < 0 region.10 Nevertheless, if the

ġt = 0 parabola crosses the Dt = 0 line, another steady state S1 exists, with g∗1 ∈ (0, ĝ(0)),

as depicted in Figure 2(b). This happens when ã < a < a, where the threshold is given by

ã ≡
−(δ − ρ) +

√
(δ − ρ)2 + 4(1− α)(ρ+ µ)(δ + µ)

2((1− α)/α)L
> 0. (33)

In this case, as formally discussed in Appendix A.2, S2 is saddle stable, and S1 is totally

unstable (a source). Therefore, the stability property is the opposite of that described in

Case 1. There is a stable arm originating from S1 and converging to S2. Given that the

economy starts from a positive government net asset (Dt < 0), there is an equilibrium

path that stabilizes the net asset-to-GDP ratio in the long run.11 In this steady state, the

government asset grows at the same rate as the potential GDP (rt = gt), hence stabilizing

the ratio. However, there is no equilibrium path converging to the saddle-stable steady

state if the amount of initial net debt is positive. The government will go bankrupt when

starting from Dt > 0.

When a < ã, there is only one steady state in the phase diagram shown in Figure 2(c).

Similar to Case 2, S2 is saddle stable, and a stable arm converges to it. However, the

stable arm starts from point A2, which is located to the left of the origin. This means

that the stable arm exists only in the region where Dt is significantly negative, at least

in this diagram. However, what happens if the economy starts from an initial debt or

9 Strictly speaking, the economy can converge to the steady state only when D0 ∈ (D,D), where D < 0
is the point where the downwards-sloping stable arm crosses the gt = g line. Intuitively, if the initial
asset/GDP ratio of the government is too large and given that it does not use assets at all, the asset/GDP
ratio explodes, and there is no steady state. Numerically, we find that the absolute value of D is very large
under various parameter values; thus, it is not realistic to consider the case of Dt < D. Therefore, in the
main text, we disregard this possibility.

10We ignore the border case of a = a because the case has a zero possibility.

11Strictly speaking, the economy converges to the stable steady state when D0 ∈ (D, 0). See the discussion
in footnote 9.
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asset that is approximately zero? Note that the phase diagram in Figure 2 is drawn under

the assumption that the free entry condition (16) holds with equality. In fact, this model

economy has another phase diagram in the Dt and νt = ntvt/Yt spaces that applies when

the amount of R&D is zero (i.e., gt = 0), where the free entry condition does not need to

hold with equality. In Appendix A.3, we show that there is an unstable steady state in this

region if a < ã. There is a stable arm that originates from this steady state and connects to

point A2, as shown in Figure 2(d). Therefore, if the economy starts from a slightly negative

Dt (i.e., a positive asset), it will experience a period of zero growth before arriving at point

A2; then gt gradually increases until the economy reaches the saddle-stable steady state

S2. Therefore, the economy converges to the stable steady state if D0 ∈ (D, 0), which is

similar to the case of ã < a < a.

The following proposition summarizes the results.

Proposition 1 Suppose that θ = 0. The growth rate in the saddle-stable steady state is

higher than the interest rate if and only if a > a. In this case, there is an equilibrium path

converging to this steady state if the amount of initial debt is less than D > 0. If a < a,

then the growth rate in the saddle-stable steady state is the same as the interest rate, and

there is an equilibrium path converging to this steady state only when the initial debt is less

than zero.

In a simplified setting where there is no revenue or expenditure by the government, the

proposition shows that the productivity of R&D, a, is critical for keeping the growth rate

higher than the interest rate. If it is below the threshold a, then the economy can reach a

steady state only when the government holds a net positive asset, and the growth rate is

equal to the interest rate.

The proposition implies that the government is able to roll over the existing debt

infinitely if the productivity of R&D is higher than a and the initial debt is less than

D. Given this result, a natural question is whether some government money can be used

without collecting taxes. If the answer is yes, revenue could be used to increase growth.

The following subsection considers this possibility.

3.4 Dynamics with Research Subsidies

Now, we consider the effect of research subsidies on the dynamics of the economy while

keeping the assumption that the government does not have any revenue. With a research
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Figure 3: Phase diagram when the rate of debt-financed research subsidy θ is positive

subsidy rate of θ ∈ [0, 1), Equation (29) implies that the ġ = 0 locus is as follows:

Dt =
g − gt

g(ρ+ µ)(δ + µ)

(
δ − ρ− s(θ) (gt − ĝ(θ))

)
− α(1− θ)

aL
. (34)

From (28), the Ḋ = 0 locus is

Dt =
αθ

gs(θ)

gt
gt − ĝ(θ)

. (35)

The ġ = 0 locus is a parabola, and Ḋ = 0 is a rectangular hyperbola, with asymptotes

of Dt = αθ/gs(θ) and gt = ĝ(θ). They may or may not intersect with each other depending

on parameter values, particularly θ. Figure 3 shows three possible cases.

Case 1: Saddle-stable steady state with gt > rt (a > a and θ is not too large)

Recall that if a > a, the economy has a saddle-stable steady state with g∗ > r∗ when

θ = 0. (See Figure 2(a)).) Because the phase diagram moves continuously with θ, the

economy still has a saddle-stable steady state with gt > rt if a > a and θ is not too large,

as shown by S1 in Figure 3(a). We denote the coordinate of S1 in the Dt-gt space by

(D∗
1(θ), g

∗
1(θ)) since it changes with θ. As long as the ġt = 0 locus intersects with the upper

right portion of the Ḋt = 0 locus, the value of gt in the steady state is always higher than

the horizontal asymptote at gt = ĝ(θ). Then, (27) implies that gt is larger than rt.
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Additionally, note that the long-term level of the debt-to-GDP ratio, D∗
1(θ), is positive

since the stable steady state S1 is to the right of the asymptote line at Dt = αθ/gs(θ) > 0.

Intuitively, the government issues a new bond each year to finance the research subsidy

and pays interest on it forever. Nevertheless, the debt-to-GDP ratio converges to a positive

constant because the economy is growing faster than the interest rate.

Another steady state S2 at (D∗
2(θ), g

∗
2(θ)) is a source (totally unstable). There is a

saddle path originating from S2 and converging to S1. Therefore, the debt-to-GDP ratio

can be stabilized in the long run if the initial debt-to-GDP ratio is less than D∗
2(θ).

Case 2: Saddle-stable steady state with gt < rt (a < a and θ is not too large)

In contrast to Case 1, if a < a and θ is not too large, then the ġt = 0 locus intersects

with the lower left portion of the Ḋt = 0 locus, as shown in Figure 2(b)-(c). In this case,

S2 at (D∗
2(θ), g

∗
2(θ)) is a saddle-stable steady state, and there may or may not exist an

unstable steady state (S1) in the gt > 0 region depending on the parameters, as discussed

in Case 2 of Section 3.4.

The value of g∗2(θ) is always lower than the horizontal asymptote at ĝ(θ). Therefore,

from (27), the interest rate in this steady state, denoted by r∗2(θ), is higher than the

growth rate g∗2(θ). Additionally, D
∗
2(θ) is negative because the hyperbola slopes downwards

and moves through the origin. This means that in the steady state S2, the government

holds a positive net asset that grows at the rate of economic growth so that the asset-to-

GDP ratio is constant at |D∗
2(θ)|. Given that r∗2(θ) > g∗2(θ), the government can use the

(r∗2(θ)− g∗2(θ)) |D∗
2(θ)|Yt portion of interest revenue while keeping the asset-to-GDP ratio

constant. In the steady state, this surplus is just enough to finance the expenditure for the

research subsidy.

While the situation might seem desirable, it might be difficult to reach this steady state.

Suppose that the unstable steady state S1 exists in the gt > 0 region, as depicted in Figure

3(b). Then, the stable steady state S2 can be reached only when the initial value of Dt is

less than D∗
1(θ), with a debt-to-GDP ratio of S1. Since D∗

1(θ) < 0, the government needs

to start with positive net assets, and the asset-to-GDP ratio must be greater than |D∗
1(θ)|.

To summarize, when a < a, it is not possible for the government to subsidize R&D while

not collecting taxes unless it has enough initial assets.

Case 3: No steady state (θ is larger than a certain threshold)

If θ is too large, then there is no intersection between the ġt = 0 locus and the Ḋt = 0

locus in the phase diagram, as shown in Figure 3(d). Therefore, regardless of the initial

value of Dt, the economy cannot reach a steady state. Starting from any value of gt, we
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find that the economy will eventually violate the nonnegativity condition for some variables

(e.g., LP
t or vt eventually become negative). This means that there is no equilibrium path

in this economy. Such a large debt-financed subsidy is not sustainable regardless of the

initial debt-to-GDP or asset-to-GDP ratio.

