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Abstract

We develop a tractable rational bubble model with downward nominal wage rigidity.
We show that the collapse of a bubble can push the economy into a persistent reces-
sion with involuntary unemployment and depressed economic activities. The collapse
can even push the economy into a liquidity trap, where a deflationary pressure exacer-
bates the wage rigidity and the recession. Our model highlights a novel and important
welfare tradeoff between the boom and bust phases of bubbles, which warrants policy
intervention.

1 Introduction

Throughout history, the collapse of asset and credit bubbles often precedes crises and pro-
tracted recessions (Jordà et al., 2015). A prominent example is the collapse of the Japanese
bubble in the early 1990s and the subsequent “lost decade.” Both housing prices and stock
prices in Japan experienced a dramatic boom in the 1980s; the Nikkei index roughly tripled,
and the housing price index nearly doubled in the second half of the decade, as seen in the
bottom right panel of figure 1. The asset prices reached the peak in 1990, when the total
market value of land in Japan famously exceeded four times that in the U.S. (Martin and
Ventura, 2012). However, the boom turned into the bust of the early 1990s, with asset prices
starting to fall in 1991. This coincided with the onset of a protracted period of low economic
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growth and high unemployment that lasted several decades until the 2000s. As seen in the
top left panel of figure 1, a trend of high GDP growth abruptly ended in 1991, and the
unemployment rate more than doubled from around 2% in 1991 to around 5.5% in 2002.
Despite the rising unemployment rate, both nominal and real wages persisted near the peak
levels of the boom, as seen in the figure’s top right panel. The collapse of the asset price
bubble in 1991 also coincided with abrupt changes to the nominal interest rate and inflation,
as seen in the bottom left panel. The combination of falling asset prices, low nominal interest
rates near the zero lower bound, disinflation, and rigid wages is a prominent feature of the
onset and persistence of the Japanese lost decade.

More recently, the collapse of the U.S. housing bubble in the late 2000s precipitated the
worst economic recession since the Great Depression. As seen in the bottom right panel
of figure 2, the S&P/Case-Shiller U.S. National Home Price Index rose by more than 60%
between 2000 and 2006. However the boom abruptly turned into the bust of 2007. As seen
in the figure’s top left panel, the collapse in asset prices coincided with the onset of the Great
Recession, where the real GDP per capita declined by more than $2,000 between 2007 and
2009 and only recovered to the pre-recession level in 2013. The average unemployment rate
doubled from the lowest of about 5% in 2007 to about 10% in 2009 and remained above the
pre-recession rate until 2015. The collapse in asset prices also coincided with abrupt changes
in the nominal interest rate and inflation (the bottom left panel). The nominal interest rate
effectively hit the zero lower bound between 2009 and 2015, and the economy slipped into
deflation between 2009 and 2010. In the mean time, the average nominal wage continued
to grow at the pre-recession trend, while the average real wage actually increased between
2009 and 2010 due to deflation (the top right panel). Therefore, as in the case of Japan, a
prominent feature of the Great Recession is the combination of falling asset prices, nominal
interest rates near the zero lower bound, disinflation, and rigid wages.

Explaining these striking features of persistent recessions and unemployment in the wake
of bursting bubbles is an open problem for the general equilibrium bubble literature. The
literature has been largely silent about the interaction of bubbles with frictions in the labor
market.1 Moreover, many models predict a relatively benign economic transition after the
collapse of bubbles: a standard prediction is that while bubbles give rise to economic booms,
their collapse simply precedes a gradual reversion to the pre-bubble trend while the economy
retains full employment (e.g., Hirano and Yanagawa, 2017).

This paper attempts to address this problem. We embed downward nominal wage rigidity
(à-la Schmitt-Grohé and Uribe, 2016) into a rational bubbles framework with infinite-lived

1For surveys of recent developments in the bubble literature, see Barlevy (2012), Miao (2014) and Brun-
nermeier (2016).
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agents (à-la Hirano et al., 2015 and Hirano and Yanagawa, 2017). In this framework, a
rational bubble is an asset that is traded above its fundamental value. The trading in the
bubble market facilitates the reallocation of resources across time, as the bubble asset can
act as a savings vehicle, and across agents, as the bubble asset increases entrepreneurs net
worth and hence their ability to borrow. Downward wage rigidity has been well documented
(see, e.g., Kimura and Ueda, 2001 for Japan, Holden and Wulfsberg, 2009 for the OECD,
Babeckỳ et al., 2010 for European economies, and Daly et al., 2012 for the U.S.).

Given this context, we first show that under sufficient financial frictions an asset price
bubble crowds in credit and investment, as in a standard expansionary bubble model. This is
because the trading of the bubbly asset helps alleviate the frictions that prevent the allocation
of resources from less productive entrepreneurs to more productive ones. The boom phase of
the bubble is associated with increases in the capital stock, output, consumption, and most
importantly, increases in wages.

Then, we show that the presence of downward wage rigidity leads to drastically different
post-bubble dynamics. When the expansionary bubble collapses, entrepreneurs’ net worth
also collapses, leading to contractions in credit and investment. Thus, the demand for labor
from firms also contracts. In a flexible labor market, wages will fall to clear the labor
market. However, when wages cannot flexibly fall, there is rationing in the labor market,
i.e., involuntary unemployment.

An increase in unemployment can in turn lead to an endogenous and protracted recession
by eroding the intertemporal allocation of resources. This is because the drop in employ-
ment reduces the return to capital investment, which then lowers entrepreneurs’ net worth.
This leads to a contraction in capital investment, since entrepreneurs’ ability to borrow and
invest depends critically on their net worth. Therefore, the future capital stock will decline
causing further downward pressure on labor demand and wages, thus reducing future capital
accumulation. The vicious cycle repeats and only stops when the capital stock has fallen
enough. Then the speed of capital decumulation slows, and eventually the declining rigid
wage constraint falls below the wage level consistent with full employment. At that point
the economy exits the unemployment spell and enters a process of gradual recovery towards
the bubble-less steady state.

Our model allows for analytical characterizations of the depth and duration of the reces-
sion, facilitating policy analyses. It highlights an important tradeoff between the economic
gains during the boom due to the bubble and the (potentially deep and persistent) losses
from the bust. We show that if the bubble is sufficiently risky and there are sufficient labor
market frictions then bubbles become welfare-reducing. Policy interventions are thus war-
ranted. We show that an expansionary monetary policy after the collapse of the bubble can
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help alleviate the post-bubble losses. Additionally, we show that if monetary authorities are
constrained from raising inflation, then a macroprudential policy that imposes ex-ante tax-
ation on bubble speculation can help mitigate the impacts of the bust, although the policy
also weakens the boom.

We further extend the model with cash holding to allow for the possibility of a liquidity
trap. When entrepreneurs can save by holding cash, the nominal interest rate is bounded
from below by the zero lower bound. We then show that the collapse of a large expansionary
bubble triggers a sharp drop in the real interest rate, pushing the nominal interest rate
against the lower bound. The intuition is as follows. By crowding in capital investment,
the bubble leads to an investment boom. Thus, after the bubble collapses, the economy
enters the post-bubble phase with a capital stock above the steady state, a situation we
refer to as “investment hangover” (Rognlie et al., 2014). The high capital stock implies a
low marginal product of capital and a low real interest rate. If the bubble is sufficiently
large, then the real net interest rate in the period of the collapse can be negative. If inflation
cannot increase above a certain threshold (such as an inflation target set by a monetary
authority) — an assumption that we impose — then the zero lower bound on the nominal
interest rate becomes binding.

When the nominal interest rate is bounded at zero, the inflation rate must rise to be
consistent with a negative real interest rate. Then, as pointed out by Krugman (1998) and
Eggertsson and Krugman (2012), if future price levels are fixed, then the rise in inflation
must be due to a drop in the current price level. In other words, the collapse of the bubble
causes a deflationary pressure. The deflationary pressure in turn exacerbates the downward
nominal wage rigidity and exacerbates involuntary unemployment. Furthermore, as capital
and labor are complementary, the reduction in employment reduces the marginal product
of capital and consequently the interest rate. Therefore there is a bidirectional relationship
between the binding zero lower bound and the binding nominal wage rigidity.

In summary, our model shows how the collapse of bubbles can lead to an endogenous
and protracted recession with involuntary unemployment, and even a liquidity trap. During
the recession, aggregate economic activities are persistently below the pre-bubble trend and
interest rates are depressed, consistent with the stylized features of recent bubble boom-bust
episodes.

Related literature. To the best of our knowledge, our paper is the first to show that the
collapse of bubbles can trigger long recessions and liquidity traps. Our paper thus makes
contributions to several strands of the literature.

First, we help formalize the popular notion among policymakers that the collapse of
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risky bubbles can trigger inefficient recessions. A large number of papers emphasize the pos-
itive aspect of (rational) bubbles in reducing dynamic inefficiencies (e.g., Samuelson, 1958,
Diamond, 1965 and Tirole, 1985) or reducing intratemporal inefficiencies in the allocation
of resources (e.g., Farhi and Tirole, 2011, Miao and Wang, 2011, 2012, Martin and Ven-
tura, 2012, Ikeda and Phan, 2015, Bengui and Phan, 2016 and Graczyk and Phan, 2016).2

Other papers emphasize potential ex-ante inefficiencies of speculative bubble investment in
diverting resources away from productive investment (e.g., Saint-Paul, 1992, Grossman and
Yanagawa, 1993, King and Ferguson, 1993, and Hirano et al., 2015)3 or generates excessive
volatility (Caballero and Krishnamurthy, 2006 and Ikeda and Phan, 2016). Our paper com-
plements this literature and highlights the ex-post inefficiency of bubbles by showing that
their collapse can cause persistent involuntary unemployment. As a consequence, our paper
formalizes the policy-relevant tradeoff between the gains during a bubble’s boom and the
losses during the bubble’s bust.

Furthermore, our paper is one of the first to embed downward wage rigidity into a rational
bubbles framework. To the best of our knowledge, the only other paper that does this is
our earlier work, Hanson and Phan (2017).4 There, we developed a simple overlapping
generations model based on the classic frameworks of Tirole (1985). A major limitation of
the overlapping generations model is that a period represents twenty or thirty years. This
makes the model less appropriate for policy analyses at the business cycles frequency. In
contrast, in the current paper, agents are fully forward-looking and infinitely-lived and a
period can be interpreted as a quarter or a year. More importantly, while the earlier work
is limited to an expositional positive analysis, in this paper we derive an explicit welfare
function in closed form and conduct policy analyses.5

Second, a large literature investigates possible sources of shocks that trigger long re-
cessions and liquidity traps in environments with New Keynesian frictions. Many papers
have emphasized demand shocks driven by household deleveraging or tightening borrow-
ing constraints (Krugman, 1998, Eggertsson and Krugman, 2012, Christiano et al., 2015,
Schmitt-Grohé and Uribe, 2016), long-run factors such as aging demographics or safe asset
shortages (Summers, 2013, Caballero and Farhi, 2014, Eggertsson and Mehrotra, 2014, Eg-

2Besides the rational bubble literatures, see Abreu and Brunnermeier (2003), Doblas-Madrid and Lansing
(2014) and Barlevy (2014) for alternative approaches to modeling bubbles based on heterogeneous informa-
tion or beliefs.

3Also see Miao et al. (2014), where collateralizable housing bubbles can excessively crowd in capital
investment.

4For a complementary approach to modeling post-bubble unemployment using a search and matching
model à-la Diamond-Mortensen-Pissarides, see Kocherlakota (2011) and Miao et al. (2016).

5For a related and emerging body of literature that analyzes the effects of monetary policies on rational
bubbles, see Gali (2014, 2016), Asriyan et al. (2016), Ikeda (2016), and Dong et al. (2017).
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gertsson et al., 2016), or over-investment of capital (Rognlie et al., 2014). By highlighting
the role of rational asset bubbles, our analysis offers a complementary narrative to those in
the literature. In our model, the collapse of bubbles reduces borrowers’ net worth and thus
leads to an endogenous tightening of borrowing constraints in equilibrium. Similarly, in our
model, expansionary bubbles lead to an endogenous boom in capital investment, thus giving
a microfoundation to the investment overhang in Rognlie et al. (2014).

