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Abstract

This paper explores the relationship between market accessibility and vari-

ous participants’ welfare in an intermediated directed-search market. For a

general class of meeting technologies, we provide a necessary and sufficient

condition under which efficiency requires imperfect accessibility, such that

each seller’s listing is only observed by some but not all buyers. We show that

the platform optimally implements the efficient outcome, but fully extracts

surplus from the transactions it intermediates. We also find that in general,

buyers prefer to minimize market accessibility, while sellers prefer a weakly

greater accessibility level than that which is socially efficient. The efficiency

of imperfect accessibility is robust to the introduction of a second chance for

unmatched buyers to search.
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1 Introduction

In many search markets mediated by digital platforms such as labour, housing,

or everyday task outsourcing, participants often face a strict cap on the number

of options they may consider. For example, Oneflare, an online marketplace for

service providers (e.g., plumbers, electricians, pet groomers and interior designers),

allows a customer who posts a job request to be approached by a maximum of only

three service providers. This is not very surprising if displaying a large number

of options substantially increases the platform’s cost, as with traditional means

of advertising. However, digital platforms’ costs of managing meetings between

participants are extremely low, if not zero. Instead, given that platforms as profit-

maximizing intermediaries, it is more likely that participants’ market accessibility

is limited due to strategic reasons.

The goal of this paper is to explore the relationship between market accessibility

and various participants’ welfare in the presence of search frictions. Is it good or

bad for overall efficiency if buyers’ search opportunities are deliberately limited?

If a profit-maximizing platform intermediates transactions, what level of market

accessibility should it choose, and will the resulting allocation be efficient? Do

buyers and sellers always prefer better accessibility to the market, given that market

volume is often touted as a key means of overcoming search friction? We answer

these questions by studying a parsimonious duopoly model with homogeneous goods

and directed search frictions, but expect the main mechanism we uncover to be also

in effect in more general environments.

The key ingredient of our model is the platform’s endogenous choice of meeting

technology. The platform chooses from a general set of meeting technologies that

determine not only the allocation of meeting opportunities with sellers among buy-

ers, e.g., which buyers observe a seller’s ads, but also the total number of meeting

opportunities with each seller.1 As a consequence, the platform’s choice of meeting

technology directly determines the market accessibility, i.e., the number of buyers

who observe an individual seller. This differs from standard directed-search models

(e.g., Peters, 1984a, Julien et al., 2000, Burdett et al., 2001), where market accessi-

bility is restricted to being equal to the total number of buyers. Through this, we

are able to delineate the role of market accessibility on market participants’ welfare.

Several key assumptions on the platform’s choice of meeting technology connect

1The terminology “meeting” has been used in the literature of directed search, e.g., Eeckhout
and Kircher (2010). See Section 6.2 for the detailed discussion.
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our analysis to the circumstances faced by platforms in reality. First, there is no

waste in the allocation of meeting opportunities: each buyer is not given more than

one meeting opportunity with the same seller. This contrasts sharply with clas-

sic advertisement models (e.g. Butters, 1977) where buyers can receive multiple

“‘wasted” ads from the same seller, and better reflects how online platforms’ algo-

rithms minimize duplication in ad views by buyers.2 Second, meeting opportunities

with sellers are assigned among buyers either jointly, i.e., as a pair, or separately.

We incorporate technological constraints on the platform’s algorithm by fixing the

number of joint meeting opportunities allocated, interpreted as the platform’s ex-

ogenous ability to identify buyers’ correlated preferences over sellers, while requiring

the separate meeting opportunities to be allocated independently, i.e., with no co-

ordination, across sellers.

Our analysis uncovers a novel channel through which changes in the market ac-

cessibility of the platform’s meeting technology help to mitigate endogenous search

frictions. An unmatched seller exists if and only if (i) every buyer allocated at

least one meeting opportunity observes both sellers, i.e., is fully informed, and (ii)

all buyers select the same seller. A higher level of market accessibility reduces the

likelihood of (ii), increasing efficiency. Meanwhile, its effect on (i) is non-monotone.

Due to the no waste and no coordination properties, allocating more meeting op-

portunities is unlikely to generate more fully informed buyers if there are currently

many uninformed buyers, which occurs when the market accessibility level is low.

Conversely, allocating more meeting opportunities is likely to generate more fully

informed buyers if the current market accessibility level is high.

We find that an intermediate level of market accessibility is often socially ef-

ficient, providing a good balance in minimizing the probabilities of events (i) and

(ii). In particular, we show that perfect market accessibility is efficient if and only

if the platform can only detect relatively many buyers’ correlated preferences. This

insight extends to the case when unmatched buyers are allowed to search one more

time. There, we show that imperfect accessibility is efficient if the number of buyers

is sufficiently large. As a direct implication of these findings, policies that promote

greater accessibility to the marketplace may not always work in the direction of

improving efficiency.

Next, we show that a profit-maximizing platform will choose the efficient level

of market accessibility, which is often imperfect. This is consistent with anecdotal

2This assumption is also relevant to many of the previously stated examples, e.g. buyers often
never receive duplicate job interviews or house selling information.

3



evidence such as the Oneflare example mentioned earlier and the recent empirical

findings in the online labour market.3 Through a field experiment, Horton and

Vasserman (2021) find that some jobs receive too many applications and a cap

on the application number would significantly reduce such congestion—a worker’s

hiring rate conditional on applying to a given job, would increase by 17%.

We also characterise the market accessibility levels that are optimal for buyers

and sellers, and show that these often diverge from the efficient accessibility level.

On one hand, buyers prefer a minimal level of market accessibility. This is because

it allows buyers not only to avoid competition with each other but also to induce

sellers to more aggressively compete for the smaller pool of buyers. On the other

hand, sellers prefer a weakly greater level of market accessibility than the efficient

level. Here, the reverse logic applies: higher levels of market accessibility increase the

probability of greater competition between buyers for the seller’s product, leading to

increased profits. To our knowledge, we are the first to offer such a characterisation

of buyer- and seller-optimal market accessibility levels in markets with directed-

search frictions.

Two recent branches of the directed search literature are relevant. The first

branch addresses the issue of market accessibility. These include Peters (1984b) who

allows sellers to send costless advertisements, Lester (2011) who introduces hetero-

geneous search costs so that some buyers can observe all posted prices and other

buyers can only observe one price, and Gomis-Porqueras et al. (2017) who study

costly stochastic advertising that generates dispersed information among buyers.

None of these papers establish the relationships between market accessibility and

various welfare measures, which is the main focus of our paper. For example, Lester

(2011) does not allow for uninformed buyers who do not observe any sellers at all,

and so an increase in market accessibility cannot reduce the number of uninformed

buyers, which is an important margin for efficiency in our model. In contrast, our

approach directly allows the platform to determine the level of market accessibility

via the choice of meeting technology which can be measured by a single parameter.

The second branch, of directed-search literature, including Kennes and Schiff

(2008) and Gautier et al. (2019), considers fee-setting intermediaries but does not

study the implication of market accessibility. Fee-setting intermediaries have been

systematically studied in the literature of two-sided markets, e.g., Armstrong (2006),

Caillaud and Jullien (2003) and Rochet and Tirole (2003, 2006). A recent trend is to

3Li and Netessine (2019) show that on an online peer-to-peer holiday property rental platform,
doubling market size leads to a 5.6% reduction of matches.

4



incorporate buyer search in the study of intermediaries as we do in this paper. That

includes sequential search models pioneered by Wolinsky (1986) and Anderson and

Renault (1999), and those in Eliaz and Spiegler (2011), de Cornière (2016), Wang

and Wright (2016, 2020) and Teh and Wright (2020). Our paper complements these

works by focusing on trade-offs associated with the other important choice made by

platforms: the level of market accessibility.

In different contexts, several papers show that in multi-sided markets, limiting

one side’s access to information about the other side can improve matching efficiency.

These include Calvó-Armengol and Zenou (2005) in the context of job network

formation, Casadesus-Masanell and Halaburda (2014) for network goods, Halaburda

et al. (2018) in the presence of competing dating platforms, and Glebkin et al. (2021)

for financial intermediaries in over-the-top (OTC) markets. Our approach points to

a novel source of limiting participants’ choices to improve efficiency: full market

accessibility can give rise to an excessive amount of search externalities and a less-

than-efficient number of matches.4

Finally, our paper is related to the burgeoning literature that studies the in-

formation design problem of platforms, often in an environment with differentiated

products but without search friction. The recent contributions include Armstrong

and Zhou (forthcoming), Johnson et al. (2020), and Teh (2020).5 In our model, the

platform’s design choice is with respect to the market accessibility level. We con-

tribute to the literature by showing that, in the presence of directed search friction,

the efficient accessibility level in a homogenous good market can still be decentral-

ized by the platform’ profit-maximizing choice.

2 The model

A platform offers a unit mass of symmetric and independent product categories.

Within each product category, two sellers sell homogenous products. This market

structure is consistent with the observation that, although platforms often list many

4A large body of literature, pioneered by Diamond (1982), considers exogenous matching func-
tions with increasing returns, resulting in thin market externalities (for a recent survey, see Stevens,
2007). The search externality, however, is endogenous in a directed-search framework, and we show
that it can also be affected by the market accessibility level.

5See also Armstrong and Vickers (2019), Bergemann et al. (2021), and Shi and Zhang (2020) who
study market segmentation through information provision in models where sellers sell homogeneous
goods and can price discriminate between captive and contested buyers.
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items, competition only exists among a small number of sellers.6 We can thereby

focus on a representative product category with two sellers, indexed by i = 1, 2, and

B ≥ 3 homogeneous buyers.7 Each seller is endowed with one unit of the good, with

the consumption value normalized to one for buyers and zero for sellers. Buyers

and sellers can trade only through the platform that charges a per-transaction seller

fee f and offers a meeting technology that determines which buyer observes which

seller. We shall refer to a buyer who observes both sellers as a fully informed buyer,

a buyer who observes one seller as a partially informed buyer, and a buyer who does

not observe any seller as an uninformed buyer.

