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Abstract

We study the long-run behavior of land prices when land plays

the dual role of factor of production and store of value. In modern

economies where technological progress is faster in non-land sectors,

when the elasticity of substitution in production exceeds 1 at high

input levels (which always holds if non-land factors do not fully

depreciate), unbalanced growth occurs and land becomes overvalued

on the long-run trend relative to the fundamental value defined by

the present value of land rents. Around the trend, land prices exhibit

recurrent stochastic fluctuations, with expansions and contractions

in the size of land overvaluation.

Keywords: asset price, elasticity of substitution, land, unbal-

anced growth.

JEL codes: D53, G12, O41.

1 Introduction

As economies develop and per capita incomes rise, the importance of land as

a factor of production diminishes.1 This is partly because people face bio-

∗Department of Economics, Royal Holloway, University of London and The Canon
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1Echevarria (1997, Figure 2) documents that the GDP share of agriculture is lower

in countries with higher per capita incomes. She also notes that the employment share
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logical constraints regarding the amount of food they can consume (where

land produces agricultural products) or the amount of leisure time they

can spend (where land produces amenities like tennis courts and national

parks). Although people living in modern capitalistic societies have tremen-

dously benefited from technological progress over the past decades such as

the development of computers, Internet, smartphones, and electric vehicles,

introspection suggests that our dining and outdoor experiences—the qual-

ity of “land-intensive products”—have not changed much. On the other

hand, land also has an important role as a scarce means of savings and has

significant value as a financial asset.2

Land has a few characteristics that make it suitable as a store of value

compared to other means of savings such as gold or cryptocurrency. First,

unlike cryptocurrency, land has an intrinsic value because it can be used

as a factor of production in agriculture, construction, housing, and leisure.

Second, unlike gold (which is chemically homogeneous), each land parcel

is immobile and unique and hence property rights are well-defined, which

makes it difficult to steal. Third, relative to durable goods such as vehicles,

land is more durable as it cannot be destroyed absent natural disasters, sea

level rise, and pollution.

This paper theoretically studies the long-run behavior of land prices in

modern economies where the importance of land as a factor of production

diminishes, yet, land remains to play a significant role as a store of value.

In a plausible economic model with land and aggregate risk, we establish

a theorem—Land Overvaluation Theorem—showing the tight link between

unbalanced productivity growth, elasticity of substitution between produc-

tion factors, and overvaluation of land, meaning that the equilibrium land

price exceeds its fundamental value defined by the present value of land

rents.

To illustrate the key mechanism of how land overvaluation emerges on

the long-run trend, we first present two example models. Throughout this

of agriculture decreases with incomes, both across countries and time. Acemoglu (2009,
p. 698, Figure 20.1) documents that the employment share of agriculture in U.S. has
declined from about 80% to below 5% over the past 200 years.

2According to OECD (2022, Figure 2.1), among 29 OECD countries, real es-
tate (owner-occupied housing and secondary real estate) comprises more than 50%
of household wealth in 27 countries. See also https://www.oecd.org/housing/

policy-toolkit/data-dashboard/wealth-distribution/.
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paper, we employ a standard two-period overlapping generations (OLG)

model with land, where land plays the dual role of factor of production

and store of value. The two-period OLG model is the simplest model

with heterogeneous agents—there are just the young and the old. It illus-

trates speculative behaviour of heterogeneous agents trading assets with

each other—individuals buying an asset largely on the basis of beliefs (here

assumed to be rational) of what they can sell it for. The basis of hetero-

geneity is that the young buy land from the old, in anticipation of receiving

rents and selling land to the next generation before exiting the market.

In the first example, we consider a two-sector growth economy where

one (“tech”) sector uses skilled labor (human capital) as the primary input

for production such as technology, finance, and information and commu-

nication, while the other (“land” sector) uses unskilled labor and land as

the primary inputs such as agriculture and construction. Specifically, the

production function is linear in the tech sector and Cobb-Douglas in the

land sector. There may or may not be labor mobility between different sec-

tors and we examine both cases. Importantly and realistically, productivity

growth rates are different across the two sectors. Unlike standard models

with balanced growth, we suppose that the tech sector will eventually grow

faster, exhibiting unbalanced growth. In this setting, land prices will grow,

pulled by the savings motive of the young and the productivity growth in

the tech sector. On the other hand, land rents will not grow as fast because

productivity growth is lower in the land sector. This implies that the land

price will eventually exceed the present value of land rents (its fundamental

value), generating land overvaluation, and a backward induction argument

shows that land is always overvalued.

The second example is a one-sector growth economy. To illustrate the

role of the elasticity of substitution, we employ a standard constant elas-

ticity of substitution (CES) production function where labor and land are

used as inputs, with factor-augmenting technological progress. As in the

first example, we assume that labor productivity grows faster than land

productivity, which generates land overvaluation. The intuition is as fol-

lows. Along the equilibrium path, the land price increases together with

wages, whose growth rate will be the same as labor productivity growth.

On the other hand, the growth rate of land rents will be suppressed if the
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elasticity of substitution between land and labor exceeds 1, in which case

the price-rent ratio will rise and land will be overvalued. To be precise, the

ratio increases over time depending on whether the elasticity of substitution

exceeds 1 at high input levels, not necessarily globally.