Third, we conduct a normative analysis with macroprudential policies on speculative
bubble investment. This analysis complements a recent literature on macroprudential poli-
cies in environments with aggregate demand externalities (e.g., Farhi and Werning, 2016
and Korinek and Simsek, 2016) or environments with financial frictions (e.g., Lorenzoni,
2008, Olivier and Korinek, 2010, He and Krishnamurthy, 2011, Bianchi, 2011, Eberly and
Krishnamurthy, 2014, and Bianchi and Mendoza, forthcoming).

The plan for the paper is as follows. Section 2 describes the model. Section 3 describes
the equilibrium dynamics and steady states. 4 conducts welfare and policy analyses. Section
5 introduces the zero lower bound. Section 6 concludes. Detailed derivations and proofs are
in the appendix.

2 Model

Consider an economy with two types of good: a perishable consumption good and a capital
good, and three types of agents: entrepreneurs, workers, and firms, each with constant unit
population. Entrepreneurs and workers have the same preferences over consumption, given
by

E0

(
∞∑
t=0

βt ln cjt

)
where cjt is the consumption of an individual j in period t, β ∈ (0, 1) is the subjective
discount factor, and E0(·) is the expected value conditional on information in period 0.

2.1 Entrepreneurs

Entrepreneurs are the only producers of the capital good, and face idiosyncratic productivity
shocks. In each period, an entrepreneur meets a high-productivity investment project (and
becomes the H-type) with probability h ∈ (0, 1), and a low-productivity one (and becomes
the L-type) with probability 1−h. The idiosyncratic productivity shock is independent across
agents and time. For stationarity, we assume that the initial (t = 0) population measure of
each type is h and 1 − h. In each period, we denote the set of H-type entrepreneurs by Ht
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and the set of L-type entrepreneurs by H̄t, where Ht ∪ H̄t = [0, 1].
After knowing the type of her investment project at the beginning of each period, an

entrepreneur j produces the capital good according to the following technology:

kjt+1 = ajt i
j
t ,

where ijt ≥ 0 is the investment in units of the consumption good in period t, kjt+1 is the amount
of the capital good produced in the subsequent period, and ajt ∈ {aH , aL} is the productivity
of the project, where aH > aL > 0. For tractability, we assume capital depreciates completely
after each period.6

Financial frictions: In a frictionless world, L-type entrepreneurs would like to lend and
thus delegate investment to H-type entrepreneurs. However, following Kiyotaki et al. (1997),
we assume there are frictions in the financial market so entrepreneurs can pledge at most an
exogenous fraction θ ∈ [0, 1] of the future return from investment to creditors. Thus, they
face the following credit constraint:

Rt+1d
j
t ≤ θqt+1k

j
t+1, (1)

where Rt+1 is the state-contingent gross interest rate between t and t + 1, dit is the amount
borrowed in period t, and qt+1 is the price of capital (in units of the consumption good)
in period t + 1. A lower θ represents a financial market with more frictions, while θ = 1

represents a frictionless credit market. Throughout the paper we assume θ sufficiently small
so that constraint (1) always binds for H-types.

Following the literature (e.g., Tirole, 1985), we introduce (pure) asset bubbles, which are
durable and perfectly divisible assets in fixed unit supply that do not generate any dividend,
but can be traded at positive equilibrium prices under some conditions. Such bubbles are
inherently fragile as they require coordination of beliefs across agents and time. To model this
fragility, we follow the literature (e.g., Weil, 1987) and assume that in each period the bubble
persists with a probability ρ ∈ (0, 1) and collapses with the complementary probability 1−ρ,
where a lower ρ means a riskier bubble. Formally, let p̃bt denote the period t price per unit
of the bubble asset in units of the consumption good, and pbt denote the price conditional on
the bubble persisting in t. Then

p̃bt =

pbt if bubble persists

0 if bubble bursts
,

6Our result does not change qualitatively if capital depreciates more slowly.
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and

Pr(p̃bt+1 = 0|p̃bt > 0) = 1− ρ

Pr(p̃bt+1 = 0|p̃bt = 0) = 1,∀t ≥ 0.

The first assumption states that if the bubble has not collapsed, then it will collapse in the
next period with probability 1− ρ. The second states that if the bubble has collapsed, then
it is expected not to re-emerge.

Macroprudential policy: We assume the government can set a (constant) tax rate τ on
bubble speculation. For simplicity, we assume the government transfers the revenue Tt = τ p̃bt

from bubble tax in lump-sums to workers.7

Let bjt denote a share of a bubble asset held by entrepreneur j. Then the entrepreneur’s
flow budget constraint is written as

cjt + ijt + (1 + τ)p̃btb
j
t = qtk

j
t + djt −Rtd

j
t−1 + p̃btb

j
t−1. (2)

The left hand side of this budget constraint consists of expenditure on consumption, invest-
ment, and the purchase of bubble assets. The right hand side is the available funds at date
t, which consists of the return from investment in the previous period, new borrowing minus
the debt repayment, and the return from selling bubble assets. We assume agents cannot
short sell the bubble asset, i.e.,

bjt ≥ 0,∀t.

2.2 Workers

Workers do not have access to capital production technologies. Without loss of generality,
we assume workers are hand-to-mouth,8 i.e.,

cwt = wtlt + Tt, (3)
7Redistribution of tax revenue to entrepreneurs would affect their net worth and hence complicate the

inter-temporal equilibrium dynamics. In contrast, redistribution to workers would not affect inter-temporal
dynamics, as workers are hand-to-mouth.

8Alternatively, we can assume workers cannot borrow against their future labor income. Thus the opti-
mization problem of workers is to maximize lifetime utility E0 (

∑∞
t=0 β

t ln cwt ) subject to:

cwt + pbtb
w
t = wtlt + dwt −Rtdwt−1 + pbtb

w
t−1 + Tt

and dwt ≤ 0 and bwt ≥ 0. In equilibrium, it is straightforward to show that workers will be effectively hand
to mouth, i.e., cwt = wtlt + Tt. Intuitively, due to financial friction, the interest rate (and the returns from
bubble speculation) will be too low relative to the discount factor, and thereby it will be suboptimal for
workers to save or to buy the bubbly asset.
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where wt is the wage rate, lt is the employment level per worker, and Tt is the lump-sum
transfer from the government.

2.3 Firms

In each period, there is a continuum of competitive firms that produce the consumption good
using the standard production function:

yit = (kit)
α(lit)

1−α, 0 < α < 1,

where kit and lit are capital and labor inputs of a representative firm i. For simplicity, we
have abstracted away from exogenous TFP shocks. Real competitive factor prices are given
by:

qt = α

(
Lt
Kt

)1−α

(4)

wt = (1− α)

(
Kt

Lt

)α
, (5)

where Kt and Lt are the aggregate capital stock and employment.
Downward wage rigidity: The last and a very important element is labor market friction.

Following Schmitt-Grohé and Uribe (2016), we assume that nominal wages are downwardly
rigid:

Pt+1wt+1 ≥ γnPtwt,∀t ≥ 0

where γn ≥ 0 governs the degree of rigidity (γn = 0 implies full flexibility). Equivalently:

wt+1 ≥
γn

Πt+1

wt,∀t ≥ 0, (6)

where Πt+1 ≡ Pt+1

Pt
is the gross inflation rate between t and t + 1. Downward wage rigidity

has been well documented (see, inter alia, Kimura and Ueda, 2001, Holden and Wulfsberg,
2009, Babeckỳ et al., 2010, Daly et al., 2012). The presence of rigid wages implies that the
labor market does not necessarily clear. In each period, even though each worker inelastically
supplies one unit of labor, the actual employment Lt per worker in equilibrium is determined
by two conditions: feasibility constraint

Lt ≤ 1, (7)
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and complementary-slackness condition

(1− Lt)(wt −
γn
Πt

wt−1) = 0. (8)

These equations state that involuntary unemployment (Lt < 1) must be accompanied by
a binding rigidity (6). Conversely, when (6) does not bind, the economy must be in full
employment (Lt = 1).

2.4 Monetary policy

To close the model, we need to describe how prices are determined. We specify monetary pol-
icy in the simplest possible way by following Krugman (1998) and assuming that a monetary
authority sets inflation at an exogenous constant target Π̄ ≥ 1. This could be rationalized ei-
ther via cash-in-advance constraint or via nominal interest rate rule. Thus, the wage rigidity
is effectively real and can be rewritten as:

wt+1 ≥ γwt, ∀t ≥ 0 (9)

where
γ ≡ γn

Π̄
.

We focus on the case where γ ≤ 1, so that the wage rigidity constraint does not bind in
steady state.

2.5 Equilibrium

Definition. Given τ , kj0 = K0, dj0 = 0, bj0 = 1, pb0, a competitive equilibrium consists of
prices {wt, qt, Rt+1, p

b
t}t≥0 and quantities {{ijt , k

j
t+1, c

j
t}j∈Ht∪H̄t , cwt , Kt+1, Lt}t≥0 such that:

• Entrepreneurs and firms optimize,

• Workers’ consumption is given by (3),

• Credit market clears:
∫
j∈Ht d

j
t +
∫
j∈H̄t d

j
t = 0,

• Bubble market clears:
∫
j∈Ht b

j
t +
∫
j∈H̄t b

j
t = 1 if p̃bt > 0,

• Goods market clears:
∫
j∈Ht(c

j
t + ijt) +

∫
j∈H̄t(c

j
t + ijt) + cwt = Kα

t L
1−α
t ,
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• And labor market conditions: (9) and

Lt ≤ 1

(1− Lt)(wt − γwt−1) = 0.

As usual, a steady state is an equilibrium where quantities and prices are time-invariant.

3 Equilibrium dynamics

3.1 Bubble-less equilibrium

As standard in the rational bubble literature, there are multiple equilibria. Let us first
characterize the bubble-less equilibrium, where the price of the bubble asset is equal to its
fundamental value of zero throughout. Detailed derivations are delegated to the appendix.

Throughout the paper, we assume the initial capital stock K0 is small so that the capital
stock (and hence wage) will grow towards the steady state, and thus with γ ≤ 1, the
downward wage rigidity constraint will never bind. Therefore, in this section we can set:

Lt = 1,∀t.

With full employment, the price of capital from (4) becomes:

qt+1 = αKα−1
t+1

and the price of labor (the real wage) from (5) becomes:

wt = (1− α)Kα
t .

Furthermore, throughout the paper, we make the following parametric assumption:

θ <
(1− h)aL

aH
. (10)

This assumption states that there is sufficient financial friction (small θ) that the credit
market cannot completely absorb the L-type’s demand for savings. Hence, in the bubble-less
equilibrium, the L-type is making a positive capital investment (the non-negative constraint
ijt ≥ 0 does not bind for the L-type):

ijt = βejt + djt , ∀j ∈ H̄t,
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where the net worth ejt is:
ejt ≡ qtk

j
t −Rt−1d

j
t−1

and the equilibrium interest rate will be given by:

Rt+1 = qt+1a
L.

Turning to the H-type, their credit constraint (1) will bind, leading to the following
investment equation:

ijt =
1

1− θqt+1aH

R︸ ︷︷ ︸
leverage

×βejt ,∀j ∈ Ht.

Combining the investment expressions above for both types yields the following law of
motion for the aggregate capital stock:

Kt+1 = ΩqtKt,

where

Ω ≡

(
h(aH − aL)

1− θaH

aL

+ aL

)
β.

Given the equilibrium dynamics above, the bubble-less steady state (denoted with the
subscript nb, which stands for “no bubble”) is characterized by the following interest rate
and factor prices:

Rnb = qnba
L =

aL

Ω
(11)

qnb = αKα−1
nb

wnb = (1− α)Kα
nb

and the following capital stock and employment:

Knb = (αΩ)
1

1−α (12)

Lnb = 1.

3.2 Bubble equilibrium

We now summarize the transition dynamics and the steady state of a bubble equilibrium,
with detailed derivations delegated to the appendix. As the bubble is stochastic, the dy-
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namics will consist of that before the bubble bursts and that after the burst.

