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Abstract

This paper studies how selling constraints, which refer to the inability of firms to attend to all

the buyers who want to inspect their products, affect the equilibrium price and social welfare. We

show that the price that maximizes social welfare is greater than the marginal cost. This is because

with selling constraints, a higher price, despite reducing the probability of trade (fewer buyers are

willing to pay a higher price) increases the value of trade (only trades generating positive surplus

are consummated). We show that the equilibrium price is inefficiently high except in the limit

when firms’ selling constraints vanish and consumers observe prices before they visit firms. Thus,

selling constraints constitute a source of market power.
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1 Introduction

Despite the fact that every organization tries to optimize its marketing and sales team,1 selling

constraints, which refer to the inability of firms to attend to all interested buyers, are ubiquitous.

Waiting at the phone to be attended to, queuing at retail stores, and awaiting landords’ replies are

common examples of unpleasant situations in everyday shopping that make it difficult for consumers

to evaluate alternative options and sometimes even result in that they are unable to buy.2

Despite the existence of a relatively large economics literature on competition with capacity-

constrained firms (see the early works of Levitan and Shubik, 1972; Kreps and Scheinkman, 1983;

and Davidson and Deneckere, 1986), to the best of our knowledge, the literature has not paid any

attention to the implication of selling constraints in markets. This omission is very important because

these two constraints, capacity and selling, bear quite differently on price formation and efficiency.

This point can easily be illustrated in the case of monopoly. Consider for example a single

homeowner who has only one house (and hence is capacity constrained) trying to rent it out to

one tenant out of a large set of tenants with random valuations ε drawn from an interval according

to some density function f . Suppose the homeowner has an unlimited capacity to let prospective

tenants view the house (so he/she does not face any selling constraint). In that case, the homeowner

should charge a price equal to the highest tenant valuation and such a high price is efficient because

it maximizes the value of trade E[ε|ε > p] without compromising the probability of trade (which is

equal to 1). By contrast, if the homeowner faces severe selling constraints so that he/she can only

attend to one tenant, he/she should charge a price equal to the standard monopoly price (i.e. the

inverse of the hazard rate (1− F (p))/f(p)) and such pricing turns out to be inefficient because the

socially optimal price equals marginal cost thereby maximizing the probability of trade 1−F (p) and

minimizing the value of trade E[ε|ε > p].

In this paper we study how selling constraints affect the functioning of markets with many buyers

and sellers. In particular, we ask:

• How does a buyer’s buying probability and a firm’s selling probability depend on selling con-

straints?

• How do selling constraints affect the price equilibrium? In other words, do prices increase or

1Sales force management, which constitutes a typical course in business programs worldwide (e.g. Chicago Booth,
INSEAD and MIS Singapore), has been a research topic in management and marketing for various decades. For a
textbook approach to the topic, see for example Johnston and Marshall (2013) and Rich (2017).

2The COVID-19 pandemics record-long wait lines to enter stores that recently disrupted retail business have made
it to breaking news in many places of the world. A survey conducted by Qudini reveals that many upset consumers’
complaints are the lack of staff at the store and staff taking too long to attend to customers (see e.g. https://www.

bbc.com/news/business-10866718). Moreover, in Airbnb for example the readiness to reply to tenants’ questions and
requests is crucial for the ratings landlords and their properties receive.
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decrease as selling constraints weaken?

• Are selling constraints a source of marker power? How do selling constraints impact firms’

profits and the efficiency of the market?

We address these questions in the simplest possible setting in which the above mentioned trade-

off between the probability of trade and the value of trade arises. We consider a market where there

is a large number of sellers, each of them selling one unit of a differentiated good, and a large number

of buyers, each of them interested in buying one unit of a satisfactory product. An individual buyer

picks a seller to visit and, depending on how many other buyers visit the same seller and the ability

of the seller to attend to various buyers, she is given the opportunity to inspect the seller’s product,

in which case she learns her valuation and decides whether to buy it or not.

We start by discussing the price that maximizes social welfare. To do so, we first derive the

probability with which a transaction occurs under the natural assumption that buyers’ decisions on

which seller to visit are independent (i.e. in an uncoordinated fashion). In deriving this probability,

one needs to take into account situations in which the number of buyers arriving at a given seller

exceeds the number of buyers that the seller can attend to, as well as cases in which this is not the

case. This makes this probability an increasing function of the selling capacity of the firms, which

implies that the social welfare maximizing price depends on selling constraints.

In standard markets where capacity and selling constraints are absent, marginal cost pricing is a

cornerstone of efficiency and thus the shortcut definition of market power is the ability of a firm to

sustain prices about marginal cost. The reason for this is that as the price increases away from the

marginal cost, low-valuation buyers are excluded from the market without affecting the probability

with which high-valuation buyers purchase, which clearly generates a dead-weight loss. Marginal

cost pricing is also efficient in our model with capacity-constrained firms provided that firms have

maximal selling constraints. However, with weaker selling constraints, the price that maximizes

social welfare is greater than the marginal cost. Even though a price higher than the marginal

cost excludes low-valuation buyers, the social benefit of it is that high-valuation ones get a higher

chance to buy the item, which has a positive effect on surplus. The planner, thus, faces a trade-off.

By raising the price, the chance that the product sells goes down but in case of a sale the surplus

generated goes up. These two forces operate on social surplus in a way that it first increases in price

and then decreases. Welfare maximization consists of balancing these two effects, which drives a

wedge between the optimal price and marginal cost. Hence, the shortcut notion of market power as

the ability of firms to sustain prices about marginal cost is of no big use here. Instead, market power

has to be assessed as the capacity of firms to sustain prices above the efficient level, which differs

from the marginal cost.
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We show that the above observations on how selling constraints impact the price equilibrium

and its efficiency properties in monopoly extend naturally to our search setting if, in the tradition

of Diamond (1971), Wolinsky (1986) and Anderson and Renault (1999), deviation prices are only

observable upon visiting the firms and hence the price of an individual firm does not have a bearing

on the number of buyers who choose to visit that firm.

This motivates us to examine a model of competition in the tradition of Bertrand where price

deviations are observed by buyers before they visit firms and hence they face stronger business stealing

effects. In such a search setting, we show that a laxer selling constraint operates on the equilibrium

price in two ways. On the one hand, because a firm can attend to more buyers, it makes attracting

them to its premises more valuable; this gives firms incentives to decrease the equilibrium price. On

the other hand, because a firm may offer the opportunity to inspect the product to more buyers, it

increases the chance that a higher price is accepted by one of them; this gives firms incentives to

increase the equilibrium price. When there are few buyers per seller, the second effect plays a weak

role and the equilibrium price decreases as selling constraints become softer. By contrast, when the

number of buyers per seller is substantial, the first effect plays little role and the equilibrium price

increases as selling constraints weaken.

The efficiency of the pricing equilibrium turns out to hinge upon the firms’ ability to let buyers

inspect their products. By raising the price, the firm gets fewer visitors and moreover incurs the

risk that all the buyers that the firm can attend to choose not to buy the product; however, if one

buyer acquires the product, profits go up. We show that when each seller can only attend to a finite

number of buyers, equilibrium markups turn out to be inefficiently high. The intuition is that firms

have too weak incentives to attract buyers; the fewer the buyers they can attend to, the weaker the

incentives to attract them. As the number of buyers an individual firm can attend to goes up, the

incentives to attract buyers increase and firms correspondingly lower the price. Only in the limiting

case in which all sellers can continue to offer its product to all the buyers that show up at their

premises no matter how many, are markups at the efficient level.

We thus conclude that selling constraints constitute a source of market power when it is appro-

priately measured by the wedge between the equilibrium and the efficient price, rather than marginal

cost. An implication of this is that market power need not be associated with higher profits. This

has potential implications for the interpretation of all the recent work that measures markups (as

differences between prices and marginal costs) and relates them to market inefficiency (see e.g. De

Loecker, Eeckhout and Unger (2020)).

To the best of our knowledge, our paper is the first to study the impact of selling constraints

on the efficiency of the market equilibrium. In doing so, we model a one-shot search market where
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products are horizontally differentiated in the tradition of Perloff and Salop (1985) and firms’ prices

may or may not be observable. Our model is thus connected to two strands of the consumer search

literature. The first line of work is the standard literature on consumer search for differentiated

products initiated by Wolinsky (1986) and Anderson and Renault (1999). Following the tradition

commenced by Diamond (1971), this literature has typically modelled markets in which prices are

non-observable before search. More recent contributions include e.g. Armstrong, Vickers and Zhou

(2009), Bar-Isaac, Caruana and Cuñat (2012) and Haan and Moraga-González (2011). In our model

with capacity-constrained firms, this assumption leads to local monopolies.

The second strand of the consumer search literature to which this paper is related is newer.

In recent years, perhaps motivated by the availability of data from the Internet, there has been a

surge of interest in the modelling of search markets in which consumers observe prices before search

(Armstrong, 2017; Armstrong and Zhou, 2011; Choi, Dai and Kim, 2018; Haan, Moraga-González

and Petrikaitė, 2018). This literature has shown that price observability does not combine well with

product differentiation to yield a tractable model. The problem is that an equilibrium in pure-

strategies does not exist and the mixed-strategy equilibrium is extremely difficult to characterize.

To model price-directed search, thus, these authors have modified the standard setting in alternative

ways. For example, Choi, Dai and Kim (2018) and Haan, Moraga-González and Petrikaitė. (2018)

introduce observable and non-observable product characteristics and show that when the observable

product characteristics are sufficiently dispersed an equilibrium in pure strategies exists. Our model

in which firms are capacity constrained contributes to this line of work by putting forward yet another

way to get a tractable model of price competition in search markets.3,4

2 The model

There is a measure B of buyers, and a measure S of sellers. Each buyer has unit demand. Each

seller has one unit to sell.5 Let x be the number of buyers per seller, or number of buyers per firm,

i.e. x ≡ B/S. The limiting case x → 0 represents a case in which there are infinitely many firms

3Other papers that study uncertain product availability in consumer search markets, but without modelling selling
constraints, are Janssen and Rasmusen (2002), Lester (2011), Gomis-Porqueras, Julien and Wang (2017), Atabek
(2022), and Teh, Wang, and Watanabe (2023).

4In the search and matching literature (for a recent survey, see Wright, Kircher, Julien and Guerrieri, 2021) it
is standard to model capacity-constrained firms but products (to be sure, jobs in most of the articles) are typically
assumed to be homogeneous. When products are homogeneous, however, selling constraints are inconsequential because
the first buyer to whom the firm offers the product will buy it. Moreover, because the quality of trade does not matter,
the equilibrium price has no bearing on welfare, hence the literature’s focus on other aspects of efficiency, in particular
the efficiency of entry. An exception is when firms are asymmetric for example because some sellers have more units
to sell than others (see Watanabe, 2010, 2018, 2020; Tan, 2012; and Godenhielm and Kultti, 2015).