□ Trading protocols. Sellers sell goods using first-price auctions.8 Each seller

i posts a reserve price, denoted by ri, i = 1, 2. The reserve price ri is honoured

only if exactly one buyer participates in seller i’s auction. If more than one buyer

participates, the participating buyers bid for trade. If multiple buyers submit the

same highest bid then each of them obtains the product with equal probabilities.

Auctions with reserve prices capture the idea that on many digital platforms sellers

only have limited commitment power with respect to the posted prices.

When attending an auction, a buyer’s bidding strategy depends on the posted

reserve price, ri, and the observed number of participants, denoted by mi, i = 1, 2.

Bertrand type of reasoning yields the optimal bidding strategy for buyers

bi(ri,mi) =

ri if mi = 1;

1 if mi > 1.
(1)

Given (1), Seller i’s realized profit is then

π̃i(ri,mi) =


0 if mi = 0;

ri if mi = 1;

1 if mi > 1.

□ Buyers search. As common in the directed-search framework, a buyer can

6This modelling approach was also adopted for example by Karle et al. (2020). In the example
of Oneflare mentioned in the introduction, while there can be many registered customers, only a
small number of them will request assistance in a specific neighbourhood on a specific day.

7The model’s tractability worsens substantially if we allow for more than two sellers. This is
as with more than two sellers, a partially informed buyer may know more than one seller, and so
has a non-trivial decision of which seller to visit. Nevertheless, in the Online Appendix (here), we
consider a three seller, three buyer example, and show the key insights we derive continue to hold.

8A second-price auction will yield the same outcome in this environment.

6

https://www.dropbox.com/s/fqbbq88kvi9xvtv/search_20230306_onlineappendix.pdf?dl=0


attend at most one seller’s auction. The buyer can do so only if she observes this

seller, and in the case where she observes two sellers, she needs to decide which seller

to select. Buyers cannot coordinate with each other over which seller to select. In

particular, we assume fully informed buyers use symmetric strategies following an

observed pair (r1, r2). The possible mis-coordination among buyers represents the

endogenous search (or coordination) frictions.9

□ Meeting technology. Each seller can be observed by N buyers, or, in other

words, there are N meeting opportunities between one seller and buyers. Meet-

ing opportunities with each seller can be allocated either jointly, i.e., a meeting

opportunity with seller 1 is bundled with a meeting opportunity with seller 2 and

allocated to one buyer, or separately, i.e., a meeting opportunity with seller i = 1, 2

is independently allocated. Let NJ ∈ {0, ..., B} be the exogenously given number

of joint meeting opportunities.10 Then, N −NJ is the number of separate meeting

opportunities with each seller. The platform uses meeting technology to allocate

joint and separate meeting opportunities.

A meeting-opportunity allocation for a buyer b ∈ {1, ..., B} is captured by the

triplet nb ≡ (nb
1, n

b
2, n

b
J), where nb

s ∈ {0, .., N} is the number of separate meeting

opportunities with seller s ∈ {1, 2} allocated to b, and nb
J ∈ {0, .., N} is the num-

ber of joint meeting opportunities allocated to b. A vector of meeting-opportunity

allocations across buyers is denoted by n = (n1, ...,nB). With a slight abuse of

notation, we also write n = (n1,n2,nJ), where ns ≡ (n1
s, ..., n

B
s ) is the allocations

of separate meeting opportunities with seller s ∈ {1, 2}, and nJ ≡ (n1
J , ..., n

B
J ) is the

allocation of joint meeting opportunities across buyers. Then, the set of possible

allocations of N meeting opportunities, subject to always allocating NJ number of

joint meeting opportunities, is

NN,NJ
≡ {n :

B∑
b=1

(nb
1 + nb

J) =
B∑
b=1

(nb
2 + nb

J) = N and
B∑
b=1

nb
J = NJ}

A meeting technology is a pair (N,P ), where N ∈ {NJ , .., B}, and P ∈ ∆(NN,NJ
)

is a distribution over allocations with N total meeting opportunities. Given nJ ,

let P (n1,n2|nJ) denote the marginal probability of allocating separate meeting

9See Wright et al. (2021) for a comprehensive overview of this literature and the rationale for
assuming this type of friction.

10One can interpret NJ as capturing the platform’s ability to identify the correlated preferences
of buyers for each seller’s products, where more joint meetings will be allocated if the platform
knows that more buyers have correlated preferences over the two sellers’ products.
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opportunities (n1,n2) among sellers, and Ps(ns|nJ) the marginal probability of

allocating separate meeting opportunities ns with seller s. We restrict the platform

to choosing among meeting technologies that satisfy the properties listed below.

Assumption 1. (N,P ) satisfies the following three properties.

1. Symmetry. For all (n1, ...,nB) ∈ NN,NJ
and permutations g of {1, .., B},

P (n1, ...,nB) = P (ng(1), ..,ng(B)).

2. No Waste. For all (n1, ...,nB) ∈ supp(P ), b ∈ {1, .., B} and s ∈ {1, 2},
nb
s + nb

J ∈ {0, 1}.

3. No Coordination. For all (n1,n2,nJ) ∈ NN,NJ
, P (n1,n2|nJ) = P1(n1|nJ)×

P2(n2|nJ).

The symmetry assumption implies that the meeting technology treats the (homo-

geneous) buyers identically, so the associated distribution P over allocations is in-

variant to permutations of buyers. Symmetry also rules out the trivial case that the

buyers’ probability of receiving meeting opportunities with each seller can depend on

their identity, which helps remove search frictions. The no waste assumption ensures

that each buyer is allocated at most one meeting with each seller. In particular, this

rules out the possibility that a buyer may be allocated both a joint meeting and

a separate meeting with some seller. Finally, the no coordination assumption pre-

serves the endogenous search frictions: separate meeting opportunities are allocated

independently across sellers, ruling out the possibility for buyers to coordinate their

strategies in selecting sellers. The no-waste assumption is natural, given our focus

on platforms whose algorithms can prevent buyers from viewing duplicate ads, while

the other two assumptions are commonly assumed in the directed-search literature.

Further implications of Assumption 1 are discussed in Section 6.2.

Define Cx
y ≡ x!/(y!(x− y)!), and let N̂N,NJ

⊆ NN,NJ
denote the subset of allo-

cations of meeting opportunities which incorporates the no-waste assumption, i.e.,

N̂N,NJ
≡

{
n ∈ NN : ∃B ⊆ {1, ..., B} s.t.

|B| = NJ ,

∀b ∈ B, nb
s = 0 and nb

J = 1,

∀b ∈ {1, .., B}\B, nb
s ∈ {0, 1} and nb

J = 0

}

(2)

In Proposition 6 in the Appendix, we show that there exists a unique meeting
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technology (N,PN,NJ
) that satisfies Assumption 1, where

PN,NJ
(n) =


1

(CB
NJ

)(C
B−NJ
N−NJ

)2
, n ∈ N̂N,NJ

0, n /∈ N̂N,NJ

(3)

This result has two implications. First, the platform’s choice of meeting technologies

reduces to choosing among the class {(N,PN,NJ
)}BN=NJ

. That is, for a given NJ , the

platform’s choice of meeting technology can be fully captured by the parameter N .

Second, N exactly coincides with the number of buyers who observe a given seller.

Put differently, under Assumption 1, there is a one-to-one relationship between the

platform’s choice of meeting technology, and that of the market accessibility level.

Hence, we refer to N as the accessibility level of the platform’s meeting technology,

N = B as perfect accessibility and N < B as imperfect accessibility.

In practice, meeting technologies of the form described in Proposition 6 can be

implemented via a two-stage process. First, the platform identifies a random subset

of NJ number of buyers among all B buyers, and allocates to each such buyer a joint

meeting opportunity. Second, for seller 1, the platform identifies a random subset

of N −NJ number of buyers among the remaining B −NJ buyers, and allocates to

each such buyer a meeting opportunity with seller 1. The process is then repeated

to allocate the separate meeting opportunities with seller 2.

Two prominent examples from the directed search literature fit the requirements

we impose above on meeting technologies. The first, which we call fully-separate

meeting technology, concerns the case when NJ = 0. There, all N meeting oppor-

tunities with a seller are allocated independently (and uniformly randomly) among

buyers. This meeting technology captures real-world situations such as job inter-

view scheduling,11 and is the reminiscence of the matching technology where the

short side of the market is always cleared (Stevens, 2007). The second, which we

call fully-joint meeting technology, concerns the meeting process which arises when

NJ ≥ 1 and the platform chooses N = NJ . There, every meeting opportunity with

seller 1 is always jointly allocated with a meeting opportunity with seller 2. One

example can be price comparison sites, which often return a search result contain-

ing multiple listings that buyers can see at once. By allowing for the fixed number

of joint meetings NJ to be strictly between 0 and N , the meeting technologies we

consider generalize these examples.

11Each job seeker is scheduled, at most, to attend one interview for each vacancy, and the
interviews for vacancy 1 are separately scheduled from the interviews for vacancy 2.
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□ Timing of the game. The timing of the game is as follows. In the first stage,

the platform publicly sets a seller fee f and a meeting technology. In the second

stage, buyers and sellers decide whether to join the platform. Each participating

seller i sets a reserve price ri. Then, for a given meeting technology and the chosen

accessibility level, participating buyers’ information regarding sellers are realized.