4 The Growth Effects of Debt-Financed Research Subsidies

As discussed in the Introduction, historical data show that the economic growth rate tends

to be higher than the interest rate on government bonds in the U.S. and other developed

countries (e.g. Blanchard, 2019; Mauro and Zhou, 2021). Given this fact, the analysis

outlined in the previous section suggests that the productivity of R&D, a, is greater than

a in these economies. In this case, the government can provide research subsidies for

firms while rolling over their debts, given that the initial debt-to-GDP ratio is less than

D∗
2(θ) (see Case 1 of Section 3.4). Here, we examine whether such a policy can actually

enhance economic growth. In the first subsection, we examine the effects on the long-term

growth rate by focusing on the steady state. In the second subsection, we investigate the

transitional effects.

4.1 Long-Term Effects

A research subsidy has two opposing effects on the growth rate. First, it promotes research

activity by reducing the R&D cost incurred by private firms. Second, the government ex-

pense for the subsidy will increase the long-term debt-to-GDP ratio D∗
1(θ), which increases

the equilibrium interest rate. A higher interest rate reduces the value of firms and hinders

the incentives for R&D. The following proposition shows when the first effect dominates.

Proposition 2 A marginal increase in θ from θ = 0 increases the growth rate in the

saddle-stable steady state if and only if

a > 2a+
δ − ρ

2L
≡ â. (36)

Proof: In Appendix A.4.

The proposition shows that a high value of a is necessary for the subsidies on R&D to

have a positive effect on long-term growth. In Proposition 1, we have shown that a > a

is the condition for the economy to have a saddle-stable steady state with gt > rt. Since

â > a, Proposition 2 implies that gt > rt is not sufficient for such policies to have positive
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Parameter Description Value Source

L Population 1 Normalization
ρ Discount rate 0.01 Standard
µ Mortality rate 1/(80.3－ 20) OECD (2023b)
δ Labor deterioration rate 1/(64-20) OECD (2023a)
α Inverse of the markup rate 1/1.2 Ball and Mankiw (2023)
a R&D Productivity 0.546 Calibrated to match g = 2%.

[0.15] For comparison (a < a < â)

Table 1: Parameters for Numerical Simulations

long-run effects. The following corollary shows that research subsidies enhance long-term

growth if and only if the gt − rt gap is larger than a certain threshold.

Corollary 1 Suppose that in the absence of research subsidies (θ = 0), the economy has a

saddle-stable steady state with g∗1(0) > r∗1(0). A marginal increase in θ from θ = 0 increases

the growth rate in the saddle-stable steady state if and only if the following holds:

g∗1(0)− r∗1(0) >
δ − ρ

2
. (37)

Proof: In Appendix A.4.

Note that the RHS of (37) is strictly positive because we assume that δ > ρ. In our model

environment, δ > ρ is necessary for the economy to have a saddle-stable steady state with

g∗1(0) > r∗1(0). When δ is greater, the decline in individual effective labor supply with age

is steeper, and the consumer has more incentives to save for their old age. These saving

incentives keep the interest rate lower than the growth rate. However, Corollary 1 shows

that a larger δ requires a wider gap between gt and rt for debt-financed research subsidies

to have a positive effect on long-term growth.

In the following, we present the effect of research subsidies by numerical simulations.

Table 1 summarizes the parameters used in all simulations in Section 4. We normalize

the total labor supply12 to L = 1 and set a standard value for discount rate ρ = 0.01.

The mortality rate is µ = 1/(80.3 − 20), where 80.3 is the average life expectancy in the

OECD in 2021 (OECD, 2023b), and 20 is the age from which we assume that the agents

start economic activities. The deterioration rate of labor productivity δ is set to 1/(64-20),

where 64 is the average normal retirement age in the OECD as of 2022 (OECD, 2023a).13

12As shown in (2), the total labor supply is L = N/(µ+ δ). Therefore, this normalization is the same as
assuming N = µ+ δ. Note that this choice does not affect the result as long as we calibrate a as explained
below. A Doubling of L would result in halving a so that the growth rate is unchanged.

13Using similar data from the OECD, Rachel and Summers (2019) developed a probabilistic retirement
model, while we consider continuous depreciation of working ability for simplification of the analysis. The
evolution of the average productivity is the same in these two specifications.
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(a) When g∗1(0) = 2% (a = 0.546)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
θ(%)0.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

g1
*(θ), r1

* (θ)(%)

I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
θ(%)0

100
200
300
400
500
600
700
800
900

D1
* (θ), D2

* (θ)(%)

(b) When a < â (a = 0.15)
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Figure 4: The long-term effect of research subsidy rate θ on the growth rate D∗
1(θ), the interest

rate r∗1(θ), the debt-GDP ratio D∗
1(θ), and the maximum limit of the debt-to-GDP ratio

D∗
2(θ).

We set α = 1/1.2 so that the markup rate of intermediate goods is 1/α = 1.2, following

Ball and Mankiw (2023). Given these parameters, we find that the threshold values of a

are â = 0.171, a = 0.0821, and ã = 0.0414. We calibrate a to 0.546 > â so that the growth

rate when θ = 0 is 2%, a value close to the historical per capita GDP growth rate in the

U.S. For comparison, we also consider the case of a = 0.15, which is higher than a, but

lower than â. This case corresponds to a low-growth economy where g∗(0) is 0.592%.

Figure 4 numerically plots the long-term growth rate, interest rate and debt-to-GDP

ratio against the rate of research subsidies θ. We can confirm the result of Proposition 2

in the upper panels of Figure 4. Column (a) show the baseline case of a = 0.546 > â. In

this case, the value of g∗1(θ) is increasing in θ unless θ is close to the upper limit, where

the BGP disappears. We denote this upper limit of θ by θ(a) because it depends on a.

When θ exceeds this point, the phase diagram of the dynamics changes from Figure 3(a) to

(d), and there is no steady-state level of the debt-to-GDP ratio. This means that it is not

possible to increase the rate of research subsidies beyond θ(a) because the government debt

subsequently becomes unsustainable. Column (b) shows that g∗1(θ) is always decreasing

with θ when a < â, consistent with Proposition 2. The upper panels also show the response
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of the interest rate to changes in θ.14 The interest rate is increasing in θ, but it is always

lower than the growth rate as long as the BGP exists. This result confirms analysis in Case

1 of Section 3.4. As shown in Figure 3(a), g∗1(θ) is greater than ĝ(θ); therefore, from (27),

gt > rt holds. In other words, the government can roll over its debt only when its policy

allows the existence of a steady state with gt > rt.

The lower panels show that the steady-state debt-to-GDP ratio, D∗
1(θ), also increases

with θ especially when θ is near θ(a). Observe that r∗1(θ) and D∗
1(θ) follow the same

pattern. This implies that the accumulation of government debt is causing the equilibrium

interest rate to rise, which in turn crowds out private R&D. In fact, even when a > â (i.e.,

in Column (a)), we can observe that g∗1(θ) is decreasing in θ when θ is close to the upper

limit. This happens because the response of interest rate to θ is sharp when θ is close

to θ(a). The lower panels also show D∗
2(θ), which represents the maximum value of the

debt-to-GDP ratio from which the economy can converge to the saddle steady state (see

the phase diagram in Figure 3(a)). Observe that D∗
2(θ) is decreasing in θ, and it eventually

connects to D∗
1(θ) just before the steady state disappears. Therefore, even though a higher

θ increases the growth rate given a > â, it entails two kinds of costs, namely, it increases the

steady-state level of the debt GDP ratio, D∗
1(θ), and it reduces the highest maintainable

debt-to-GDP ratio, D∗
2(θ).

15 The curves of D∗
1(θ) and D∗

2(θ) eventually coincide, which

means that the steady state cannot exist beyond this point. This point defines the highest

sustainable subsidy rate θ(a).

Figure 5 shows the contour plot of the long-term growth rate, g∗1(θ), against a and

θ. The growth rate is greater when the color is lighter. The thick black curve shows the

relationship between the upper limit of the subsidy rate, θ(a), and the productivity of

R&D, a. Since it slopes upwards, a higher rate of research subsidies is sustainable when

research productivity is also higher. The area above the θ(a) curve, which is shown in

white, indicates that there is no steady state with gt > rt for the given combination of a

and θ; i.e., such a policy is not sustainable. Recall that according to Proposition 1, the

government can roll over the debt only when a > a. Therefore, the θ(a) curve intersects

with the horizontal axis to the right of the origin at a = a.