5The insights of our paper carry over to situations where firms have more units to sell but still face selling constraints.
For an elaboration of this point, see Section 7.
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per buyer so that the market is extremely competitive. The other limiting case x → ∞ refers to

a situation in which there are infinitely many buyers per firm so that each firm enjoys a monopoly

position. For simplicity, we normalize unit production costs to zero.

Products are horizontally differentiated. We model product differentiation as in the random

utility framework of Perloff and Salop (1985).6 The exact value a buyer ` places on the product of

a seller i, denoted εi`, depends on how well the product matches the personal tastes of the buyer.

Such a match value can only be learnt upon inspection of and interaction with the product. We

assume that match values are identically and independently distributed across buyers and sellers.

Let F be the distribution of match values, with density f and support [0, 1]. From now on, we drop

the sub-index of εi`.

With differentiated products, it is important to pay attention to the ability of a seller to attend

to its customers and offer its product to a next buyer after an earlier buyer has decided not to buy

it because her value falls short of the price. We refer to this (lack of) ability as selling capacity.

We assume that each seller can attend and (sequentially) offer its product to a total of k buyers,

k = 1, 2, ...,∞.7

The interaction between buyers and sellers is modeled as a one-shot game.8 First, each firm

chooses its price; then, each buyer picks a seller to visit. Once buyers arrive at the sellers’ stores,

each seller (with customers) offers its good to a first buyer; after inspecting the good, the buyer

decides whether to buy it or not. If the buyer buys the good, she gets utility εi − pi while the seller

gets pi. If the buyer decides not to buy the good, in which case she gets zero utility, the seller offers

the good to the next buyer (if he has more to attend to). The process continues in the same fashion

until either the seller does not have more buyers to attend to or the seller can no longer attend to

buyers because his selling capacity k is exhausted.

We are interested in the characterization of a symmetric equilibrium price in two distinct informa-

tional scenarios. In the first scenario, we assume that firms’ prices are not observable by consumers

before they pick a seller to visit. This is in the tradition of the random consumer search literature

(cf. Wolinksy, 1986; Anderson and Renault, 1999). In the second scenario, we assume that firms’

6This assumption is central to our model. Actually, the fact that products are horizontally differentiated makes
selling constraints relevant; with homogeneous products, on the contrary, the first buyer to whom a firm offers its
product acquires it and selling constraints thus become inconsequential.

7The case k = 1 represents the extreme case in which each seller can only offer its product to a single buyer. The
case k → ∞ represents the also extreme case in which a seller can continue to offer its product to all the buyers who
patronize its store, even if infinitely many of them do. In most settings, a small k will reflect better the reality than a
large k, for example when firms do not have sufficient salespeople or when products are highly complex so that each
consumer takes quite a bit of time to evaluate it (houses, campers, cars, motorbikes, boats, etc.).

8The main results of our paper should extend to situations where consumers are allowed to search sequentially till
they find a satisfactory match, as it is standard in the consumer search literature. In such a case, the consumers’
reservation value plays the role of the equilibrium price. For further details, see Section 7.
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prices are observable by consumers before they pick a seller to visit, in which case consumer search

is ordered by prices (in a sense to be precised later). Ordered search has recently received much

attention (cf. Armstrong, 2017; Armstrong and Zhou, 2011; Ding and Zhang, 2018; Choi, Dai and

Kim, 2018; Haan, Moraga-González and Petrikaité, 2018).

3 Buyers’ probability of buying

We start the analysis by deriving the probability with which a buyer who visits a seller happens to

be attended to, i.e., gets an opportunity to inspect the seller’s product and decide whether to buy it

or not. Later we provide some useful properties of this probability.

It is well-known (see e.g. Butters, 1977; Peters, 2000) that in large markets in which buyers visit

sellers randomly and independently, the number of buyers n that shows up at a given seller follows

a Poisson distribution with Poisson parameter equal to the number of buyers per seller x. Thus, the

probability that exactly ` = 0, 1, 2, ... buyers appear at the premises of a given seller is equal to:

Pr(n = `) =
x`e−x

`!
,

where the symbol Pr stands for probability.

Let us denote by η(x, p; k) the probability with which a given buyer who visits a seller charging a

price p gets an opportunity to inspect the product in a market where there are x buyers per seller and

each seller can only attend to a maximum of k buyers. This probability will in general depend on the

number of buyers per seller x because the more buyers showing up at a seller, the less likely it is that

a particular buyer gets an opportunity to inspect the product and interact with it. This likelihood

also depends on the price p the firm charges because a higher price makes it more probable that

other buyers attended to earlier than the buyer in question choose not to buy the product. Finally,

this probability is also affected by the selling capacity k of the seller because the seller may not be

able to attend to the given buyer if there are more than k other buyers visiting the firm. Our first

contribution is to derive the probability η(x, p; k) for an arbitrary selling capacity k:

Proposition 1 In a market with x buyers per seller, the probability with which a given buyer who

visits a firm charging price p gets an opportunity to inspect and buy the product of the firm is equal

to:

η(x, p; k) =
1

x(1− F (p))
m(x, p; k) (1)
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where

m(x, p; k) = 1− F (p)k +

(
Γ(k + 1, x)

Γ(k + 1)

)
F (p)k − Γ(k + 1, xF (p))

Γ(k + 1)
e−x(1−F (p)),

and Γ(k + 1) = k! =
∫∞

0 tke−tdt and Γ(k + 1, x) =
∫∞
x tke−tdt.

Proof. See the Appendix.

In deriving this probability, one needs to take into account situations in which the number of

buyers arriving at a given seller exceeds the number of buyers that the seller can attend to (n > k),

as well as cases in which this is not the case (n ≤ k).

It is now didactic to consider two special cases of interest. The first is the k = 1 case, which

represents a situation of extreme selling constraints. Setting k = 1 in (1) gives the well-known

matching probability (see e.g. Butters (1977)):

η(x, p; 1) =
1− e−x

x
.

Notice that this probability is decreasing in x but independent of the price p. A higher number of

buyers per firm x makes it less likely that a particular buyer is offered the product. The price does

not matter because if the first buyer to whom the seller offers its product chooses not to buy it, then

the seller cannot offer it to anyone else.

The second special case is that in which k → ∞, which represents a situation in which firms

do not have selling constraints whatsoever. Taking the limit of the probability in (1) when k → ∞

gives:

η(x, p;∞) = lim
k→∞

η(x, p; k) =
1− e−x(1−F (p))

x(1− F (p))

This expression is similar in spirit to the one that obtains when k = 1 because we can interpret the

quantity x(1−F (p)) as the “relevant” number of buyers per seller, that is, the number of buyers with

a match value above the price per seller. Because F is a distribution function, it is straightforward

to verify the intuitive result that η(x, p;∞) > η(x, p; 1).

In general, it is more realistic to consider environments where selling constraints are neither

extreme nor non-existent. Our next result gives some general properties of the probability η(x, p; k)

for arbitrary k.

Proposition 2 The probability η(x, p; k) (with which a buyer gets an opportunity to inspect and

possibly buy the product of the seller he/she visits) is increasing and concave in k, decreasing in x,

and increasing in F (p) for k ≥ 2.

Proof. See the Appendix.
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4 Local monopolies

We now move to the characterization of a symmetric equilibrium price when, as in the traditional

consumer search literature (cf. Diamond, 1971; Stahl, 1989; Wolinsky, 1986), consumers only discover

the actual price a firm charges upon arrival to the firm. This yields a model of local monopolies.

Let p be the symmetric equilibrium price. In order to derive p, consider a deviation by an

individual seller i to a price pi 6= p. Because buyers do not observe the actual prices charged by

the sellers, price deviations do not affect buyers’ visits. Hence, an individual buyer picks a seller at

random and the number of buyers an individual seller expects to see at its premises is x.

The deviant’s profit function is:

Π(pi; p) = pi

(
k∑
`=1

Pr[ni = `](1− F (pi)
`) +

∞∑
`=k+1

Pr[ni = `](1− F (pi)
k)

)
.

This profit function reflects the fact that the actual number of buyers appearing at the deviant firm,

ni, may be smaller or larger than the maximum number of buyers the firm can attend to, k. In the

Appendix we show that this payoff can be written more compactly as:

Π(pi; p) = xpi(1− F (pi))η(x, pi; k). (2)

The first order condition (FOC) for profits maximization, Π′(pi; p) = 0, is:

x [1− F (pi)− pif(pi)] ηi + pix(1− F (pi))
∂ηi
∂pi

= 0. (3)

After imposing symmetry, i.e. pi = p, which also implies that ηi = η we can rewrite the FOC (3) as

follows:
∂η

∂p
p(1− F (p)) + η [1− F (p)− pf(p)] = 0. (4)

Proposition 3 Suppose that sellers’ prices are not observable before search. Then, for any distribu-

tion of match values with increasing density, i.e. f ′ ≥ 0, there exists a unique symmetric equilibrium

price, which is given by the solution to (4) and satisfies:

p =
1− F (p)k

(
1− Γ(k+1,x)

Γ(k+1)

)
− Γ(k+1,xF (p))

Γ(k+1) e−x(1−F (p))

kF (p)k−1f(p)
(

1− Γ(k+1,x)
Γ(k+1)

)
+ xf(p)Γ(k,xF (p))

Γ(k) e−x(1−F (p))
. (5)

Proof. See the Appendix.
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4.1 Comparative statics

In this section we examine how the equilibrium price depends on the number of buyers per seller

and the number of buyers sellers can attend to. An important fact comes out of the analysis: the

monopoly price is sensitive to the ability of the firms to attend to their buyers. A firm that has

many buyers interested in its product may not be able to take full advantage of this richness when

its ability to attend to buyers is limited. This affects the equilibrium price.

Proposition 4 The equilibrium price in (5):

1. is increasing in the number of buyers per seller x for all k ≥ 1, satisfying p→ 1−F (p)
f(p) as x→ 0

and p→ 1−Fk(p)
kFk−1(p)f(p)

as x→∞;

2. is increasing in the selling capacity k, satisfying p = 1−F (p)
f(p) when k = 1 and p→ 1−e−x(1−F (p))

xe−x(1−F (p))f(p)

as k →∞. The latter limit price approaches the standard monopoly price when x→ 0 and the

upper bound of the distribution of match values (= 1) when x→∞.

Proof. See the Appendix.

The equilibrium price increases in x and in k. This result is quite intuitive. Recall that the

limiting case x→ 0 represents a situation in which there are infinitely many firms per buyer. While

this tends to create conditions for low prices, firms still hold a significant amount of market power

because buyers only visit one seller. Firms, expecting to receive almost no buyers when x→ 0 charge

the standard monopoly price p = 1−F (p)
f(p) no matter k.9 As x increases, firms expect to get more

buyers at their premises. This does not change the equilibrium price if firms’ selling constraints are

maximal because then expecting to receive more buyers is inconsequential given that firms can only

attend to one buyer at most. However, when firms can attend to more buyers, the equilibrium price

increases. The reason is that every seller can offer its product to k buyers. When x→∞ and k →∞

the equilibrium price converges to the highest consumer valuation. The reason is that an individual

firm can afford to continue to increase its price because the expectation is that there is always one

more buyer to whom the firm can offer its item.