The fully or partially informed buyers choose a seller to visit. Finally, the chosen

sellers and the informed buyers trade using auctions. The equilibrium concept we

use is the subgame perfect Nash equilibrium.

3 Efficient market accessibility

Consider the problem of a social planner who aims to maximize expected total

surplus, subject to directed search frictions, i.e., buyers randomizing when fully

informed, and to choosing a meeting technology that satisfies Assumption 1. Holding

fixed a number of joint meeting opportunities NJ ∈ {0, ..., B}, the discussion in

Section 2 implies that the planner’s problem is equivalent to selecting an accessibility

level N ∈ {NJ , ..., B} to maximize the expected total number of matches between

each seller and some buyer. Let ms denote the number of buyers who select seller

s. Then, the expected total number of matches is given by

Pr.[m1 ≥ 1] · Pr.[m2 = 0] + Pr.[m1 = 0] · Pr.[m2 ≥ 1] + 2 · Pr.[m1 ≥ 1] · Pr.[m2 ≥ 1].

To compute these probabilities, we define ΓNJ
(k|N,B) as the probability of having

k = 0, ..., N fully informed buyers when there are in total B buyers and N (=

0, 1, ..., B) meeting opportunities with each seller, among which NJ (= 0, 1, ..., N)

are joint meeting opportunities. By definition, any meeting technology generates at

least NJ fully informed buyers. Meanwhile, applying (3), the probability of having

N fully informed buyers is then given by12

ΓNJ
(N |N,B) = Γ0(N −NJ |N −NJ , B −NJ) =

1

CN−NJ
B−NJ

. (4)

12To randomly introduce seller 1 or 2 to N −NJ buyers out of B−NJ buyers, there are in total
CN−NJ

B−NJ
cases. On the other hand, to randomly introduce both sellers 1 and 2 to N −NJ buyers,

there are in total CN−NJ

B−NJ
cases. Hence, the probability of having N −NJ fully informed buyers is

CN−NJ

B−NJ
/(CN−NJ

B−NJ
)2 = 1/CN−NJ

B−NJ
.
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The number of fully informed buyers is critical in determining market efficiency. If

there are N fully informed buyers, which occurs with probability ΓNJ
(N |N,B), all

buyers randomize over which seller to visit, such that each buyer visits each seller

with probability 1/2. There will be only one match with probability 2(1/2)N =

(1/2)N−1, and two matches with probability 1 − (1/2)N−1. If there are less than

N fully informed buyers, i.e., there exist partially informed buyers, then there is

at least one buyer who observes only seller 1 and another buyer who only observes

seller 2. Hence, if partially informed buyers exist, which occurs with probability

1−ΓNJ
(N |N,B), each seller meets at least one buyer and there will be two matches

with probability one. As a result, the accessibility level N generates the expected

total number of matches as

TNJ
(N) ≡ ΓNJ

(N |N,B)

[(
1

2

)N−1

+ 2

(
1−

(
1

2

)N−1
)]

+ 2(1− ΓNJ
(N |N,B))

= 2

[
1−

(
1

2

)N

ΓNJ
(N |N,B)

]
. (5)

Let

N e
NJ

= argmax
N∈{NJ ,...,B}

TNJ
(N) (6)

denote the efficient accessibility level given NJ . To state the characterisation of N e
NJ

below, we let ⌊x⌋ denote the greatest non-negative integer smaller than x ∈ R+.

Proposition 1. The efficient accessibility level is unique and is given by

N e
NJ

=

⌊
2(B + 1) +NJ

3

⌋
(7)

The key implication of Proposition 1 is that perfect market accessibility is often

inefficient unless sufficiently many meeting opportunities are joint.

Corollary 1. N e
NJ

= B if and only if NJ ≥ B − 2.

Observe that for large B, N e
NJ

< B holds for a wide range of NJ . Why then does

market efficiency often call for imperfect accessibility? Search frictions can lead to

less than two total matches only when exactly N buyers are fully informed. The

probability of having N fully informed buyers is given by the term ΓNJ
(N |N,B) in

(5), which we refer to as the extensive margin of search friction. On the other hand,
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the term (1/2)N measures the mis-coordination (selecting the same seller) among

the N fully informed buyers, and we refer to it as the intensive margin of search

friction. A higher degree of market accessibility, measured by larger N , strictly

decreases the intensive margin of search friction, which helps increase efficiency.

However, its effect on the extensive margin of search friction is less clear-cut.

As an example, consider the case of fully separate meeting technologies, i.e.,

NJ = 0. Here, there are in total CN
B possible cases in terms of which buyers observe

an individual seller. In addition, there are in total CN
B cases of exactly N buyers

being fully informed. Therefore, Γ0(N |N,B) = CN
B /(CN

B )2 = 1/CN
B , and

T0(N) = 2

[
1−

(
1

2

)N
1

CN
B

]
. (8)

While an increase in N still decreases the intensive margin of search friction, the

effect on the extensive margin of search friction is non-monotonic as Γ0(N |N,B) =

1/CN
B initially decreases and then increases in N . The intuition of such non-

monotonicity is clear. When N is small compared to B, there are plenty of unin-

formed buyers. Due to the no-waste assumption, an additional meeting opportunity

with each seller is thus unlikely to reach the same buyer. Conversely, when N is close

to B, most buyers are either fully or partially informed, so an additional meeting op-

portunity with each seller is very likely to create an additional fully informed buyer.

Hence, maximizing efficiency requires an intermediate degree of market accessibility.

Why is perfect market accessibility efficient only when NJ is sufficiently large?

By definition, a meeting technology with NJ joint meeting opportunities automat-

ically generates NJ fully informed buyers. A larger NJ thus leads to larger search

frictions, leading to greater mis-coordination between buyers, and thus a high prob-

ability of having just one match. In turn, it becomes increasingly important to

generate a larger number of separate meeting opportunities N − NJ to reduce the

probability of a single match. This is accomplished by further increasing the market

accessibility level, and so N e
NJ

is increasing in NJ . This also explains why, when

NJ is too large such that search frictions are sufficiently large, it is efficient to have

perfect market accessibility, i.e., N e
NJ

= B.

We conclude by considering the impact of a change in the market size, i.e., the

number of buyers B, on the efficient accessibility level. By (7), notice that the
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efficient proportion of market accessibility, i.e.,

xe
NJ

≡
N e

NJ

B
=

1

B

⌊
2(B + 1) +NJ

3

⌋
is decreasing in the market size. This is as an increase in B only leads to a (further)

increase in the reduction of the extensive margin of search frictions ΓNJ
(N |N,B)

from small increases in the market accessibility level N .

4 Equilibrium market accessibility

In this section, we return to characterizing the equilibrium of the game. Sections

4.1 and 4.2 begin by studying the buyer-seller continuation games induced by the

platform choosing N ≥ 2 and N = 1 respectively when the platform charges f = 0.13

The equilibrium platform fee and market accessibility levels are then derived in

Section 4.3.

4.1 Buyer-seller games when N ≥ 2

Suppose that N ≥ 2. We work backward and start with the buyers’ search

problem. Except for the extreme case of perfect accessibility, i.e., N = B, buyers’

information will be dispersed. That is, there potentially exists buyers who observe

no seller, one seller, and two sellers. If a buyer observes no seller, then she has no

one to visit and her payoff is zero. If a buyer observes one seller, she is partially

informed and can only visit the seller she observes. Her payoff then depends on

whether the seller in question is visited by other buyers.

We next describe the symmetric equilibrium strategy of a fully informed buyer

who observes both sellers. Let σ1(r1, r2) ∈ (0, 1) denote the symmetric equilibrium

probability that a fully informed buyer attends seller 1’s auction. The buyer obtains

a positive payoff from seller 1 if and only if she is the only one to visit seller 1,

because otherwise, the ex post competition would leave the winning buyer with zero

surpluses. If partially informed buyers exist, then each seller receives at least one

buyer. Hence, a necessary condition for a fully informed buyer to be the only visitor

of seller 1 is that all other informed buyers are fully informed. Conditional on that

there exist other N − 1 fully informed buyers, a fully informed buyer obtains a

13We separate the f = 0 analysis from the f > 0 analysis, as the former will be used in the
upcoming analysis of seller- and buyer-optimal accessibility levels in Section 5.
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positive payoff from selecting seller 1 if and only if none of the other fully informed

buyers selects seller 1, which happens with probability (1− σ1(r1, r2))
N−1.

Let Γ̃NJ
(N − 1|N,B) denote the probability that there exist other N − 1 fully

informed buyers from a fully informed buyer’s perspective.14 Her expected payoff

for selecting seller 1, who posts a reserve price r1, is therefore given by

uNJ |1(r1, r2|N) = (1− r1)(1− σ1(r1, r2))
N−1Γ̃NJ

(N − 1|N,B). (9)

Analogously, her expected payoff for selecting seller 2 is

uNJ |2(r1, r2|N) = (1− r2)(σ1(r1, r2))
N−1Γ̃NJ

(N − 1|N,B). (10)

Closely examining (9) and (10) reveals that for any (r1, r2) ̸= (1, 1), the symmetric

directed search equilibrium is unique, and is given by15

σ1(r1, r2) =


A(r1,r2)

1+A(r1,r2)
, r2 < 1

1, r1 < 1 = r2
(11)

where A(r1, r2) ≡
(

1−r1
1−r2

) 1
N−1

. We further note that unless either r1 = 1 or r2 = 1,

the unique equilibrium σ1(r1, r2) must be in mixed strategies.