Motivated by these examples, we consider an abstract stochastic over-

lapping generations model with land and establish the Land Overvaluation

Theorem. We identify economic conditions under which land overvaluation

will necessarily emerge in equilibrium. Let us denote the labor and land

productivities at time t by AHt and AXt, respectively. Let us also denote

by σ (a lower bound of) the elasticity of substitution between land and

labor at sufficiently high input levels and assume σ > 1. The main result

of this paper, Theorem 1, shows that if

E0

∞∑
t=0

(AHt/AXt)
1/σ−1 < ∞,

then land is overvalued in equilibrium. Noting that σ > 1 and hence

1/σ − 1 < 0, this land overvaluation condition holds whenever labor pro-

ductivity AHt grows faster than land productivity AXt in the long run, i.e.,

unbalanced growth occurs. The intuition is the same as that for the two

examples just described, which are special cases of this theorem. In Section

3.2, we justify our assumption of σ > 1 in several ways based on both em-

pirical and theoretical grounds. To the best of our knowledge, this theorem

is the first that proves land overvaluation in an economy with aggregate

uncertainty.

There are three important implications to be drawn from our Land

Overvaluation Theorem. First, our analysis illustrates the key mechanism

of how land overvaluation emerges, where unbalanced growth and elasticity

of substitution play a crucial role. To our knowledge, the link between the

elasticity of substitution and asset overvaluation is new.3 Second, unlike

the usual perspective on land overvaluation (sometimes called land bub-

3The importance of the intertemporal elasticity of substitution in macro-finance mod-
els is well known (Bansal and Yaron, 2004; Pohl, Schmedders, and Wilms, 2018). The
analogy here is only superficial because (i) the relevant elasticity of substitution in our
model is between production factors in the production function, not between consump-
tion in different periods in the utility function, and (ii) macro-finance models typically
assume outright that the asset price equals its fundamental value.
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bles) as short-run phenomena with boom-bust cycles, our analysis shows

land overvaluation on the long-run trend in the process of economic devel-

opment. In reality, as economies develop, structural transformation occurs

from the land-intensive agricultural economy to the labor- or knowledge-

intensive economy. During this transition, while the importance of land

as a factor of production would diminish, as long as land remains impor-

tant as a store of value, land necessarily becomes overvalued. Third, our

theorem in an economy with aggregate risk also provides a new insight

on short-term fluctuations that deviate from the long-run trend. When

productivities of the economy swing up and down, the land price also fluc-

tuates. In standard asset pricing models, these valuations and fluctuations

always reflect fundamentals. In contrast, our analysis shows that land is

always overvalued, associated with expansions and contractions in the size

of overvaluation that may appear to be the emergence and collapse of large

land bubbles. Our model provides a theoretical foundation for recurrent

stochastic bubbles.

1.1 Related literature

As in McCallum (1987), Hansen and Prescott (2002), Mountford (2004),

and Stiglitz (2015), we employ a standard two-period OLG model with

land where land plays the dual role of factor of production and store of

value. Our paper is different because we focus on asset pricing, unbalanced

growth, and land overvaluation.

As in Lucas (1978) and the large subsequent literature, we study as-

set pricing in an economy with aggregate uncertainty. In this literature,

it is well known that there is a fundamental difficulty in generating asset

overvaluation (sometimes called asset bubbles) in dividend-paying assets

including the Lucas (1978) tree model, even if dividends are slightly pos-

itive.4 Since land in our paper is used as a factor of production yielding

positive rents, land may be interpreted as a variant of the Lucas tree. In

this sense, our paper identifies conditions under which the tree is neces-

sarily overvalued as the unique equilibrium outcome.5 Perhaps because of

4See, for instance, Santos and Woodford (1997, Theorem 3.3) for details.
5Of course, it is well known since Samuelson (1958) and Bewley (1980) that for zero-

dividend assets like fiat money, overvaluation may occur, in which case there usually
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this difficulty, progress in macro-finance models that describe realistic as-

set overvaluation in stocks, land, and housing has been slow. Our paper

contributes towards this direction.

Concerning unbalanced growth, Baumol (1967) points out the implica-

tions for economic development when different sectors have different pro-

ductivity growth rates. Hansen and Prescott (2002) consider a two-sector

OLG model with uneven productivity growth rates across the capital-

intensive (Solow) sector and the land-intensive (Malthus) sector and argue

that land becomes unimportant as a factor of production as the economy

develops. Acemoglu and Guerrieri (2008) show in a two-sector general equi-

librium model that differences in factor proportions across different sectors

combined with capital deepening leads to unbalanced growth. The elas-

ticity of substitution between the two sectors play a key role for growth

dynamics. Matsuyama (1992), Buera and Kaboski (2012), Boppart (2014),

and Fujiwara and Matsuyama (2022) use non-homothetic preferences to

generate unbalanced growth. A crucial difference between our work and

this literature is that we show the tight theoretical link between unbal-

anced growth, elasticity of substitution, and land overvaluation, while the

literature abstracts from asset pricing.

Concerning land overvaluation, several papers such as Fostel and Geanako-

plos (2012, 2016) argue that land or housing can be overvalued under in-

complete markets and financial innovation because they serve as collateral

that can be seized upon default by borrowers. Our model is different be-

cause markets are complete and frictionless. In the model of Kocherlakota

(2013), which builds on Kocherlakota (1992), land is intrinsically useless

but may have a positive value (hence be overvalued) because it is a scarce

means of savings under a low interest rate environment. However, our

model has substantial differences. First, in Kocherlakota (2013), land is

intrinsically useless, which leads to equilibrium indeterminacy including

equilibria in which land is worthless. In contrast, in our model, land is a

productive asset used as an input and hence necessarily has a positive price,

with the size of overvaluation fluctuating with productivities in the unique

exist a continuum of monetary equilibria. Our paper is about asset overvaluation in
models of a Lucas tree type asset with positive dividends, not about pure bubbles with
no dividends, which are fundamentally different.
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equilibrium. Second, and more importantly, we highlight the importance of

unbalanced growth and elasticity of substitution for generating land over-

valuation, whose relevance is obscured in Kocherlakota (2013) because land

rents are zero and he focuses on the steady state.