Figure 1 illustrates the results in Proposition 4. On the LHS we represent the equilibrium price

and on the RHS firms’ profits as a function of the selling constraint k for various levels of x. Both

the price and firms’ profits are monotone increasing in k and x.

9The “standard” monopoly price is the price that maximizes the payoff π(p) = p(1− F (p)).
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Figure 1: Equilibrium price and profits as a function of the selling capacity k.

5 Monopolistic competition

We now move to the characterization of the market equilibrium when, in the tradition of Bertrand

competition, consumers observe prices before search. This implies that (deviation) prices have an

influence on the number of buyers who visit a given firm, with a low price firm receiving a larger num-

ber of visitors (cf. Armstrong, 2017; Armstrong and Zhou, 2011; Ding and Zhang, 2018; Choi, Dai

and Kim, 2018; Haan, Moraga-González and Petrikaité, 2018). This yields a model of monopolistic

competition.

We proceed in the same way as in Section 4. Let p be the symmetric equilibrium price. In order

to derive p, consider a deviation by an individual seller i to a price pi 6= p. The deviant’s profit

function is the same as that in (2) but after recognizing that the number of buyers visiting firm

i is a function of the price charged by firm i and the price charged by the rest of the firms. Let

x(pi; p) denote such function, that is, the (expected) number of buyers showing up at the deviating

seller i charging price pi when the rest of the sellers charge price p. (Sometimes we will use the

shorter notation xi ≡ x(pi; p) to refer to this expected number of visitors.) Then, the deviant’s profit

function is:

Π(pi; p) = pi(1− F (pi))x(pi; p)η(xi, pi; k). (6)

To determine the number of buyers x(pi; p) visiting the deviant firm i we follow Peters (2000)

and assume that buyers must be indifferent between the utility they expect to get at the deviant

firm and the utility they expect to get at any other seller in the market. The expected utility of a
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buyer who chooses to visit the deviant seller, denoted by V (pi; p), is given by:

V (pi; p) = η(xi, pi; k)[1− F (pi)][E(ε | ε ≥ pi)− pi]

= η(xi, pi; k)I(pi),

where

I(pi) ≡
∫ 1

pi

(ε− pi)f(ε)dε

is the consumer’s expected utility conditional on being offered the product of the seller. For later

use, note that ∂I/∂pi = −(1 − F (pi)). Meanwhile the expected utility of a buyer who picks any

other seller charging p is:

V (p; p) = η(x, p; k)[1− F (p)][E(ε | ε ≥ p)− p] = η(x, p; k)I(p).

Solving the equation V (pi; p) = V (p; p) for x(pi; p) gives the expected number of buyers who will

visit a deviant seller charging price pi. Unfortunately, the function x(pi; p) cannot be obtained in

closed form. Nevertheless, in order to study equilibrium pricing we can apply the implicit function

theorem to the equation V (pi; p) − V (p; p) = 0 to obtain the sensitiveness of the deviant seller i’s

number of visitors to its own price:

∂x(pi; p)

∂pi
= −

∂ηi
∂pi
I(pi)− ηi(1− F (pi))

∂ηi
∂xi
I(pi)

, (7)

where, to shorten notation, we have written ηi instead of η(xi, pi; k).

The first order condition (FOC) for profits maximization, Π′(pi; p) = 0, is:

[1− F (pi)− pif(pi)]xiηi + pi(1− F (pi))xi
∂ηi
∂pi

+ pi(1− F (pi))

(
ηi + xi

∂ηi
∂xi

)
∂xi
∂pi

= 0. (8)

After imposing symmetry, i.e. pi = p, which also implies that xi = x and ηi = η, and using (7), we
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can rewrite the FOC (8) as follows:

xη [1− F (p)− pf(p)] + xp(1− F (p))
∂ηi
∂pi

∣∣∣∣
pi=p

+ p(1− F (p))

(
η + x

∂ηi
∂xi

∣∣∣∣
pi=p

) η(1− F (p))− I(p) ∂ηi
∂pi

∣∣∣
pi=p

I(p) ∂ηi
∂xi

∣∣∣
pi=p

= xη [1− F (p)− pf(p)] + ηp(1− F (p))
η(1− F (p))− I(p) ∂ηi

∂pi

∣∣∣
pi=p

I(p) ∂ηi
∂xi

∣∣∣
pi=p

+ xηp
(1− F (p))2

I(p)
= 0.

Rearranging terms, this expression can be rewritten as:

∂η

∂x
x
{

[1− F (p)− pf(p)] I(p) + p(1− F (p))2
}

+ pη(1− F (p))2 − ∂η

∂p
p(1− F (p))I(p) = 0, (9)

where we have replaced ∂ηi
∂pi

∣∣∣
pi=p

and ∂ηi
∂xi

∣∣∣
pi=p

by ∂η
∂p and ∂η

∂x , respectively, for simplicity of notation.

In the Appendix, we establish the following useful relationship between ∂η
∂p and ∂η

∂x :

(1− F (p))

f(p)

∂η

∂p
= −x∂η

∂x
+ d(p), (10)

where

d(p) ≡ −kF (p)k−1

x

(
1− Γ(k + 1, x)

Γ(k + 1)

)
≤ 0.

Using relationship (10) we can state that:

Proposition 5 Suppose that sellers’ prices are observable before search. Then, if there exists a

symmetric equilibrium price, it is given by the solution to

(1− F (p))2

f(p)

[
∂η

∂p
I(p) +

∂η

∂p
p(1− F (p))− pηf(p)

]
= d(p)

[
(1− F (p)− pf(p)) I(p) + p(1− F (p))2

]
. (11)

When k = 1 and f ′ ≥ 0, and when k →∞ (and any f), the equilibrium exists and is unique.

Proof. See the Appendix.

In the Appendix we show that the FOC (11) has always at least one solution. For such a solution

to be a symmetric equilibrium, the payoff function in (6) has to be well-behaved. A sufficient

13



condition is that the function m(xi, pi; k) is concave in pi. Verification of this condition in general is

extremely hard because the function x(pi; p) cannot be computed in closed form. Nevertheless, we

can prove the existence and uniqueness of equilibrium for the two most relevant cases. One situation

is when k = 1, in which case an increasing density of match values suffices. The other situation is

when k →∞, in which case the equilibrium exists and is unique for any arbitrary density of match

values. More in general, for fixed primitives x, k and F , it is straightforward to numerically check

the concavity of the payoff (see Figures 2 and 3 below).

5.1 Comparative statics

In this section we examine how the equilibrium price depends on the number of buyers per seller and

on the number of consumers sellers can attend to when buyers observe deviation prices.

We start by looking at how the equilibrium price depends on the number of buyers per seller.

Consider first the case in which the firms’ selling constraint is extremely severe so that k = 1.

Equation (11) simplifies to:

p =
1− F (p)

f(p) + (1−F (p))2

I(p)
xe−x

1−e−x−xe−x

. (12)

Note that the expression xe−x

1−e−x−xe−x is decreasing in x, with

lim
x→0

xe−x

1− e−x − xe−x
=∞ and lim

x→∞

xe−x

1− e−x − xe−x
= 0.

This implies that the equilibrium price that solves equation (12) converges to the “standard” monopoly

price p = 1−F (p)
f(p) as the number of buyers per seller x goes to infinity and approaches marginal cost

when the x goes to zero. In the former case, firms do not really compete with one another. In the

latter case, firms operate in an extremely competitive environment and we get marginal cost pricing.

For a given number of buyers per seller x and a distribution of match values F , equation (12)

can be solved numerically for the equilibrium price. In Figure 2 we plot the payoff of a firm when

selling capacity is k = 1 assuming match values are uniformly distributed on [0, 1]. The red profits

function represents a case in which there are very few buyers per seller, concretely x = 0.5. The blue

profits function represents the case in which there is one buyer per seller, i.e. x = 1. Finally, the

black profits function represents the case of x = 5. The graph also shows the strict concavity of the

payoff functions, as per Proposition 5.
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Figure 2: Concavity of the payoff when k = 1 and the price equilibrium.

Consider now the case in which firms’ selling capacity is not restricted whatsoever. When k →∞,

equation (11) simplifies to:

p =
1− e−x(1−F (p)) − x(1− F (p))e−x(1−F (p))

1− e−x(1−F (p))

∫ 1
p εf(ε)dε

1− F (p)
.

Note that the expression 1−e−z−ze−z

1−e−z is increasing in z, with

lim
z→0

1− e−z − ze−z

1− e−z
= 0 and lim

z→∞

1− e−z − ze−z

1− e−z
= 1.

This implies that, exactly like in the case in which k = 1, the price that solves this equation converges

to the marginal cost as the number of buyers per firm goes to zero. When the number of buyers

per firm goes to infinity, things are quite different though. The equilibrium price converges to a

monopoly price that is higher than before, namely, p = 1. In fact, using the limit result above,

when x → ∞ the equilibrium price solves the equation p(1 − F (p)) −
∫ 1
p εf(ε)dε = 0 which, using

the integration by parts formula, can be rewritten as 1 − p −
∫ 1
p F (ε)dε = 0. Because the LHS of

this expression is decreasing in p the solution is p = 1. In the absence of any selling constraint, an

individual firm can charge a price as high as the highest match value; this is because facing a queue

of infinitely many buyers and being able to offer its product to as many buyers as it likes, the seller

can “pick” a buyer with a match value equal to 1. The notion of market power, here reflected in the

monopoly price, is thus clearly linked to the selling capacity of a firm.

In Figure 3 we plot the payoff (2) for the case in which firms do not have selling constraints, again

assuming that match values are uniformly distributed on [0, 1]. The red profits function represents
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the case in which there are very few buyers per firm, in particular x = 0.5. The equilibrium price

is approximately p = 0.1142, which is slightly lower than in the case where k = 1, but firms obtain

higher profits, Π = 0.0408. The blue profits function represents the case in which x = 1. In this case,

the price is approximately p = 0.208, clearly higher than before. Profits reach π = 0.1138. Finally,

the black profits function represents the case in which x = 5. In this case, the price is approximately

p = 0.5645, clearly higher than before and higher than the “standard” monopoly price of 1/2. Profits

reach π = 0.5005, significantly higher than when firms do have significant selling constraints.
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Figure 3: Concavity of the payoff when k →∞ and the price equilibrium.

The previous results are summarized in the next proposition.

Proposition 6 (a) Suppose firms’ selling constraints are maximal, that is, k = 1. Then, the equi-

librium price is equal to the marginal cost if x → 0 and approaches the standard monopoly price

p = 1−F (p)
f(p) if x→∞.

(b) Suppose firms do not have selling constraints, that is, k → ∞. Then, the equilibrium price is

equal to the marginal cost if x→ 0 and approaches the monopoly price p = 1 when x→∞.