14From (27), the interest rate in the steady state S1 is obtained by r1(θ) = s(θ)ĝ(θ)− (s(θ)− 1)g∗1(θ).

15The debt-GDP ratio could be (temporarily) affected by various kinds of shocks, although we do not
explicitly consider these. If the current debt-GDP ratio is close to the highest maintainable debt-to-
GDP ratio, D∗

2(θ), these shocks may push up Dt above D∗
2(θ), which makes the government go bankrupt.

Therefore, the decline in D∗
2(θ) can be viewed as a cost since it negatively affects the sustainability of the

government debt.
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Figure 5: Contour plot of the growth rate in the steady state g∗1(θ) against the productivity of
R&D, a, and the R&D subsidy rate, θ

4.2 Transitional Effects

So far, we have seen that the debt-financed R&D subsidies enhance long-term growth in

economies with high a (which means high g∗1(0)), but they are detrimental to long-term

growth when a is low (i.e., g∗1(0) is low). From this finding, we are tempted to conclude

that the policy will be beneficial for economies only when the growth rate is sufficiently

high in the first place. However, this conclusion may not hold for two reasons. First, the

growth rate may change during the transition from the old steady state to the new steady

state. Second, the transition may take a very long time. If the growth rate is higher than

the steady-state value for a long time, the eventual difference in the GDP level can be

significant.

Figure 6 shows the transitional response of the economy when the rate of subsidy θ

is permanently raised from zero.16 The horizontal axis shows the time after the policy

change in years. Column (a) presents the results for the benchmark case of a = 0.546, and

Column (b) is for a low-growth economy with a = 0.15 < â. The economy is assumed to

be on the BGP with θ = 0 before time t = 0. At time t = 0, the subsidy rate is raised to a

value close to the maximal sustainable rate, θ(a). In numerical simulations with a = 0.546

and a = 0.15, we raise θ from 0% to 4% and 14%, respectively.17 Other parameters are

16The transitional paths of gt and Dt are obtained by numerically solving the differential equations (28)
and (29) backwards in time. This method is called the reverse shooting algorithm. We start the calculation
from (the neighborhood of) the new steady state with increased θ and terminate the calculation when the
state variable Dt reaches the point Dt = D∗

1(0) = 0.

17These values are slightly below θ(a) (see Figures 4 and 5).

21



(a) When g∗1(0) = 2% (a = 0.546)
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Figure 6: Transitional dynamics after research subsidies are introduced.

the same as in the previous subsection.

The upper panels show the response of gt, i.e., the growth rate of the potential GDP. It

can be seen that gt jumps up immediately after the R&D subsidy is introduced, even when

a < â. The growth rate gradually decreases and it takes hundreds of years to converge to

the long-term value. The reason for the initial overshoot of gt and the slow convergence

can be seen from the middle panels, which depict the response of Dt, the debt-to-GDP

ratio. The panels show that it takes a long time for the debt-GDP ratio to increase, given

that gt > rt. As explained in the previous section, debt-financed R&D subsidies have

both positive and negative effects on growth. Among these effects, the positive and direct

effects of subsidies on research take effect immediately. In contrast, the negative crowding-

out effect comes from the stock of government debt, which only gradually accumulates.

Therefore, in the short run, the positive effect always dominates.

The bottom panels show the percentage deviation of paths of potential output Yt,
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aggregate consumption Ct, and GDP as defined by (22) from their respective paths without

research subsidies.18 The response of the deviation of Yt is monotonically increasing when

a > â and hump-shaped when a < â. Since the growth rate of Yt is gt, this pattern directly

reflects the results in the upper panels.19 The amount of aggregate consumption decreases

when the research subsidy is introduced.20 This is because more resources are devoted to

R&D than to the production of consumption goods. After approximately 10 to 20 years,

the production of consumption goods overtakes the case of no subsidy, owing to increased

productivity (i.e., a higher level of potential GDP Yt). The response of the deviation of

the GDP is between those of Yt and Ct. The GDP is the sum of the values of consumption

and R&D, but in our model, consumption goods are produced with a positive markup,

where R&D is subject to free entry without markups. Therefore, when more resources

are devoted to R&D, the level of GDP temporarily decreases because the total value of

markups decreases.

The results in column (b) of Figure 6 suggest that the debt-financed R&D subsidies have

sizable positive effects on the levels of GDP, output and consumption for several centuries

even though a < â. This is because the growth rate is higher in the transition, and the

transition takes a very long time. However, the level of GDP will eventually become lower

than in the case of no policy change. Since it takes hundreds of years before the negative

effect dominates the initial positive response, the desirability of such a policy depends on

how we evaluate the utility of current and future generations.

5 Social Rate of Return of R&D and Dynamic Efficiency

We have shown the possibility that R&D subsidies financed by perpetually rolled-over debts

may stimulate R&D investments and increase the rate of economic growth, depending on

the parameters. Here, we examine whether such increased R&D investments are beneficial

to the economy. Since we explicitly consider overlapping generations of consumers, how

18Let Y θ=0
t be the value of the potential GDP on the BGP without research subsidies. Then, the deviation

of Yt from Y θ=0
t is defined by (Yt − Y θ=0

t )/Y θ=0
t . The deviations of Ct and GDPt are defined similarly.

19Note that Yt = Y0 exp
(∫ t

0
gτdτ

)
and Y θ=0

t = Y0e
g∗1 (0)t, where g∗1(0) is the growth rate on the

BGP with θ = 0. Based on the above, the deviation of Yt can be calculated as (Yt − Y θ=0
t )/Y θ=0

t =

exp
(∫ t

0
(gτ − g∗1(0))dτ

)
− 1. Therefore, the slope of the deviation of Yt is positive when gt − g∗1(0) > 0, and

vice versa.

20 Using Equations (14), (23), (24) and (26), Ct = Xt = n
(1−α)/α
t LP

t = (LP
t /L)Yt = (1 − gt/g)Yt.

From this, the deviation of Ct from the BGP path with θ = 0 is (Ct − Cθ=0
t )/Cθ=0

t = exp(logCt −
logCθ=0

t )− 1 = exp
(
log(g − gt)− log(g − g∗1(0)) +

∫ t

0
(gτ − g∗1(0))dτ

)
− 1. Similarly, we can write GDPt =

n
(1−α)/α
t (LP

t + αLR
t ) = (1 − (1 − α)gt/g)Yt from (22). Its deviation from the BGP path with θ = 0 is

(GDPt −GDPθ=0
t )/GDPθ=0

t = exp
(
log(g − (1− α)gt)− log(g − (1− α)g∗1(0)) +

∫ t

0
(gτ − g∗1(0))dτ

)
− 1.
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we should measure the welfare of the whole economy is not obvious. As shown in Column

(b) of Figure 6, a policy can be beneficial for the current generation but detrimental to

distant future generations. Rather than weighing the utility of different generations, here

we consider the most conservative criteria: we examine whether the economy is dynamically

efficient or not.

The economy is known to be dynamically inefficient if the rate of return on investment

is lower than the rate of economic growth (e.g., Tirole, 1985; Abel, Mankiw, Summers and

Zeckhauser, 1989). In this case, the aggregate consumption for all periods can be increased

by reducing investment; therefore, stimulating investments is actually welfare-reducing.21

This possibility is a particular concern in the literature on rolling over debts because most

papers focus on the case of r < g. Recent studies (e.g., Blanchard, 2019; Ball and Mankiw,

2023; Barro, 2023) have shown that the economy can be dynamically efficient despite r < g

when the marginal product of capital is higher than the interest rate for various reasons,

including risk premiums and markups on capital production.

In our model, R&D investments have positive externalities on future R&D. In Equation

(15), the output of R&D, ṅt, depends positively on today’s stock of knowledge capital nt,

i.e., the cumulative number of ideas produced in the past. Similarly, today’s R&D creates

new knowledge, which will be used in the future. Therefore, the social rate of return

on investment rs, including this externality, is higher than the interest rate r. Thus, we

cannot say that rs < g holds even when the interest rate on the government bond is lower

than the growth rate. In fact, in the following, we show that the social rate of return of

R&D investments in our model is higher than the rate of economic growth on any BGP.