3.2.1 Before bubble bursts

We focus on equilibria where the downward wage rigidity does not bind as long as the bubble
persists (i.e., Lt = 1 if p̃bt > 0). This supposition is verified as long as the initial capital stock
K0 and the initial bubble price pb0 are small.

Suppose the bubble persists in t, i.e., p̃bt = pbt > 0. As L-type entrepreneurs face a non-
negativity constraint on capital investment (ijt ≥ 0), it follows that the return from lending
must weakly dominates the return from capital investment:

Rt+1 ≥ qt+1a
L,

where the inequality must hold with equality if ijt > 0.
Furthermore, let the bubble size (relative to aggregate savings) be defined as:

φt ≡
pbt

β(qtKt + pbt)
.

Then from the no-arbitrage condition for the L-type between bubble investment and lending,
the bubble size evolves according to:

φt+1 =


1
β

1−h−(1+τ)φt
ρ(1−h)(1+τ)−φt

(1+τ)φt(
1+

h(aH−aL)

aL−θaH

)
+

(1−ρ)(1−h)
ρ(1−h)−(1+τ)φt

(1+τ)φt
if φt ≤ φ∗(small bubble)

θ
β

(1+τ)φt
ρ(1−h)−(1−θ)(1+τ)φt

if φt > φ∗(large bubble)
, (13)

and combined with market clearing conditions, the interest rate is given by:

Rt+1 =

qt+1a
L if φt ≤ φ∗

qt+1
θaH(1−(1+τ)φt)

1−h−(1+τ)φt
if φt > φ∗

. (14)

where threshold φ∗ is defined as:

φ∗ ≡ (1− h)aL − θaH

(1 + τ)(aL − θaH)
.

Above this threshold, the bubble is “large,” and below it, the bubble is “small.” When φt ≤ φ∗,
the bubble is small in the sense that it cannot completely crowd out the L-type’s (relatively
inefficient) investment in capital. When this is the case, the interest rate is given by the
indifference condition for the L-type between lending and capital investment. However, when
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φt > φ∗, the bubble is large in the sense that it completely absorbs and crowds out the L-
type’s investment in capital (the Lagrange multiplier on the constraint itt ≥ 0 is strictly
positive for L-types). When this is the case, the bubble raises the interest rate, making the
L-type strictly prefer lending to capital investment (Rt+1 > qt+1a

L).
Similar to the bubble-less analysis, by using the credit market clearing condition, the

binding credit constraint for the H-type, and the budget constraint, we can derive the fol-
lowing transition dynamics for the aggregate capital stock:

Kt+1 =

Ω(qtKt + pbt)− aL(1 + τ)pbt if Rt = qt+1a
L

aHβ(qtKt + pbt)− aH(1 + τ)pbt if Rt > qt+1a
L
.

The expressions above take into account the fact that some of the entrepreneurs’ resources
will be invested into the bubble asset (the terms involving (1 + τ)pbt). This is known as the
“crowd-out” effect of bubbles on capital accumulation. In the mean time, the expressions
also show how the return from bubble speculation raises entrepreneurs’ aggregate net worth
from qtKt to qtKt + pbt . This is known as the “crowd-in” effect of bubbles. Combined with
the expressions for the bubble size and the interest rate, the law of motion of the aggregate
capital stock can be rewritten as:

Kt+1 =


(

1+
(aH−aL)

aL−θaH
h

)
βaL−aLβ(1+τ)φt

1−βφt αKα
t if φt ≤ φ∗

aHβ[1−(1+τ)φt]
1−βφt αKα

t if φt > φ∗
. (15)

From (13, 14, 15), we can derive the following expressions for the bubble steady state (as
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functions of the bubble tax τ):

φb =


φsb ≡

ρ− 1−ρβ(1−h)(
1+

h(aH−aL)

aL−θaH

)
β−β(1−h)

1− 1−ρβ(1−h)(
1+

h(aH−aL)

aL−θaH

)
β−β(1−h)

1−h
1+τ

if τ ≥ τ̄ (small bubble)

φlb ≡ ρ(1−h)
(1−θ)(1+τ)

− θ
β(1−θ) if τ < τ̄ (large bubble)

Kb =


Ksb ≡

 (
1+ aH−aL

aL−θaH

)
h

1+τ−βρ(1−h)+τ
(1−h)(1−ρ)β(

1+
(aH−aL)

aL−θaH
h

)
β−1

βaLα

 1
1−α

if τ ≥ τ̄

Klb ≡
(

(1 + τ)β[1−ρ(1−h)]+(1+τ−β)θ
1+τ−βρ(1−h)

aHα
) 1

1−α if τ < τ̄

(16)

Rb =


Rsb ≡

 (
1+ aH−aL

aL−θaH

)
h

1+τ−βρ(1−h)+τ
(1−h)(1−ρ)β(

1+
(aH−aL)

aL−θaH
h

)
β−1

βaLα

 1
1−α

if τ ≥ τ̄

Rlb ≡
(

(1 + τ)β[1−ρ(1−h)]+(1+τ−β)θ
1+τ−βρ(1−h)

aHα
) 1

1−α if τ < τ̄

where the tax threshold is:

τ̄ = max

{
0, τ̂ ≡ β[ρ(1− h)− (1− θ)]

θ
− 1 +

β(1− θ)haL

θ(aL − θaH)

}
(17)

(τ̂ is the solution to φ(τ̂) = φ∗). If the tax is above this threshold, the bubble will be small,
and when it is below, the bubble will be large. Furthermore, the macroprudential policy can
have a direct effect on the size of the bubble as well as the bubble steady state capital stock:
an increase in τ reduces φb and Kb.

Even though we still have to solve for the equilibrium dynamics after the bubble col-
lapses (and this will be done in the next section), from the analysis above we can already
characterize the existence of the bubble steady state. The proposition below also shows how
the macroprudential policy can affect the bubble existence conditions: a higher τ restricts
the parameter space in which a bubble steady state exists.

Proposition 1. A bubble steady state exists if and only if there is sufficient financial friction:

θ <
βρ(1− h)

1 + τ
,

and the bubble is not too risky (the persistent probability is sufficient):

ρ >
aL − θaH

β(aL − θaH) + βh(aH − aL)
.
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Proof. Appendix.

3.2.2 After the bubble bursts

For the rest of the paper, we focus on parameters such that bubbles are expansionary, i.e.,

Kb > Knb

where Kb and Knb are given by (16) and (12), respectively.
Suppose the bubble collapses at T (i.e., p̃bT+s = 0, ∀s ≥ 0). As we consider expansion-

ary bubbles, the post-bubble capital stock and wage will decline towards the bubble-less SS
levels. However, if the downward wage rigidity constraint binds, then wage cannot flexibly
fall to clear the labor market. Instead, employment is determined by the demand of firms.
The rigidly high wage thus leads to involuntary unemployment. The contraction in em-
ployment has two effects on the inter-temporal equilibrium dynamics: it reduces the return
from capital and it reduces entrepreneurs’ net worth. Both of these effects in turn reduce
entrepreneurs’ accumulation of capital. The wage rigidity thus amplifies and propagates the
shock of bursting bubbles.

Given the tractability of our model, we can completely characterize the post-bubble
dynamics, including the depth and duration of the post-bubble unemployment episode. Let

s∗ ≡ min{s ≥ 0|LT+s = 1},

then T +s∗ is the first post-bubble period when full employment is recovered. If s∗ > 0, then
we say the economy is in a slump (i.e., a recession with involuntary unemployment) between
T and T + s∗ − 1.

The combination of the binding wage rigidity and the labor demand curve determines
employment as:

LT+s =

[
1− α
wT+s

] 1
α

KT+s < 1,∀0 < s < s∗. (18)

(Note that the wage rigidity does not bind right away at T , because capital at T is pre-
determined.) Based on this equality, the post-bubble dynamics can be characterized as
follows:

Proposition 2. [Post-bubble slump] If the bubble collapses in period T , then given the
capital stock KT in that period,
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1. The duration of the post-bubble slump is:

s∗(KT ) =


0 if γ = 0

max
{

0, dω(γ)− 2α logγKT e
}

if γ ∈ (0, 1)

∞ if γ = 1

(19)

where the ceiling function dxe denotes the least integer greater than or equal to x

ω(γ) ≡ 2α

1− α
logγ(αΩ)− 3− α

1− α
.

2. During the slump (0 ≤ s < s∗), the equilibrium dynamics can be summarized by:

wT+s = γswT

qT+s = α

(
1− α
wT+s

) 1−α
α

RT+s = aLqT+s

KT+s+1 = αΩ

(
wT+s

1− α

)α−1
α

KT+s (20)

LT+s = γ−
s
α
KT+s

KT

< 1.

After the slump (s ≥ s∗), the dynamics can be summarized by:

wT+s = (1− α)Kα
T+s

qT+s = αKα−1
t+s

RT+s = aLqT+s

KT+s+1 = αΩKα
T+s

LT+s = 1.

Proof. Appendix.

Interestingly, the proposition implies that a larger boom is associated with a longer and
deeper bust. Specifically, the expression (19) for the slump length and (20) for capital stock
during the slump show that a larger capital stock KT is associated with a longer slump and
more depressed capital accumulation during the slump. We will analyze this tradeoff in the
policy analysis.
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Figure 3 illustrates the equilibrium dynamics of aggregate variables. In the simulations,
we assume that the economy starts in bubble-less steady state. Then the bubble (unantici-
patedly) arises in period 20. Then the economy reaches the bubble steady state. Then the
bubble bursts in period 100. The parameters are α = 0.36, aH = 1.5, aL = 1, β = 0.96,
h = 0.35, θ = 0.1 and ρ = 0.98 and τ = 0. Under these parameter values, we have a large
expansionary bubble.

With γ = 0 (the blue dashed lines), the labor market is flexible and thus the post-bubble
economy simply converges back to the bubble-less steady state.

However, with a γ = 0.985 (the red solid lines),9 the downward wage rigidity constraint
binds after the bubble bursts. Hence, the collapse of the bubble pushes the economy into
a recession with involuntary unemployment (the recession for the baseline simulation is
highlighted by the grey bar), as wage cannot flexibly fall, causing rationing in the labor
market. The drop in employment not only reduces the economy’s production, but also have
important inter-temporal effects. On the one hand, it reduces the net worth of entrepreneurs.
On the other hand, it reduces the return rate on capital. Both of these effects depress capital
accumulation. This process explains the contractions of aggregate economic activities during
the slump.

Remark 1. An interesting feature in figure 3 is that the collapse of a large expansionary
bubble can lead to a sharp drop in the real interest rate. There are two mechanisms behind
this feature. First, after the large bubble collapses, the marginal producer of the capital
good switches from the H-type to the L-type, and thus instead of the identity RT+1 =
θaH(1−(1+τ)φ)

1−h−(1+τ)φ
qT+1 that could have prevailed if the bubble did not collapse in T , the interest

would be RT+1 = aLqT+1, where aL < θaH(1−(1+τ)φ)
1−h−(1+τ)φ

, as in the world without bubbles. This
explains why the real interest rate drop relative to that in the bubble steady state. Second,
as the bubble is expansionary, the post-bubble economy begins at an aggregate net worth
that is higher than that in the bubble-less steady state. If the expansion is sufficient, then the
capital stock KT+1 will exceed the bubble-less stock Knb, leading to a marginal product of
capital qT+1 = αKα−1

T+1 that is smaller than qnb = αKα−1
nb in the bubble-less steady state. The

combined effects of the two mechanism can lead to an “overshooting” of the real interest rate:
RT+1 < Rnb, as seen in the figure. This overshooting could potentially push the economy
into a binding zero lower bound on the nominal interest rate, as we later formalize in section
5.

9Schmitt-Grohé and Uribe (2016) also use values close to one.
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4 Welfare and policy analyses

Welfare-reducing bubbles

Our model highlights an important policy tradeoff: the gain (in output, investment and
consumption) from the bubble episode on the one hand, and the loss when the bubble
collapses on the other. To analyze this tradeoff, we need to define a welfare objective.