For intermediate levels of k, it is quite difficult to derive analytical results on the relationship

between the equilibrium price, firms’ profits and the number of buyers per firm. We thus proceed to

compute the equilibrium numerically. Figure 4 represents the equilibrium price and firms’ profits as

a function of x for various levels of the selling constraint. We observe that no matter how severe the

selling constraint is, both the equilibrium price and the profits of the firms increase in the number of

buyers per firm, thus reflecting how sellers take advantage of the buyers as market competitiveness

loosens.
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Figure 4: Equilibrium price, profits and the number of buyers per firm.

The graph also shows that the equilibrium price and profits typically increase in k. To be sure,

this is clearly visible for large x. When x is small the different curves are too cluttered to be able to

distinguish between price levels for different k’s. We now analyze this relationship in more detail. In

general, an increase in k affects the equilibrium price in two ways that operate in opposite directions.

On the one hand, a softer selling constraint makes attracting buyers to its premises more valuable

to a firm because it can offer its product to more consumers. By this effect, an increase in k tends to

reduce the equilibrium price. On the other hand, a laxer selling constraint increases the maximum of

the willingness to pay of the k consumers a firm can offer its product to. By this effect, an increase

in k tends to increase the equilibrium price. We have already seen analytically that when x → 0,

the equilibrium price is equal to the marginal cost no matter whether k = 1 or k → ∞. This is

true for any k as a matter of fact. The reason is that when x → 0, the second effect plays no role.

When x → ∞, we have the opposite case in which the first effect plays no role. In such a case,

the equilibrium price increases in k. In fact, we have already seen that the equilibrium price when

k →∞ is higher than when k = 1. When the number of buyers per firm x takes on an intermediate

value, the equilibrium price may increase or decrease as the selling constraint becomes laxer.

We illustrate these results in Figure 5, where we represent the equilibrium price as a function of

the selling constraint for various levels of the number of buyers per firm. The graphs illustrate that

the equilibrium price is decreasing in relatively tight markets where there are very few buyers per

seller (Figure 5(a)), non-monotonic in markets where the number of buyers per firm is intermediate

(Figures 5(a) and 5(b)) and increasing in relatively loose markets where there are many buyers per

seller (Figure 5(d)).
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(d) Many buyers per seller: x = 100.

Figure 5: Equilibrium price and selling constraints.

Despite the fact that the equilibrium price may decrease in k when there are few buyers per

seller, equilibrium profits are increasing in k. This can be seen in Figure 8 where we have plotted

the equilibrium profits corresponding to the equilibrium prices depicted in Figure 5.
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(d) Many buyers per seller: x = 100.

Figure 6: Equilibrium profits and selling constraints.

We conclude this section by summarizing our numerical findings.

Numerical result 1 (a) The equilibrium price and firms’ profits are monotonically increasing in x

for any k. (b) For low x, the equilibrium price is decreasing in k; for intermediate x, the equilibrium

price is first increasing in k and then decreasing; for large x, the equilibrium price is increasing in

k. Firms’ profits increase in k.

6 Welfare

In this section we study the efficiency of the market equilibrium price in the local monopolies and

monopolistic competition scenarios of Sections 4 and 5. To do this, we first characterize the efficient

price and then we compare it to the market equilibrium.
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Social welfare, as usual, equals the sum of buyers’ utility and sellers’ profits:

W = BV + SΠ

= Bη(x, p; k)(1− F (p)) [E(ε | ε ≥ p)− p] + Spxη(x, p; k)(1− F (p))

Using the fact that B = xS, we can simplify the welfare expression:

W = B η(x, p; k)(1− F (p))︸ ︷︷ ︸
prob. of trade

E(ε | ε ≥ p)︸ ︷︷ ︸
value of trade

.

Inspection of this expression reveals that an increase in the price has both a positive and a

negative effect on social welfare. The positive effect is to increase the value of a transaction, that

is, the value of E(ε | ε ≥ p). A higher price serves as a selection mechanism: only a consumer

with a sufficiently high match value will accept the trade, which generates a higher social surplus.

The negative effect is to decrease the quantity of trade, that is, the probability η(x, p; k)(1 − F (p))

with which buyers buy. This is because a higher price makes it less likely that anyone queuing at a

seller happens to have a sufficiently high match utility for the product of the seller. Formally, this

observation follows from the fact that:

x

f(p)

∂η(1− F (p))

∂p
= kF (p)k−1 Γ(k + 1, x)− Γ(k + 1)

Γ(k + 1)

+
xe−x(1−F (p))

Γ(k + 1)

(
xkF (p)ke−xF (p) − Γ(k + 1, xF (p))

)
= kF (p)k−1 Γ(k + 1, x)− Γ(k + 1)

Γ(k + 1)
− xe−x(1−F (p))

Γ(k + 1)

∫ ∞
xF (p)

ktk−1e−tdt < 0,

where the second equality follows from integrating by parts the Γ function. Hence, in choosing a

price the planner faces a trade-off between the quantity and the quality of trade.

Taking the FOC for welfare maximization we can state that:

Proposition 7 The socially optimal price, denoted po, satisfies the FOC:

∂η

∂p
I(po) +

∂η

∂p
po(1− F (po))− poηf(po) = 0. (13)

When k = 1, η does not depend on price so the socially optimal price is equal to the marginal cost.

For k ≥ 2 the socially optimal price is strictly greater than the marginal cost.

This result is at odds with the standard view in economics that marginal cost pricing is a cor-
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nerstone of efficiency. Except in the case in which k = 1, in our model the welfare function is

typically non-monotonic in price, which implies that efficient pricing involves positive markups.

What distinguishes our model from the standard model is that firms are capacity constrained and

sell differentiated products. Note that it is these two features together that create a trade-off for the

planner: a higher price lowers the chance a transaction occurs, but increases its value if it occurs.

Welfare maximization consists of balancing these two effects, which drives a wedge between the op-

timal price and the marginal cost. Hence, the shortcut notion of market power as the ability of firms

to sustain prices about marginal cost is not really valid in our setting. Instead, market power has to

be assessed as the capacity of firms to sustain prices above the efficient level, which differs from the

marginal cost.

Note that equation (13) has surely a solution. This is because equation (13) is exactly the same

as the LHS of equation (11) and in the proof of Proposition 5 we show that this expression is strictly

positive at p = 0 and negative at p = 1. Comparing the socially optimal price with the market

equilibrium prices of Propositions 3 and 5 leads to the following insight:

Proposition 8 1. When buyers do not observe prices before visiting sellers, local monopolies

result and the equilibrium price is inefficiently high.

2. When buyers observe prices before visiting sellers, monopolistic competition results and the

equilibrium price is inefficiently high except in the limit when k →∞ (in which case the market

equilibrium price is efficient and greater than the marginal cost).

Figure 7 illustrates this result by plotting together the payoff functions of the firms and social

welfare. The left graph, Figure 7(a), shows the case in which firms face extreme selling constraints

so that k = 1. The red curve is the profit function when buyers do not observe prices before they

visit firms and hence a model of local monopolies result. The black curve is the profit function when

they do observe the prices of the firms and so monopolistic competition arises. In this case, the

planner just wishes to maximize the probability of trade and sets a price equal to the marginal cost.

The equilibrium price, which is the same no matter whether prices are observable before search or

not, is clearly excessive. The right graph, Figure 7(b), represents the case in which firms do not

face selling constraints whatsoever, k → ∞. Here, again, the red curve is the profit function for

local monopolies and the black one is the profit function under monopolistic competition. In this

case, welfare is non-monotonic and is maximized at the same price as the equilibrium price under

monopolistic competition. In both these graphs, we have set x = 5.
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Figure 7: Social optimum and equilibrium.

The equilibrium price is generally excessive. It is only efficient in one case, namely when con-

sumers observe prices before they visit sellers and k →∞ so that selling constraints are completely

absent. In such a case, at the efficient price, the social trade-off between the quantity and the quality

(or price) of trade is exactly identical to its private counterpart. Comparing the equilibrium condi-

tion (11) and the efficiency condition (13), we observe that they become exactly identical if and only

if the factor d(p) = 0, which implies that firms should be able to continue to show their products to

all the buyers who show up at their premises. In fact, only when k →∞ is the probability of having

more buyers than their selling capacity equal to zero (1− Γ(k+1,x)
Γ(k+1) → 0 as k →∞) and therefore the

factor d(p) = 0.

When firms face non-trivial selling constraints (k <∞), the probability that a firm receives more

buyers than it can attend to is strictly positive. That is, 1 − Γ(k+1,x)
Γ(k+1) > 0 and thus d(p) < 0. This

means that an individual firm may find itself in a situation where it fails to sell its product while

there still are buyers interested in the product who cannot however be approached. This reduces the

firms’ incentive to attract buyers by lowering price. Hence, the private benefit of increasing price

becomes higher than its social counterpart, leading to an inefficiently high equilibrium price.

The socially optimal price that solves (13), and hence the level of welfare attained in the economy,

depends on the number of buyers per firm and the selling constraint. In Figure 8 we plot the efficient

price and the corresponding welfare level per seller as a function of the number of buyers per firm for

various levels of the selling constraint. It can be seen tat both the efficient price and the maximum

welfare level attained are increasing in x and k.
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Figure 8: Social welfare maximizing price and welfare levels.

We conclude this section by summarizing our numerical findings.

Numerical result 2 The socially optimal price and the level of welfare are monotonically increasing

in x and k.

7 Concluding remarks

Despite the fact that selling constrains are ubiquitous and often firms cannot attend to all the buyers

who are interested in inspecting their products, as far as we know, the literature has not paid attention

to their impact on the functioning of search markets. This paper has started to close this gap. Our

main conclusion has been that, when market power is appropriately measured as the wedge between

the market equilibrium price and the price that maximizes social welfare, selling constraints are a

source of market power. Moreover, we have seen that the connection between market power and high

profits become more loose in the presence of selling constraints. This has potential implications for

the interpretation of all the recent work that measures markups (as differences between prices and

marginal costs) and relates them to market inefficiency (see e.g. De Loecker, Eeckhout and Unger

(2020)).

In reaching this conclusion we have used a model with some specific features. One of the as-

sumptions of the model has been that firms face two types of constraints. First, firms are capacity-

constrained and have at their disposal just one unit of a differentiated product. Second, firms face

selling constraints and can only attend to a maximum of k buyers. The insights of our paper carry

over to situations where firms’ capacity constraints are not so stringent. In fact, suppose that sellers

have at their disposal ` units of the differentiated product but can only attend to k buyers. It is clear

that sellers will only be able to sell a maximum number of units lower than or equal to min{`, k}.
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As a result, situations in which ` < k will be similar to the one studied in this paper because sellers

continue to face a trade-off between the quantity of trade and the quality of trade. If ` > k, by

contrast, sellers would not face such a trade-off and the equilibrium pricing would be similar to the

k = 1 case.