Following Jones and Williams (1998), we define the social rate of return by

Definition 1 On the BGP, the social rate of return of R&D (rs) is defined as follows:

rs ≡ lim
∆t→0

1

∆t

(
dXt+∆t

−dXt
− 1

)
, (38)

where dXt < 0 and dXt+∆t > 0 are the changes in Xt and Xt+∆t from the respective BGP

values when the following operations are conducted in the model, where time is discretized

21To understand this point, let us consider a standard neoclassical growth model in discrete time. Suppose
that on the BGP, the economy is growing at the rate of g, and the social rate of return on investment is
rs < g. Now, reduce the investment by 1% from period t0 on. Then, the consumption at period t0 is
increased by this amount. In period t0 + 1, the output, including the undepreciated capital, is reduced by
(1 + rs)% of the investment of period t. Note that on the BGP before the manipulation, the amount of
investment also grows at the rate of g. Therefore, this amount of reduction is ((1 + rs)/(1 + g))% < 1% of
the investment in period t0+1. Recall that in period t0+1, the investment is reduced by 1%, which can be
used for consumption. In total, the consumption in period t0 +1 is increased by ((g− rs)/(1+ g))% > 0 of
the investment in that period. Similar arguments hold for all t ≥ t0 + 1. Therefore, reducing investments
is Pareto improving if rs < g.
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with an infinitesimally small ∆t.

1. At time t, LR
t is marginally increased by a small value dLR

t > 0.

2. At time t + ∆t, LR
t+∆t is decreased by dLR

t+∆t < 0. The magnitude of dLR
t+∆t is

determined so that all variables at and after time t+ 2∆t are on the original BGP.

Note that in this definition, the final goods production Xt at time t is decreased by

dXt < 0 because the economy allocates more resources to R&D. This is counted as an

increase in the R&D investment measured in terms of final goods. At time t+∆t, the return

on this R&D investment is harvested by increasing final goods production by dXt+∆t > 0

so that the reduction in R&D investment at t +∆t exactly offsets the effect of the initial

increase in R&D. The social rate of return of R&D is measured by how large the magnitude

of the harvest (dXt+∆t) is relative to the initial R&D cost (−dXt). Since this is the social

rate of return for the duration of ∆t, the rate of return for unit time is given by dividing

it by ∆t, as in (38). We find the value of rs as follows.

Proposition 3 In any BGP of this model, the social rate of return of R&D, defined by

Definition 1, is rs = g and, therefore, rs ≥ g holds.

Proof: in Appendix A.5.

Proposition 3 holds regardless of the value of θ, as long as the BGP exists. Note that g is

given by (25), which represents the maximum rate of economic growth when all labor is

used for R&D. Therefore, the social rate of return rs = g is always higher than the rate of

economic growth g. This result implies that the economy satisfies a necessary condition for

the dynamic efficiency (rs ≥ g) even though r < g. The following proposition establishes

the essence of dynamic efficiency in a more direct way.

Proposition 4 For any BGP in this model, it is not possible to increase the aggregate

consumption for a short time interval while keeping the aggregate consumption outside this

interval unchanged.

Proof: in Appendix A.6.

Given the state of technology (i.e., nt), the only way to increase aggregate consumption

is by reducing R&D and allocating more resources to production. If this is done, then

the proof of proposition shows that it is not possible to maintain the amount of aggregate

consumption in the future. In other words, no R&D investments are wasted in any BGP,

including the BGP with positive R&D subsidies.
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6 Extension: Basic Research

So far, we examined the effect of debt-financed research subsidies on economic growth. The

results critically depend on research productivity, a. The R&D subsidies always enhance

growth in the short run, but they hinder long-term growth if a is lower than â.

Although we treat a as a fixed parameter in our main model, recent studies suggest

that the government can influence this parameter by directly funding basic research. For

example, Akcigit, Hanley and Serrano-Velarde (2020) considered spillovers across different

types of research activities and concluded that the policies geared towards basic public

research are welfare-improving. Gersbach, Sorger and Amon (2018b) documented that

basic research extends the knowledge base for applied research, and considered a variety

expansion model where private applied R&D and publicly funded basic research are com-

plementary in creating new goods.22 Given these studies, this section considers a simple

extension of our model, where the government can directly improve research productivity

by putting more resources into public-funded basic research.

Now, we assume that a part of the aggregate labor supply, L, is used for public-funded

basic research. We label this amount LB. They are employed by the government at the

market wage wt. The research productivity of the private R&D depends on the amount of

basic research in the following way:23

a = a0

(
LB

LB
0

)ϕ

, LB ≥ LB
0 , (39)

where a0 is R&D productivity before the policy change, LB
0 is the initial amount of basic

research labor, and ϕ is the elasticity of private R&D productivity with respect to the

amount of basic research. Public basic research is entirely financed by the government.

We assume that there is an existing labor tax that just finances the wages for LB
0 .

24 For

political reasons, as we discussed in the introduction, it is not possible to increase the tax

rate. Therefore, if the government wants to enhance basic research by increasing LB above

LB
0 , the added cost, wt(L

B−LB
0 ), must be financed by issuing bonds. The other parts of the

model are the same as in Section 2. In this setting, we examine how government policies,

22In a related study, Gersbach, Schetter and Schneider (2018a) introduced public-funded basic research
into a quality-ladder endogenous growth model, where public funding increases the probability of success in
quality-upgrading innovation. Leon-Ledesma and Shibayama (2023) extended Romer (1990) by introducing
the basic research sector subsidized by the government.

23For simplicity, we assume that the government cannot reduce the government-financed basic research
labor from LB

0 .

24Precisely, we assume that the labor income is taxed at the rate of LB
0 /L. Then, the revenue from this

tax is wLB
0 .
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Parameter Description Value Explanation

a0 Ex-ante R&D productivity 0.550 Calibrated to match g = 2%
[0.15] For comparison

LB
0 Ex-ante basic research labor 0.00581 Calibrated to match σB = 0.49%

[0.00580] Same calibration when a0 = 0.15.
ϕ Elasticity of a to LB 0.1,0.05,0.03 Free parameter

Table 2: Parameters when the R&D productivity is determined by basic research

characterized by the pair of θ ≥ 0 and LB ≥ LB
0 , affect long-term economic growth. The

details of the analysis of this extended model are presented in Appendix A.7.

Table 2 summarizes the parameters used to specify Equation (39). According to OECD

Main Science and Technology Indicators, basic research expenditure as a percentage of

GDP in the U.S. is 0.49% in the most recent data (2019).25 Therefore, as a benchmark, we

calibrate a0 = 0.550 and LB
0 = 0.00581 to match this value as well as gt = 2% on the BGP

before the introduction of the policy (i.e., when θ = 0 and LB = LB
0 ).

26 We also consider

the case of a0 = 0.15, which means that a = 0.15 ∈ [a, â] if LB = LB
0 , corresponding to

Column (b) of Figures 4 and 6.27 In this scenario, we calibrate LB
0 = 0.00580 so that the

GDP share of the basic research matches the data at 0.49%. We take the elasticity ϕ as

a free parameter and consider three modest values: ϕ = 0.1, 0.05, 0.03. The remaining

parameters are the same as in Section 4 (shown in Table 1).

Figure 7 presents the contour plots of the long-term growth rate against LB and θ for

six combinations of a0 and θ. The black square in each panel represents the pair of LB and

θ that maximizes the long-term growth rate. The white area means that there is no steady

state because the government debt is not sustainable given the pair of LB and θ. Observe

that the border between the colored area and the white area is downward-sloping. This is

because the research subsidy (θ) and added basic research (LB −LB
0 ) are both financed by

perpetually rolled-over government debts. When the government devotes more resources

to basic research, the maximum sustainable rate of research subsidy becomes lower.

The three panels in the upper row show the graphs for the baseline case of a0 = 0.55.

When ϕ is 0.1 and 0.05, the growth maximizing policy is to combine the research subsidy

25In our model, the basic research expenditure as a percentage of GDP is given by σB = wtL
B/GDPt,

where GDPt slightly modified from (22) due to the introduction of LB . See Appendix A.7.

26The value of a0 = 0.550 is slightly higher than a = 0.546 in Section 4 for the following reason. In this
extended model, total labor L = 1 is divided among production, LP

t , private R&D, LR
t , and basic research,

LB . While L is unchanged from the main model, the amount of labor that can be allocated for production
and R&D is now lower. Therefore, a0 needs to be slightly higher to maintain gt = 2% on the BGP.