We now establish the symmetric equilibrium strategies of sellers, fixing buyers’

symmetric equilibrium strategy at σ1(r1, r2). Seller 1’s expected profit is

πNJ
(r1, r2|N) = r1 · Pr.[m1 = 1] + Pr.[m1 > 1]

= 1− Pr.[m1 = 0]− Pr.[m1 = 1] · (1− r1).

m1 = 0 arises when there are N fully informed buyers and none of them select seller

1. The probability of this event is ΓNJ
(N |N,B)(1 − σ1)

N . Meanwhile, m1 = 1

holds when (i) there are N fully informed buyers but only one of them selects seller

1, which happens with probability ΓNJ
(N |N,B)Nσ1(1 − σ1)

N−1; or (ii) there are

N − 1 fully informed buyers (and therefore two partially informed buyers) but none

14When 0 < NJ < N , there is uncertainty in how a buyer becomes fully informed. It can be
because she receives a joint meeting opportunity, or because she receives separately one meeting
opportunity with each seller. A fully informed buyer needs to take these possibilities into account
when she calculates Γ̃NJ

(N − 1|N,B). Luckily, Γ̃NJ
(N − 1|N,B) cancels out when computing the

equilibrium in the stage where buyers select sellers to visit.
15In the proof of Theorem 1, we show that regardless of buyers’ (symmetric) strategies, there is

no symmetric equilibrium in which both sellers set a reserve price of 1. Thus, we omit (1, 1) from
our exposition here.
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of them selects seller 1, which happens with probability ΓNJ
(N−1|N,B)(1−σ1)

N−1,

where

ΓNJ
(N − 1|N,B) = Γ0(N −NJ − 1|N −NJ , B −NJ) =

CN−NJ−1
B−NJ

C1
B−N+1C

1
B−N

(CN−NJ
B−NJ

)2

=
(N −NJ)(B −N)

CN−NJ
B−NJ

given that CN−NJ−1
B−NJ

= (N −NJ)C
N−NJ
B−NJ

/(B −N + 1).16 In this case, it is a partially

informed buyer who only observes seller 1 that participates in seller 1’s auction.

Hence,

πNJ
(r1, r2|N) =1− ΓNJ

(N |N,B)(1− σ1(r1, r2))
N

− [ΓNJ
(N |N,B)Nσ1(r1, r2) + ΓNJ

(N − 1|N,B)](1− σ1(r1, r2))
N−1(1− r1).

(12)

where σ1(r1, r2) is as defined in (11).

Differentiating πNJ
(r1, r2|N) with respect to r1 and setting r1 = r2, it is straight-

forward to verify that for N ≥ 2, rNJ
(N) defined below is the unique interior

r ∈ (0, 1) that satisfies the first-order conditions for seller 1’s profit, subject to seller

2 setting the same reserve price:

rNJ
(N) = 1− ΓNJ

(N |N,B)N

ΓNJ
(N |N,B)N2 + 2ΓNJ

(N − 1|N,B)(N − 1)

= 1− 1

N + (2(N −NJ)(N − 1)(B −N)/N)
, (13)

where in the second equality we use ΓNJ
(N |N,B) = 1/CN−NJ

B−NJ
and ΓNJ

(N−1|N,B) =

(N −NJ)(B −N)/CN−NJ
B−NJ

. We further show in the Appendix that (i) there is no

equilibrium where sellers set r1 = r2 = 0 or r1 = r2 = 1, and (ii) πNJ
(r1, rNJ

(N)|N)

is strictly single-peaked at r1 = rNJ
(N). Combined, these imply that rNJ

(N) is the

unique symmetric equilibrium reserve price.

Theorem 1. Suppose that N ≥ 2. Then, a (pure-strategy) symmetric directed

search equilibrium exists and is unique. Furthermore, the equilibrium reserve price

16The second equality can be derived as follows. To have N −NJ − 1 fully informed buyers, we
must introduce both sellers to N −NJ −1 buyers, and simultaneously have one random buyer who
observes seller 1 but not seller 2, and another random buyer who observes seller 2 but not seller
1. There are in total CN−NJ−1

B−NJ
C1

B−N+1C
1
B−N such cases. Hence, the probability of having N − 1

fully informed buyers is given by (CN−NJ−1
B−NJ

C1
B−N+1C

1
B−N )/(CN−NJ

B−NJ
)2.
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rNJ
(N) is given by (13).

From (13), we further observe that rNJ
(N) strictly decreases in NJ and increases

in B. An increase in NJ creates more fully informed buyers, intensifying competition

between sellers and thus leading to a decrease in rNJ
(N). Meanwhile, on the ag-

gregate level, the sellers’ potential demand increases as B becomes larger, allowing

them to increase their reserve prices rNJ
(N) in response.

4.2 Buyer-seller games when N = 1

The analysis in Section 4.1 does not readily extend to the case of N = 1. Here,

we have either NJ = 0 or NJ = 1. When NJ = 1, a single buyer becomes fully

informed while all the other buyers are uninformed. The fully informed buyer thus

visits the seller who sets a lower reserve price, leading to Bertrand competition

between sellers and zero profit to each seller.

The case of NJ = 0 is more involved. There are two possible scenarios regarding

buyers’ information: (i) a single buyer observes both sellers, and (ii) one buyer

observes only seller 1 and another buyer observes only seller 2. If a buyer is fully

informed, she will select the seller with the lower reserve price. If a buyer is partially

informed, she will select the observed seller provided the reserve price is no greater

than 1. Note that ex post bidding never takes place when N = 1, as each seller can

meet at most one buyer.

Now, if both sellers set some r1 = r2 > 0, one seller can slightly undercut the

other seller’s reserve price, obtaining a fully informed buyer with probability one

(if there is one). Meanwhile, neither seller will set a zero reserve price since they

can set a positive reserve price and sell only to a partially informed buyer with a

positive probability. Consequently, the symmetric equilibrium behaviour of sellers

must involve the use of a mixed strategy.

Denote the symmetric equilibrium mixed strategy of sellers by a distribution

function F (r). By the standard argument given in Varian (1980), there is no gap

and no mass point in the support of F (r), such that its support is given by [r, r] for

some 0 ≤ r ≤ r ≤ 1. Furthermore, note that if r < 1, then only a partially informed

buyer will buy when faced with a reserve price of r. If so, then a seller can instead

redistribute the mass on r to r = 1 without losing demand while strictly increasing

her profit. Hence, r = 1 must hold.

To derive the symmetric equilibrium price distribution F and the lower bound r,

we first consider the expected profit of seller 1 from charging some r1 ∈ [0, 1]. Notice
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that there is a fully informed buyer with probability Γ0(1|1, B). Furthermore, given

that seller 2 randomizes over reserve prices according to F , seller 2’s reserve price

is higher than r1 with probability 1− F (r1), in which case the fully informed buyer

will buy from seller 1. Meanwhile, with probability Γ0(0|1, B), there is a partially

informed buyer who can only buy from seller 1. Hence, seller 1’s expected profit

from setting a reserve price r1 is

π1(r1, F (r)) = r1[Γ0(1|1, B)(1− F (r1)) + Γ0(0|1, B)].

Recall that if F is an equilibrium price distribution, then seller 1 must be indifferent

between any r ∈ [r, 1) and r = 1, the latter of which yields an expected profit

Γ0(0|1, B). This yields the indifference condition

r[Γ0(1|1, B)(1− F (r)) + Γ0(0|1, B)] = Γ0(0|1, B)

which can be rearranged to obtain the equilibrium price distribution

F (r) = 1− Γ0(0|1, B)

Γ0(1|1, B)

(
1

r
− 1

)
= 1−B

(
1

r
− 1

)
. (14)

The lower bound then follows from solving F (r) = 0. This yields r = Γ0(0|1, B)/(Γ0(0|1, B)+

Γ0(1|1, B)) = B/(B + 1), which is also equal to each firm’s expected equilibrium

profit.

Theorem 2. Suppose that N = 1

1. If NJ = 1, then in any symmetric directed search equilibrium, both sellers

obtain zero profits.

2. If NJ = 0, then a symmetric directed search equilibrium exists and is unique.

The equilibrium is characterized by a non-degenerate distribution F over re-

serve prices on [B/(B + 1), 1], where F is given by (14).

4.3 Profit-maximizing platform

We now turn to the platform’s equilibrium behaviour. The platform sets a

transaction fee f and a market accessibility level N ∈ {NJ , ..., B} to maximize its

own profit, given by ΠNJ
(N) = f · TNJ

(N), where TNJ
(N) is the expected total
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number of trades in equilibrium given in (5), subject to the buyers’ and the sellers’

(i) participation constraint, i.e., non-negative payoffs, and (ii) equilibrium behaviour

described in Sections 4.1 and 4.2. Following the platform’s choice of f and N , sellers

play the same game as discussed in Sections 4.1 and 4.2, except that their profit

margins will reduce by f .

Observe that for a given (r1, r2), buyers’ equilibrium behaviours are unaffected

by the transaction fee f . Meanwhile, with N ≥ 2, seller 1’s expected profit is now

πNJ
(r1, r2, f |N) = (r1 − f) · Pr.[m1 = 1] + (1− f) · (1− Pr.[m1 = 0]− Pr.[m1 = 1])

= (1− f)(1− Pr.[m1 = 0])− (1− r1) · Pr.[m1 = 1].

and seller 2’s profit can be derived in a similar fashion. Following an identical logic

to that in Section 4.1, we can derive the symmetric equilibrium reserve price for a

given f and N by

rNJ
(f |N) = 1− 1− f

N + (2(N −NJ)(N − 1)(B −N)/N)
.

Notice that rNJ
(f |N) = 1 whenever f = 1, which is the highest possible fee the

platform can charge without causing sellers and buyers to withdraw. Furthermore,

the choice of fee does not influence the total number of matches in any symmet-

ric equilibrium where fully informed buyers select each seller with probability 1/2.

Thus, the platform optimally selects f ∗ = 1 for any given N ≥ 2, and obtains a

payoff of TNJ
(N).