2 An example two-sector OLG model

To clearly present the tight connection between unbalanced growth and

land overvaluation, we start the discussion with a simple two-sector overlap-

ping generations (OLG) model that admits a unique equilibrium in closed-

form.

2.1 Model

Time is discrete, runs forever, and is indexed by t = 0, 1, . . . .

Preferences At each time t, a constant mass H of agents are born, who

live for two periods and derive utility

(1− β) log yt + β log zt+1 (2.1)

from consumption (yt, zt+1) when young and old. Each period, the young

are endowed with one unit of labor, while the old are not. Masses H1 and

H2 = H −H1 of agents are skilled and unskilled.

At t = 0, there is a mass H of initial old agents who only care about

their consumption z0. The initial old is endowed with a unit supply of land,

which is durable and non-reproducible.

Technologies There are two production sectors denoted by j = 1, 2.

Sector 1 is a knowledge-intensive industry such that skilled labor is the

primary input for production, such as technology, finance, and information

and communication. Sector 2 is a land-intensive industry such that both

unskilled labor and land are inputs for production, such as agriculture and

construction. The time t production function of sector j is Fjt(H,X), where

H,X denote the labor and land inputs. For simplicity, we suppose that
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technologies in sectors 1 and 2 are linear and Cobb-Douglas, respectively:

F1t(H,X) = A1tH, (2.2a)

F2t(H,X) = A2tH
αX1−α, (2.2b)

where Ajt > 0 denotes the total factor productivity in sector j at time t

and α ∈ (0, 1) is the labor share of sector 2.

Equilibrium As usual, the competitive equilibrium is characterized by

utility maximization, profit maximization, and market clearing. Without

loss of generality, assume that each sector has one representative firm. Firm

j chooses labor and land inputs H,X to maximize the profit

Fjt(H,X)− wjtH − rtX, (2.3)

where wjt denotes the wage in sector j. Note that because the two sectors

employ different types of labor (skilled and unskilled), the wages differ.

Noting that labor supply is exogenous at (H1, H2) and land supply is 1,

using the functional form of the production functions (2.2), profit maxi-

mization implies the wages and rent

w1t = A1t, (2.4a)

w2t = αA2tH
α−1
2 , (2.4b)

rt = (1− α)A2tH
α
2 . (2.4c)

Define the aggregate labor income by

wt := w1tH1 + w2tH2 = A1tH1 + αA2tH
α
2 . (2.5)

Because agents have identical homothetic preferences, demand aggregation

holds and the aggregate consumption of the young and the old (yt, zt+1) and

land holdings xt maximize utility (2.1) subject to the budget constraints

Young: yt + Ptxt = wt, (2.6a)

Old: zt+1 = (Pt+1 + rt+1)xt, (2.6b)
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where Pt is the land price and we choose the consumption good as the

numéraire. Clearly, the two budget constraints (2.6) can be combined into

one as

yt +
1

Rt

zt+1 = wt, (2.7)

where Rt := (Pt+1 + rt+1)/Pt denotes the gross risk-free rate between time

t and t+ 1. Applying the familiar Cobb-Douglas formula to the combined

budget constraint (2.7), the consumption of the young is yt = (1 − β)wt.

Using the budget constraint of the young (2.6a) and the land market clear-

ing condition xt = 1 (the old exit the economy so the young must hold the

entire land), we obtain the land price

Pt = Ptxt = βwt = β(A1tH1 + αA2tH
α
2 ). (2.8)

Therefore we obtain the following proposition.

Proposition 1. There exists a unique equilibrium, which is characterized

by (2.4), (2.5), (2.8), and yt = (1− β)wt.

2.2 Unbalanced growth and land overvaluation

We now study conditions under which land is overvalued. For simplicity,

suppose that productivity growth is exponential, so Ajt = Gt
j for someGj >

0. Using (2.4c) and (2.8), both the land price and rent grow exponentially:

Pt = β(Gt
1H1 + αGt

2H
α
2 ),

rt = (1− α)Gt
2H

α
2 .

Therefore if G1 > G2, then the land price grows at a faster rate than the

rent and the dividend yield decreases, which suggests that land is overval-

ued.

We make this argument more formal. Define the gross risk-free rate

between time t− 1 and t by the return on land

Rt−1 =
Pt + rt
Pt−1

=
βGt

1H1 + (βα + 1− α)Gt
2H

α
2

βGt−1
1 H1 + βαGt−1

2 Hα
2

. (2.9)

Define the date-0 price of consumption delivered at time t (the price of a
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zero-coupon bond with face value 1 and maturity t) by qt = 1/
∏t−1

s=0Rs,

with the normalization q0 = 1. The fundamental value of land at time t is

defined by the present value of rents

Vt :=
1

qt

∞∑
s=1

qt+srt+s. (2.10)

We say that land is overvalued if Pt > Vt. We obtain the following propo-

sition.

Proposition 2. Land is overvalued (Pt > Vt) if G1 > G2.

Proof. See Corollary 2 below.