27Strictly speaking, the threshold values a and â slightly change when we explicitly include basic research
into the model. We present the equations for the modified threshold values for a0 in Appendix A.7. With
LB

0 = 0.00580, we obtain a0 = 0.0826 and â0 = 0.172. These values are almost the same as a = 0.0821 and
â = 0.171, respectively, in the main model without basic research, given that LB

0 is small relative to L.

27



(a-1) a0 = 0.55, ϕ = 0.1

1.0 1.5 2.0 2.5 3.0 3.5
0

2

4

6

8

10

12

14

LB(as % of L)

θ
(%

)

(a-2) a0 = 0.55, ϕ = 0.05

1.0 1.5 2.0 2.5 3.0 3.5
0

2

4

6

8

10

12

14

LB(as % of L)

θ
(%

)

(a-3) a0 = 0.55, ϕ = 0.03

1.0 1.5 2.0 2.5 3.0 3.5
0

2

4

6

8

10

12

14

LB(as % of L)

θ
(%

)

Growth

Rate

1.98

2.02

2.06

2.10

2.14

2.18

2.22

2.26

(b-1) a0 = 0.15, ϕ = 0.1

0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

LB(as % of L)

θ
(%

)

(b-2) a0 = 0.15, ϕ = 0.05

0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

LB(as % of L)

θ
(%

)

(b-3) a0 = 0.15, ϕ = 0.03

0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

LB(as % of L)

θ
(%

)

Growth

Rate

0.562

0.567

0.572

0.577

0.582

0.587

0.592

0.597

0.602

Figure 7: Long-Term Growth Effects of Basic Research, LB , and Research Subsidy, θ

and the added basic research. It is only when ϕ is 0.03 that the growth maximizing policy

only includes the research subsidy. The three panels in the lower row in Figure 7 show

the graphs for the low-growth economy with a0 = 0.15 < â. Consistent with Proposition

2, research subsidies does not enhance long-term growth in this case.28 In other words,

research subsidies do not contribute to long-term growth if the growth rate is not sufficiently

high in the first place. Still, panels (b-1) and (b-2) show that when ϕ = 0.1 and 0.05, added

basic research financed by perpetually rolled-over debts indeed enhances growth even in

these economies. This result highlights the importance of putting more resources into basic

research, especially for economies where the initial rate of economic growth is low.

It is also notable that added basic research is beneficial for long-term economic growth

even when the elasticity ϕ is at a rather small value of 0.05. Note that ϕ = 0.05 means

that a doubling of basic research labor results only in a 3.5% increase in the private R&D

productivity, a.29 If basic research has at least this modest impact on private R&D produc-

tivity, then our numerical simulations show that expanding public-financed basic research

28When LB is increased from LB
0 , a becomes higher than a0, and may possibly exceed â even when

a0 < â. Still, in numerical simulations, we find that research subsidies do not increase growth when a0 < â.
We infer that this is because LB and θ are financed by the same means. When LB is large, the debt-GDP
ratio is already high even when θ = 0, which makes increasing θ less attractive.

29This value is obtained by a = a0(2L
B
0 /L

B
0 )

ϕ = a02
ϕ. When ϕ = 0.05, this equation means a = 1.035a0.
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should be a part of growth-maximizing policy.

Previous studies tried to estimate this parameter by focusing on the magnitude of

local spillovers from basic research activities to private R&D. As mentioned by Bloom,

Reenen and Williams (2019), there appears to be a correlation between areas with strong

science-based universities and private sector innovation (for example, Silicon Valley in

California, Route 128 in Massachusetts, and the Research Triangle in North Carolina).

This correlation suggests that there exist significant spillovers from universities to corporate

R&D. More specifically, Jaffe (1989) estimated the elasticity of corporate patent numbers

with respect to the amount of university research in the U.S. same state, and found that

the elasticity ranges between 0.04 to 0.28 across industries. Acs, Audretsch and Feldman

(1992) estimated the same elasticity using the innovation index that includes the data

on inventions that were not patented but were ultimately introduced into the market.

Their result shows that the elasticity is 0.241 when data from all areas are used. These

numbers, combined with our simulation results, suggest that a debt-financed increase in

basic research is a viable instrument for enhancing long-term growth.

7 Conclusion

This paper has examined the effect of growth promotion policies in an R&D-based en-

dogenous growth model, assuming that the government cannot raise taxes and all expenses

must be financed by perpetually rolled-over debts. Such a policy is sustainable only when

the interest rate is lower than the growth rate. We find that g > r is realized in the steady

state if the productivity of R&D, a, is high enough. In accordance with recent findings in

the literature that g > r is more historical than the exception, we have focused on the case

where the above-mentioned condition is satisfied.

Given this, we find that subsidies on private R&D always enhance R&D and thus the

growth of the potential GDP in the short run. However, they do not necessarily increase

the long-term growth rate. When a is high enough to support g > r but is lower than

another higher threshold (or, equivalently, the g − r gap is not large enough), then the

R&D subsidy initially increases the growth rate but lowers it in the long run because the

effect of the increased government debt on the interest rate dominates the positive direct

effect of the subsidy. Still, the initial positive response can dominate the negative effect

for a long time, and therefore the desirability of such a policy depends on how we evaluate

the utility of current and future generations. When a is higher than this threshold (i.e.,

when the g − r gap is large enough), the policy can indeed increase the long-term growth
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rate. In both cases, we confirmed that the social return of R&D is higher than the growth

rate, and therefore no R&D is wasted.

In an extended model, where the productivity of private R&D depends on the amount

of publicly-funded basic research, we find that the growth-maximizing policy includes ex-

pansion of basic research unless the dependence of the productivity of private R&D on

basic research is very weak. It is notable that expanding basic research enhances long-term

growth even in economies where the growth rate is low in the first place and research

subsidies are not conducive to growth.

Nevertheless, it is worth remembering that those growth-enhancing policies will reduce

the upper bound in the debt-to-GDP ratio (or fiscal space), from which the economy can

recover to a steady state. If the government tries to increase the subsidy rate or expense

for basic research over certain values, the economy has no equilibrium path. This means

that such a policy cannot be implemented in the rational expectation equilibrium. The

government will go bankrupt unless the tax rates are raised.
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A Appendix

A.1 Derivation of the Consumption of Newborns

In this section, we derive the consumption of a newly-born individual, (7). As explained in

the main text, each individual maximizes the expedited utility (3) subject to the budget

constraint (4), initial condition kt,t = 0, and the non-Ponzi-game condition:

lim
T→∞

e−
∫ T
t (rτ+µ)dτks,T ≤ 0. (A.1)

From (4), (A.1), and the Euler equation for individuals, ċs,t = (rt − ρ)cs,t, we obtain

cs,t = (ρ+ µ)(ks,t + hs,t), (A.2)

where hs,t is the present value of future labor income, or “human wealth,” of an individual

of generation s evaluated at time t. It is defined by

hs,t ≡
∫ ∞

t
e−δ(t′−s)wt′e

−
∫ t′
t (rτ+µ)dτdt′. (A.3)

By averaging (A.2) for all individuals, we have the average consumption as follows:

ct = (ρ+ µ)
(
kt + ht

)
, (A.4)

where ht is the average human wealth, defined by

ht ≡
1

N

∫ t

−∞
Ns,ths,tds. (A.5)

Note that, from (A.3), (A.5) and (2), ht and the human wealth of a newborn ht,t is related

by

ht =
1

N

∫ t

−∞
Ns,t

∫ ∞

t
e−δ(t′−s)wt′e

−
∫ t′
t (rτ+µ)dτdt′ds

=
1

N

∫ t

−∞
Ns,te

−δ(t−s)

∫ ∞

t
e−δ(t′−t)wt′e

−
∫ t′
t (rτ+µ)dτdt′ds

=
1

N
Lht,t =

µ

µ+ δ
ht,t.

(A.6)

This relationship means ht,t = ((µ+ δ)/µ)ht; i.e., a newborn has (µ+ δ)/µ > 1 times the

human wealth of an average individual. Equation (A.2) with s = t and kt,t = 0 implies the
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consumption of a newborn is

ct,t = (ρ+ µ)ht,t =
(ρ+ µ)(µ+ δ)

µ
ht. (A.7)

By eliminating ht from (A.4) into (A.7) results in (7).