From here, we recall that TNJ
(N) is uniquely maximized at N e

NJ
> 1 defined

in (7) for N ∈ {NJ , ..., B}. Furthermore, when N = 1, the platform’s payoff from

choosing any fee f must be bounded above by the total surplus TNJ
(1) ≤ TNJ

(N e
NJ

).

Thus, the platform’s optimal accessibility level is simply N∗ = N e
NJ

. Furthermore,

the platform sets f ∗ = 1 and N∗ = N e
NJ

in equilibrium, obtaining an equilibrium

profit of Π∗ = TNJ
(N e

NJ
), and fully extracting all expected surplus, leaving both

buyers and sellers with zero gains from trade.

Proposition 2. The platform sets the efficient level of market accessibility, i.e.,

N∗ = N e
NJ

and charges the maximum transaction fee f ∗ = 1 in equilibrium.

The key insight of Proposition 2 is that the efficient accessibility level, i.e.,

that which maximizes the expected total surplus, can be implemented by a profit-

maximizing platform that sets a simple transaction fee for its intermediation service.
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In other words, the constrained-efficient outcome, i.e., subject to search frictions,

can also be achieved in a decentralized setting. From Corollary 1, our model pre-

dicts imperfect accessibility to arise in a wide range of environments. However, the

benefits of attaining an efficient outcome do not necessarily translate into benefits

for the users of the platform as the platform’s transaction fee induces full surplus

extraction.17

5 Buyer- and seller-optimal market accessibility

So far, we have demonstrated that the platform’s incentives (in terms of total

efficiency) coincide with that which is socially efficient. One may then ask whether

this insight continues to hold with respect to platform users. We now address this

question by characterizing the seller-optimal and buyer-optimal market accessibility

levels. Throughout, we assume away the platform fee, i.e., set f = 0.

5.1 Seller-optimal market accessibility

We start with discussing the seller-optimal choice of market accessibility. Let

πNJ
(N) denote the sellers’ equilibrium expected profit given NJ ∈ {0, ..., B} and

N ∈ {NJ , ..., B}. We call any

NS ∈ argmax
N∈{NJ ,...,B}

πNJ
(N)

a seller-optimal accessibility level.

To identify NS , for N ≥ 2, by applying r1 = r2 = rNJ
(N) identified in (13) to

πNJ
(r1, r2|N), we obtain the seller’s equilibrium expected profit

πNJ
(N) = 1−

(
1

2

)N−1
1

CN−NJ
B−NJ

[
1 +

(N −NJ)(B −N)

N2 + 2(N − 1)(N −NJ)(B −N)

]
. (15)

Meanwhile, using the results from Section 4.2, it is immediate that for N = 1,

π0(1) =
B

B + 1
, π1(1) = 0

By comparing these profits, we provide a characterization of NS below.

17Through allowing the platform to fully extract surplus from buyers and sellers, the simple
transaction fee structure weakly outperforms all other types of fees (e.g., fixed fee, percentage fee).

19



Proposition 3. Take any seller-optimal accessibility level NS . Then,

1. For all NJ ∈ {0, ..., B}, NS ≥ N e
NJ

, i.e., any seller-optimal market accessibility

level is always weakly greater than the efficient level.

2. If NJ is sufficiently small, then NS < B, i.e., perfect accessibility is strictly

not seller-optimal.

Proposition 3 delivers two key insights. First, sellers weakly prefer a greater level

of market accessibility than the efficient level. To understand this result, recall that

a seller’s payoff from being visited by two or more buyers is 1, while being visited

by a single buyer yields a profit of rNJ
(N) < 1. Hence, unlike matching efficiency,

a seller strictly benefits from having multiple visiting buyers over having a single

visiting buyer. Conditional on having at least one visiting buyer, the probability

in which two or more buyers visit a seller is increasing in N . It is this additional

benefit from raising N that leads to NS ≥ N e
NJ

.

Despite sellers’ preferences for a larger market accessibility level, the second

part of Proposition 3 states that imperfect accessibility can still be optimal for

sellers when NJ is low. Here, the logic mirrors that regarding the efficient meeting

accessibility level discussed in Proposition 1. Recall that a seller cannot sell if there

are N fully informed buyers and all of them select the rival seller. Furthermore,

when NJ is sufficiently small and N is relatively large, the probability of having N

fully informed buyer increases with N . Thus, like the efficient accessibility level,

NS < B still holds when NJ is close to zero.

5.2 Buyer-optimal market accessibility

We now discuss the buyer-optimal choice of market accessibility. Let uNJ
(N)

denote the buyer’s expected payoff given NJ ∈ {0, ..., B} and N ∈ {NJ , ..., B}. We

call any

NB ∈ argmax
N∈{NJ ,...,B}

uNJ
(N)

a buyer-optimal accessibility level.

To identify a buyer-optimal accessibility level, we note that each buyer’s expected

payoff can be written as the difference between total surplus TNJ
(N) as defined in

(5), and sellers’ total profits πN defined in Section 5.1 (depending on whether N ≥ 2
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or N = 1), divided by the number of buyers B. Therefore,

uNJ
(N) =

1

B

(
TNJ

(N)− 2πNJ
(N)

)
(16)

When N ≥ 2, then using (15), a buyer’s payoff is

uNJ
(N) =

1

BCN−NJ
B−NJ

(
1

2

)N−1(
1 +

2(N −NJ)(B −N)

N2 + 2(N − 1)(N −NJ)(B −N)

)
(17)

On the other hand, when N = 1 such that there is no competition between buyers,

then if NJ = 0, a buyer’s expected payoff is

u0(1) =
1

B

(
T0(1)−

2B

B + 1

)
=

B − 1

B2(B + 1)
. (18)

If NJ = 1 such that sellers’ profits are zero, then a buyer’s expected payoff is

u1(1) =
1

B

(
T1(1)− 0

)
=

1

B
(19)

By comparing these payoffs, we fully characterize the buyer-optimal accessibility

level below.

Proposition 4. The buyer-optimal market accessibility NB is as follows.

1. If NJ ≥ 0, then NB = NJ is uniquely buyer-optimal.

2. If NJ = 0 and B ≥ 4, then NB = 1 is uniquely buyer optimal.

3. If NJ = 0 and B = 3, then NB = B is buyer optimal.18

The main insight of Proposition 4 is that excluding the extreme case in which no

joint meetings are allocated and there are a minimal number of buyers, i.e., NJ = 0

and B = 3, a buyer always strictly prefers being given the minimum access to

sellers in a matching market. Consequently, when B > 3, the buyer-optimal market

accessibility level is increasing in the number of joint meeting opportunities NJ , and

does not vary in the size of the market B. Meanwhile, when B = 3, the buyer-

optimal market accessibility level first decreases in NJ (from NB = 3 when NJ = 0,

to NB = 1 when NJ = 1), and then increases in NJ (for NJ > 1). Furthermore,

18In the proof of Proposition 4, we show that N = 2 is also buyer optimal when NJ = 0 and
B = 3.
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perfect accessibility can only be optimal for buyers in either the extreme case above,

or the trivial event when all meetings must be allocated jointly, i.e., NJ = B.

The key to understanding this counter-intuitive result lies in the competition

among buyers. As an example, when N = 1, a buyer is either partially informed of

a seller and no other buyers know this seller or fully informed and there is no other

informed buyer. Therefore, buyers do not face any ex post competition after being

informed and thus always obtain a positive utility. Proposition 4 shows that, except

in the extreme case of B = 3 and NJ = 0, the benefits from avoiding competition

with other buyers outweigh the cost of being less frequently informed, and buyers’

utility is maximized at the minimum accessibility level.

6 Discussion

In this section, we elaborate upon several of the assumptions made in the model.

Section 6.1 investigates the robustness of our key insight, i.e., that imperfect market

accessibility is efficient, by allowing unmatched buyers to search again. Section 6.2

offers an alternative interpretation of the meeting technology market accessibility

level, and discusses the implications of relaxing several of the assumptions made on

the platform’s choice of meeting technology (Assumption 1).

6.1 A second chance to search

We now study a variant of our model that incorporates an additional period

for buyers and sellers to interact. Our main goal is to show that imperfect market

accessibility can still be efficient. For simplicity, we assume throughout that NJ = 0,

and let N e denote the efficient accessibility level.

There are two periods, 1 and 2. To avoid unnecessary complications, we assume

that the supply of goods is constant across periods, i.e., each seller has a unit to sell

in both periods. Unlike sellers, buyers exit the market upon successful trade. The

meeting parameter N is chosen at the beginning of period 1 and buyers observe the

same set of sellers in both periods. We assume that buyers are myopic and will not

strategically delay their search.19 Under this assumption, the equilibrium in each

19If buyers are sophisticated, they want to delay their participation if everyone else does not
delay. This is because the number of participating buyers is always smaller in period 2 than in
period 1, which causes sellers to set a lower equilibrium reserve price in period 2. However, if
everyone else delays their participation, sellers will set a high reserve price in period 2 and an
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period is the same as in our original setting except that there are fewer buyers in

period 2. We assume a common discount factor δ ∈ [0, 1] for the value derived in

period 2.

The intuition can be best understood by considering a simple case with only

three buyers. We will generalize the results to arbitrary B at the end of the section.

Suppose N = 1. As in Sections 3-5, we will use T (N) to denote the discounted

total expected values generated from both periods. There exists a fully informed

buyer, which generates one match, with a probability 1/3, and two partially informed

buyers, which generate two matches, with a probability 2/3. All matches are formed

in period 1. So the discounted total value is

T (1) =
1

3
+ 2× 2

3
+ δ × 0 =

5

3
. (20)

Suppose N = 3 and therefore all buyers are fully informed. There is one match

with probability 1/4 and two matches with probability 3/4 in period 1. So the

expected value in period 1 is 7/4. If there is only one match in period 1, there is one

match with probability 1/2 and two matches with probability 1/2 in period 2. If

there are two matches in period 1, there will be for sure one match in period 2. So

the expected value generated in period 2 is (1/4)×(1/2+2×(1/2))+(3/4)×1 = 9/8.