The intuition for Proposition 2 is as follows. In this economy, land

serves as a store of value as well as a factor of production. Because agents

have labor income only when young, there is a strong savings motive for

retirement, which pushes up the land price and hence Pt ∼ Gt
1. When

G1 > G2, the gross risk-free rate Rt−1 in (2.9) converges to G1 as t → ∞.

Consequently, we have the order of magnitude qt+s/qt ∼ G−s
1 and rt+s ∼

Gt+s
2 , so a straightforward calculation yields Vt ∼ Gt

2. Therefore Pt > Vt

for large enough t, and a backward induction argument shows Pt > Vt for

all t.

2.3 Two variants

The previous example is arguably highly stylized as labor supply in both

sectors is exogenous and one of the production functions is linear. This

section presents two other variants that give rise to land overvaluation.

Example 1. This example is a simplified version of the model of Hansen

and Prescott (2002), where we abstract from capital. The production func-

tions are the same as in (2.2), but labor is homogeneous (with aggregate

supply normalized to 1) and mobile between the two sectors. Letting wt

be the (common) wage and Hjt be the labor demand in sector j, profit

maximization implies

A1t = wt = αA2tH
α−1
2t ⇐⇒ H2t = (αA2t/A1t)

1
1−α , (2.11)
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where we assume A1t > αA2t to guarantee an interior solution. Using

(2.4c), the land rent is

rt = (1− α)α
α

1−α (A2t/A
α
1t)

1
1−α .

Therefore if Ajt = Gt
j, then the dividend yield on land is

rt
Pt

=
(1− α)α

α
1−α

β
(G2/G1)

t
1−α ,

which geometrically decays to 0 if G1 > G2. By Corollary 3 below, land is

overvalued.

Example 2. There is only one sector with a constant elasticity of substi-

tution (CES) aggregate production function

Ft(H,X) =
(
α(AHtH)1−ρ + (1− α)(AXtX)1−ρ

) 1
1−ρ , (2.12)

where α ∈ (0, 1) is a parameter, σ = 1/ρ is the elasticity of substitution

between labor and land, and (AHt, AXt) are factor-augmenting productiv-

ities. Without loss of generality, normalize the labor and land supply as

(H,X) = (1, 1). Then a straightforward calculation yields the rent-wage

ratio
rt
wt

=
1− α

α
(AXt/AHt)

1−ρ.

As before, the land price satisfies Pt = βwt, so the dividend yield on land

is
rt
Pt

=
1− α

βα
(AXt/AHt)

1−1/σ =
1− α

βα
(GX/GH)

(1−1/σ)t,

where the last equality assumes (AHt, AXt) = (Gt
H , G

t
X). Therefore if the

elasticity of substitution σ between land and labor exceeds 1 and GH > GX ,

then the dividend yield geometrically decays to 0. By Corollary 4 below,

land is overvalued.

In what follows, following Baumol (1967), we refer to a situation with

uneven productivity growth between different sectors or different produc-

tion factors as “unbalanced growth”. When the economy features multiple

sectors as in reality, there is no reason to expect equal growth rates across

sectors. The slightest introspection suggests that it would be a miracle if
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the rate of technological progress were the same in 19th century trains and

(horse-drawn) carriages, 20th century computers and calculators, or early

21st century electric vehicle batteries and internal combustion engines. Al-

though models with unbalanced growth are not so common in economics,

unbalanced growth is a natural and general feature in the process of eco-

nomic development.

3 Substitution elasticity and land overvalu-

ation

The examples in Section 2 suggest that unbalanced growth and land over-

valuation may be closely related. This section confirms this conjecture in

a general setting and highlights the role of the elasticity of substitution

between land and other production factors.

3.1 Model

We consider a stochastic two-period overlapping generations model. Uncer-

tainty is resolved according to a filtration {Ft}∞t=0 over a probability space

(Ω,F , P ). We denote conditional expectations by Et[·] = E[· | Ft].

Preferences Agents born at time t have the Cobb-Douglas utility

(1− β) log yt + β Et[log zt+1], (3.1)

where β ∈ (0, 1). There are two factors of production, labor and land

(denoted by H,X), both of which are in unit supply. As in Section 2, only

the young are endowed with labor, and the initial old is endowed with land,

which is durable and non-reproducible.

Technologies Without loss of generality, we only specify the aggregate

production function, as it is well known that if each sector or firm is com-

petitive and markets are frictionless, profit maximization at the individual

and aggregate level are equivalent. (See Corollary 3.) Below, we say that
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a production function F (H,X) is neoclassical if F : R2
++ → R++ is ho-

mogeneous of degree 1, concave, continuously differentiable, and satisfies

FH , FX > 0.

Assumption 1. The time t aggregate production function takes the form

Ft(H,X) = F (AHtH,AXtX),

where F is a neoclassical production function and AHt, AXt > 0 are Ft-

measurable factor-augmenting productivities.

Equilibrium The definition of a competitive equilibrium is standard.

Definition 1. A competitive equilibrium consists of adapted processes of

prices {(Pt, rt, wt)}∞t=0, allocations {(xt, yt, zt)}∞t=0, and factor inputs {(Ht, Xt)}∞t=0

such that,

(i) (Utility maximization) (xt, yt, zt+1) maximizes utility (3.1) subject to

the budget constraints (2.6),

(ii) (Profit maximization) (Ht, Xt) maximizes the profit Ft(Ht, Xt)−wtHt−
rtXt,

(iii) (Market clearing) Ht = 1, Xt = 1 = xt, and yt + zt = Ft(Ht, Xt).