Another simplifying assumption of the model has been that sellers and buyers interact for just a

single period. This implies that in our search model search costs do not play any role and the only

source of search frictions is the potential rationing that buyers may suffer due to the firms’ capacity

and selling constraints. A more complete depiction of search frictions in markets for differentiated

products ought to include both demand- and supply-side frictions. Assuming that in every period

the buyers and sellers who transact with one another are replaced by new ones in the economy, it

is not very hard to extend our model to allow for consumers’ sequential search as it is standard in

the consumer search literature. In that case, the search cost becomes the key factor that influences

the trade-off between the quantity and the quality of trade. A higher search cost makes consumers

less picky, which increases the probability of trade but reduces the value of trade. Welfare is thus

non-monotonic in search costs and the social welfare maximizing search cost is typically bounded

away from zero. This is akin to our positive efficient markup result.

Finally, we have assumed that firms’ selling constraints are exogenous. However, as mentioned in

the Introduction, firms not only choose their prices but try to optimize its marketing and sales team

to maximize their profits. Though extending our work to allow for the possibility that firms choose

k is quite challenging, it would be very interesting to know how firms’ marketing and sales teams

are influenced by the parameters of the model. We leave the full development of this extension as a

topic for further research.
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Appendix

Proof of Proposition 1.

Note that the number of buyers visiting a seller n follows a Poisson distribution, Prob.(n = i) =

xie−x

i! . We consider the offer probability to a buyer who visits a seller. Let an index i count the

number of the other buyers arriving at a seller. Then, we have

η =
k−1∑
i=0

xie−x

i!

i∑
j=0

i!

j!(i− j)!
F (p)j(1− F (p))i−j

1

i+ 1− j

+
∞∑
i=k

xie−x

i!

k

i+ 1

k−1∑
j=0

k − 1!

j!(k − 1− j)!
F (p)j(1− F (p))k−1−j 1

k − j

The first summation represents cases in which the number of the other buyers is less than the number

of buyers that the seller can handle, i.e., i ≤ k−1. With j ≤ i of the other buyers turning out not to

like the seller’s product, which comes in i!
j!(i−j)! ways and occurs with probability F (p)j(1−F (p))i−j ,

the given buyer will be offered with probability 1
i−j+1 . The second summation represents cases in

which i ≥ k. Note that the seller has to randomly select k ≤ i buyers, and the given buyer is selected

with probability k
i+1 . With j ≤ k − 1 of the other selected buyers turning out not to like the seller’s

product, which comes in k−1!
j!(k−1−j)! ways and occurs with probability F (p)j(1−F (p))k−1−j , the given

buyer will be offered with probability 1
k−j .

Note that we can simplify the terms in the first summation,

i∑
j=0

i!

j!(i− j)!
F (p)j(1− F (p))i−j

1

i+ 1− j

=
1

(i+ 1)(1− F (p))

i∑
j=0

(i+ 1)!

j!(i+ 1− j)!
F (p)j(1− F (p))i+1−j

=
1

(i+ 1)(1− F (p))

 i+1∑
j=0

(i+ 1)!

j!(i+ 1− j)!
F (p)j(1− F (p))i+1−j − F (p)i+1


=

1− F (p)i+1

(i+ 1)(1− F (p))
,
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and the terms in the second summation,

k

i+ 1

k−1∑
j=0

k − 1!

j!(k − 1− j)!
F (p)j(1− F (p))k−1−j 1

k − j

=
1

(i+ 1)(1− F (p))

k−1∑
j=0

k!

j!(k − j)!
F (p)j(1− F (p))k−j

=
1

(i+ 1)(1− F (p))

 k∑
j=0

k!

j!(k − j)!
F (p)j(1− F (p))k−j − F (p)k


=

1− F (p)k

(i+ 1)(1− F (p))
.

Using these simplifications, we have

η =

k−1∑
i=0

xie−x

i!

1− F (p)i+1

(i+ 1)(1− F (p))
+

∞∑
i=k

xie−x

i!

1− F (p)k

(i+ 1)(1− F (p))

=
1

x(1− F (p))

k−1∑
i=0

xi+1e−x(1− F (p)i+1)

(i+ 1)!
+

1− F (p)k

x(1− F (p))

∞∑
i=k

xi+1e−x

(i+ 1)!
.

Setting h ≡ i+ 1, it is further simplified to

η =
1

x(1− F (p))

k∑
h=0

[
xhe−x

h!
− [xF (p)]he−x

h!

]
+

1− F (p)k

x(1− F (p))

∞∑
h=k+1

xhe−x

h!

=
1

x(1− F (p))

[
k∑

h=0

xhe−x

h!
− e−x(1−F (p))

k∑
h=0

[xF (p)]he−xF (p)

h!

]
+

1− F (p)k

x(1− F (p))

[
1−

k∑
h=0

xhe−x

h!

]

=
1

x(1− F (p))

[
Γ(k + 1, x)

Γ(k + 1)
− e−x(1−F (p)) Γ(k + 1, xF (p))

Γ(k + 1)

]
+

1− F (p)k

x(1− F (p))

[
1− Γ(k + 1, x)

Γ(k + 1)

]
,

where we used
∑k

h=0
xhe−x

h! = Γ(k+1,x)
Γ(k+1) (i.e., the series definition of the cumulative gamma function),

with Γ(k + 1) = k! =
∫∞

0 tke−tdt and Γ(k + 1, x) =
∫∞
x tke−tdt. Rearranging terms, we obtain the

expression in (1). �

Proof of Proposition 2.

(a) In order to show that η is increasing in k, it suffices to show that m is increasing in k. For
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this, we compute the difference:

m(k + 1)−m(k) = 1− F (p)k+1 +
Γ(k + 2, x)

Γ(k + 2)
F (p)k+1 − Γ(k + 2, xF (p))

Γ(k + 2)
e−x(1−F (p))

−
(

1− F (p)k +
Γ(k + 1, x)

Γ(k + 1)
F (p)k − Γ(k + 1, xF (p))

Γ(k + 1)
e−x(1−F (p))

)
= F (p)k − F (p)k+1 +

(k + 1)Γ(k + 1, x) + xk+1e−x

Γ(k + 2)
F (p)k+1

− (k + 1)Γ(k + 1, xF (p)) + (xF (p))k+1e−xF (p)

Γ(k + 2)
e−x(1−F (p)) − Γ(k + 1, x)

Γ(k + 1)
F (p)k

+
Γ(k + 1, xF (p))

Γ(k + 1)
e−x(1−F (p)),

where we have used the property of the Gamma function (see Jameson, 2016):

Γ(k + 2, x) = (k + 1)Γ(k + 1, x) + xk+1e−x. (14)

Because Γ(k + 1) = kΓ(k), we can rewrite the previous expression as follows:

m(k + 1)−m(k) = F (p)k − F (p)k+1 +
Γ(k + 1, x)

Γ(k + 1)
F (p)k+1 +

xk+1e−x

Γ(k + 2)
F (p)k+1 − Γ(k + 1, xF (p))

Γ(k + 1)
e−x(1−F (p))

− (xF (p))k+1e−xF (p)

Γ(k + 2)
e−x(1−F (p)) − Γ(k + 1, x)

Γ(k + 1)
F (p)k +

Γ(k + 1, xF (p))

Γ(k + 1)
e−x(1−F (p))

= F (p)k − F (p)k+1 +
Γ(k + 1, x)

Γ(k + 1)
F (p)k+1 − Γ(k + 1, x)

Γ(k + 1)
F (p)k

= F (p)k(1− F (p))

(
1− Γ(k + 1, x)

Γ(k + 1)

)
.

The last expression is positive because Γ(k+ 1, x) =
∫∞
x tke−tdt <

∫∞
0 tke−tdt = Γ(k+ 1), which

completes the proof that m is increasing in k.

To demonstrate that η is concave in k, we compute the difference:

[m(k + 2)−m(k + 1)]− [m(k + 1)−m(k)] = (1− F (p))F (p)k
[
F (p)

(
1− Γ(k + 2, x)

Γ(k + 2)

)
−
(

1− Γ(k + 1, x)

Γ(k + 1)

)]
.

For concavity, this expression must be negative. Becasue F (p) < 1, it is sufficient that

Γ(k + 2, x)

Γ(k + 2)
>

Γ(k + 1, x)

Γ(k + 1)
,

or that
Γ(k + 2, x)

k + 1
> Γ(k + 1, x),
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which is true because of the property (14).

We now use differentiation to show that η is decreasing in x. For this result, notice that it suffices

to show that m is decreasing in x. Taking the derivative of m with respect to x, and putting common

factors together, gives:

∂m

∂x
= −

e−x(1− F )
(
(xF )k − exFΓ(k + 1, xF )

)
Γ(k + 1)

The sign of this expression depends on the sign of (xF )k − exFΓ(k + 1, xF ). Using (14), we have:

(xF )k − exFΓ(k + 1, xF ) = (xF )k − exF
(
kΓ(k, xF ) + (xF )ke−xF

)
= −exFkΓ(k, xF ) < 0.

Therefore, m decreases in x and so does η.

We finally show that η is increasing in F (p). For this, we first note that

x
∂η

∂F (p)
=

∂m
∂F (p)(1− F ) +m

(1− F )2

The sign of ∂η/∂F (p) depends on the sign of the numerator. We note that

∂m

∂F (p)
=
kx
(
−e−x(1−F )

)
Γ(k, xF )− kF k−1(Γ(k + 1)− Γ(k + 1, x))

Γ(k + 1)
.

Using this, we calculate:

Γ(k + 1)

(
∂m

∂F (p)
(1− F ) +m

)
= Γ(k + 1)− (F + k(1− F ))F k−1(Γ(k + 1)− Γ(k + 1, x))

− e−x(1−F )((1− F )kxΓ(k, xF ) + Γ(k + 1, xF )) (15)

The RHS of this expression is decreasing in F because its derivative with respect to F can be written

as

−k(1− F )
[
(k − 1)F k−2 (Γ(k + 1)− Γ(k + 1, x)) + x2e−x(1−F )

(
Γ(k, xF )− (xF )k−1e−xF

)]
,

which is negative because the term Γ(k, xF )− (xF )k−1e−xF = (k − 1)Γ(k − 1, xF ) > 0 for k ≥ 2.

It is straightforward to see that when we set F = 1 in the RHS of equation (15) we obtain 0.

This means that (15) is positive for all F , which completes the proof that η is increasing in F (p) for

k ≥ 2. �

Derivation of the profit function in (2)
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The expected profit of seller i is given by:

Π(pi; p) = pi

(
k∑
l=1

Pr[ni = `]
(

1− F (pi)
`
)

+
∞∑

`=k+1

Pr[ni = `]
(

1− F (pi)
k
))

. (16)

Because the expected number of buyers visiting a seller n follows a Poisson distribution, Pr(ni =

`) =
x`ie
−xi

`! .