For simplicity, we assume that the policymaker chooses the bubble tax to maximize the
lifetime expected utility of workers in steady state.10 As shown below, the lifetime utility
of workers in the bubble steady state can be decomposed into the utility during the bubble
episode, in the period the bubble collapses, during the slump, and after the slump. Thanks
to the tractability of our model, each component can be solved analytically.

Proposition 3. [Welfare functions]

1. The lifetime expected utility of workers in the bubble-less steady state is Wnb(Knb),
where

Wnb(K) ≡ Γ2 +
α

1− βα
logK,

and

Γ2 ≡
1

1− β
log(1− α) +

1

1− β
βα

1− βα
log(αΩ).

2. The lifetime expected utility of workers in the stochastic bubble steady state is

Wb(Kb) =
log cwb + β(1− ρ)Wburst(Kb)

1− βρ

where the bubble steady state worker’s consumption (with transfer) is:

cwb = (1− α)(Kb)
α + T =

[
(1− α) +

βφb
1− βφb

ατ

]
(Kb)

α

10This assumption is motivated simply by the fact that it is much easier to characterize in closed form the
welfare of workers than that of entrepreneurs.
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and:

Wburst (Kb) ≡ log [(1− α)(Kb)
α]︸ ︷︷ ︸

contemporaneous utility

+
s∗−1∑
s=1

βs log cwT+s︸ ︷︷ ︸
slump utility

+ βs
∗
Wnb

(
γ−( 1−α

α ) s
∗(s∗+1)

2

[
αΩ · (Kb)

α−1
]s∗

Kb

)
︸ ︷︷ ︸

post-slump continuation value

.

where

log cwT+s = Γ1(s)− ((1− α)s− α) logKb, ∀1 ≤ s ≤ s∗ − 1

Γ1(s) ≡ α− 1

α

s2 + 3s

2
log γ + log(1− α) + s log (αΩ) .

Proof. Appendix.

From the expression for Wb above, the welfare gain of bubbles can be seen by the fact
that the consumption during the expansionary bubble episode is higher than that in the
bubble-less steady state (cwb > (1 − α)Kα

b > cwnb = (1 − α)Kα
nb). The loss, however, comes

from the depressed post-bubble consumption due to the slump.
If there is no wage rigidity (γ = 0), as in much of the literature (e.g., Hirano et al., 2015),

then there is no welfare loss due to the slump, and thus no welfare loss due to the collapse
of bubbles. From this perspective, (expansionary) bubbles improve welfare: they generate
an increase in Kb and an economic boom, and when the boom eventually comes to a bust,
the economy will simply converge back to the bubble-less steady state.

However, with binding wage rigidity, then the welfare loss due to the slump becomes
relevant. The larger γ is, the more relatively important is the slump utility term in the
welfare calculation. To see how this loss necessitates policy intervention, let us assume τ = 0

(no bubble tax). Then the following proposition shows that when γ = 1 (i.e., the rigidity
prevents the real wage from declining), and the bubble is sufficiently risky, then bubble will
strictly reduce welfare:

Proposition 4. [Welfare reducing bubble] Suppose τ = 0 (no bubble tax) and the bubble is
sufficiently risky (1− ρ is sufficiently high):

β(β − α)(1− ρ) > α (1− β)2 .

20



Then there exists γ̄ < 1 such that for all γ > γ̄, the bubble reduces welfare in steady state,
i.e.,

Wnb > Wb.

Proof. Appendix.

Effect of monetary policy

Now we turn to how policies could help attenuate the negative welfare effects of bubbles.
Given our reduced-form approach to modeling monetary policy, an immediate implication
of the model is that if the monetary authority is willing to raise the inflation target Π̄, then
they can alleviate the post-bubble recession. That is, a rise in Π̄ would reduce the effective
wage rigidity parameter γ = γn

Π̄
.

Figure 4 illustrates this point. It plots three simulations: one with a high γ (the dotted
lines), another with a smaller γ (the red solid lines), and the flexible wage benchmark with
γ = 0 (the blue dashed lines). The bubble tax is set to zero throughout. The figure shows
how a smaller rigidity parameter, which can be thought as associated with a higher inflation
target, leads to a shorter and less severe recession.

Of course, a weakness of the current model is that it does not feature any cost of inflation.
For instance, one could embed standard New Keynesian staggered price setting into our
framework to generate an endogenous cost of inflation. And thus, the monetary authority
would face a tradeoff between the cost and benefit setting a higher inflation target. This
would be a quantitative question that we leave for future research. For tractability, we
intentionally do not include such staggered price setting in this paper. We interpret the
model’s prediction as pointing out an important gain from setting a higher inflation target
in response to the collapse of bubbles.

Effects of macroprudential policy

In practice, there are also constraints on monetary policy against creating inflation, either
because of inflation targeting regimes (such as in the U.S.) or because of fixed exchange rates
(such as those in the Euro Zone). This motivates our exercise below.

We assume target inflation Π̄ is fixed, but instead the authority can change τ . Figure 5
illustrates the effects of the macroprudential policy. It shows the equilibrium dynamics when
the tax τ is raised from zero in the baseline (the solid red line) to a small positive value of
2 percent (the dotted line).

As seen in the figure, the policy effectively reduces the bubble size as well as the ex-
pansionary effects of the bubble on the capital stock. Consequently, the policy attenuates
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the recession: the capital stock, output level, and employment level all fall by less, and the
recession also gets shorter when τ is raised.

Our model thus also highlights the tradeoff of macroprudential policies: the bubble tax
reduces the gains from the boom, but it also reduces the costs associated with the bust.

5 Bubbles and liquidity trap

5.1 Effect of bubble bursting on the real interest rate

Another important constraint on monetary policy is the zero lower bound on the nominal
interest rate, which was relevant in the post-bubble economies of Japan and the U.S. Our
model provides a natural environment where this constraint becomes relevant. This is be-
cause the collapse of a large expansionary bubble can lead to a sharp drop in the real interest
rate (recall remark 1). In fact, we can show that the collapse can push the economy into a
liquidity trap, a situation where some agents find it optimal to save in cash as an alternative
to lending.

Formally, suppose the economy has reached the bubble steady state. The proposition
below shows that if the bubble steady state Kb is sufficiently high (i.e., the boom in the
capital stock is sufficiently strong), then the collapse of the steady state bubble can push the
net nominal interest rate RT+1Π̄− 1 between periods T and T + 1 below zero:

Proposition 5. [Effect of bubble’s collapse on real interest rate] Suppose the economy has
reached the steady state with a large expansionary bubble, and then the bubble collapses. Let
T denote the period that the bubble collapses. If Klb > K̄, where Klb is given by (16) and
K̄ ≡

(
aLΠ̄

) 1
α(1−α) α

1
1−αΩ−1/α, then the nominal interest rate between T and T +1 is negative:

RT+1Π̄ < 1.

Proof. Appendix.

Intuitively, during the bubble episode, the bubble expands the capital stock to a level
higher than that in the bubble-less steady state. Thus, when the bubble collapses and the
economy reverts to the bubble-less dynamics, the post-bubble economy effectively starts at
a capital stock that is “too high” (in the sense that KT > Knb), leading to a low marginal
product of capital (qT < qnb). If the over-investment is sufficiently large, then the real
interest rate will fall sufficiently low that, given an inflation rate fixed at the target Π̄, the
net nominal interest rate will be negative. One could think of this as corresponding to a
situation of “investment hangover” at the end of an economic boom (Rognlie et al., 2014).
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The difference between our paper and Rognlie et al. (2014) is that the over-investment is
endogenous in our framework, while it is imposed exogenously in theirs.

5.2 Model with nominal asset holding

Now we make a small modification to the model in order to introduce a zero lower bound
on the nominal interest rate, so that inefficiencies can arise when the real interest rate
falls too low. Specifically, we assume that entrepreneurs can also save by holding cash. An
entrepreneur j’s modified budget constraint is:

cjt + ijt + (1 + τ)p̃btb
j
t +

M j
t −M

j
t−1

Pt︸ ︷︷ ︸
change in cash holding

= qtk
j
t + djt −Rt−1,td

j
t−1 + p̃btb

j
t−1,

where M j
t denotes the entrepreneur’s cash holding. We assume a simple cash in advance

(CIA) constraint as in Asriyan et al. (2016): entrepreneurs must hold cash to fulfill a small
quantity ε > 0 of consumption (representing the need to hold cash for certain transactions
such as shopping or paying rent):

M j
t

Pt
≥ ε. (CIA)

The CIA assumption guarantees that there is a positive demand for money at all times. As
usual, we focus on the cash-less limit by assuming that ε → 0+. The monetary author-
ity controls the supply of money Mt (in equilibrium, money market clearing requires that∫ 1

0
M j

t dj = Mt). To abstract away from possible complicating net worth effects, we assume
the monetary authority transfers all seignorage to workers.

The fact that entrepreneurs can save in cash implies that in equilibrium the returns from
lending must not be dominated by the returns from holding cash:

Et
[
u′(cjt+1)Rt,t+1

]
≥ Et

[
u′(cjt+1)

Pt
Pt+1

]
,∀t ≥ 0. (ZLB)

In any period without uncertainty the inequality can be rewritten as Rt,t+1
Pt+1

Pt
≥ 1, i.e., the

net nominal interest rate cannot be negative. Thus inequality (ZLB) corresponds to the zero
lower bound in the literature (e.g., Eggertsson and Krugman, 2012, Korinek and Simsek,
2016). When the CIA constraint binds for the L-type the zero lower bound slackens, as the
return from cash holding is dominated by the return from lending, and entrepreneurs only
hold cash for transactional purposes. Then the supply of money determines the price level,
and inflation is simply equal to the growth rate of the money supply. However, if the CIA
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constraint does not bind for the L-type then (ZLB) holds with equality, as the L-type is
indifferent between lending and saving in cash. Thus inflation can no longer be pinned down
by the growth rate of money supply.

Definition: We say that the economy is in a liquidity trap in period t if the CIA constraint
does not bind for the L-type in that period.11

Assumption on monetary policy : To show the equilibrium effects of the zero lower bound
in the clearest possible way, we assume that the money supply grows at an exogenous growth
rate Π̄ ≥ 1, i.e., Mt = M̄t ≡ (Π̄)tM0, where Π̄ ≥ γn is chosen by the monetary authority to
be sufficiently high such that the duration of the slump s∗ in (19) is always zero and the CIA
constraint binds in steady state.12 Then, if there were no constraint on monetary policy due
to the zero lower bound, the path of the money supply above would be an optimal policy
since it would generate sufficient inflation to restore full employment. Note that our analysis
would carry through under more general assumptions on the monetary policy, as long as the
inflation target is bounded above by some threshold Π̄. In practice, this bound could be due
to constraints on monetary policy against creating high inflation.

Other assumptions: We continue to assume that the initial bubble price pb0 is small, the
bubble is expansionary, and K0 = Knb (the economy starts at the bubble-less steady state
capital stock), so that as long as the bubble persists, the economy grows towards the bubble
steady state. Furthermore, we assume that the bubble is large and for now set the bubble
tax to zero (i.e., τ = 0 < τ̄).

5.3 Post-bubble equilibrium dynamics

We now analyze equilibrium dynamics with bubbles. First, note that the equilibrium dy-
namics are the same as before as long as the bubble persists. (See the appendix for detailed
derivations.) This is because, by construction, neither the nominal wage rigidity nor the
ZLB constraint binds as long as the economy is growing towards or is in the steady state.