Note that the market clearing condition xt = 1 follows because the old

exit the economy and the young must buy the entire land. Due to log

utility, the existence and uniqueness of equilibrium are immediate.

Proposition 3. If Assumption 1 holds, then the economy has a unique

equilibrium, which is characterized by the following equations.

Wage: wt = FH(AHt, AXt)AHt, (3.2a)

Rent: rt = FX(AHt, AXt)AXt, (3.2b)

Land price: Pt = βwt, (3.2c)

Young consumption: yt = (1− β)wt, (3.2d)

Old consumption: zt = βwt + rt. (3.2e)
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3.2 Elasticity of substitution

As Example 2 suggests, the elasticity of substitution plays a crucial role in

generating land overvaluation. Recall that the elasticity of substitution σ

between production factors is defined by the percentage change in relative

factor inputs with respect to the percentage change in relative factor prices

σ = −∂ log(H/X)

∂ log(w/r)
, (3.3)

where the derivative is taken along the production possibility frontier F (H,X) =

constant. A mathematically more convenient way to define the elasticity of

substitution is the following. Let h = log(H/X) be the log relative inputs.

Then noting that w = FH and r = FX , (3.3) can be rewritten as

ρ(H,X) :=
1

σ(H,X)
= −∂ log(FH/FX)

∂h
, (3.4)

where we set (H,X) = (Xeh, X) to compute the derivative and substitute

h = log(H/X). The following lemma provides an explicit formula for the

elasticity of substitution of a neoclassical production function.

Lemma 3.1. Let F be a neoclassical production function. Then its elas-

ticity of substitution σF (H,X) satisfies

σF =
FHFX

FFHX

. (3.5)

To derive asset pricing implications, we restrict the elasticity of substi-

tution as follows.

Assumption 2. The elasticity of substitution of the neoclassical production

function F exceeds 1 at high input levels:

lim inf
H→∞

σF (H, 1) > σ > 1.

We justify the economic relevance of Assumption 2 in several ways.

The first justification is empirical. Epple, Gordon, and Sieg (2010) find

that the elasticity of substitution between land and non-land factors for

producing housing service is 1.16 for residential properties and 1.39 for
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commercial properties in Allegheny County, Pennsylvania. Ahlfeldt and

McMillen (2014) argue that the estimation approach of Epple, Gordon,

and Sieg (2010) is less susceptible to measurement error than the old esti-

mates, which are likely biased downwards. They find that the elasticity of

substitution is around 1.25 for Chicago and Berlin.

The second justification is the pathological behavior of interest rates

with σ < 1. To see this, suppose σ < 1 in Example 2. Using (2.9) and

(3.2), we can bound the gross risk-free rate from below as

Rt−1 =
βwt + rt
βwt−1

≥ rt
βwt−1

=
1− α

αβ

(
αG

(1−ρ)t
H + (1− α)G

(1−ρ)t
X

αG
(1−ρ)(t−1)
H + (1− α)G

(1−ρ)(t−1)
X

) ρ
1−ρ

G
(1−ρ)t
X

G
(1−ρ)(t−1)
H

=
1− α

αβ

(
α(GH/GX)

(1−ρ)t + 1− α

α(GH/GX)(1−ρ)(t−1) + 1− α

) ρ
1−ρ

G1−ρ
H Gρ

X(GH/GX)
(ρ−1)t,

which tends to ∞ as t → ∞ because GH > GX and ρ > 1. An interest

rate diverging to infinity is counterfactual and pathological.

The third justification is that when the marginal product of labor is

bounded away from zero, the elasticity of substitution necessarily exceeds

1 at high input levels, as the following lemma shows.

Lemma 3.2. Let F be a neoclassical production function with limH→∞ FH(H, 1) =

m > 0. Then

lim inf
H→∞

σF (H, 1) ≥ 1.

Example 3. To illustrate Lemma 3.2, for parameters A,B > 0, α ∈ (0, 1),

and ρ > 0, consider the neoclassical production function

F (H,X) = A
(
αH1−ρ + (1− α)X1−ρ

) 1
1−ρ +BH. (3.6)

This functional form is common in applied works. For instance, H could be

capital and B = 1 − δ could be the fraction remaining after depreciation.

Alternatively, (3.6) can be thought of as a generalization of the main model

in Section 2 by identifying A as A2H
α
2 and B as A1H1. To simplify notation,

let

Y =
(
αH1−ρ + (1− α)X1−ρ

) 1
1−ρ .

15



Then

F = AY +BH,

FH = AαY ρH−ρ +B,

FX = A(1− α)Y ρX−ρ,

FHX = ρAα(1− α)Y 2ρ−1H−ρX−ρ.

Applying Lemma 3.1, the elasticity of substitution becomes

σ =
FHFX

FFHX

=
(AαY ρH−ρ +B)(A(1− α)Y ρX−ρ)

(AY +BH)ρAα(1− α)Y 2ρ−1H−ρX−ρ

=
1

ρ

1 + B
Aα

(H/Y )ρ

1 + B
A
(H/Y )

.

Clearly, as H → ∞ we have

Y

H
=
(
α + (1− α)(X/H)1−ρ

) 1
1−ρ →

{
α

1
1−ρ if ρ < 1,

0 if ρ ≥ 1,

where the case ρ = 1 follows because Y = HαX1−α. Therefore

σ(H, 1) →


1/ρ if ρ < 1,

1/α if ρ = 1,

∞ if ρ > 1

as H → ∞. In all cases, we have lim infH→∞ σ(H, 1) > 1, satisfying

Assumption 2.