A.2 Stability of the Steady State When There is no Subsidy

Substituting θ = 0 into (28) and (29) and linearizing the system around a steady state (S1

or S2) yields Ḋt

ġt

 = J

Dt −D∗

gt − g∗

 ,

where D∗ and g∗ are the values of Dt and gt in the steady state, and J is the Jacobian

matrix. J is given by

J ≡

−s(0)(g∗ − ĝ(0)) −s(0)D∗

g(ρ+ µ)(δ + µ) s(0)(ĝ(0) + g − 2g∗) + δ − ρ

 , (A.8)

where s(0) = 1/(1 − α), ĝ(0) = (1 − α)g, and g = ((1 − α)/α)aL. Since D∗
1 = 0 in the

steady state S1, the determinant and the trace of J in S1 are

detJ|S1
= −s(0)(g∗1 − ĝ(0)) {s(0)[(2− α)g − 2g∗1] + δ − ρ} , (A.9)

trJ|S1
= δ − ρ+ s(0)

(
2ĝ(0) + g − 3g∗1

)
. (A.10)

In the steady state S2, D
∗
2 = D, g∗2 = ĝ(0); therefore,

detJ|S2
= g(ρ+ µ)(δ + µ)D, (A.11)

trJ|S2
= aL+ δ − ρ > 0. (A.12)

In the following, we examine the stability of the steady states (S1 and S2) in the three

cases discussed in the main text.

Case 1: a > a. First, we show that S1 is saddle stable. As explained in the main

text, ġt = 0 parabola cuts the gt = g line at Dt = −α/aL < 0. This implies that the vertex

of the parabola is in the Dt < 0 region, and given that S1 exists, g∗1 is necessarily lower

than the g-coordinate of the vertex of the parabola, gvertex = [(δ− ρ)(1−α) + (2−α)g]/2.

On the RHS of (A.9), the term s(0)[(2 − α)g − 2g∗1] + δ − ρ is a decreasing function of g∗1

and becomes 0 when g∗1 = gvertex. Since g∗1 < gvertex, as shown above, this term is positive.
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Additionally, the term g∗1 − ĝ(0) is positive since g∗1 > ĝ(0) in Case 1. Based on the above,

detJ|S1 in (A.9) is negative. This means that only one eigenvalue is negative; hence, S1 is

saddle stable.

Since D > 0 in Case 1, (A.11) implies that det J|S2 > 0. Additionally, since δ > ρ,

(A.12) implies that trJ|S2 > 0. Based on the above, S2 has two positive eigenvalues and

is hence totally unstable.

Case 2-1: ã < a < a. Similar to Case 1, s(0)[(2 − α)g − 2g∗1] + δ − ρ > 0 holds

from g∗1 < gvertex. However, since g∗1 < ĝ(0), detJ|S1 > 0 from (A.9). Additionally,

substituting g∗1 < ĝ(0) into (A.10), which is a decreasing function of g∗1, we have trJ|S1 ≥

δ− ρ+αs(0)g > 0. From detJ|S1 > 0 and trJ|S1 > 0, S1 has two positive eigenvalues and

is therefore totally unstable.

Since D < 0 in Case 2, (A.11) implies that det J|S2 < 0 in S2. Therefore, S2 has only

one negative eigenvalue and is hence saddle stable.

Case 2-2: a < ã. Similar to Case 2-1, S2 is saddle stable. There is no S1 steady state

in the gt > 0 region. However, we show in Appendix A.3 that there is an unstable steady

state (S1) when we consider the dynamics in the gt = 0 region.

A.3 Dynamics in the gt = 0 region

This section explains the dynamics of the economy when gt becomes 0, which means that

ṅt = 0, LR
t = 0 and LP

t = L from (24) and (26). For simplicity, we focus on the case of

θ = 0; however, the analysis can be extended to the case of θ > 0.

When gt = 0, Yt is constant from (23). Additionally, LP
t = L means that Xt = Yt is

constant from (14) and (23). Since the final goods are used only for consumption, Ct is

also constant. Let νt ≡ vtnt/Yt represent the ratio of the total market value of firms to

the potential GDP. When ṅt = 0, the free entry condition (16) holds whenever νt ≤ α/aL.

Substituting Ċt = 0 and Kt = Bt + vtnt from the equilibrium of the asset market into the

Euler equation (8) determines the interest rate:

rt = (δ − ρ)
(
aL(Dt + νt)− 1

)
. (A.13)

The dynamics of the economy in the gt = 0 region can be examined by νt and Dt.
30

Since the government has no revenue or expense in this region, its debt Bt grows at the

30Depending on whether the free entry condition (16) holds with equality or not, either gt or nt can
move, while the other is fixed.
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Dt
O

νt ≡ vtnt/Yt
νt = α/aL

A1

ν̇t = 0
Ḋt = 0

Ḋt = 0 S1

A2

1
aL

(a) When a < ã, S1 exists in the gt = 0
region.

Dt
O

νt ≡ vtnt/Yt

νt = α/aL
A1

ν̇t = 0

1
aL

Ḋt = 0

Ḋt = 0

(b) When a > ã, no steady state exists in
the gt = 0 region.

Figure A.1: Phase diagram in the gt = 0 region

rate of rt. Since Yt is constant, Ḋt/Dt = Ḃt/Bt = rt. Therefore,

Ḋt = (δ − ρ)
(
aL(Dt + νt)− 1

)
Dt. (A.14)

Since Yt and nt are constant, the definition of νt ≡ ntvt/Yt implies that ν̇t/νt = v̇t/vt.

From LP
t = L, πt = (1−α)Yt/nt.

31 Using these equations, the no-arbitrage condition (19)

in the gt = 0 region can be written as

ν̇t = (δ − ρ)
(
aL(Dt + νt)− 1

)
νt − (1− α). (A.15)

From (A.14) and (A.15), the phase diagram of the economy when gt = 0 can be represented

as

The Ḋt = 0 locus: Dt + νt =
1

aL
, and (A.16)

Dt = 0.

The ν̇t = 0 locus: Dt + νt =
1

aL
+

1− α

(ρ+ µ)(δ + µ)

L

νt
. (A.17)

Recall that the free entry condition (16) can be written as νt ≤ α/aL. Therefore, the

phase diagram in the Dt-νt plane is defined only for ν ∈ [0, α/aL]. The phase diagram is

shown in Figure A.1 for the case when the Ḋt = 0 locus intersects with the νt axis (a < ã)

and when it does not (a > ã). From (A.17), the Dt coordinate of the ν̇t = 0 locus at

νt = α/aL (denoted as point A1 in Figure A.1) is

1− α

(ρ+ µ)(δ + µ)

aL

α
− α

aL
+

1

aL
, (A.18)

31See footnote 4.
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which is positive if and only if a > ã. We can confirm that (A.18) coincides with the

Dt-intercept of the ġt = 0 locus in the phase diagram of the gt > 0 region, as shown in

Figure 2(b) and 2(c).

We now consider the steady state. According to (A.17), the ν̇t = 0 locus slopes down-

wards, and it is always above the sloping part of the Ḋt = 0 locus (A.16). Therefore, the

ν̇t locus intersects with the vertical portion of the Ḋt = 0 locus (at Dt = 0) given that

a < ã, i.e., when point A1 is to the left of the vertical axis, as shown in Figure A.1(a). In

this case, we denote the steady state by S1 and let ν∗ > 1/aL represent its νt value.
32 If

a > ã, then there is no steady state, as shown in Figure A.1(b).

Next, we show that S1 in the gt = 0 region, if it exists, is unstable. Linearizing (A.14)

and (A.15) around (0, ν∗) yields

Ḋt

ν̇t

 = J0

 Dt

νt − ν∗

 , where,

J0 ≡

L(ρ+ µ)(δ + µ)ν∗ − (δ − ρ) 0

L(ρ+ µ)(δ + µ)ν∗ 2L(ρ+ µ)(δ + µ)ν∗ − (δ − ρ)

 . (A.19)

Its determinant is

detJ0 = 2L2(δ − ρ)2a2
(
ν∗ − 1

aL

)(
ν∗ − 1

2aL

)
, (A.20)

which is positive since ν∗ > 1/aL. The trace of J0 is positive:

trJ0 = 3L(ρ+ µ)(δ + µ)ν∗ − 2(δ − ρ) > δ − ρ > 0, (A.21)

where the first inequality comes from ν∗ > 1/aL and (32). From (A.20) and (A.21), we

can conclude that both eigenvalues are positive.