So the discounted total value is

T (3) =
7

4
+ δ

(
9

8

)
. (21)

Suppose N = 2. With probability 1/3, there are two fully informed buyers.

With probability 2/3, there are one fully informed buyer and two partially informed

buyers. In the former case, there will be two matches with probability 1/2 and

only one match with probability 1/2 in period 1. In the latter case, there are two

matches in period 1. The expected value generated in period 1 is (1/3)×((1/2)+2×
(1/2)) + (2/3)× 2 = 11/6. If there is only one match in period 1, there will be one

match in period 2. If there are two matches in period 1, there will be an additional

match in period 2 if there exist partially informed buyers, and no match in period 2

otherwise. The expected value generated in period 2 is (1/3)× (1/2)+ (2/3) = 5/6.

So the discounted total value is

T (2) =
11

6
+ δ

(
5

6

)
. (22)

informed buyer’s optimal response might be not to delay.
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Let us compare (20), (21), and (22). It is clear that N = 1 generates the lowest

level of total efficiency. When N = 1, having a second chance to search does not

add any value to matching as all the informed buyers are matched in period 1.

According to our results in the static setting, N = 2 always generates the highest

value in period 1. The question is then whether N = 3 can generate a higher value in

period 2. By comparing the second terms in (21) and (22), perfect accessibility, i.e.,

N = 3, indeed dominates in period 2. We can conclude that perfect accessibility is

efficient if participants are patient enough, i.e. δ > 2/7, and imperfect accessibility

is efficient otherwise.

The reason why, unlike in the static case, N = 2 can be less efficient relative

to perfect accessibility N = 3 in this example is because there is a strictly positive

probability that there exist uninformed buyers who cannot participate. This is a

serious problem for efficiency, particularly given that there are only three buyers.

This issue, however, is less severe when the number of buyers is large enough, as

our next result demonstrates.

Proposition 5. Suppose the market operates in both periods 1 and 2 and partici-

pants have a common discount factor δ ∈ [0, 1]. Then, there exists a B̂ > 3 and

δ̂ ∈ (0, 1) such that

• N e = B if B ≤ B̂ and δ > δ̂;

• 1 < N e < B if either B > B̂, or B ≤ B̂ and δ < δ̂.

The disadvantage of enforcing imperfect accessibility is that some consumers

might be uninformed and therefore cannot participate in both periods. This disad-

vantage is severe when the number of buyers is small. If there is a large number of

buyers, this disadvantage will be mitigated as long as N is not too small relative to

B. This is because a sufficient number of buyers will be informed, partially or fully,

and whether there exist uninformed buyers becomes irrelevant for the total number

of matches. Together with the fact that imperfect accessibility always dominates

in period 1, we can conclude that imperfect accessibility is optimal in generating

matches even in the dynamic setting provided that B is sufficiently large.

Let T 2(N) be the expected number of matches generated in period 2 given the

accessibility level N . Figure 1 plots T 2(B) (the red dots) and T 2(B) (the blue dots)

for all B ∈ [3, 10]. Clearly, the number of matches in period 2 is maximized by full

accessibility only when B = 3 or 4, but will be maximized by imperfect accessibility
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when B becomes larger. Therefore, our main insight derived in the static setting

continues to hold in the presence of additional search opportunities.

3 4 5 6 7 8 9 10
B

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0
T
2

Figure 1: Comparison of T 2(B) and T 2(B − 1)

6.2 Discussion of meeting technologies

The distinction between meetings and matching in the directed search framework

was first established by Eeckhout and Kircher (2010) (see also Lester et al., 2015).

The meetings considered in their model is ex post in the sense that buyers first

search submarkets where individual sellers post prices and then the meeting takes

place within each submarket according to the meeting technology. In contrast, the

meeting technology proposed in our model generates submarkets or a network of

contacts between buyers and sellers within which buyers can search for individual

sellers.

As in Eeckhout and Kircher (2010), our meeting technologies can also capture

various degrees of rivalry in meetings, including rival, non-rival, and partially rival

meetings. As an example, suppose NJ = 0. Then, the meeting technology is rival if

N = 1, as a meeting opportunity between a seller and a buyer implies that any other

buyers do not have the opportunity to meet the same seller. Meanwhile, the meeting

technology is non-rival when N = B, as every buyer has the opportunity to meet

the same seller at the same time. Finally, the meeting technology is partially rival

when 1 < N < B, as a meeting opportunity between a seller and a buyer reduces

(but does not completely eliminate) the opportunity for other buyers to meet this
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seller. However, unlike in Eeckhout and Kircher (2010) where meeting opportunities

are exogenously allocated, the platform in our model affects the meeting outcome by

controlling market accessibility, which we show coincides with the socially efficient

level.

We now discuss other aspects of our meeting technologies. First, we require

that the platform must allocate a total of N meeting opportunities with each seller.

Without this assumption, it is possible for sellers to extract all surplus from buyers,

even in the presence of search frictions. As an example, suppose that there are two

buyers, and consider any meeting technology which always allocates one meeting

opportunity with seller 1 and two with seller 2. Then, seller 2 knows that there

always exists at least one buyer who only receives one meeting opportunity with

him, and so he can set r2 = 1 to fully extract the surplus of that buyer. Knowing

this, seller 1 will then find it optimal to set r1 = 1. Under this pair of reserve prices,

there exists an equilibrium in the buyer game under which the fully informed buyer

visits seller 1 and the partially informed buyer visits seller 2. There are two matches

even in the presence of search frictions and sellers fully extract buyer surplus.

It is important to recognize that if there exists a meeting opportunity with seller

1, then there must also exist a corresponding meeting opportunity with seller 2.

Together with this, the no-waste property rules out the possibility for a seller to be

visited by no buyers when partially informed buyers exist. If there exist m partially

informed buyers who only know seller 1, there must also exist m partially informed

buyers who only know seller 2. No waste prevents a buyer from receiving more than

one meeting opportunity with a seller.20

7 Conclusion

This paper shows that an increase in market accessibility has a profound impact

on matching efficiency, seller profits and buyer surplus in a directed search equilib-

rium. Using a model with a continuum of duopoly product categories, we manage to

identify the levels of market accessibility which are optimal for various policy goals.

In particular, we show that full accessibility often leads to a less desirable outcome,

not only for efficiency but also for all other participant groups. We further consider

a profit-maximizing platform that can centrally control market accessibility and

20A related analysis of advertising in the directed search environment that violates the “no
waste” assumption can be found in Gomis-Porqueras et al. (2017).
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charge fees for its intermediation service. We show that the platform implements

efficient meeting allocation and fully extracts surplus by choosing an intermediate

level of market accessibility.

In order to show that there is a straightforward rationale for why platforms may

want to restrict participants’ meeting choices, the current analysis excludes various

market characteristics such as entry and exit on both sides, ex-ante heterogene-

ity among participants, and idiosyncratic match values. These additional market

characteristics should be incorporated into the exercise if and when more tractable

analytical tools become available in the future. In particular, it would be interesting

to study the optimal fee structure, along with the optimal market accessibility, when

the buyer side is featured with heterogeneous outside options. In such an extension,

a change in market accessibility affects not only buyers’ information about the mar-

ket and their search strategies, but also the total number of buyers who participate

in the market. While we expect imperfect market accessibility to continue yielding

the greatest efficiency, we conjecture that a profit-maximizing platform is less likely

to implement the efficient meeting allocation and extract all the surplus.
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Appendix

Proposition 6. For each N ∈ {NJ , ..., B}, there exists a unique meeting technology

(N,PN,NJ
), with PN,NJ

(n) given in (3), that satisfies Assumption 1.

Proof of Proposition 6. Given any N ∈ {NJ , ..., B}, it is straightforward to

verify that the meeting technology (N,PN,NJ
), with PN,NJ

defined by (3), satisfies

Assumption 1. Hence, we are left to show that any meeting technology (N,P ) which

satisfies Assumption 1 satisfies (3) for all n ∈ NN,NJ
.

Take any meeting technology (N,P ) which satisfies Assumption 1 and any n ∈
NN,NJ

. First, suppose n /∈ N̂N,NJ
. Then, either (i) there exists a subset B′ ⊂

{1, .., B} with |B′| ≠ NJ such that nb
J > 0 if and only if b ∈ B′, or (ii) there exists a

subset B′ ⊂ {1, .., B} with |B′| = NJ and nb
J > 0 if and only if b ∈ B′ (which implies

nb
J = 1 if and only if b ∈ B′), but there exists b ∈ B′ with N − N b

J > 0 for some

s ∈ {1, 2}, or (iii) there exists a subset B′ ⊂ {1, .., B} with |B′| = NJ and nb
J = 1

if and only if b ∈ B′ and N −N b
J = 0 for all s ∈ {1, 2} and b ∈ B′, but there exists

b ∈ {1, ..., B}\B′ such that N −N b
J > 1 for some s ∈ {1, 2}. As P satisfies no waste,

any of these imply P (n) = 0.