However, due to the presence of money holding, the post-bubble dynamics are different.
Let T be the period that the bubble collapses. Then in each period t ≥ T ; given known
state variables Kt, Pt−1 and wt−1; we have the following system of equations that pin down

11As aH > aL, the CIA constraint will always bind for the H-type.
12Formally, we assume Π̄ is sufficiently high such that ln Π̄ > ln γn − 2α

3−α ln(ΩαKα−1
b ) and Π̄Rb ≥ 1.
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equilibrium quantities Kt+1, Lt, Yt and prices Rt, qt, wt, Pt:

Yt = Kα
t L

1−α
t

Lt =

(
1− α
wt

) 1
α

Kt

qt = α

(
1− α
wt

) 1−α
α

(21)

wt = max

{
(1− α)Kα

t ,
γwt−1

Pt/Pt−1

}
(22)

Kt+1 = Ω(αYt +
M̄t−1

Pt
)− aLM̄t

Pt

Rt =


θaH(1−(1+τ)φ)

1−h−(1+τ)φ
qt if t = T

aLqt if t ≥ T + 1
(23)

and:

Πt = max

{
1

Rt−1,t

, Π̄

}
. (24)

Note that the inflation is determined either by the money growth at Π̄ or the zero lower
bound as seen in equation (24). The real interest rate is pinned down by equation (23). In
period t = T − 1 the bubble has not collapsed yet, and the marginal investor is the H-type,
leading to the first interest rate expression in (23). However, after the bubble collapses the
marginal investor switches to the L-type, leading to the second interest rate expression.

We are now ready to show how: (i) the collapse of a large expansionary bubble period
can push the economy into a liquidity trap, (ii) the liquidity trap can exacerbate the nom-
inal wage rigidity and thus exacerbate involuntary unemployment, and (iii) the increase in
unemployment can cause a further drop in the real interest rate, leading to a bidirectional
relationship between the liquidity trap and the wage rigidity.

In the following analysis, we assume for simplicity that the economy reaches the bubble
steady state before the bubble collapses. This allows our analysis to take advantage of the
closed-form expressions for the bubble steady state.

For analytical tractability, we focus on the simplest case: we will construct an equilibrium
where the collapse of a large bubble in T will tip the economy temporarily into a liquidity
trap that lasts for only one period. The equilibrium is solved via guess and verify method.
Detailed derivations are relegated to the appendix.
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As in proposition 5, we can show that if the bubble capital stock, Klb, is sufficiently large,
then the collapse of the bubble will push the real interest rate between T and T + 1 so low
that:

RT+1 <
1

Π̄
,

triggering a liquidity trap. The intuition is the same as in proposition 5: a larger boom
in the capital stock is associated with a larger over-accumulation of capital (relative to the
bubble-less steady state), and hence a larger drop in the real interest rate when the bubble
bursts. The last panel of figure 6 illustrates the effect of the bubble’s collapse on the real
interest rate.

When the economy is in the liquidity trap in period T , the L-type want to save in cash
and the cash-in-advance constraint will not bind for them. Hence the price level PT cannot
be determined by a binding cash-in-advance constraint. Instead, it is determined by the
L-type’s indifference condition between lending and holding cash:

RT+1 =
PT
PT+1

.

Since the economy exits the liquidity trap in T + 1, the price level PT+1 is determined by
the binding cash-in-advance constraint:

PT+1 = P̄T+1 ≡
M̄T+1

ε
.

Hence, the price level in the period the bubble collapses is:

PT = RT+1P̄T+1. (25)

Equation (25) yields an interesting insight: the collapse of the bubble will lead to a de-
flationary pressure. This is because given a fixed price level PT+1 in the future, the drop in
the real interest rate RT+1 must be associated with a drop in the current price level (relative
to the target): PT < P̄T . The intuition is as follows. When the real interest rate drops
sufficiently low, inflation must rise to prevent negative nominal interest rate. For there to be
inflation between T and T + 1 with the price level fixed in T + 1, the price level must drop
today so that it can rise again in the future to generate inflation. This intuition is similar
to that in Krugman (1998) and Eggertsson and Krugman (2012), except that in their case
the shock to the interest rate comes from an unanticipated shock to borrowing capacity. In
our model the shock comes from an anticipated collapse of a large bubble.

The deflationary pressure then exacerbates the downward nominal wage rigidity in the pe-
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riod the bubble collapses. Recall that the wage rigidity can be written as wT ≥ γn
PT /P̄T−1

wT−1,
where the right hand side is increasing in PT . Thus, the deflationary pressure that leads to
drop in PT will raise the wage floor on the right hand side. The second panel of figure 6
illustrates the effect of the deflationary pressure in T on the equilibrium wage. There, the
drop in the price level PT causes the real wage wT to increase. In turn, the increase in the
real wage in T causes involuntary unemployment in period T , as seen in the third panel. In
summary, by pushing the economy into the liquidity trap, the collapse of the bubble could
exacerbate the nominal wage rigidity friction.

In periods T + 1 onwards, since the economy exits the liquidity trap, the equilibrium
dynamics are identical to post-bubble dynamics in section 3. Note that even if the economy
exits the liquidity trap, the downward wage rigidity may still bind and hence the economy
may still stay in a slump. This is illustrated in figure 6.

Remark 2. The preceding analysis highlights how the presence of the liquidity trap can
exacerbate the involuntary unemployment problem. Recall from section 3 that without the
liquidity trap, the economy always retains full employment in the period T when the bubble
collapses. This is because without the liquidity trap, inflation is always at the target Π̄.
Hence, the nominal wage rigidity condition is wT ≥ γn

Π̄
wT−1. Under our assumption that

γn/Π̄ ≤ 1, this constraint would never be binding (as wfT = wb always exceeds γn
Π̄
wT−1 =

γn
Π̄
wb).

However, with the liquidity trap, the deflationary pressure at T pushes the inflation ΠT

below the target Π̄, making it possible for the downward wage rigidity to bind in T . Thus,
unlike the previous case, the economy can enter a recession with involuntary unemployment
in period T when the bubble collapses.

Remark 3. The involuntary unemployment in period T + 1 lowers the product of capi-
tal and hence the real interest rate relative to the full employment benchmark (RT+1 =

aLαKα−1
T+1L

1−α
T+1 ≤ Rf

T+1 ≡ aLαKα−1
T+1). Thus, the involuntary unemployment in T + 1 exacer-

bate the drops in the real interest rate RT+1. Therefore, we have a bidirectional relationship
between the two traps: the liquidity trap exacerbates the involuntary unemployment due to
downward wage rigidity, and in turn the involuntary unemployment exacerbates the liquidity
trap.

6 Conclusion

We have developed a tractable rational bubbles model with downward wage rigidity. We
show that expansionary bubbles could boost economic activities, but their collapse can push
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the economy into a persistent recession with involuntary unemployment and depressed in-
vestment, output, and consumption. The collapse could even push the economy into a
liquidity trap, where the drop in the real interest rate generates a deflationary pressure that
exacerbates the involuntary unemployment problem associated with the downward nominal
wage rigidity. The model’s predictions are consistent with stylized features of recent bubble
episodes. Our model is one of the first in the literature to highlight the tradeoff between the
economic gains during the boom due to the bubble and the (potentially deep and persistent)
loss from the bust.
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A Appendix

A.1 Derivations

A.1.1 Bubble-less equilibrium

The equilibrium dynamics in the bubble-less environment follows once we solve for the H-
type’s investment function. The binding borrowing constraint of the H-type gives us H-type
borrowing, which we can then plug directly into the budget constraint. With log utility,
entrepreneurs consume a fraction 1− β of their net worth, defined as ejt ≡ qtk

j
t −Rtd

j
t−1.

djt =
θqt+1k

j
t+1

Rt+1

=
θqt+1a

Hijt
Rt+1

ijt − d
j
t = β(qtk

j
t −Rtd

j
t−1) = βejt

ijt =
1

1− θqt+1aH

Rt+1

βejt .

We also note that aggregate wealth in a period is given by
∫
j∈Ht e

j
t +
∫
j∈H̄t e

j
t = qtKt. The

idiosyncratic productivity shock is independent across time, which simplifies aggregation,
and we can express aggregate H-type net worth as

∫
j∈Ht e

j
t = hqtKt. Since there is sufficient

financial friction, L-types will invest a portion of their savings, which will be determined
from the aggregate savings in the economy:

∫
j∈Ht

ijt +

∫
j∈H̄t

ijt = βqtKt.
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Furthermore, the equilibrium interest rate will be pinned down by the L-type’s marginal
return from investment, Rt+1 = qt+1a

L. Combining the aggregate savings, investment func-
tion, and interest rate, we are able to arrive at a law of motion for aggregate capital.

Kt+1 = aH
∫
j∈Ht

ijt + aL
∫
j∈H̄t

ijt = aH
∫
j∈Ht

ijt + aL
[
βqtKt −

∫
j∈Ht

ijt

]
Kt+1 = aH

h

1− θaH

aL

βqtKt + aL

[
βqtKt −

h

1− θaH

aL

βqtKt

]

Kt+1 =

(
h
aH − aL

1− θaH

aL

+ aL

)
β︸ ︷︷ ︸

≡Ω

qtKt.

A.1.2 Bubble equilibrium

Capital accumulation Similar to the bubble-less environment, H-type’s borrowing con-
straint will bind. Additionally, H-types will not hold the bubble since their return to invest-
ment is greater. However, we must consider two cases.

Case 1: Rt+1 = qt+1a
L. We proceed as before by solving the H-type’s investment

function. Net worth now reflects bubble holdings from the past period, ejt ≡ qtk
j
t + pbtb

j
t−1 −

Rtd
j
t−1.

ijt − d
j
t = β(qtk

j
t + pbtb

j
t−1 −Rtd

j
t−1) = βejt

ijt =
1

1− θaH

aL

βejt .

The aggregate savings will also change to reflect the presence of the bubble and macropru-
dential tax: ∫

j∈Ht
ijt +

∫
j∈H̄t

ijt + (1 + τ)pbt = β(qtKt + pbt).
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As before, we combine the aggregate savings, investment function, and interest rate to de-
termine the law of motion for capital:

Kt+1 = aH
h

1− θaH

aL

β(qtKt + pbt) + aL

[
β(qtKt + pbt)−

h

1− θaH

aL

β(qtKt + pbt)− (1 + τ)pbt

]
Kt+1 = Ω(qtKt + pbt)− aL(1 + τ)pbt .

Case 2: Rt+1 > qt+1a
L. L-types do not invest since their return to lending and bubbles

is greater than their return to investment. Therefore, all non-bubble savings are shifted to
the H-type to invest, and:

Kt+1 = aH
[
β(qtKt + pbt)− (1 + τ)pbt

]
.

Using the definition of bubble size, φt ≡ pbt
β(qtKt+pbt)

, we can re-write the above capital flows
as below:

Kt+1 =


(

1+
(aH−aL)

aL−θaH
h

)
βaL−aLβ(1+τ)φt

1−βφt αKα
t if φt ≤ φ∗

aHβ[1−(1+τ)φt]
1−βφt αKα

t if φt > φ∗
.

In the notation above, we define small bubbles as φt ≤ φ∗. Small bubbles arise when the
L-type is still investing, therefore the small bubble condition is equivalent to Rt+1 = qt+1a

L.
On the other hand, large bubbles, φt > φ∗, arise when L-types no longer invest, and thus is
equivalent to Rt+1 > qt+1a

L. We show the derivation for φ∗ in the interest rate derivation
below.

Interest rate Using the definition of bubble size, the H-type’s investment function, and
aggregate savings, we can solve for Rt+1 when Rt+1 > qt+1a

L. Recall that in this case,
L-types do not invest, so:

h
β(qtKt + pbt)

1− θqt+1aHt
Rt+1︸ ︷︷ ︸

iHt

+(1 + τ)pbt = β(qtKt + pbt),

Solving for interest rate, we get the following expression.

Rt+1 =

qt+1a
L if φt ≤ φ∗

qt+1
θaH(1−(1+τ)φt)

1−h−(1+τ)φt
if φt > φ∗

.
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Here, φ∗, is defined as the threshold bubble size that equates the two different values of
interest rate:

aL =
θaH(1− (1 + τ)φ∗)

1− h− (1 + τ)φ∗

φ∗ ≡ (1− h)aL − θaH

(1 + τ)(aL − θaH)
.

Bubble growth In the stochastic bubble environment, the expected returns from holding
the bubble must equal the expected returns from lending. In the notation below, terms with
superscript ρ represent values in the state that bubble persists, and terms with superscript
1− ρ represent values in the state that the bubble bursts.