To obtain the expression in (2), observe that the first term in the bracket of (16) can be simplified

as follows:

k∑
`=1

Pr(ni = `)
(

1− F (pi)
`
)

=

k∑
`=0

x`ie
−xi

`!
(1− F (pi)

`)

=

k∑
`=0

[
x`ie
−xi

`!
− [xiF (pi)]

`e−xi

`!

]
=

k∑
`=0

x`ie
−xi

`!
− e−xi(1−F (pi))

k∑
`=0

[xiF (pi)]
`e−xiF (pi)

`!

=
Γ(k + 1, xi)

Γ(k + 1)
− e−xi(1−F (pi))

Γ(k + 1, xiF (pi))

Γ(k + 1)

where we have used the series definition of the cumulative gamma function:
∑k

h=0
xhe−x

h! = Γ(k+1,x)
Γ(k+1) .

Likewise, the second term in the bracket of (16) can be simplified as follows:

∞∑
l=k+1

Pr(ni = `)
(

1− F (pi)
k
)

=
(

1− F (pi)
k
) ∞∑
`=k+1

xlie
−xi

`!

=
(

1− F (pi)
k
)[

1−
k∑
`=0

x`ie
−xi

`!

]
=
(

1− F (pi)
k
)[

1− Γ(k + 1, xi)

Γ(k + 1)

]
.

Hence, the payoff expression in (16) can be written as

Π(pi; p) = pi

(
Γ(k + 1, xi)

Γ(k + 1)
− e−xi(1−F (pi))

Γ(k + 1, xiF (pi))

Γ(k + 1)
+
(

1− F (pi)
k
)[

1− Γ(k + 1, xi)

Γ(k + 1)

])
Using the expression for η in equation (1), it is now straightforward to obtain the payoff in (2).

Proof of Proposition 3.

To prove this result, we first observe that the LHS of (11) evaluated at p = 0 is equal to η, which

is strictly positive; moreover, the LHS of (11) evaluated at p = 1 is equal to −ηf(1), which is strictly

negative. Because the LHS of (11) is a continuous function of p, equation (11) has a solution in p.

Such a solution is a symmetric Nash equilibrium is the payoff of a firm i is concave in pi. For

this it is sufficient that the function m(x, pi; k) is concave in pi. Notice that m(x, pi; k) is a sum of

functions and the sum of concave functions is concave.
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Further notice that the first three summands of the function m(x, pi; k) are:

1 +

(
Γ(k + 1, x)

Γ(k + 1)
− 1

)
F (p)k

These three summands are concave in pi because Γ(k+1,x)
Γ(k+1) − 1 < 0.

Consider now the last summand:

−Γ(k + 1, xF (p))

Γ(k + 1)
e−x(1−F (p))

For this summand to be concave it is sufficient that Γ(k+1, xF (p))e−x(1−F (p)) =
(∫∞

xF (p) t
ke−tdt

)
e−x(1−F (p))

is convex.

Taking the second derivative of Γ(k + 1, xF (p))e−x(1−F (p)) gives:

e−x
(
xF (p)exF (p)Γ(k + 1, xF (p))

(
xf(p)2 + f ′(p)

)
− x(xF (p))k

(
f(p)2(xF (p) + k) + F (p)f ′(p)

))
F (p)

This expression is positive when

xF (p)exF (p)Γ(k + 1, xF (p))
(
xf(p)2 + f ′(p)

)
− x(xF (p))k

(
f(p)2(xF (p) + k) + F (p)f ′(p)

)
> 0 (17)

To show that this inequality holds, we use the property (see Jameson, 2016):

Γ(k + 1, x) = kΓ(k, x) + xke−x = k
(

(k − 1)Γ((k − 1), x) + xk−1e−x
)

+ xke−x

Therefore:

Γ(k + 1, xF (p)) > k(xF (p))k−1e−xF (p) + (xF (p))ke−xF (p) = e−xF (p)
(
k(xF (p))k−1 + (xF (p))k

)
,

which can be used in (17) to get

xF (p)exF (p) Γ(k + 1, xF (p))︸ ︷︷ ︸
>e−xF (p)(k(xF (p))k−1+(xF (p))k)

(
xf(p)2 + f ′(p)

)
− x(xF (p))k

(
f(p)2(xF (p) + k) + F (p)f ′(p)

)
>

xF (p)
(
k(xF (p))k−1 + (xF (p))k

) (
xf(p)2 + f ′(p)

)
− x(xF (p))k

(
f(p)2(xF (p) + k) + F (p)f ′(p)

)
=

xF (p)(xF (p))k−1
[
(k + xF (p))

(
xf(p)2 + f ′(p)

)
− x

(
f(p)2(xF (p) + k) + F (p)f ′(p)

)]
=

k(xF (p))k
[
f ′(p)

]
,
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which is positive for all density functions with f ′(p) > 0.

Finally, we show how to get the expression in (5). For this, note that the equilibrium price

satisfies p = − m(p)
m′(p) where

m(p) = 1− F (p)k
(

1− Γ(k + 1, x)

Γ(k + 1)

)
− Γ(k + 1, xF (p))

Γ(k + 1)
e−x(1−F (p)). (18)

Taking the derivative of m(p) with respect to p gives:

m′(p) = −kF (p)k−1f(p)

(
1− Γ(k + 1, x)

Γ(k + 1)

)
− xf(p)

Γ(k, xF (p))

Γ(k)
e−x(1−F (p)). (19)

Plugging the expressions for m(p) and m′(p) in p = − m(p)
m′(p) we obtain (5). �

Proof of Proposition 4.⊙
Claim 1. Differentiation yields

∂p

∂x
=
−m′(p)∂m(p)

∂x +m(p)∂m
′(p)
∂x

(m′(p))2 .

Observe that

∂m(p)

∂x
= −F (p)k

xke−x

Γ(k + 1)
+

(xF (p))ke−xF (p)

Γ(k + 1)
F (p)e−x(1−F (p)) + (1− F (p))

Γ(k + 1, xF (p))

Γ(k + 1)
e−x(1−F (p))

= (1− F (p))

[
Γ(k + 1, xF (p))

Γ(k + 1)
e−x(1−F (p)) − (xF (p))ke−x

Γ(k + 1)

]
= (1− F (p))

Γ(k, xF (p))

Γ(k)
e−x(1−F (p)) > 0

∂m′(p)

∂x
= −kF (p)k−1f(p)

xke−x

Γ(k + 1)
+ xf(p)e−x(1−F (p)) (xF (p))k−1e−xF (p)

Γ(k)

− (1− x(1− F (p))) e−x(1−F (p))f(p)
Γ(k, xF (p))

Γ(k)

= − (1− x(1− F (p))) e−x(1−F (p))f(p)
Γ(k, xF (p))

Γ(k)
.

To derive these expressions, we use ∂
∂x

Γ(k+1,x)
Γ(k+1) = ∂

∂x

∫∞
x tke−xdt

Γ(k+1) = − xke−x

Γ(k+1) and Γ(k+1,x)
Γ(k+1) = Γ(k,x)

Γ(k) +

xke−x

Γ(k+1) .

If 1 < x(1 − F (p)) then ∂m′(p)
∂x > 0 and so ∂p

∂x > 0 (because m′(p) < 0 and m(p) > 0). Suppose
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1 ≥ x(1− F (p)) and define

Ω(x) ≡
[
kF (p)k−1

(
1− Γ(k + 1, x)

Γ(k + 1)

)
+ x

Γ(k, xF (p))

Γ(k)
e−x(1−F (p))

]
(1− F (p))

−
[
1− F (p)k

(
1− Γ(k + 1, x)

Γ(k + 1)

)
− Γ(k + 1, xF (p))

Γ(k + 1)
e−x(1−F (p))

]
(x(1− F (p))− 1) .

Note that Ω(x) =

[
−m′(p) ∂m(p)

∂x
+m(p)

∂m′(p)
∂x

]
f(p)e−x(1−F (p)) Γ(k,xF (p))

Γ(k)

and so ∂p
∂x > 0 if and only if Ω(x) > 0. Observe that:

Ω(x)→ 0 as x→ 0;

∂Ω(x)

∂x
=

[
1− F (p)k

(
1− Γ(k + 1, x)

Γ(k + 1)

)
− Γ(k + 1, xF (p))

Γ(k + 1)
e−x(1−F (p))

]
(1− F (p)) > 0.

Hence, Ω(x) > 0 and so ∂p
∂x > 0 for all 1 ≥ x(1− F (p)).

Finally, the limits are immediate.⊙
Claim 2. To show the comparative statics with respect to k, observe in (5) that since m(p; k)

is increasing in k, it suffices to show that m′(p; k) (< 0) is increasing in k.

m′(p; k + 1)−m′(p; k) = kF k−1(p)f(p)

[(
1− Γ(k + 1, x)

Γ(k + 1)

)
− k + 1

k
F (p)

(
1− Γ(k + 2, x)

Γ(k + 2)

)]
+xe−x(1−F (p))f(p)

[
Γ(k, xF (p))

Γ(k)
− Γ(k + 1, xF (p))

Γ(k + 1)

]
.

Suppose that F (p) < k
k+1 , which we will verify below. Then,

m′(p; k + 1)−m′(p; k) > kF k−1(p)f(p)

[
Γ(k + 2, x)

Γ(k + 2)
− Γ(k + 1, x)

Γ(k + 1)

]
+xe−x(1−F (p))f(p)

[
Γ(k, xF (p))

Γ(k)
− Γ(k + 1, xF (p))

Γ(k + 1)

]
=

xk+1F k−1e−x

Γ(k + 1)
f(p)

(
k

k + 1
− F (p)

)
> 0,

where the first and the last inequalities hold because F (p) < k
k+1 , and the second equality is obtained

by using Γ(k+2,x)
Γ(k+2) −

Γ(k+1,x)
Γ(k+1) = xk+1e−x

Γ(k+2) and Γ(k,xF (p))
Γ(k) − Γ(k+1,xF (p))

Γ(k+1) = − (xF (p))ke−xF (p)

Γ(k+1) . Hence, if the

inequality F (p) < k
k+1 holds true, then m′(p; k) is increasing in k.

We now prove F (p) < k
k+1 . Note that it suffices to prove p < k

k+1 because under our assumption

of the monotone increasing density f ′(p) ≥ 0, we must have F (p) < p for any p ∈ (0, 1). We therefore

prove

p =
1− pk

(
1− Γ(k+1,x)

Γ(k+1)

)
− Γ(k+1,xp)

Γ(k+1) e−x(1−p)

kpk−1
(

1− Γ(k+1,x)
Γ(k+1)

)
+ xΓ(k,xp)

Γ(k) e−x(1−p)
<

k

k + 1
.
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Define

Φ(p) ≡ −(k + 1)

[
1− pk

(
1− Γ(k + 1, x)

Γ(k + 1)

)
− Γ(k + 1, xp)

Γ(k + 1)
e−x(1−p)

]
+k

[
kpk−1

(
1− Γ(k + 1, x)

Γ(k + 1)

)
+ x

Γ(k, xp)

Γ(k)
e−x(1−p)

]
.