Second, suppose n = (n1,n2,nJ) ∈ N̂N,NJ
. Notice that

P (n) = PJ(nJ)× P (n1,n2|nJ) = PJ(nJ)× P1(n1|nJ)× P2(n2|nJ)

where PJ(nJ) denotes the marginal probability of allocating joint meetings according

to nJ , and the second equality holds as P satisfies no-coordination. Since P always

allocates NJ joint meetings and satisfies no-waste, nJ must be drawn from the set

N̂(N,NJ )|J ≡
{
nJ : ∃B′ ⊂ {1, .., B} s.t. |B′| = NJ and nb

J =

1, b ∈ B′

0, b ∈ {1, ..., B}\B′

}

Furthermore, that P satisfies symmetry implies every element of N̂(N,NJ )|J must be

drawn with equal probability under PJ . Since N̂(N,NJ )|J has exactly CB
NJ

number of

elements, this implies PJ(nJ) =
1

CB
NJ

.

Meanwhile, let B denote the set of buyers under n such that nb
J = 1 if and only

if b ∈ B. By no-waste, for each seller s ∈ {1, 2}, ns must be drawn from the set

N̂(N,NJ )|s ≡
{
ns :

B∑
b=1

nb
s = NJ and nb

s

= 0, b ∈ B

∈ {0, 1}, b ∈ {1, .., B}\B

}
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Furthermore, that P satisfies symmetry implies every element of N̂(N,NJ )|s must be

drawn with equal probability under Ps. Since N̂(N,NJ )|s has exactly CB−NJ
N−NJ

number

of elements, this implies Ps(ns) =
1

C
B−NJ
N−NJ

.

Hence,

P (n) =
1

CB
NJ

× 1

CB−NJ
N−NJ

× 1

CB−NJ
N−NJ

=
1

(CB
NJ

)(CB−NJ
N−NJ

)2

as required. ■

Proof of Proposition 1. Fix a NJ ∈ {0, .., B}. Observe that for any N ∈
{NJ + 1, ..., B},

TNJ
(N)− TNJ

(N − 1) = −
(
1

2

)N−1
1

CN−NJ
B−NJ

+

(
1

2

)N−2
1

CN−1−NJ
B−NJ

=

(
1

2

)N−2
1

CN−1−NJ
B−NJ

[
1− N −NJ

2(B −N + 1)

]
,

where in the second equality above, we use
C

N−1−NJ
B−NJ

C
N−NJ
B−NJ

=
B−NJ !

N−1−NJ !B−N+1!

B−NJ !

N−NJ !B−N !

= N−NJ

B−N+1
.

Hence,

TNJ
(N) ≥ TNJ

(N − 1) if and only if N ≤ 2(B + 1) +NJ

3

where the LHS inequality holds with equality if and only if the RHS inequality holds

with equality. Now, suppose that NJ < B − 2. Since

B >
2(B + 1) +NJ

3
> NJ +

5

3

This implies that N e is uniquely characterised by the value of N ∈ {NJ , .., B} that

satisfies N ≤ N̂NJ
< N + 1, i.e.,

N e
NJ

=

⌊
2(B + 1) +NJ

3

⌋
Meanwhile, for NJ ≥ B − 2, we note that

2(B + 1) +NJ

3
≥ B

Hence, the efficient accessibility level is B, and so

N e
NJ

= N e
B = B =

⌊
2(B + 1) +B

3

⌋
=

⌊
2(B + 1) +NJ

3

⌋
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This completes the proof of Proposition 1. ■

Proof of Corollary 1 Follows from Proposition 1. ■

Proof of Theorem 1. We first show that there is no equilibrium where sellers

both set r1 = r2 = 1. To see this, note that when r1 = r2 = 1, any σ1(1, 1) ∈ [0, 1]

constitutes a symmetric directed search equilibrium among the buyers. Thus, take

any σ1(1, 1) ∈ [0, 1/2] (the case for σ1(1, 1) > 1/2 can be argued similarly from seller

2’s perspective. Fixing r2 = 1 and applying (12), we see that

πNJ
(1, 1|N) = 1− ΓNJ

(N |N,B)(1− σ1(1, 1))
N < 1 = πNJ

(1/2, 1|N)

and so, seller 1 strictly prefers deviating to r1 = 1/2 over setting r1 = 1.

Next, observe that for any r2 < 1, the partial derivative of πNJ
(r1, r2|N) with

respect to r1 is given by

−
(

A(r1, r2)

(1− r1)(N − 1)(1 + A(r1, r2))n−1

)
︸ ︷︷ ︸

≡B1(r1,r2)

×

(
ΓNJ

(N |N,B)N(1−N(1− r1))

−ΓNJ
(N − 1|N,B)(N − 1)(1− r1)(1 + A(r1, r2))

)
︸ ︷︷ ︸

≡B2(r1,r2)

(23)

Observe that (23) is strictly positive for r1 = r2 = 0, so sellers cannot (both) set a

reserve price of zero in any symmetric equilibrium. Meanwhile, if r = r1 = r2 ∈ (0, 1)

is a symmetric equilibrium, then it must set (23) to zero. It is simple to verify that

for any r1 = r2, B1(r1, r2) > 0, while rNJ
(N) defined in (13) is the unique value of

r ∈ (0, 1) which solves B2(r, r) = 0. Meanwhile, for r1 = r2 = rNJ
(N), we see that

B1(r1, rNJ
(N)) ≥ 0 for all r1 ∈ [0, 1] (and strictly so when r1 < 1), while

∂B2

∂r1
= ΓNJ

(N |N,B)N2 + ΓNJ
(N − 1|N,B)

(
N − 1 + (N − 2)A(r1, r2)

)
> 0

as N ≥ 2, so B2(r1, rNJ
(N)) is strictly negative on [0, rNJ

(N)) and strictly positive

on (rNJ
(N), 1). Combined, these imply (23) is strictly positive on [0, rNJ

(N)), equal

to zero at rNJ
(N), and strictly negative on (rNJ

(N), 1), i.e., πNJ
(r1, rNJ

(N)|N) is

single-peaked in r1 on [0, 1] at rNJ
(N). Thus, rNJ

(N) is the unique symmetric

equilibrium reserve price. ■

Proof of Theorem 2.
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In text. ■

Proof of Proposition 2.

In text. ■

Proof of Proposition 3. To begin, following the logic of the proof of Proposition

1, we see that

πNJ
(N)− πNJ

(N − 1)

=

(
1

2

)N−2
1

CN−1−NJ
B−NJ

[
1− N −NJ

2(B −N + 1)
+K(N − 1)−K(N)

N −NJ

2(B −N + 1)

]
(24)

where

K(N) ≡
[

(N −NJ)(B −N)

N2 + 2(N − 1)(N −NJ)(B −N)

]
is strictly decreasing in N , bounded above by 1/2, and K(B) = 0.

Now, we first prove that B cannot be seller optimal for NJ sufficiently small.

Substituting N = B into (24) yields

πNJ
(B)− πNJ

(B − 1) =

(
1

2

)B−2
1

CB−1−NJ
B−NJ

[
1− B −NJ

2
+K(B − 1)

]
A simple computation yields that this is strictly less than zero if and only if

0 ≤ NJ <
(11− 16B + 5B2)

4(B − 2)
− 1

4

√
B4 − 10B2 + 16B − 7

(B − 2)2

Since the RHS is strictly greater than zero, B is strictly not buyer-optimal whenever

NJ is sufficiently small.

Next, we prove that NS ≥ N e
NJ

. Given the proof of Proposition 1, this is

equivalent to showing that

N ≤ 2(B + 1) +NJ

3
⇒ πNJ

(N) ≥ πNJ
(N − 1)
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By (24), if N ≤ 2(B+1)+NJ

3
, such that N−NJ

2(B−N+1)
≤ 1, then

πNJ
(N)− πNJ

(N − 1) ≥
(
1

2

)N−2
1

CN−1−NJ
B−NJ

[
1− N −NJ

2(B −N + 1)
+K(N − 1)−K(N)

]
≥ 0

as required. ■

Proof of Proposition 4 We split the proof into three parts.

Part 1: First, suppose that NJ ≥ 2. If NJ = B, then N = B is trivially uniquely

buyer-optimal. If NJ = B − 1, then

uB−1(B − 1) =
1

B

(
1

2

)B−2

>
1

B

(
1

2

)B−1

= uB−1(B)

so NJ = B− 1 is uniquely buyer-optimal. Finally, if NJ < B− 1, then observe that

1 +
2(N −NJ)(B −N)

N2 + 2(N − 1)(N −NJ)(B −N)
≤ 2

while 1

C
N−NJ
B−NJ

≤ 1. Therefore, for any N > NJ + 1,

uNJ
(N) =

1

BCN−NJ
B−NJ

(
1

2

)N−1(
1 +

2(N −NJ)(B −N)

N2 + 2(N − 1)(N −NJ)(B −N)

)
≤ 1

B

(
1

2

)N−2

<
1

B

(
1

2

)NJ−1

= uNJ
(NJ)

Meanwhile, for N = NJ + 1, noting that(
1 +

2(B −NJ − 1)

(NJ + 1)2 + 2NJ(B −NJ − 1)

)
< 2

we have

uNJ
(NJ + 1) <

1

B

(
1

2

)NJ−1

= uNJ
(NJ)

Hence, NJ is uniquely buyer-optimal.

Part 2: Next, suppose NJ = 1. Using the same logic as the proof of Part 1, for all
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N ≥ 3,

u1(N) ≤ 1

B

(
1

2

)N−2

<
1

B
= u1(1) (25)

Meanwhile, for N = 2, since B ≥ 3 such that 1
C1

B
≤ 1

3

u1(2) ≤
2

BC1
B

=
2

3B
<

1

B
= u1(1)

Hence, NB = 1 = NJ is uniquely buyer-optimal.

Part 3: Finally, suppose that NJ = 0. We have several subcases to consider

1. Suppose B = 3. Then,

u0(1) =
1

18
, u0(2) =

1

12
, u0(3) =

1

12

Hence, the buyer-optimal accessibility level is either NB = 2 or NB = 3.