Finally, we explain that there is a saddle path that originates from S1 and connects

to the saddle-stable steady state S2 in the gt ≥ 0 region, as depicted in Figure 2(c). As

shown in Figure 2(c), there is a saddle path that originates from a point on the horizontal

axis (i.e., gt = 0). This point is located between the origin and the intercept of the ġt = 0

locus (point A1); we call it point A2. Note that point A2 also belongs to Figure A.1(a)

because it satisfies both gt = 0 and νt = α/aL.33 Since the steady state S1 is completely

32We can confirm ν∗ > 1/aL by substituting Dt = 0 in (A.17).

33When gt > 0, the free entry condition for R&D (16) needs to hold with equality. This condition is
equivalent to νt ≡ vtnt/Yt = α/aL.
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unstable, there exists a point in the neighborhood of S1 from which the path leads to A2.

This is the saddle path of this economy. Once the economy reaches A2 in Figure A.1(a),

it experiences a phase transition to Figure 2(c). If the economy with a < ã starts from a

small negative value of Dt, gt remains at 0 for some time and then starts to increase until

it converges to gt = ĝ(0).

The case of θ > 0: Thus far, we have focused on the case of θ = 0. Even when

θ is positive, the phase diagram within the gt = 0 region is almost the same as that in

the case of θ = 0 because gt = 0 means that no firms do R&D; therefore, the government

expenditure is zero. The only difference is the border between the phase diagrams. With

θ > 0, the νt = (1 − θ)α/aL line in the diagram of the gt = 0 region will be connected to

the gt = 0 line in the phase diagram of the gt ≥ 0 region. Intuitively, with θ > 0, firms

are more eager to start R&D even when the index of firm values, νt, is not as high as in

the case of θ = 0. Therefore, the economy transitions from the gt = 0 region to the gt ≥ 0

region with a smaller νt.

A.4 Proof of Proposition 2 and Corollary 1

A.4.1 Proposition 2

We assume that the economy is in a saddle-stable steady state S1 before the increase in the

subsidy. As illustrated as S1 in Figure 2(a), this steady state is given by an intersection

between the ġt = 0 locus and the Ḋt = 0 locus.

We consider the situation where the rate of the R&D subsidy, θ, is increased marginally

by dθ from 0. Then, both the ġt = 0 locus and the Ḋt = 0 locus shift to the right. The

location of the steady state always moves to the right, which means that Dt in the new

steady state is higher than before. Whether gt in the new steady state is higher or lower

depends on the relative magnitude of the size of the shifts of the two loci. The slope of

the Ḋ0 locus at S1 is steeper than the slope of the ġ0 locus. Then, as illustrated in Panel

(a) of Figure A.2, gt in the new steady state should be higher than before if and if the size

of the shift of the ġ = 0 locus (denoted by Mgdθ), measured at steady state S1 (located

at Dt = 0, gt = g∗1(0)), is larger than the size of the shift of the Ḋ = 0 locus (denoted by

MDdθ).

Let Fg(gt; θ) be the RHS of (34), and let FD(gt; θ) be the RHS of (35). Dt = Fg(gt; θ)

and Dt = FD(gt; θ) represent the ġ = 0 locus and the Ḋ = 0 locus, respectively. Then, Mg
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Dt
0

gt

Ḋt = 0
(θ = 0) Ḋt = 0 (θ = dθ)

ġ = 0 (θ = 0)

ġ = 0 (θ = dθ)

g∗1(dθ)

g∗1(0)

MDdθ Mgdθ

(a) The shifts of the ġt = 0 and Ḋt = 0 loci
and the movement of the steady state.

0
Dt

gt

gt = g

g∗1(0)ġt = 0

gt = g∗

Fg(g
∗; 0)

(b) Condition g∗1 > g∗ holds if and only if
Fg(g

∗; 0) > 0.

Figure A.2: Proof of Proposition 2

and MD are calculated as

Mg ≡ ∂Fg(g
∗
1(0); 0)

∂θ
=

α

aL
+

(g∗1(0)− g)2

g(ρ+ µ)(δ + µ)
, (A.22)

MD ≡ ∂FD(g
∗
1(0); 0)

∂θ
=

α2g∗1(0)

aL

1

g∗1(0)− ĝ(0)
. (A.23)

(A.22), (A.23) and ĝ(0) < g∗1 < g indicate that Mg −MD > 0 holds if and only if

(g − g∗1)(g
∗
1 − ĝ(0)) > (1− α)2(ρ+ µ)(δ + µ). (A.24)

The fact that the steady state before the shift (Dt = 0, gt = g∗1(0)) is on the ġt = 0 locus

means that Fg(g
∗
1(0); 0) = 0. This equation can be rearranged to

(1− α)2(ρ+ µ)(δ + µ) = (g − g∗1(0)) ((1− α)(δ − ρ) + ĝ(0)− g∗1(0)) . (A.25)

Substituting (A.25) into the RHS of (A.24) and rearranging yields

g∗1(0) >
(1− α)(δ − ρ)

2
+ ĝ(0) ≡ g∗. (A.26)

This inequality shows that when θ is slightly increased from 0, the growth rate in the

saddle-stable steady state increases if and only if g∗1(0) > g∗.

Recall that for a given value of gt, Fg(gt; 0) gives the value of Dt on the ġt = 0 locus with

θ = 0. Therefore, Fg(g
∗; 0) gives the value of Dt where the ġt = 0 locus reaches gt = g∗, as

shown in Figure A.2. Note that the condition g∗1(0) > g∗ indicates the intersection of the
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ġt = 0 locus with θ = 0, and the vertical axis (Dt = 0) is above the gt = g∗ line. Because

the ġt = 0 locus is downwards sloping in the Dt > 0 region, this condition holds if and only

if Fg(g
∗; 0) > 0 (see Figure A.2). When we solve this condition for a, we can confirm that

it is equivalent to (36).

A.4.2 Corollary 1

In this proof, we show that condition (A.26) holds if and only if (37) is satisfied. Note that

the relationship between gt − rt and gt in (27) always holds in equilibrium; therefore, it

also holds in the saddle-stable steady state with θ = 0:

g∗1(0)− r∗1(0) = s(0)(g∗1(0)− ĝ(0)). (A.27)

Since s(0) = 1/(1− α) > 0,

g∗1(0) > g∗ ⇔ s(0)(g∗1(0)− ĝ(0)) > s(0)(g∗ − ĝ(0)) =
δ − ρ

2
. (A.28)

Combining (A.27) and (A.28), we have

g∗1(0) > g∗ ⇔ g∗1(0)− r∗1(0) >
δ − ρ

2
.

A.5 Proof of Proposition 3

Here, we derive the social rate of return of R&D. As explained in Definition 1, we discretize

time in the model with step size ∆t. We later take the limit of ∆t → 0. We assume that

the economy is on the BGP before time t. The state variable nt at time t is also on the

BGP because it is predetermined by time t. Then, we marginally increase LR
t by dLR

t > 0,

which will reduce the production of consumption goods in time t (which is denoted by

dXt < 0) but increase the number of goods at t +∆t (denoted by dnt+∆t > 0). Then, at

t+∆t, we marginally decrease LR
t+∆t by dLR

t+∆t < 0 so that nt+2∆t returns to the original

BGP. The production of consumption goods at t+∆t will be higher than that at the BGP.

We denote the difference by dXt+∆t > 0.

In the following, we derive the relationships among dnt+∆t, dL
R
t , and dLR

t+∆t. The

discrete version of (15) at the time between t and t+∆t is

nt+∆t = nt + aLR
t nt∆t. (A.29)
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We totally differentiate Equation (A.29) while keeping nt constant, which yields

dnt+∆t = ant∆t dLR
t . (A.30)

Similar to (A.29), the discrete version of (15) at time from t+∆t to t+ 2∆t is

nt+2∆t = nt+∆t + aLR
t+∆tnt+∆t∆t. (A.31)

By totally differentiating (A.31), while keeping nt+2∆t unchanged from the BGP, we obtain

0 =
(
1 + aLR

t+∆t∆t
)
dnt+∆t + ant+∆t∆t dLR

t+∆t. (A.32)

We substitute nt+∆ in (A.29) and dnt+∆ in (A.30) into (A.32), which yields

0 = (1 + aLR
t+∆t∆t)dLR

t + (1 + aLR
t ∆t)dLR

t+∆t. (A.33)

Recall that the economy is on the BGP before the manipulation of LR
t , where L

R
t is constant

for all t. Let this constant value be LR∗. Then, LR
t = LR∗+dLR

t and LR
t+∆t = LR∗+dLR

t+∆t.