Et[u
′(ci,ρt+1)

pbt+1

(1 + τ)pbt
] = Et[u

′(ci,ρt+1)Rt+1]

⇒ ρ
1

ci,ρt+1

pbt+1

(1 + τ)pbt
= Rt+1ρ

1

ci,ρt+1

+R1−ρ
t+1 (1− ρ)

1

ci,1−ρt+1

⇒ ρ
pbt+1

(1 + τ)pbt
= Rt+1 + (1− ρ)

pbt+1b
j
t

βejt − (1 + τ)pbtb
j
t

.

We guess that L-types hold a portion η of their savings in bubble, that is ηβejt = (1 + τ)pbtb
j
t ,

and then solve for η to get L-type bubble demand:

(1 + τ)pbtb
j
t =

ρ
pbt+1

(1+τ)pbt
−Rt+1

pbt+1

(1+τ)pbt
−Rt+1︸ ︷︷ ︸
η

βejt .

Plugging the expression for L-type bubble demand into the Euler equation above, we get the
following no-arbitrage condition:

pbt+1

pbt
=
Rt+1(1− h− (1 + τ)φt)

ρ(1− h)− (1 + τ)φt
(1 + τ).

Next, we define the evolution of wealth, using the transition dynamics for aggregate
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capital.

qt+1Kt+1 + pbt+1 =


qt+1

[(
h(aH−aL)

1− θaH
aL

+ aL
)
β(qtKt + pbt)− aL(1 + τ)pbt

]
+

pbt+1

pbt
φtβ(qtKt + pbt) if φt ≤ φ∗

qt+1

[
aHβ(qtKt + pbt)− aH(1 + τ)pbt

]
+

pbt+1

pbt
φtβ(qtKt + pbt) if φt > φ∗

⇒
qt+1Kt+1 + pbt+1

qtKt + pbt
=


βqt+1

[(
h(aH−aL)

1− θaH
aL

+ aL
)
− aL(1 + τ)φt

]
+

pbt+1

pbt
φt if φt ≤ φ∗

βqt+1

[
aH − aH(1 + τ)φt

]
+ β

pbt+1

pbt
φt if φt > φ∗

.

Using the flow of bubble price, evolution of wealth, and interest rate, we characterize the
evolution of bubble below:

φt+1 =

pbt+1

pbt

qt+1Kt+1+pbt+1

qtKt+pbt

φt

=


1
β

1−h−(1+τ)φt
ρ(1−h)(1+τ)−φt

(1+τ)φt(
1+

h(aH−aL)

aL−θaH

)
+

(1−ρ)(1−h)
ρ(1−h)−(1+τ)φt

(1+τ)φt
if φt ≤ φ∗

θ
β

(1+τ)φt
ρ(1−h)−(1−θ)(1+τ)φt

if φt > φ∗
.

Steady state bubble size First, we use the above evolution of bubble, to solve for steady
state bubble size for each case of small and large bubble, as a function of macroprudential
tax:

φsb ≡
ρ− 1−ρβ(1−h)(

1+
h(aH−aL)

aL−θaH

)
β−β(1−h)

1− 1−ρβ(1−h)(
1+

h(aH−aL)

aL−θaH

)
β−β(1−h)

1− h
1 + τ

(small bubble)

φlb ≡
ρ(1− h)

(1− θ)(1 + τ)
− θ

β(1− θ)
(large bubble).

Note that in steady state, bubble size is decreasing in tax, in both cases. Therefore, we have
φsb(τ) ≤ φsb(τ̂) for all τ ≥ τ̂ , and φlb(τ) > φlb(τ̂) for all τ < τ̂ . If at τ̂ , steady state bubble
size is the threshold bubble size, we can re-write the bubble threshold cutoff as a cutoff in τ .
Thus, we solve for τ̂ by equating the steady state bubble sizes to the threshold bubble size:

φsb(τ̂) = φlb(τ̂) = φ∗.
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Lastly, we define τ̄ = max[0, τ̂ ], and then re-write steady state bubble size as follows:

φb =

φsb if τ ≥ τ̄

φlb if τ < τ̄
.

The remainder of the steady state values follow directly from previously derived equilibrium
evolution equations and the above steady state bubble size.

A.1.3 Bubble equilibrium dynamics with zero lower bound (section 5.3)

Capital accumulation In the zero lower bound environment, we focus on the bubble
equilibrium dynamics for large bubbles. With large bubbles, L-types do not invest, and all
resources excluding the bubble and money holdings are invested by H-types. The following
shows H-type investment, as derived from the new aggregate savings equation and money
growth: ∫

j∈Ht
ijt +

Mt

Pt
+ (1 + τ)pbt = β(qtKt + pbt +

Mt−1

Pt
)∫

j∈Ht
ijt = β(qtKt + pbt)−

Mt

Pt

(
1− β

Π∗

)
− (1 + τ)pbt .

Furthermore, noting that the CIA constraint binds during the bubble periods, and defin-
ing ε∗ ≡

(
1− β

Π∗

)
ε, capital accumulation follows:

Kt+1 = aH [β(qtKt + pbt)− ε∗]− aH(1 + τ)pbt .

The cashless limit, where ε→ 0, implies ε∗ → 0, and that capital accumulation remains
the same as the large bubble environment:

Kt+1 = aH [β(qtKt + pbt)]− aH(1 + τ)pbt .

Interest rate Noting that H-types do not hold bubbles, and plugging the binding borrow-
ing and CIA constraints into the budget constraint, we derive the following H-type investment
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function.

ijt +
M j

t

Pt
− djt = β

(
qtk

j
t −Rt−1,td

j
t−1 + pbtb

j
t−1 +

M j
t−1

Pt

)

ijt

(
1− θqt+1a

H
t

Rt,t+1

)
= β

(
qtk

j
t −Rt−1,td

j
t−1 + pbtb

j
t−1

)
−

(
M j

t

Pt
− β

M j
t−1

Pt

)
∫
j∈Ht

ijt =
β(qtKt + pbt)− ε∗

1− θqt+1aHt
Rt,t+1

Then, plugging in the above investment function into the aggregate savings equation, we
derive the interest rate. We also define the bubble size with money holdings as φt =

pbt
β(qtKt+pbt)−ε∗

.

h
β(qtKt + pbt)− ε∗

1− θqt+1aHt
Rt,t+1

+ (1 + τ)pbt = β(qtKt + pbt)− ε∗

h
1

1− θqt+1aHt
Rt,t+1

+ (1 + τ)φt = 1

Rt,t+1 = qt+1
θaH(1− (1 + τ)φt)

1− h− (1 + τ)φt
.

Bubble growth Similar to the standard bubble environment, the no-arbitrage condition
for L-types between lending and bubble holdings pins down the bubble price growth rate.
In the notation below, terms with superscript ρ represent values in the state that bubble
persists, and terms with superscript 1 − ρ represent values in the state that the bubble
bursts. Now, we must take into account the money holdings of the L-type, and under the
assumption that CIA constraints bind in the pre-burst period, Mt

Pt
= ε.

Et[u
′(ci,ρt+1)

pbt+1

(1 + τ)pbt
] = Et[u

′(ci,ρt+1)Rt+1]

⇒ ρ
pbt+1

(1 + τ)pbt
= ρRρ

t,t+1 + (1− ρ)R1−ρ
t,t+1

pbt+1b
j
t −R

ρ
t,t+1d

j
t +

Mj
t

Pt+1

Mj
t

Pt+1
−R1−ρ

t,t+1d
j
t

= ρRρ
t,t+1 + (1− ρ)R1−ρ

t,t+1

pbt+1b
j
t −R

ρ
t,t+1d

j
t + ε

Π̄
ε
Π̄
−R1−ρ

t,t+1d
j
t
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However, at the cashless limit, as ε → 0, we return to the following equation, which is
equivalent to our standard bubble environment.

ρ
pbt+1

(1 + τ)pbt
= Rt,t+1 + (1− ρ)

pbt+1b
j
t

βejt − (1 + τ)pbtb
j
t

,

Solving for the bubble price growth in terms of the interest rate and parameters,

pbt+1

(1 + τ)pbt
=

(1− h− (1 + τ)φt)

ρ(1− h)− (1 + τ)φt
Rt,t+1.

Bubble growth follows from the above bubble price growth, evolution of wealth, and
interest rate, which, in the cashless limit, are all equivalent to the standard large bubble
environment.

φt+1

(1 + τ)φt
=
θ

β

1

ρ(1− h)− (1− θ)(1 + τ)φt

A.1.4 Bubble equilibrium dynamics with partial depreciation

The following re-calculates the bubble dynamics in the presence of partial depreciation, δ.
First, the budget constraint and borrowing constraint must account for the depreciation:

Rt+1d
j
t ≤ θ(qt+1 + 1− δ)kjt+1

cjt + ijt + (1 + τ)p̃btb
j
t = (qt + 1− δ)kjt + djt −Rtd

j
t−1 + p̃btb

j
t−1.

Similar to before, small bubbles arise when the interest rate is equal to the marginal
return to investment for the L-type. With partial depreciation, this results in the case
Rt+1 = (qt+1 +1−δ)aL. The resulting capital flow is calculated similarly as the case with full
depreciation. First, we solve the H-type’s investment function. Now, net worth also reflects
partial depreciation, ejt ≡ (qt + 1− δ)kjt + pbtb

j
t−1 −Rtd

j
t−1.

ijt − d
j
t = β((qt + 1− δ)kjt + pbtb

j
t−1 −Rtd

j
t−1) = βejt

ijt =
1

1− θaH

aL

βejt .

The aggregate savings will also change to reflect the presence of the bubble and macropru-
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dential tax: ∫
j∈Ht

ijt +

∫
j∈H̄t

ijt + (1 + τ)pbt = β((qt + 1− δ)Kt + pbt).

As before, we combine the aggregate savings, investment function, and interest rate to de-
termine the law of motion for capital:

Kt+1 = aH
h

1− θaH

aL

β((qt + 1− δ)Kt + pbt) + aL

[
β((qt + 1− δ)Kt + pbt)−

h

1− θaH

aL

β((qt + 1− δ)Kt + pbt)− (1 + τ)pbt

]
Kt+1 = Ω((qt + 1− δ)Kt + pbt)− aL(1 + τ)pbt .

In the case of large bubbles, L-types do not invest since their return to lending and
bubbles is greater than their return to investment: Rt+1 > (qt+1 + 1 − δ)aL. Therefore, all
non-bubble savings are shifted to the H-type to invest, and:

Kt+1 = aH
[
β((qt + 1− δ)Kt + pbt)− (1 + τ)pbt

]
.

Adjusting the definition of bubble size to account for partial depreciation, φt ≡ pbt
β((qt+1−δ)Kt+pbt)

,
we can re-write the above capital flows as below:

Kt+1 =


(

1+
(aH−aL)

aL−θaH
h

)
βaL−aLβ(1+τ)φt

1−βφt (αKα
t + (1− δ)Kt) if φt ≤ φ∗

aHβ[1−(1+τ)φt]
1−βφt (αKα

t + (1− δ)Kt) if φt > φ∗
.

Interest rate Using the definition of bubble size, the H-type’s investment function, and
aggregate savings, we can solve for Rt+1 when Rt+1 > qt+1a

L. Recall that in this case,
L-types do not invest, so:

h
β((qt + 1− δ)Kt + pbt)

1− θ(qt+1+1−δ)aHt
Rt+1︸ ︷︷ ︸

iHt

+(1 + τ)pbt = β((qt + 1− δ)Kt + pbt),

Solving for interest rate, we get the following expression.

Rt+1 =

(qt+1 + 1− δ)aL if φt ≤ φ∗

(qt+1 + 1− δ) θa
H(1−(1+τ)φt)

1−h−(1+τ)φt
if φt > φ∗

.
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Here, φ∗, is defined as the threshold bubble size that equates the two different values of
interest rate:

aL =
θaH(1− (1 + τ)φ∗)

1− h− (1 + τ)φ∗

φ∗ ≡ (1− h)aL − θaH

(1 + τ)(aL − θaH)
.

Bubble growth In the stochastic bubble environment, the expected returns from holding
the bubble must equal the expected returns from lending. In the notation below, terms with
superscript ρ represent values in the state that bubble persists, and terms with superscript
1− ρ represent values in the state that the bubble bursts.