2. Suppose B = 4. Then,

u0(1) =
3

80
, u0(2) =

5

144
, u0(3) =

9

448
, u0(4) =

1

32

Hence, NB = 1 is uniquely buyer-optimal.

3. Suppose B = 5. Then,

u0(1) =
2

75
, u0(2) =

7

400
, u0(3) =

3

440
, u0(4) =

3

500
, u0(5) =

1

80

Hence, NB = 1 is uniquely buyer-optimal.

4. Suppose B = 6. Then,

u0(1) =
5

252
, u0(2) =

1

100
, u0(3) =

7

2400
, u0(4) =

1

576
, u0(5) =

5

2496
, u0(6) =

1

196

Hence, NB = 1 is uniquely buyer-optimal.

5. Suppose B ≥ 7. Then, for all N ≥ 3 + log(B)
log(2)

, where log(B)
log(2)

< B − 1,

(
1

2

)N−2

− B − 1

B(B + 1)
≤
(
1

2

)[(
1

2

)N−3

− 1

B

]
< 0
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Therefore, recalling the discussion in Part 1,

uNJ
(N) ≤ 1

B

(
1

2

)N−2

<
B − 1

B(B + 1)
= u0(1)

where we note that this implies N = B is strictly not buyer-optimal. Mean-

while, for any N ∈ {3, ..., ⌊3 + log(B)
log(2)

⌋}, we notice that

CN−NJ
B−NJ

= CN
B > C1

B = B

As a result, if N ≥ 3,

uNJ
(N) =

1

BCN−NJ
B−NJ

(
1

2

)N−1(
1 +

2(N −NJ)(B −N)

N2 + 2(N − 1)(N −NJ)(B −N)

)
<

1

B2

(
1

2

)N−2

≤ 1

B2

1

2
≤ B − 1

B2(B + 1)
= u0(1)

Finally, for N = 2, since B ≥ 7 such that 1
C2

B
= 2

B−1
≤ 1

3
,

u0(2) ≤
1

BC2
B

=
2

B2(B − 1)
<

1

B2

1

2
≤ B − 1

B2(B + 1)
= u0(1)

Hence, NB = 1 is uniquely buyer-optimal.

Combined, Parts 1, 2 and 3 prove Proposition 4. ■

Proof of Proposition 5 We begin by supposing that N = 1. Then, all possible

matches are formed in period 1, so the discounted total value is

T (1) =
5

3
+ δ × 0 =

5

3
.

Next, suppose N = B. First, consider what happens in period 1. This is a

market with two sellers and B fully informed buyers. With probability 2× (1/2)B =

(1/2)B−1, there is only one match. With probability 1 − (1/2)B−1, there are two

matches. So, we expect (1/2)B−1 + 2[1 − (1/2)B−1] = 2[1 − (1/2)B] matches. The

period-2 market is exactly the same as in period 1 except the number of buyers

reduces to B− 1 or B− 2. With B− 1 buyers left, the expected number of matches

in period 2 is 2[1 − (1/2)B−1]. With B − 2 buyers left, the expected number of
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matches in period 2 is 2[1− (1/2)B−2]. So the expected value generated in period 2

is 2(1/2)B−1[1 − (1/2)B−1] + 2(1 − (1/2)B−1)[1 − (1/2)B−2] = 2[1 − (1/2)B−1]2. So

the discounted total value is

T (B) = 2[1− (1/2)B] + 2δ[1− (1/2)B−1]2.

Finally, suppose N ∈ (1, B). If there are less than N − 1 fully informed buyers,

there must exist two partially informed buyers who only know firm 1 and two other

partially informed buyers who only know firm 2. Then, there will always be two

matches in each period. So if there are less than N fully informed buyers, the

discounted total value is

2 + 2δ.

With probability 1/CN
B there are N fully informed buyers. In period 1, there are

2[1 − (1/2)N ] matches. In period 2, depending on whether there were one (with

probability (1/2)N−1) or two matches (with probability 1 − (1/2)N−1) formed in

period 1, there are 2[1 − (1/2)N−1] or 2[1 − (1/2)N−2] matches respectively. So in

case there are N − 1 fully informed buyers, the discounted total value is

2

[
1−

(
1

2

)N
]
+ δ

[(
1

2

)N−1

× 2

(
1−

(
1

2

)N−1
)

+

(
1−

(
1

2

)N−1
)

× 2

[
1−

(
1

2

)N−2
]]

=2

[
1−

(
1

2

)N
]
+ 2δ

[
1−

(
1

2

)N−1
]2

With probability N(B−N)/CN
B there are N−1 fully informed buyers, which means

there will be two matches in period 1. In period 2, if both partially informed buyers

were matched in period 1, there will be 2[1 − (1/2)N−1] matches in period 2. The

probability that both partially informed buyers are matched in period 1 is(
1

2

)N−1 [
C0

N−1 × 1× 1

N
+ C1

N−1 ×
1

2
× 1

N − 1
+ ...+ CN−1

N−1 ×
1

N
× 1

]
=

(
1

2

)N−1

(C1
N+1 + C2

N+1 + ...+ CN
N+1)

1

N(N + 1)

=

(
1

2

)N−1
2(2N − 1)

N(N + 1)
.

To derive the second equality above, we use C1
N+1+C2

N+1+...+CN
N+1 = 2N+1−C0

N+1−
CN+1

N+1 . If only one partially informed buyer was matched in period 1, there is only
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one match with probability (1/2)N−2 and two matches with probability 1−(1/2)N−2

in period 2. The probability that only one partially informed buyer is matched in

period 1 is

2

(
1

2

)N−1 [
C0

N−11
N − 1

N
+ C1

N−1

1

2

N − 2

N − 1
+ C2

N−1

1

3

N − 3

N − 2
+ ...+ CN−1

N−1

1

N
0

]
=2

(
1

2

)N−1 [
C0

N−11 + C1
N−1

1

2
+ C2

N−1

1

3
+ ...+ CN−2

N−1

1

N − 1

]
− 2

(
1

2

)N−1 [
C0

N−1

1

N
+ C1

N−1

1

2

1

N − 1
+ C2

N−1

1

3

1

N − 2
+ ...+ CN−2

N−1

1

N − 1

1

2

]
=2

(
1

2

)N−1
1

N

[
C1

N + C2
N + C3

N + ...+ CN−1
N

]
− 2

(
1

2

)N−1
1

N(N + 1)

[
C0

N+1 + C1
N+1 + C2

N+1 + ...+ CN−2
N+1

]
=

(
1

2

)N−1
2(2N − 1)(N − 1)

N(N + 1)
.

To derive the third equality above, we use C1
N+C2

N+C3
N+...+CN−1

N = 2N−C0
N−CN

N

and C0
N+1+C1

N+1+C2
N+1+ ...+CN−2

N+1 = 2N+1−C0
N+1−CN

N+1−CN+1
N+1 . If no partially

informed buyers were matched in period 1, there will be two matches in period 2.

The probability of having no partially informed buyers being matched in period 1

is

1−
(
1

2

)N−1
2(2N − 1)

N(N + 1)
−
(
1

2

)N−1
2(2N − 1)(N − 1)

N(N + 1)
= 1−

(
1

2

)N−1
2N(2N − 1)

N(N + 1)
.

Therefore, following having N − 1 fully informed buyers, the discounted value is

2 + δ

[(
1

2

)N−1
2(2N − 1)

N(N + 1)
2

[
1−

(
1

2

)N−1
]

+

(
1

2

)N−1
2(2N − 1)(N − 1)

N(N + 1)

[(
1

2

)N−2

+ 2

(
1−

(
1

2

)N−2
)]

+

(
1−

(
1

2

)N−1
2N(2N − 1)

N(N + 1)

)
2

]

=2 + δ

[
2−

16
[
(1/2)N − (1/2)2N

]
N + 1

]
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Thus, for any N ∈ (1, B), the generated value is

T (N) =2

[
1−

(
1

2

)N
1

CN
B

]
+ δ

[(
1− 1

CN
B

− N(B −N)

CN
B

)
2

+
2

CN
B

(
1−

(
1

2

)N−1
)2

+
N(B −N)

CN
B

2−
16
[(

1
2

)N −
(
1
2

)2N]
N + 1

]

=2

[
1−

(
1

2

)N
1

CN
B

]
+ δ

[
2− 1

CN
B

((
1

2

)N−2

− 16N(B −N)

N + 1

((
1

2

)N

−
(
1

2

)2N
))]

=2

[
1−

(
1

2

)N
1

CN
B

]
+ 2δ

[
1−

(
1

2

)N
1

CN
B

(
1−

(
1

2

)N
)

4(N + 1) + 8N(B −N)

N + 1

]

Let T 2(N) be the total matches in period 2. We next compare T 2(B) and T 2(B−1).

We have

T 2(B − 1) = 2

[
1−

(
1

2

)B−2
4B + 8(B − 1)

2B2
+

(
1

2

)2B−2
4B + 8(B − 1)

B2

]
.

Then,

T 2(B)− T 2(B − 1) = 2

(
1

2

)B−2
[
4B + 8(B − 1)

B2

(
1

2
−
(
1

2

)B
)

− 1 +

(
1

2

)B
]
.

(26)

Note that in (26), when B becomes large, the term 4B+8(B−1)
B2 strictly decreases in B

and approaches 0, the term 1
2
−
(
1
2

)B
is bounded from above by 1

2
, and the term

(
1
2

)B
approaches zero. So when B is sufficiently large the sign of (26) is entirely governed

by the term −1, which is negative. So we can conclude that T 2(B)−T 2(B− 1) < 0

when B is sufficiently large. This implies imperfect accessibility dominates full

accessibility even in period 2 if B is large enough. ■
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