3.3 Unbalanced growth and land overvaluation

We now extend the land overvaluation result in Proposition 2 to a general

setting. The following theorem is the main result of this paper.

Theorem 1 (Land Overvaluation). Suppose Assumptions 1, 2 hold and

E0

∞∑
t=0

(AHt/AXt)
1/σ−1 < ∞ (3.7)
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almost surely. Then land is overvalued in equilibrium.

The proof of Theorem 1 is deferred to the appendix. The condition (3.7)

can be understood as follows. Suppose for simplicity that AHt = Gt
H and

AXt = Gt
X , so productivity growth is exponential. Then the t-th term in the

sum (3.7) is (GH/GX)
(1/σ−1)t, which is summable if σ > 1 and GH > GX .

Thus condition (3.7) roughly says that labor productivity growth is higher

than land productivity growth in the long run. The intuition for Theorem

1 is similar to the one noted in the introduction, so we do not repeat it.

It is important to note that since the equilibrium is unique by Proposition

3, under the conditions in Theorem 1, there are no equilibria in which the

land price equals its fundamental value.

Theorem 1 has three important implications. First, it clarifies the role

of unbalanced growth and elasticity of substitution for generating land

overvaluation, which was previously overlooked. Regarding the assumption

of elasticity of substitution between land and non-land exceeding 1, we

justify it on empirical and theoretical grounds as discussed in Section 3.2.

Second, we can derive a new insight on the long-run behavior of land

prices in a modern economy. The conventional view is that on the long-

run trend, the land price should reflect its fundamental value, even if it

may deviate from the fundamental value temporarily. In sharp contrast

with this widely-held view, Theorem 1 implies that during the process of

economic development characterized by unbalanced productivity growth,

land overvaluation will naturally and necessarily arise.6

Before discussing the third implication in Section 3.4, we show that all

examples in Section 2 are special cases of Theorem 1.

Corollary 2. Proposition 2 is true.

Proof. Define the aggregate production function by

Ft(H,X) = A1tH1H + A2t(H2H)αX1−α,

6Of course, if GH = GX holds in the long run, which is often assumed to ensure a
balanced growth path in the growth literature, there will be no overvaluation in land
prices but this is obviously a knife-edge case.
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where H1, H2 > 0 are constants. Define

F (H,X) = H2H +Hα
2 H

αX1−α,

(AHt, AXt) = (A1t, (A2t/A
α
1t)

1
1−α ).

Then clearly Ft(H,X) = F (AHtH,AXtX) and Assumption 1 holds. As-

sumption 2 holds by Example 3. If Ajt = Gt
j with G1 > G2, then

AHt/AXt = (A1t/A2t)
1

1−α = (G1/G2)
t

1−α ,

so (3.7) holds.

Corollary 3. Land is overvalued in Example 1 if G1 > G2.

Proof. As is well known, profit maximization at the individual sector or firm

level is equivalent to that at the aggregate level. Consider the aggregation

of the two production functions in (2.2). Suppressing the t subscript and

setting (X1, X2) = (0, X), the Lagrangian for the maximization problem

F (H,X) := max

{
2∑

j=1

Fj(Hj, Xj) :
2∑

j=1

Hj = H,
2∑

j=1

Xj = X

}

is

L(H1, H2, λ) = A1H1 + A2H
α
2 X

1−α + λ(H −H1 −H2),

where λ is the Lagrange multiplier. Applying the Karush-Kuhn-Tucker

theorem, we obtain λ = A1, H2 = (αA2/A1)
1

1−αX, and the aggregate

production function

Ft(H,X) = A1tH + (1− α)α
α

1−α (A2t/A
α
1t)

1
1−αX,

which is linear. Therefore if we define

F (H,X) = H + (1− α)α
α

1−αX

and (AHt, AXt) as in the proof of Corollary 2, the same argument applies.

Corollary 4. Land is overvalued in Example 2 if GH > GX .

18



Proof. Trivial.

3.4 Recurrent stochastic fluctuations

We discuss the third implication of Theorem 1 by specializing it.

The production function takes the CES form (2.12). Let At := AHt/AXt

be the relative productivity of labor. The state of the economy at time t

is denoted by nt, which evolves over time according to a Markov chain

with transition probability matrix Π = (πnn′), where πnn′ = Pr(nt = n′ |
nt−1 = n). The relative productivity At evolves over time as a Markov

multiplicative process

At = GtAt−1, (3.8)

where Gt conditional on (nt−1, nt) = (n, n′) is an iid copy of some random

variable Gnn′ > 0.7 Let Sn(A) be the value of (3.7) when (A0, n0) = (A, n).

Due to the multiplicative nature of shocks and homogeneity, we may write

Sn(A) = snA
ρ−1 for some constant sn > 0, where ρ = 1/σ. A dynamic

programming argument shows

sn = 1 +
N∑

n′=1

πnn′ E[Gρ−1
nn′ ]sn′ . (3.9)

Defining theN×1 vector s = (s1, . . . , sN)
′, the vector of ones 1 = (1, . . . , 1)′,

and the N × N nonnegative matrix K = (πnn′ E[Gρ−1
nn′ ]), we may rewrite

(3.9) as

s = 1 +Ks ⇐⇒ s = (I −K)−11. (3.10)

A positive and finite solution to (3.10) exists if and only if the spectral

radius of K (the maximum modulus of all eigenvalues) is less than 1.8

Therefore we obtain the following proposition.