Note that p < k
k+1 ⇐⇒ Φ(p) > 0. Observe that: Φ(0) = −(k+ 1)(1− e−x) + kxe−x < −k(1− e−x −

xe−x) < 0; Φ(1) = k
[
k
(

1− Γ(k+1,x)
Γ(k+1)

)
+ xΓ(k,x)

Γ(k)

]
> 0;

Φ′(p) = (k + 1)kpk−1

(
1− Γ(k + 1, x)

Γ(k + 1)

)
+ (k + 1)xe−x(1−p) Γ(k, xp)

Γ(k)

+k2(k − 1)pk−2

(
1− Γ(k + 1, x)

Γ(k + 1)

)
+ kx2 Γ(k − 1, xp)

Γ(k − 1)
e−x(1−p) > 0.

To identify the sign of Φ
(

k
k+1

)
, we define

φ(x) ≡ Φ

(
k

k + 1

)
= −(k + 1)

[
1−

(
k

k + 1

)k (
1− Γ(k + 1, x)

Γ(k + 1)

)
−

Γ(k + 1, x k
k+1)

Γ(k + 1)
e−x(1− k

k+1
)

]

+k

[
k

(
k

k + 1

)k−1(
1− Γ(k + 1, x)

Γ(k + 1)

)
+ x

Γ(k, x k
k+1)

Γ(k)
e−x(1− k

k+1
)

]
.

It satisfies: φ(0) = 0; φ(∞) = −(k+1)

[
1−

(
k
k+1

)k]
+k2

(
k
k+1

)k−1
= (k+1)

[
(k + 1)

(
k
k+1

)k
− 1

]
>

0; φ′(x) =
Γ(k,x k

k+1
)

Γ(k) e−x(1− k
k+1

)
[
k
(

1− x
k+1

)
− 1
]
, which implies φ(x) is increasing in x < k2 − 1 and

decreasing in x > k2 − 1, and so φ(x) > 0 for all x ∈ (0,∞). Therefore, Φ
(

k
k+1

)
> 0.

We are now ready to prove p < k
k+1 . The above analysis shows Φ (p) < 0 when p is low and

Φ (p) > 0 when p is high. Suppose p ≥ k
k+1 . Then, by definition, we must have Φ(p) ≤ 0 for all

p ≥ k
k+1 . However, this contradicts to Φ

(
k
k+1

)
> 0 and Φ′ (p) > 0, since they imply that Φ(p) > 0

for all p ≥ k
k+1 . Hence, we must have p < k

k+1 .

To obtain the case k = 1, noting Γ(k+1,x)
Γ(k+1) =

∑k
h=0

xhe−x

h! = (1 + x)e−x when k = 1, we apply

m(p) = (1− F (p))(1− e−x) when k = 1 and m′(p) = −f(p)(1− e−x) when k = 1 to p in (5).

To obtain the limit as k →∞, noting Γ(k+1,x)
Γ(k+1) → 1 as k →∞, we apply m(p)→ 1− e−x(1−F (p))

as k →∞ and m′(p)→ −xf(p)e−x(1−F (p)) as k →∞ to p in (5). The limit as x→ 0 is obtained by

applying l’Hopital’s rule once. The limit x→∞ is immediate. �

Proof of relationship in equation (10).
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Computing the derivatives involved in this relationship gives:

∂η

∂x
= − m(x, p; k)

x2(1− F (p))

+
1

x(1− F (p))

[
F (p)k

Γ(k + 1)

∂Γ(k + 1, x)

∂x
− e−x(1−F (p))

Γ(k + 1)

(
∂Γ(k + 1, xF (p)

∂x
− (1− F (p))Γ(k + 1, xF (p)

)]
,

and

∂η

∂p
=
f(p)m(x, p; k)

x(1− F (p))2
+

1

x(1− F (p))

[
Γ(k + 1, x)− Γ(k + 1)

Γ(k + 1)
kF (p)k−1f(p)

]
+

1

x(1− F (p))

[
−e
−x(1−F (p))

Γ(k + 1)

(
∂Γ(k + 1, xF (p)

∂p
+ xf(p)Γ(k + 1, xF (p)

)]
.

Notice that:

∂Γ(k + 1, x)

∂x
= −xke−x

∂Γ(k + 1, xF (p)

∂x
= −xkF (p)k+1e−xF (p)

∂Γ(k + 1, xF (p)

∂p
= −xk+1F (p)kf(p)e−xF (p).

Using these, we can rewrite ∂η
∂x and ∂η

∂p as follows:

∂η

∂x
= − m(x, p; k)

x2(1− F (p))

− 1

x(1− F (p))

[
F (p)k

Γ(k + 1)
xke−x − e−x(1−F (p))

Γ(k + 1)

(
xkF (p)k+1e−xF (p) + (1− F (p))Γ(k + 1, xF (p)

)]
,

and

∂η

∂p
=
f(p)m(x, p; k)

x(1− F (p))2
+

f(p)

x(1− F (p))

[
Γ(k + 1, x)− Γ(k + 1)

Γ(k + 1)
kF (p)k−1

]
+

f(p)

x(1− F (p))

[
e−x(1−F (p))

Γ(k + 1)

(
xk+1F (p)ke−xF (p) − xΓ(k + 1, xF (p)

)]
.

It is convenient to multiply and divide the squared bracket of ∂η
∂x by x, and that of ∂η

∂p by 1− F (p).
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This gives:

∂η

∂x
= − m(x, p; k)

x2(1− F (p))

− 1

x2(1− F (p))

[
F (p)kxk+1e−x

Γ(k + 1)
− e−x(1−F (p))

Γ(k + 1)

(
xk+1F (p)k+1e−xF (p) + x(1− F (p))Γ(k + 1, xF (p)

)]
,

(20)

and

∂η

∂p
=
f(p)m(x, p; k)

x(1− F (p))2
+

f(p)

x(1− F (p))2

[
Γ(k + 1, x)− Γ(k + 1)

Γ(k + 1)
kF (p)k−1(1− F (p)

]
+

f(p)

x(1− F (p))2

e−x(1−F (p))

Γ(k + 1)

[
xk+1F (p)ke−xF (p)(1− F (p)− x(1− F (p)Γ(k + 1, xF (p)

]
=
f(p)m(x, p; k)

x(1− F (p))2
+

f(p)

x(1− F (p))2

[
Γ(k + 1, x)− Γ(k + 1)

Γ(k + 1)
kF (p)k−1(1− F (p)

]
+

f(p)

x(1− F (p))2

[
F (p)kxk+1e−x

Γ(k + 1)
− e−x(1−F (p))

Γ(k + 1)

(
xk+1F (p)k+1e−xF (p) + x(1− F (p)Γ(k + 1, xF (p)

)]
(21)

where, to establish the second equality, we have rewritten the term xk+1F (p)ke−xF (p)(1− F (p) as a

sum.

Finally, close inspection of (20) and (21) reveals that:

1− F (p)

f(p)

∂η

∂p
= −x∂η

∂x
+

1

x(1− F (p))

[
Γ(k + 1, x)− Γ(k + 1)

Γ(k + 1)
kF (p)k−1(1− F (p)

]
,

which is relationship (10). �

Proof of Proposition 5.

Using (10), the FOC for profits maximization in expression (9) can be rewritten as follows(
−(1− F (p))

f(p)

∂η

∂p
+ d(p)

)[
(1− F (p)− pf(p)) I(p) + p(1− F (p))2

]
+pη(1− F (p))2 − ∂η

∂p
p(1− F (p))I(p) = 0.
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Rearranging terms gives:(
(1− F (p))

f(p)

∂η

∂p

)[
(1− F (p)− pf(p)) I(p) + p(1− F (p))2

]
− pη(1− F (p))2 +

∂η

∂p
p(1− F (p))I(p)

= d(p)
[
(1− F (p)− pf(p)) I(p) + p(1− F (p))2

]
,

which can be simplified to:(
∂η

∂p
I(p)

)
(1− F (p))2

f(p)
+

(
∂η

∂p

)
(1− F (p))

f(p)
p(1− F (p))2 − pη(1− F (p))2

= d(p)
[
(1− F (p)− pf(p)) I(p) + p(1− F (p))2

]
.

This can be rewritten as in the Proposition:

(1− F (p))2

f(p)

[
∂η

∂p
I(p) +

∂η

∂p
p(1− F (p))− pηf(p)

]
= d(p)

[
(1− F (p)− pf(p)) I(p) + p(1− F (p))2

]
,

which completes the proof of the first statement of the proposition.

We now prove the second statement of the proposition. We first show that (11) has at least one

solution. For this, it is convenient to rewrite (11) as follows:

∂η

∂p
I(p) +

∂η

∂p
p(1− F (p))− pηf(p)

= d(p)
f(p)

(1− F (p))2

[
(1− F (p)− pf(p)) I(p) + p(1− F (p))2

]
. (22)

Consider the LHS of (22). Observe that it is strictly positive at p = 0. This follows easily from using

(10) and noting that d(0) = 0 and

∂η

∂x
=

1

x(1− F (p))

(
∂m

∂x
− m

x

)
,

where
∂m

∂x
=
e−x(1− F (p))exF (p)Γ(k, xF (p))

Γ(k)
.

To evaluate the LHS of (22) at p = 1, note that F (1) = 1, I(1) = 0 and η(1) = 1. Observe also that,

again using (10) and the fact that, by the L’Hopital rule,

lim
p→1

I(p)

1− F (p)
= lim

p→1

−(1− F (p))

−f(x)
= 0,
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we have:

lim
p→1

∂η

∂p
I(p) = lim

p→1

f(p)I(p)

1− F (p)

(
−∂m
∂x

1− F (p)
+ η + d(p)

)
= 0

lim
p→1

∂η

∂p
p(1− F (p)) = f(1)

(
1− Γ(k, x)

Γ(k)
− d(1)

)
Hence, altogether the LHS of (22) takes on value −f(1)

(
Γ(k,x)
Γ(k) − d(1)

)
< 0 at p = 1.

Consider now the RHS of (22). Note that it is equal to 0 at p = 0. Therefore, for the existence

of a candidate equilibrium it suffices to show that at p = 1 the LHS of (22) is lower than the RHS

of (22). Taking the limit of the RHS of (22) when p→ 1 gives

d(1)f(1)

(
−f(1) lim

p→1

I(p)

(1− F (p))2
+ 1

)
=

1

2
d(1)f(1) (23)

because by the L’Hopital rule,

lim
p→1

I(p)

(1− F (p))2
=

1

2f(1)
.

Therefore, the existence of a candidate equilibrium is guaranteed if

−f(1)

(
Γ(k, x)

Γ(k)
− d(1)

)
<

1

2
d(1)f(1),

or

−f(1)

(
Γ(k, x)

Γ(k)
− d(1)

2

)
< 0,

which is always true because d(1) < 0.