Et[u
′(ci,ρt+1)

pbt+1

(1 + τ)pbt
] = Et[u

′(ci,ρt+1)Rt+1]

⇒ ρ
1

ci,ρt+1

pbt+1

(1 + τ)pbt
= Rt+1ρ

1

ci,ρt+1

+R1−ρ
t+1 (1− ρ)

1

ci,1−ρt+1

⇒ ρ
pbt+1

(1 + τ)pbt
= Rt+1 + (1− ρ)

pbt+1b
j
t

βejt − (1 + τ)pbtb
j
t

.

We guess that L-types hold a portion η of their savings in bubble, that is ηβejt = (1 + τ)pbtb
j
t ,

and then solve for η to get L-type bubble demand:

(1 + τ)pbtb
j
t =

ρ
pbt+1

(1+τ)pbt
−Rt+1

pbt+1

(1+τ)pbt
−Rt+1︸ ︷︷ ︸
η

βejt .

Plugging the expression for L-type bubble demand into Euler equation above, we get the
following no-arbitrage condition:

pbt+1

pbt
=
Rt+1(1− h− (1 + τ)φt)

ρ(1− h)− (1 + τ)φt
(1 + τ).

Next, we define the evolution of wealth, using the transition dynamics for aggregate
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capital.

(qt+1 + 1− δ)Kt+1 + pbt+1 =


(qt+1 + 1− δ)

[(
h(aH−aL)

1− θaH
aL

+ aL
)
β((qt + 1− δ)Kt + pbt)− aL(1 + τ)pbt

]
+

pbt+1

pbt
φtβ((qt + 1− δ)Kt + pbt) if φt ≤ φ∗

(qt+1 + 1− δ)
[
aHβ((qt + 1− δ)Kt + pbt)− aH(1 + τ)pbt

]
+

pbt+1

pbt
φtβ((qt + 1− δ)Kt + pbt) if φt > φ∗

⇒
(qt+1 + 1− δ)Kt+1 + pbt+1

(qt + 1− δ)Kt + pbt
=


β(qt+1 + 1− δ)

[(
h(aH−aL)

1− θaH
aL

+ aL
)
− aL(1 + τ)φt

]
+ β

pbt+1

pbt
φt if φt ≤ φ∗

β(qt+1 + 1− δ)
[
aH − aH(1 + τ)φt

]
+ β

pbt+1

pbt
φt if φt > φ∗

.

Using the flow of bubble price, evolution of wealth, and interest rate, we characterize the
evolution of bubble below:

φt+1 =

pbt+1

pbt

(qt+1+1−δ)Kt+1+pbt+1

(qt+1−δ)Kt+pbt

φt

=


1
β

1−h−(1+τ)φt
ρ(1−h)(1+τ)−φt

(1+τ)φt(
1+

h(aH−aL)

aL−θaH

)
+

(1−ρ)(1−h)
ρ(1−h)−(1+τ)φt

(1+τ)φt
if φt ≤ φ∗

θ
β

(1+τ)φt
ρ(1−h)−(1−θ)(1+τ)φt

if φt > φ∗
.

Non-bubble dynamics Without the bubble, but in the presence of partial depreciation,
the dynamics of capital and the interested are adjusted as following:

Kt+1 = Ω(qt + 1− δ)Kt = Ω(αKα
t + (1− δ)Kt)

Rt+1 = (qt+1 + 1− δ)aL

The resulting steady state is thus:

Knb =

(
Ωα

1− Ω(1− δ)

) 1
1−α

Rnb =
aL

Ω

42



A.1.5 Post-bubble equilibrium dynamics of section 5.3

Equilibrium Guess We guess an equilibrium where the collapse of a large bubble in T

will tip the economy temporarily into a liquidity trap that lasts for only one period. Let
T+s∗ be the first period in which the economy regains full employment. Then in equilibrium
the following must hold simultaneously:

1. Downward wage rigidity binds from periods T to T + s∗ − 1:

wfT+s <
γn

ΠT+s

wT+s−1

wT+s =
γn

ΠT+s

wT+s−1, ∀ s ∈ [0, s∗)

2. There is a liquidity trap in the burst period, i.e. the zero lower bound (ZLB) binds:

RT+1 <
1

Π̄
, (26)

3. The economy is not in a liquidity trap before the burst, and exits the liquidity trap in
T + 1:

Et
[
u′(cjt+1)Rt+1

]
≥ Et

[
u′(cjt+1)

Pt
Pt+1

]
, ∀ t ≤ T − 1

Rt+1 ≥
1

Π̄
∀ t ≥ T + 1

We can characterize the equilibrium quantities and prices based on these properties. First,
we find RT+1. Recall that after the bubble collapses, the marginal capital investor will be
the L-type, and so:

RT+1 = aLqT+1 = aLα

(
LT+1

KT+1

)1−α

.

Note that wage rigidity may still bind in T+1. To findKT+1, recall the bubble-less dynamics:

KT+1 = ΩαYT

where output at T is:
YT = Kα

b L
1−α
T
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and, as in (18), we know:

LT =

[
wT

1− α

]− 1
α

KT =

[
wT

1− α

]− 1
α

Kb

so:

YT =

[
wT

1− α

]α−1
α

Kb.

Combining the equations above gives an expression for RT+1 and PT in wT :

PT
P̄T+1

= RT+1

= aLα

(
LT+1

KT+1

)1−α

= aLα

(
γn

ΠT+1

wT
1− α

)− 1−α
α

PT
P̄T+1

=
1

ΠT+1

= aLα

(
γn

wT
1− α

)α−1
α
[

1

ΠT+1

]α−1
α

⇒ PT
P̄T+1

= RT+1 =

(
aLα

(
γn

wT
1− α

)α−1
α

)α

(27)

Next, we find wT . Under the guess that the wage rigidity constraint is binding in T , we
have:

wT =
γn

ΠT−1,T

wT−1

wT =
γn

PT/P̄T−1

wlb

=
γn

PT/(P̄T+1/Π̄2)
wlb

wT =
γn/Π̄

2

(aLα)α
(
γn

wT
1−α

)α−1wlb

=
1

1− α

(
aLα

1− α

)−α
γ2−α
n /Π̄2

wα−1
T

wlb

wαT =
1

1− α

(
aLα

1− α

)−α
γ2−α
n

Π̄2
wlb

wT = ζ(wlb, Π̄)

where ζ(wlb, Π̄) ≡ 1−α
aLαγn

(
1

1−α
γ2n
Π̄2wlb

) 1
α
. is a function of wlb. Combined with (27), we get
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expressions for RT+1 and PT in exogenous parameters:

PT
P̄T+1

= RT+1 =

(
aLα

(
γn
ζ(wlb, Π̄)

1− α

)α−1
α

)α

. (28)

During the slump (1 ≤ s < s∗), LT+s < 1, and wages are solved from binding downward
wage rigidity:

wT+s =
(γn

Π̄

)s PT
P̄T

wT

=
(γn

Π̄

)s PT
P̄T

ζ(wlb, Π̄)

From (18), we know:

LT+s

KT+s

=

[
wT+s

1− α

]− 1
α

=

[
1

1− α

(γn
Π̄

)s PT
P̄T

ζ(wlb, Π̄)

]− 1
α

Thus, interest rate during the slump is as follows:

RT+s = aLqT+s = aLαKα−1
T+sL

1−α
T+s

= aLα

(
LT+s

KT+s

)1−α

= aLα
(γn

Π̄

)−s 1−α
α

[
1

1− α
PT
P̄T

ζ(wlb, Π̄)

]− 1−α
α

(29)

The dynamics of the post-slump economy is as in section 3.2.2.

Verifying the equilibrium Now, we find a set of parametric conditions under which the
above guess is correct. First, for the wage rigidity constraint to bind in T , it must be that:

wfT <
γn

PT/P̄T−1

wT−1,

where recall that wT−1 = wlb and wfT = (1 − α)Kα
T = (1 − α)Kα

b = wlb. So the inequality
above is equivalent to

PT < γnP̄T−1.
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Recall from (25) that Π̄2 P̄T−1

PT
= P̄T+1

PT
= ΠT,T+1 = 1

RT+1
, so RT+1 = 1

Π̄2
PT
P̄T−1

. So for the wage
rigidity constraint to bind at T we need:

RT+1 <
γn
Π̄2
. (30)

Recall (28), so the inequality above is equivalent to:(
aLα

(
γn
ζ(wlb, Π̄)

1− α

)α−1
α

)α

<
γn
Π̄2
. (31)

Second, we need to verify that the ZLB is binding in the burst period, i.e.,

RT+1 <
1

Π̄
, (32)

Intuitively, inequality (32) implies that the monetary authority can no longer set ΠT,T+1 = Π̄,
as it would violate the ZLB, and thereby the ZLB is binding at T . However, this inequality
is automatically satisfied because of (30), under our assumption:

Π̄ ≥ γn.

Third, we need to verify that the CIA binds in t ≥ T + 1 (i.e., Rt+1Π̄ ≥ 1 for such t).
As Π ≥ γn, the interest rate RT+s in (29) is weakly increasing in s. Therefore, RT+2 ≤
RT+s ∀s ∈ (2, s∗). After the slump, (s ≥ s∗), the economy returns to full employment.
Furthermore, capital is increasing; therefore, interest rate is decreasing. As the economy
transitions back to the bubble-less steady state, we have that Rnb ≤ RT+s ∀s ≥ s∗. Lastly,
under our hypothesis, inflation is at a constant Π̄ for all periods t > T+1. Thus, if RT+2Π̄ ≥ 1

and RnbΠ̄ ≥ 1, then RT+sΠ̄ ≥ 1 ∀s > 1, that is the economy exits the liquidity trap after
one period, as desired.

If the slump lasts less than two periods, s∗ < 2 , the economy reaches full employment
in T + 2. Then, following the above logic, Rnb ≤ RT+s ∀s ≥ 2, and a condition on Rnb

is sufficient to exit the liquidity trap after one period.Then, under the following sufficient
condition, the economy is not in a liquidity trap after t = T + 1:

min{RT+2, Rnb} ≥
1

Π̄
, if s∗ ≥ 2

Rnb ≥
1

Π̄
, if s∗ < 2
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or equivalently:

min{
(
aLα

)α2

γ−(1−α2)
n

(
ζ(wlb, Π̄)

1− α

)−α(1−α)

,
aL

Ω
} ≥ 1

Π̄
if s∗ ≥ 2

aL

Ω
≥ 1

Π̄
if s∗ < 2 (33)

Fourth, we also need to verify that the CIA binds in T − 1. Since before the bub-
ble bursts, there is uncertainty, the corresponding condition is ET−1[u′(cT )PT−1/PT ] ≤
ET−1[u′(cT )RT−1,T ]. Wage rigidity does bind in T , therefore we have unemployment, LT < 1.
In the notation below, ρ superscripts denote values in the state that the bubble persists, and
1− ρ denotes values in the state that the bubble bursts.

ET−1[u′(cT )PT−1/PT ] ≤ ET−1[u′(cT )RT−1,T ]

ρu′(cρT )

Π̄
+ (1− ρ)u′(c1−ρ

T )
P̄T−1

P 1−ρ
T

≤ ρu′(cρT )Rlb + (1− ρ)u′(c1−ρ
T )R1−ρ

T−1,T

ρ
1

(1 + τ)
≤ ρRlb +

θaH(1− (1 + τ)φ)

1− h− (1 + τ)φ
α

(
wT

1− α

)α−1
α

ρ
PT
P̄T

Π̄

(
1

(1 + τ)
− 1

Π̄

)
where wT = ζ(wlb, Π̄)

The above condition can be re-written in terms of bubble steady state values:

(
ζ(wlb, Π̄)

1− α

)α2−1
α

≥ 1

Π̄2

1− h− (1 + τ)φ

θaH(1− (1 + τ)φ)

γn
(aLαγn)α

(1 + τ)Π̄

α
(
Π̄− (1 + τ)

) ( 1

(1 + τ)
−Rlb

)
(34)

Finally, we numerically verify that the parameter space that satisfies all of the above
conditions is not empty.