Proposition 4. Suppose the production function is CES with elasticity of

substitution σ > 1 and the relative labor productivity At := AHt/AXt follows

the Markov multiplicative process (3.8). Let K = (πnn′ E[G
1/σ−1
nn′ ]). Then

land is overvalued if the spectral radius of K is less than 1.

7See Beare and Toda (2022, §2) for more details.
8This argument is similar to Borovička and Stachurski (2020).
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As a numerical example, we set β = 0.5, α = 0.8, σ = 1.25, N = 2,

πnn′ = 1/3 if n ̸= n′, and (G1n′ , G2n′) = (1.1, 0.95) for all n′, which implies

that the spectral radius of K is less than 1 and land is overvalued. Figure

1 shows one simulation for 200 periods. The land price exhibits boom-bust

cycles. The price-rent ratio steadily increases, consistent with Theorem 1.

0 50 100 150 200

Time

0

5

10

15
Price
Rent
Price-rent ratio

Figure 1: Simulation of the numerical example of Proposition 4.

Proposition 4 and this numerical example provide the third implication

of Theorem 1. When productivities increase and remain to be high, land

prices will continue to rise relative to the trend, which may look like an

emergence of a large land price bubble. Conversely, if productivities de-

crease and remain to be so for an extended period of time, land prices will

fall, which may appear to be a bursting of a land bubble. Thus, land prices

exhibit recurrent booms and busts driven by fluctuations in productivities.

Nonetheless, as long as the relative productivity growth of land is low, land

will always be overvalued, with the size of land overvaluation fluctuating

over time and a steady upward trend in the price-rent ratio. Our model

provides a theoretical foundation for recurrent stochastic bubbles.
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4 Concluding remarks

This paper has studied the long-run behavior of land prices in a modern

economy. We have established the Land Overvaluation Theorem showing

the surprising link between unbalanced growth, elasticity of substitution,

and land overvaluation in an economy with aggregate risk. This Theorem

provides new insights on both short-run and long-run behaviors of land

prices. Unlike the conventional view that land overvaluation (sometimes

called land bubbles) may occur only as short-run phenomena, our paper

shows that it will naturally and necessarily arise along the process of eco-

nomic development with unbalanced growth. Moreover, driven by stochas-

tic fluctuations in productivities, land prices experience large swings, with

expansions and contractions in the size of land overvaluation that may

appear to be the emergence and collapse of large land bubbles.

To derive these results, unbalanced growth together with elasticity of

substitution exceeding 1 plays an important role. Although unbalanced

growth may not seem to be common in the standard growth models, it is a

general feature in the growth process in reality because different sectors or

production factors have different growth rates. At the same time, in reality,

as economies develop, the importance of land as a factor of production usu-

ally diminishes, yet its role as a store of value continues to be high. What

our Theorem shows is that under such circumstances, land overvaluation

will arise as the equilibrium outcome. In this sense, we believe that the

results of our paper capture an important aspect of the modern economy.

Finally, we would like to add two remarks. In the present paper, for

simplicity we only considered an overlapping generations model with ex-

ogenous growth. However, whether growth is exogenous or endogenous is

not important for asset overvaluation. In a parallel work, Hirano, Jinnai,

and Toda (2022) show that growth and asset overvaluation endogenously

emerge as the leverage of entrepreneurs is relaxed. They also employ a

Bewley-type model with infinitely-lived agents, implying that the overlap-

ping generations structure is inessential.

In our model, land is the primary store of value and overvaluation nec-

essarily occurs in land. If there are multiple assets that serve as a store of

value (such as gold and cryptocurrency), the extent of overvaluation in in-
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dividual assets could be indeterminate. Nonetheless, the aggregate amount

of overvaluation and the equilibrium outcome are determinate, as in the

present paper. However, as noted in the introduction, we think land is

a focal point as a store of value due to its characteristics. Moreover, in

the macro-finance model of Hirano, Jinnai, and Toda (2022) with credit

frictions, there are means of savings other than land, which are lending

to other economic agents or investing in capital. Even in that setting, al-

though there is no aggregate risk, land overvaluation necessarily emerges

as the unique equilibrium outcome under sufficiently lax leverage.

A Proofs

Proof of Proposition 3. The first-order condition for profit maximization

implies (3.2a) and (3.2b). Define the return on land by

Rt+1 =
Pt+1 + rt+1

Pt

.

Then the budget constraints (2.6) can be combined into one as

zt+1 = Rt+1(wt − yt).

Suppressing the time subscripts and substituting into the objective func-

tion, the young seek to maximize

(1− β) log y + E[log z] = (1− β) log y + β log(w − y) + β E[logR].

Clearly this function is strictly concave in y and achieves a unique maximum

characterized by the first-order condition

1− β

y
− β

w − y
= 0 ⇐⇒ y = (1− β)w,

which is (3.2d). Since in equilibrium we have xt = 1, the land price satisfies

Pt = Ptxt = wt − yt = βwt, which is (3.2c).

Proof of Lemma 3.1. Since F is homogeneous of degree 1, FH is homoge-
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neous of degree 0. Therefore differentiating both sides of

F (λH, λX) = λF (H,X),

FH(λH, λX) = FH(H,X)

with respect to λ and setting λ = 1, we obtain

HFH +XFX = F, (A.1a)

HFHH +XFHX = 0. (A.1b)

Let h = log(H/X). Using the definition (3.4) and (A.1), we obtain

1

σF

=
∂

∂h
log

FX(Xeh, X)

FH(X, eh, X)
=

XehFHX

FX

− XehFHH

FH

=
HFHX

FX

− HFHH

FH

=
HFHX

FX

+
XFHX

FH

=
FHX

FHFX

(HFH +XFX) =
FFHX

FHFX

.