We now show that the equilibrium exists and is unique when k = 1 and f ′ > 0. Recall that when

k = 1 we have a demand function m(x(p), p) = (1− F (p))
(
1− e−x(p)

)
. Differentiation with respect

to p yields

dm(x(p), p)

dp
= −f(p)

(
1− e−x(p)

)
+ (1− F (p))e−x(p)dx(p)

dp
.

Taking the second derivative with respect p gives:

d2m

dp2
= −f ′(1− e−x) +

d2x

dp2
(1− F )e−x − 2

dx

dp
fe−x −

(
dx

dp

)2

(1− F )e−x, (24)

where we have omitted the argument “(p)” to shorten the expression. In this expression we need to
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plug in dx2/dp2. Differentiating (7) yields

d2x

dp2
= −

2dxdp

(
∂2η
∂x∂pI −

∂η
∂x(1− F )

)
+
(
dx
dp

)2
∂2η
∂x2 I + ∂2η

∂p2 I − 2∂η∂p (1− F ) + ηf

∂η
∂xI

. (25)

Noting ∂η
∂p = 0 when k = 1 and plugging this derivative into (27), we get

d2m

dp2
= −f ′(1− e−x) +

dx

dp
e−x

[
−3f +

(1− F )2

I

(
2− η

∂η
∂x

)]
+ 2

(
dx

dp

)2

(1− F )e−x
∂2η
∂x2

∂η
∂x

. (26)

In expression (28), the first term is negative by the assumption f ′ > 0, and the third term is

negative since ∂η
∂x < 0 and ∂2η

∂x2 > 0. To determine the sign of the second term, observe that

−3f +
(1− F )2

I

(
2− η

∂η
∂x

)
> 3

(
−f +

(1− F )2

I

)

because

− η
∂η
∂x

=
1−e−x

x
1−e−x−xe−x

x2

> 1.

We now identify the sign of the term

Z(p) ≡ −f +
(1− F )2

I
,

where I =
∫ 1
p (ε−p)f(ε)dε. Observe that: Z(1) = −f(1)+ (1−F (p))2

I(p)

∣∣∣
p=1

= −f(1)+
−2(1−F (p))f(p)|p=1

−(1−F (p))|p=1
=

f(1) > 0. Moreover,

Z ′(p) = −f ′ − 1− F
I

[f − Z(p)] ,

which implies that if Z(p) ≤ 0 then Z ′(p) < 0.

Suppose now that there exists a p ∈ [0, 1) such that Z(p) < 0. Then, since Z(1) > 0, there must

be a non-empty interval of p ∈ (0, 1) such that Z(p) < 0 and Z ′(p) > 0. However, this contradicts

the above statement that Z ′(p) < 0 if Z(p) ≤ 0. Therefore, we must have Z(p) ≥ 0 for all p ∈ [0, 1].

Hence, the second term in (28) is negative (since dx
dp < 0).

Altogether, we conclude that when k = 1 and f ′ > 0, d2m(x(p),p)
dp2 < 0 for all p ∈ [0, 1].

Finally, we show that the equilibrium exists and is unique when k →∞ for any density of match
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values. First, recall that in the limit as k →∞, we have a demand function

m(x(p), p)→ 1− e−x(p)(1−F (p)).

Differentiation with respect to p yields

dm(x(p), p)

dp
= −x(p)f(p)e−x(p)(1−F (p)) + (1− F (p))e−x(p)(1−F (p))dx(p)

dp

and

d2m

dp2
= e−x(1−F )

[
−xf ′ − (xf)2 +

d2x

dp2
(1− F (p)) +

dx

dp
2f [−1 + x(1− F )]−

(
dx

dp

)2

(1− F )2

]
. (27)

Plugging (25) into the previous expression gives:

d2m

dp2
ex(1−F ) = −x(f ′ + xf2)− (1− F (p))

∂2η
∂p2

∂η
∂x

+
dx

dp
2

f (−1 + x(1− F ))−
∂2η
∂p∂x

∂η
∂x

(1− F ) +
(1− F )2

I


−
(
dx

dp

)2

(1− F )

[
1− F +

∂2η
∂x2

∂η
∂x

]
− 1− F

∂η
∂xI

[
−2

∂η

∂p
(1− F ) + ηf

]
. (28)

We now show that the sign of (28) is negative.

Denote Λ ≡ 1 − e−x̃ − x̃e−x̃ and x̃ ≡ x(1 − F ). In the limit as k → ∞, we can compute the

terms as follows: η → 1−e−x̃

x̃ ; ∂η∂p →
fΛ

x̃(1−F ) ; ∂η∂x → −
Λ
x̃x ; dxdp → −

1−e−x̃

ΛI x̃+ x2f
x̃ ; ∂2η

∂x∂p → f
(
− Λ
x̃2 + e−x̃

)
;

∂2η
∂p2 → Λ

x̃(1−F )2 (2f2 +(1−F )f ′)− e−x̃

x̃ (xf)2; ∂
2η
∂x2 → 2Λ

x2x̃
− x̃e−x̃

x2 . Using these expressions and collecting

terms in (28), we get in the limit as k →∞, d2m
dp2 e

x̃ →

−x(f ′ + xf2) +
x̃2

Λ

[
Λ

x̃(1− F )2
(2f2 + (1− F )f ′)− e−x̃

x̃
(xf)2

]
+
dx

dp
2f

(
x̃+

x̃2e−x̃

Λ

)
−
(
dx

dp

)2

(1− F )

[
1− F − 2

x
+
x̃2e−x̃

xΛ

]
+

1− F
I

[
2(1− F )

dx

dp
+
x

Λ
f
(
−2Λ + 1− e−x̃

)]
.(29)

In what follows, we identify the sign of these terms step by step.

First, the sum of the first two terms of (29) can be simplified to

−(xf)2

x̃Λ

[
x̃(1 + e−x̃)− 2(1− e−x̃)

]
< 0.

Second, we show dx
dp < 0 as k → ∞. Since dx

dp → −
1−e−x̃

ΛI x̃ + x2f
x̃ < 0 ⇐⇒ 1−e−x̃

Λ
x̃2

I > x2f , it is

sufficient to show recall the observation above that Z(p) ≡ (1−F )2

I − f ≥ 0 (because 1−e−x̃

Λ > 1).
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Third, since dx
dp → −

1−e−x̃

ΛI x̃+ x2f
x̃ < 0, the sum of the third term and the forth term of (29) can

be computed as

dx

dp

[
x̃f + 2f +

x̃2e−x̃

Λ
f +

1− e−x̃

Λ2I
(1− F )2

[
x̃(1 + e−x̃)− 2(1− e−x̃)

]]
< 0.

Finally, the last term of (29) can be simplified to

1− F
I

1− e−x̃

Λ
x

[
−2

(1− F )2

I
+ f

]
< 0,

since −2 (1−F )2

I + f = − (1−F )2

I − Z(p) < 0.

Altogether, we conclude that d2m(x(p),p)
dp2 < 0 as k → ∞ for all p ∈ [0, 1]. The proof is now

complete. �

Proof of Proposition 7.

Welfare is given by

W = Bη(x, p; k)

∫ 1

p
εf(ε)dε.

Taking the FOC gives
1

B

∂W

∂p
=
∂η

∂p

∫ 1

p
εf(ε)fε− ηpf(p) = 0.

Using the expression for I(p) =
∫ 1
p (ε− p)f(ε)fε, this can be rewritten as

1

B

∂W

∂p
=
∂η

∂p
I(p) +

∂η

∂p
p(1− F (p))− ηpf(p) = 0,

which is the expression given in the proposition.

When p = 0, this expression is positive. When p = 1, it is negative. This ensures that po exists.

�

Proof of Proposition 8.

We first prove the second claim. Recall that the SNE price p is given by the solution to:

(1− F (p))2

f(p)

[
∂η

∂p
I(p) +

∂η

∂p
p(1− F (p))− pηf(p)

]
− d(p)

[
(1− F (p)− pf(p)) I(p) + p(1− F (p))2

]
= 0. (30)

while the socially optimal price po satisfies the FOC:

∂η

∂p
I(po) +

∂η

∂p
po(1− F (po))− poηf(po) = 0. (31)
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Comparing (30) and (31), we immediately see that the equilibrium and the optimum coincide

when d(p) = 0. This occurs in the limit when k →∞.

To prove the claim for finite k, we show that

∂Πi

∂pi

∣∣∣∣
pi=po

> 0,

which implies that the payoff of a firm increases at pi = po so that p > po. For this, define

Ψ(p) ≡ (1− F (p)− pf(p)) I(p) + p(1− F (p))2

for p ∈ [0, 1]. In what follows, we show that Ψ(p) > 0 for all p ∈ (0, 1), which implies that, since

d(p) < 0 for finite k, the RHS of (11) is negative.

Observe that: Ψ(0) = I(0) > 0; Ψ(1) = 0;

Ψ′(p) = −
(
2f(p) + pf ′(p)

)
I(p)− p(1− F (p))f(p). (32)

and notice that

lim
p→1

Ψ′(p)

1− F (p)
= −f(p) < 0.

To establish a contradiction, suppose there exists a region of prices p ∈ (0, 1) for which Ψ(p) ≤ 0.

Then, because Ψ(p) is decreasing at p = 1, there must exist some p̃ ∈ (0, 1) such that Ψ′(p̃) = 0 and

Ψ(p̃) > 0. Using (32), the condition Ψ′(p̃) = 0 gives:

p̃(1− F (p̃) = −(2f(p̃) + p̃f ′(p̃)) I(p̃)

f(p̃)

Using this relation in the condition Ψ(p̃) > 0 gives

Ψ(p̃) = (1− F (p̃)− p̃f(p̃)) I(p̃) + p̃(1− F (p̃))2

= −
(

1− F (p̃) + p̃
f(p̃)2 + f ′(p̃)(1− F (p̃))

f(p̃)

)
I(p̃) > 0.

But this is impossible because, by the log-concavity of f(p), the hazard rate f(p)
1−F (p) is increasing in

p and the expression in brackets is positive. We therefore reach the desired contradiction and so we

must have Ψ(p) > 0 for all p ∈ (0, 1).

We now prove the first claim. For this is enough to compare the FOCs (4):

[1− F (p)− pf(p)]xη + p(1− F (p))x
∂η

∂p
= 0
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and (11):

[1− F (p)− pf(p)]xη + p(1− F (p))x
∂η

∂p
+ p(1− F (p))

(
η + x

∂η

∂x

)
∂x

∂p
= 0.

Notice that the difference between these two FOCs is the term

p(1− F (p))

(
η + x

∂η

∂x

)
∂x

∂p
. (33)

The sign of ∂x/∂p is negative. Moreover,

η + x
∂η

∂x
=

m

x(1− F (p)
+ x

1

1− F (p)

∂m
∂x x−m
x2

=
1

1− F (p)

∂m

∂x
< 0,

where the sign follows from the proof of Proposition 2. Therefore, the term (33) is positive. �
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