A.2 Proofs

A.2.1 Proof of proposition 1

Proof. Begin with the size of a large bubble (τ < τ̄) in steady state:

φlb(τ) =
βρ(1− h)

β(1− θ)(1 + τ)
− θ

β(1− θ)
.
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Given that a large bubble exists, its size on the saddle path must be equal to the steady
state size ∀t. Thus a necessary and sufficient condition for large bubble existence is:

φlb(τ) =
βρ(1− h)

β(1− θ)(1 + τ)
− θ

β(1− θ)
> 0

θ

β(1− θ)
<

βρ(1− h)

β(1− θ)(1 + τ)

θ <
βρ(1− h)

1 + τ
.

Now consider the size of a small bubble (τ ≥ τ̄) in steady state:

φsb(τ) =

ρ− 1−ρβ(1−h)(
1+

h(aH−aL)

aL−θaH

)
β−β(1−h)

1− 1−ρβ(1−h)(
1+

h(aH−aL)

aL−θaH

)
β−β(1−h)

1− h
1 + τ

.

Once again, given that a small bubble exists, its size on the saddle path must be equal to the
steady state size in all t. Thus a necessary and sufficient condition for small bubble existence
is:

φsb(τ) =

ρ− 1−ρβ(1−h)(
1+

h(aH−aL)

aL−θaH

)
β−β(1−h)

1− 1−ρβ(1−h)(
1+

h(aH−aL)

aL−θaH

)
β−β(1−h)

1− h
1 + τ

> 0

0 < ρ− 1− ρβ(1− h)(
1 + h(aH−aL)

aL−θaH

)
β − β(1− h)

1 <

((
1 +

h(aH − aL)

aL − θaH

)
β

)
ρ

ρ >
aL − θaH

β(aL − θaH) + βh(aH − aL)
.

A.2.2 Proof of proposition 2

Proof. Let T denote the period in which the bubble bursts. Define:

s∗ ≡ min
{
s ≥ 0 | wfT+s (KT+s) ≥ γswT

}
.

After T : The law of motion for capital after T is identical to that in the bubble-less
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environment, except that LT+s may not be one:

AT+s = qT+sKT+s = αKα
T+sL

1−α
T+s

KT+s+1 = haH
βAT+s

1− θαH

αL

+ aL

(
βAT+s −

βpAT+s

1− θαH

αL

)
= ΩAT+s,∀s ≥ s∗.

From the firm’s first order conditions, we have
(
KT+s

LT+s

)α
= wT+s

1−α so that the dynamics above
can be rewritten in terms of wage:

qT+s = α

(
KT+s

LT+s

)α−1

= α

(
wT+s

1− α

)α−1
α

AT+s = αKα
T+sL

1−α
T+s = α

(
wT+s

1− α

)α−1
α

KT+s

KT+s+1 = αΩ

(
wT+s

1− α

)α−1
α

KT+s

LT+s =

(
wT+s

1− α

)− 1
α

KT+s.

Between T and T + s∗ − 1: By definition of s∗ (τ), wage rigidity binds, i.e.

wT+s = γswT .

Thus:

KT+s+1 = αΩ

(
wT

1− α

)α−1
α

γ
α−1
α
sKT+s

LT+s =

(
γswT
1− α

)− 1
α

KT+s = γ−
s
α
KT+s

KT

.

Proceeding by backward iteration:

KT+s+1 =

[
αΩ

(
wT

1− α

)α−1
α

]s+1(s+1∏
i=0

γ
α−1
α
i

)
KT

=

[
αΩ

(
wT

1− α

)α−1
α

]s+1

γ
α−1
α

(s+1)(s+2)
2 KT

=
[
αΩKα−1

T

]s+1
γ
α−1
α

(s+1)(s+2)
2 KT .
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Finally, turning to the definition of slump length:

s∗ ≡ min
{
s ≥ 0 | wfT+s ≥ γswT

}
= min

{
s ≥ 0 | (1− α)Kα

T+s ≥ γswT
}

= min
{
s ≥ 0 | Kα

T+s ≥ γsKα
T

}
= min

{
s ≥ 0 |

[
αΩKα−1

T

]s
γ
α−1
α

s(s+1)
2 KT ≥ γ

s
αKT

}
= min

{
s ≥ 0 | s logγ(αΩ) + (α− 1)s logγKT +

α− 1

α

s(s+ 1)

2
≤ s

α

}
= min

{
s ≥ 0 | (α− 1)

(s+ 1)

2
≤ 1− α logγ(αΩ)− α(α− 1) logγKT

}
= min

{
s ≥ 0 | s ≥ 2α

1− α
logγ(αΩ)− 3− α

1− α
− 2α logγKT

}
.

Define:

ω(γ) ≡ 2α

1− α
logγ(αΩ)− 3− α

1− α
.

Then we have:

s∗ =


0 γ = 0

max
{

0,
⌈
ω(γ)− 2α logγKT

⌉}
0 < γ < 1

∞ γ = 1

.

Once the slump has ended (s > s∗) there are no other external shocks to the economy.
Thus the dynamics are identical to the bubble-less environment:

wT+s = wfT+s = (1− α)Kα
T+s

LT+s = 1

qT+s = αKα−1
T+s

KT+s+1 = ΩAT+s = αΩKα
T+s.

A.2.3 Proof of proposition 3

Proof. Begin by considering the value function for a worker in the post-slump period (s ≥ s∗).
It satisfies:

Wnb (KT+s) = log cT+s∗ + βWnb (KT+s+1)
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where:

cT+s = wT+s = (1− α)Kα
T+s

KT+s+1 = ΩAT+s = αΩKα
T+s.

We guess and verify that the welfare function takes the following functional form: Wnb (K) =

f + g logK. Given this guess, we have:

f + g logKT+s = log
[
(1− α)Kα

T+s

]
+ β

(
f + g log

[
αΩKα

T+s

])
.

Solving for the coefficients yields:

g = α + αβg =
α

1− αβ
f = log [1− α] + βf + βg log [αΩ]

=
1

1− β

(
log [1− α] +

αβ

1− αβ
log [αΩ]

)
.

Thus we have verified our guess and achieve the following solution to Wnb:

Wnb (K) =
1

1− β

(
log [1− α] +

αβ

1− αβ
log [αΩ]

)
+

α

1− αβ
logK.

Recall that dynamics in the post-slump period are equivalent to those in the bubble-less
environment. As such, the welfare functions will be of equivalent form.

Now consider the welfare of a worker in the stochastic bubble steady state. It satisfies:

Wb (Kt) = log cwt + β [ρWb (Kt) + (1− ρ)Wburst (Kt+1)]

where:

cwt = (1− α)(Kt)
α + T =

[
(1− α) +

βφb
1− βφb

ατ

]
(Kt)

α

Kt+1 = Kt = Kb.

Algebra yields:

Wb(Kb) =
log cwb + β(1− ρ)Wburst(Kb)

1− βρ

cwb =

[
(1− α) +

βφb
1− βφb

ατ

]
(Kb)

α.
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The welfare during the slump period is by definition dependent on how long the slump
lasts. The ex-ante welfare for the worker in the period the bubble bursts satisfies:

Wburst (KT ) = log cwT +
s∗−1∑
s=1

βs log cwT+s + βs
∗
Wnb (KT+s∗)

where:

cT+s = wT+sLT+s = wT+s

(
1− α
wT+s

) 1
α

KT+s = γ
α−1
α
s(1− α)Kα−1

T KT+s

KT+s = γ(α−1
α ) s(s+1)

2

[
αΩKT (τ)α−1

]s
KT (τ)

s∗ =

max
{

0, ω(γ)− 2α logγKT

}
0 ≤ γ < 1

∞ γ = 1
.

A proof for the form of the constants can be found in proposition 2. Substituting in constants
and grouping terms yields the form in the main text.

A.2.4 Proof of proposition 4

Proof. It is sufficient to show that Wnb > Wb as γ → 1. Recall that as γ → 1, the slump
length approaches infinity. Then the limiting welfare of a worker in the stochastic bubbly
steady state is given by the following:

Wb(Kb) =
log cwb + β(1− ρ)Wburst(Kb)

1− βρ

cwb =

[
(1− α) +

βφb
1− βφb

ατ

]
(Kb)

α.

However, due to an infinite slump, the worker welfare in time of burst changes to the follow-
ing:

Wburst (Kb) ≡ log [(1− α)(Kb)
α] +

∞∑
s=1

βs log cwT+s

log cwT+s = Γ1(s)− ((1− α)s− α) logKb, ∀s ≥ 1

Γ1(s) ≡ α− 1

α

s2 + 3s

2
log γ + log(1− α) + s log (αΩ) .
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With τ = 0 and γ = 1, the worker welfare reduces to the expression below:

Wb (Kb) =
1

1− β
log(1− α) +

β2(1− ρ)

(1− β)2(1− βρ)
log(αΩ)

+

(
α

1− βρ
+
αβ(1− ρ)(α− β)

(1− βρ)(1− β)2
− β2(1− ρ)

(1− βρ)(1− β)2

)
logKb.

The welfare in the bubble-less environment remains the same, and is slightly re-written using
the value of bubble-less steady state capital.

Wnb(Knb) =
1

1− β
log(1− α) +

1

1− β
βα

1− βα
log(αΩ) +

α

1− βα
log Knb︸︷︷︸

=(αΩ)
1

1−α

=
1

1− β
log(1− α) +

α

(1− β)(1− α)
log(αΩ).

Comparing Wb(Kb) to Wnb(Knb), we derive the following expression. Note that since we are
considering expansionary bubbles, Kb > Knb.

Wnb(Knb)−Wb(Kb) =
1

(1− βρ)(1− β)2︸ ︷︷ ︸
>0

(
β2(1− ρ) + αβ(1− β + ρ)− α

)
(logKb − logKnb)︸ ︷︷ ︸

>0

.

Then, all that is necessary for Wnb(Knb) > Wb(Kb) at τ = 0 and γ = 1, is the following:

β2(1− ρ) + αβ(1− β + ρ)− α > 0.

The above condition is true if and only if the risk of the bubble bursting, 1− ρ, satisfies:

β(β − α)(1− ρ) > α(1− β)2.

A.2.5 Proof of proposition 5

Proof. Recall that RT+1 = aLαKα−1
T+1L

1−α
T+1. Since LT+1 ≤ 1, a sufficient condition for

RT+1Π̄ < 1 is that aLαKα−1
T+1 < 1

Π̄
. Furthermore, from the post-bubble equilibrium dy-

namics, we have KT+1 = αΩKα
T = αΩKα

lb. Therefore, aLαKα−1
T+1 < 1

Π̄
if and only if

aLα (αΩKα
lb)

α−1 < 1
Π̄
. Equivalently,

Klb >
(
aLΠ̄

) 1
α(1−α) α

1
1−αΩ−1/α.
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Figure 1: Japan before and after the collapse of asset prices. Dashed vertical lines indicate
the approximate beginning of the collapse in asset prices (1991). Grey bars indicate reces-
sions, according to the OECD. Real wages are calculated from nominal wages and consumer
price indices. The nominal interest rate refers to the discount rate of commercial bills and
interest rates on loans secured by government bonds, specially designated securities and bills
corresponding to commercial bills. Sources: Statistics Bureau of Japan, OECD, IMF, FRB
St. Louis, and Mack et al. (2011).
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Figure 2: U.S. before and after the collapse of asset prices. Dashed vertical lines indicate the
approximate beginning of the collapse in asset prices (2007). Grey bars indicate recessions,
according to the NBER. Real wages are calculated from nominal wages and consumer price
indices. The nominal interest rate refers to the effective federal funds rate. Sources: NBER,
OECD,US Bureau of Labor Statistics, US Bureau of Economic Analysis, S&P500, US Federal
Housing Finance Agency, and FRB St. Louis.
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Figure 3: Equilibrium dynamics of aggregate variables through a boom-bust cycle of an
expansionary bubble.
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Figure 4: Equilibrium dynamics with different wage rigidity parameters.
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Figure 5: Effects of bubble tax.
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Figure 6: Equilibrium dynamics with post-bubble liquidity trap.
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