Proof of Lemma 3.2. Let X = 1 and h = logH. Using (3.4) and applying

l’Hôpital’s rule, we obtain

lim sup
H→∞

ρ(H, 1) = lim sup
H→∞

log(FX/FH)

logH
= 1 + lim sup

H→∞

log FX

HFH

logH
.

Therefore to prove the claim, it suffices to show FX ≤ HFH for large enough

H. SinceX = 1 and F is homogeneous of degree 1, we have F = HFH+FX ,

so

1

H
(HFH − FX) =

1

H
(2HFH − F ) = 2FH − F

H
→ 2m−m = m > 0,

implying FX < HFH for large enough H.

We prove Theorem 1 by establishing a series of lemmas.

Lemma A.1. Let A > 0 and suppose that σF (H, 1) ≥ σ for H ≥ A. Let

ρ = 1/σ. If AH/AX ≥ A, then

FX

FH

(AH , AX) ≤
FX

FH

(A, 1)A−ρ(AH/AX)
ρ. (A.2)
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Proof. By Assumption 1, F is homogeneous of degree 1. Therefore FH , FX

are homogeneous of degree 0, and so is ρ(H,X) in (3.4).

Let B := AH/AX ≥ A. Setting H = eh and X = 1 in (3.4), we obtain

ρ(eh, 1) =
d

dh
log

FX

FH

(eh, 1).

Integrating both sides from h = logA to h = logB and applying the

intermediate value theorem for integrals, there exists h1 ∈ (logA, logB)

such that

ρ(eh1 , 1) log(B/A) =

∫ logB

logA

ρ(eh, 1) dh

= log
FX

FH

(B, 1)− log
FX

FH

(A, 1). (A.3)

Taking the exponential of both sides of (A.3), letting M := (FX/FH)(A, 1),

and using the homogeneity of FH , FX , we obtain

FX

FH

(AH , AX) =
FX

FH

(B, 1) = M(B/A)ρ(e
h1 ,1).

Since B ≥ A and ρ(eh1 , 1) ≤ ρ := 1/σ, it follows that

FX

FH

(AH , AX) ≤ M(B/A)ρ = MA−ρ(AH/AX)
ρ,

which is (A.2).

Lemma A.2. In equilibrium, the fundamental value of land is bounded

above as

Vt ≤ wt Et

[
∞∑
s=1

rt+s

wt+s

]
. (A.4)

Proof. The stochastic discount factor between time t and t + 1 equals the

marginal rate of substitution

mt→t+1 :=
β/zt+1

(1− β)/yt
=

βyt
(1− β)zt+1

=
βwt

βwt+1 + rt+1

≤ wt

wt+1

,

where the last line uses (3.2) and rt+1 ≥ 0. Then we can bound the
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stochastic discount factor between time t and t+ s from above as

mt→t+s :=
s−1∏
j=0

mt+j→t+j+1 ≤
wt

wt+s

.

Therefore we can bound the fundamental value of land from above as

Vt := Et

[
∞∑
s=1

mt→t+srt+s

]
≤ Et

[
∞∑
s=1

wt

wt+s

rt+s

]
= wt Et

[
∞∑
s=1

rt+s

wt+s

]
.

Lemma A.3. We have limt→∞ Vt/Pt = 0 almost surely.

Proof. By (3.2c) and Lemma A.2, we have

0 ≤ Vt

Pt

≤ 1

β
Et

[
∞∑
s=1

rt+s

wt+s

]
.

Therefore to show the claim, it suffices to show that Et[
∑∞

s=1 rt+s/wt+s] → 0

almost surely as t → ∞.

By Assumption 2, we can take a constant A > 0 such that σ(H, 1) ≥
σ > 1 for all H ≥ A. Let At := AHt/AXt and ρ = 1/σ ∈ (0, 1). Since

the expectation of the infinite sum (3.7) is finite, the sum converges with

probability 1 and hence we must have Aρ−1
t → 0 and At → ∞ because

ρ < 1. In particular, there exists T > 0 such that At ≥ A for t ≥ T . For

such t, by Lemma A.1 we have

rt
wt

=
FX(AHt, AXt)AXt

FH(AHt, AXt)AHt

≤ FX

FH

(A, 1)A−ρAρ−1
t .

Therefore

Et

[
∞∑
s=1

rt+s

wt+s

]
≤ FX

FH

(A, 1)A−ρ Et

∞∑
s=1

Aρ−1
t+s .

Letting t → ∞ and using condition (3.7), we obtain Et[
∑∞

s=1 rt+s/wt+s] → 0

almost surely as t → ∞.

Proof of Theorem 1. The absence of arbitrage and the definition of the
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fundamental value imply

Pt = Et[mt→t+1(Pt+1 + rt+1)],

Vt = Et[mt→t+1(Vt+1 + rt+1)].

Taking the difference, we obtain

Pt − Vt = Et[mt→t+1(Pt+1 − Vt+1)].

Iterating this equation and applying the law of iterated expectations, we

obtain

Pt − Vt = Et[mt→t+s(Pt+s − Vt+s)].

Lemma A.3 implies Vt+s/Pt+s → 0 almost surely as s → ∞ and hence

Pt+s > Vt+s for large enough s with probability 1. Therefore Pt > Vt for all

t, and land is overvalued.
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