Substituting these values into (A.33) gives

0 = (1 + aLR∗∆t)(dLR
t + dLR

t+∆t) + 2a∆t dLR
t dLR

t+∆t. (A.34)

This equation implies that the ratio of the changes in LR
t and LR

t+∆t is

−
dLR

t+∆t

dLR
t

= 1 +
2a∆t dLR

t+∆t

1 + aLR∗∆t
. (A.35)

Now, we consider the changes in the final output Xt in periods t and t+∆t. Note that

in period t, nt is still on the BGP. Therefore, from (14), the changes in Xt and LR
t are

related by

dXt =
∂Xt

∂LR
t

dLR
t = n

1−α
α

t

(
−dLR

t

)
. (A.36)

In period t+∆t, nt+∆t deviates from the BGP by dnt+∆t. Therefore, the change in Xt+∆t
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can be expressed as

dXt+∆t =
∂Xt+∆t

∂nt+∆t
dnt+∆t +

∂Xt+∆t

∂LR
t+∆t

dLR
t+∆t

=
1− α

α
n

1−α
α

−1

t+∆t (L− LR
t+∆t)dnt+∆t − n

1−α
α

t+∆tdL
R
t+∆t

= n
1−α
α

t+∆t

[
1− α

α
(L− LR

t+∆t)
a∆t dLR

t

1 + aLR
t ∆t

− dLR
t+∆t

]
.

(A.37)

where we use (A.29) and (A.30) in the third line.

We obtain the social return of R&D investment by substituting (A.36) and (A.37) into

Definition 1:34

rs∆t =
dXt+∆t

−dXt
− 1

=

(
nt+∆t

nt

) 1−α
α

(
1− α

α
(L− LR

t+∆t)
a∆t

1 + aLR
t ∆t

−
dLR

t+∆t

dLR
t

)
− 1.

(A.38)

In the RHS of the above equation, we can use the Taylor expansion as follows:

(
nt+∆t

nt

) 1−α
α

= (1 + aLR
t ∆t)

1−α
α = 1 +

1− α

α
aLR

t ∆t+ o((∆t)2),

where o((∆t)2) is the collection of terms that are of order (∆t)2 and higher. We can also

eliminate dLR
t+∆t/dL

R
t via (A.35). Then, (A.38) becomes

rs =
1− α

α
aLR

t +
1−α
α a(L− LR

t+∆t) + 2a dLR
t+∆t

1 + aLR
t ∆t

+ o(∆t). (A.39)

Recall that ∆t is infinitesimally small. In the continuous-time limit, ∆t → 0. Additionally,

we consider marginal perturbations of dLR
t and dLR

t+∆t from the BGP. Therefore, dLR
t+∆t →

0. Applying these to (A.39), we obtain

rs =
1− α

α
aL = g. (A.40)

Since gt ≤ g from (24) and LR
t ≤ L, we have rs = g ≥ gt.

A.6 Proof of Proposition 4

Let g∗ be the growth rate of the aggregate consumption in the original BGP, and let

LR∗ and LP∗ be the constant amounts of R&D labor and production labor, respectively.

34In Definition 1, rs is defined as the limit of the first line of (A.38) as ∆t → 0. We take the limit after
we rewrite (A.38) as (A.39).
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O LP
τ

L̇P
τ

LP∗

LLP
t+∆t

Figure A.3: Movement of LP
t after τ = t+∆t

Suppose that from this BGP, the path of aggregate consumption, Ct = Xt, is increased by

dXt from time t to t + ∆t, where ∆t is a small time interval. In the following, we show

that the aggregate consumption from t+∆t cannot be kept at the original BGP path.

As explained in the Proof of Proposition 3 in Appendix A.5, the only way in which to

increase aggregate consumption at time t is to reduce R&D labor and increase production

labor. Then, at t+∆t, nt+∆t should be lower than the BGP value, which means that the

production technology of the final goods is inferior to that of the original BGP case. Then,

to keep Xt+∆t at the original BGP value despite a smaller nt+∆t, we need to allocate more

workers to production, which means that LP
t+∆t > LP∗.

Below, we examine the dynamics of the economy from t + ∆t on in continuous time.

For τ ≥ t+∆t, the aggregate consumption should be the same as that of the original BGP,

which is growing at the rate of g∗. By taking the log of (14) and then differentiating with

respect to τ , we obtain

Ẋτ

Xτ
=

1− α

α

ṅτ

nτ
+

L̇P
τ

LP
τ

= g∗ for all τ ≥ t+∆t.

Using (15), (24) and (26), the above equation can be rewritten as

L̇P
τ

LP
τ

= g∗ − 1− α

α
aLR

τ

=
1− α

α
a(LR∗ − LR

τ )

=
1− α

α
a(LP

τ − LP∗).

Therefore, we have the following autonomous differential equation for LP
τ for τ ≥ t+∆t:

L̇P
τ =

1− α

α
a(LP

τ − LP∗)LP
τ . (A.41)
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As shown in Figure A.3, the RHS of (A.41) is positive when LP
τ > LP∗. Recall that

LP
t+∆t > LP∗. Therefore, L̇P

τ > 0 for all τ ≥ t+∆t, and LP
τ exceeds the total labor supply

L in a finite period of time. This means that such a path is not feasible.

A.7 Analysis of the Extended Model

In this section, we analyze the extended model presented in Section 6. Note that the labor

supply is fixed at L, and therefore it is not affected by the labor tax. Also, the labor tax

does not affect the individual’s Euler equation. Therefore, the equation for the dynamics

for the aggregate consumption (8) is the same as in the main model. As explained in the

main text, the government pays the wages to the basic research workers, the sum of which

is wtL
B. Also, there is an existing labor tax at the rate of LB

0 /L, the revenue of which is

wtL
B
0 . Therefore, the dynamics of the government debt (17) changes to

Ḃt = rtBt + θwtL
R
t + wt(L

B − LB
0 ). (A.42)

The labor demand now consists of that for production, LP
t , for private R&D, LR

t , and for

basic research, LB.35 Therefore, the equilibrium condition of the labor market changes

from (26) to

LP
t + LR

t + LB = L. (A.43)

The GDP of this economy is defined as the sum of consumption expenditures Ct = Xt,

private investment expenditures for R&D, (1 − θ)wtL
R
t , and government expenditures,

θwtL
R
t + wtL

B. Since (14) and (20) are unchanged, the GDP becomes

GDPt = n
1−α
α

t (LP
t + αLR

t + αLB). (A.44)

Therefore, the ratio of basic research expenditure to the GDP is given by

wtL
B

GDPt
=

αLB

LP
t + αLR

t + αLB
.

In this setting, the g − r gap is written as

gt − rt = s(θ)(gt − ĝ(θ, LB)), where (A.45)

s(θ) =
1− αθ

(1− α)(1− θ)
> 1, ĝ(θ, LB) =

1− α

1− αθ
g
L− LB

L
∈ (0, g].

35We omit the time subscript on LB because it is a policy parameter.
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Note that the threshold level of growth, ĝ(θ, LB), now depends on the pair of policy param-

eters, θ and LB. From (A.42) and (A.45), the dynamics for the debt-GDP ratio changes

from (28) to

Ḋt = −s(θ)
(
gt − ĝ(θ, LB)

)
Dt +

θα

g
gt + α

LB − LB
0

L
. (A.46)

The last term of (A.46) comes from the expenses used for the added basic research. The

time evolution of gt is

ġt =

(
g
L− LB

L
− gt

)(
s(θ)

(
gt − ĝ(θ, LB)

)
− δ + ρ

)
+ g(ρ+ µ)(δ + µ)

(
Dt +

α(1− θ)

aL

)
.

(A.47)

Note that, from (A.43), the inclusion of basic research means that less labor can be allocated

to production and R&D. Therefore, (A.47) differs from (29) in that the first term contains

(L− LB)/L term. We did numerical simulations using (A.46) and (A.47), and the results

are presented in the main text.

Given that the equations for the dynamics are changed as above, the threshold values

for a in Propositions 1 and 2 are also affected. Since a is given by function (39), the

thresholds are now defined in terms of parameter a0. Specifically, the economy has a stable

steady state with g∗ > r∗ when θ = 0 and LB = LB
0 if and only if a0 is larger than

a0 =
(ρ+ µ)(δ + µ)

(δ − ρ)(L− LB
0 )

. (A.48)

Also, a marginal increase in θ from 0 increases the long-term growth rate if and only if a0

is higher than

â0 = 2a0 +
δ − ρ

2(L− LB
0 )

. (A.49)

Given that LB
0 is small relative to L, as in our calibration presented in Table 2, a0 and â0

are close to a and â in the main model.
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